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Abstract
Several upcoming satellite missions have core science requirements to produce data for 
accurate forest aboveground biomass mapping. Largely because of these mission datasets, 
the number of available biomass products is expected to greatly increase over the coming 
decade. Despite the recognized importance of biomass mapping for a wide range of sci-
ence, policy and management applications, there remains no community accepted standard 
for satellite-based biomass map validation. The Committee on Earth Observing Satellites 
(CEOS) is developing a protocol to fill this need in advance of the next generation of bio-
mass-relevant satellites, and this paper presents a review of biomass validation practices 
from a CEOS perspective. We outline the wide range of anticipated user requirements for 
product accuracy assessment and provide recommendations for the validation of biomass 
products. These recommendations include the collection of new, high-quality in situ data 
and the use of airborne lidar biomass maps as tools toward transparent multi-resolution 
validation. Adoption of community-vetted validation standards and practices will facilitate 
the uptake of the next generation of biomass products.

Keywords Map validation · Biomass mapping · Reference data · Committee on Earth 
Observing Satellites · Remote sensing · Lidar

1 Introduction

Forest biomass has been recognized as a Global Climate Observing System (GCOS) 
Essential Climate Variable (ECV), a critical input to the United Nations’ Reducing 
Emissions from Deforestation and Degradation-plus (REDD +) program, and an impor-
tant input to Earth system models (Herold et  al. 2019). Spatially continuous maps of 
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forest biomass are therefore important inputs for decreasing uncertainties in the global 
carbon cycle, particularly for areas where insufficient ground or airborne lidar data are 
available. Accurate biomass products are of great importance for forest management 
and climate mitigation. However, due to a previous dearth of satellite data specifically 
designed for producing accurate estimates of forest structure (Goetz et  al. 2009) few 
global-scale forest biomass products are currently available, and the assessment of their 
accuracy is challenged by a lack of appropriate reference data. To overcome this critical 
carbon accounting gap, several upcoming Earth Observation (EO) missions will collect 
satellite data sensitive to forest structure and aboveground biomass, defined as the dry-
weight of the live or dead woody component of aboveground vegetation. We anticipate 
a multitude of new global forest biomass products in the coming decade, but foresee 
challenges in intercomparison and validation across biomass products. These challenges 
have already been highlighted by several studies comparing the few existing continental 
or global-scale biomass products (Avitabile et al. 2016; Avitabile and Camia 2018; Bac-
cini et al. 2012; Huang et al. 2015; Mitchard et al. 2013; Saatchi et al. 2011; Santoro 
et al. 2015; Thurner et al. 2014) and may hinder the effective adoption of biomass prod-
ucts for various policy, management and science applications.

A specific example of the importance of independent biomass product validation 
comes from comparisons of two widely known pantropical biomass maps (Baccini 
et  al. 2012; Saatchi et  al. 2011). By independent, we mean using reference data that 
were not included in the generation of products and ideally conducted by a third party. 
Despite having been produced from the same core satellite datasets (the Geoscience 
Laser Altimeter System [GLAS] and the Moderate-resolution Imaging Spectroradiom-
eter [MODIS]), these maps differ substantially in several tropical areas (Avitabile et al. 
2016; Mitchard et al. 2013, 2014) potentially because they employed different empirical 
modeling approaches, calibration datasets and extrapolation techniques. However, deter-
mination of the exact causes of discrepancies between these products, or indeed a deter-
mination of the more accurate product for a given application, is impossible without 
common approaches to independent validation. Aboveground biomass product valida-
tion is challenging, primarily because of the paucity of high-quality, publicly available 
and globally representative Fiducial Reference Measurements (FRM, https ://earth .esa.
int/web/sppa/activ ities /frm) with well-characterized uncertainties and challenges related 
to the fact that these reference data are not direct measurements but rather estimates 
based on tree-level allometric model predictions (Clark and Kellner 2012). Indeed, in 
the pantropical case, the map producers themselves had limited available validation 
datasets, and Baccini et al. (2012) and Saatchi et al. (2011) performed cross-validation 
of their mapped products using a subset of GLAS data that were deliberately left out of 
their biomass model training, rather than validating with an independent dataset. While 
Saatchi et al. (2011) conducted an error propagation for the final estimated uncertainties 
associated with their pantropical product and Baccini et al. (2012) reported confidence 
intervals on their estimates per continent, determination of the degree of accuracy of 
these products in geographic areas outside the calibration range, or at the various reso-
lutions needed for policy implementation (Herold et al. 2019), was not possible. These 
products have been compared to the Intergovernmental Panel on Climate Change (IPCC) 
Tier 1 biomass estimates, following the 2006 IPCC Good Practices Guidelines (GPG), 
and although a composite of the two pantropical products was suitable to replace IPCC 
Tier 1 estimates when national inventories were not available, it was recommended that 
national estimates be favored over these remote sensing-based estimates, given the large 
disparities between the products and national inventories (Langner et al. 2014).

https://earth.esa.int/web/sppa/activities/frm
https://earth.esa.int/web/sppa/activities/frm
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The issue of product validation will become even more pressing as the number of 
spaceborne datasets specifically designed to map ecosystem structure increases (e.g., 
from NASA’s GEDI, NASA/ISRO’s NISAR, ESA’s BIOMASS, JAXA’s ALOS-4) and 
approaches to biomass prediction using these data diversify. Previous biomass products 
have varied in terms of the spatial and temporal resolution, modeling approach, geographic 
scope of calibration data, scaling, error propagation and uncertainty reporting (Goetz 
et al. 2009; Huang et al. 2015; Mitchard et al. 2013).To effectively meet the goals of sci-
entists and decision makers, the global change community requires well-tested validation 
approaches that are transparent and flexible (with respect to geographic scope and spatial 
resolution).

The Committee on Earth Observing Satellites (CEOS) is an international body that 
works to coordinate Earth Observation programs and data collected by space agencies. For 
nearly two decades, the CEOS Working Group on Calibration and Validation (WGCV) has 
had a subgroup specifically focused on Land Product Validation (LPV). In close coordina-
tion with CEOS member agencies, the LPV subgroup has recognized the need for good 
practices and protocols to guide biomass product validation in advance of the expected 
suite of upcoming biomass products. This LPV subgroup launched the biomass focus 
area in 2017 to help gather community support in developing a validation protocol for the 
products that will be generated from the upcoming biomass-related missions. This paper 
presents the conceptual development of the CEOS biomass protocol, reviews the speci-
fications of the biomass products expected from new mission datasets and outlines the 
importance of biomass product validation for various biomass product user communities 
(e.g., for climate and carbon cycle modeling, policy applications and ecologists). We pre-
sent the CEOS biomass protocol structure, including sources of errors inherent in biomass 
products, how these errors can be propagated and reported and which fiducial reference 
measurements are required to estimate product uncertainty. Finally, we discuss challenges 
envisioned by the authors in the implementation of the CEOS LPV validation protocol and 
its key recommendations.

2  Background on Validation of Biomass Products

Biomass products have been generated across a range of spatial extents, from local and 
regional to global (Ahmed et al. 2013; Andersen et al. 2011; Avitabile et al. 2016; Baccini 
et al. 2008; Blackard et al. 2008; Boudreau et al. 2008; Duncanson et al. 2015a, b; Gregoire 
et  al. 2011; Huang et  al. 2015; Margolis et  al. 2015; Neigh et  al. 2013; Su et  al. 2016). 
True biomass product validation requires the physical, destructive harvesting, drying, and 
weighing of trees. This is extremely difficult in practice, and typically undesirable or logis-
tically impossible in many cases. As a result, validation of satellite-based AGB estimates 
relies on independent verification (i.e., inter-comparison of estimates made across scales 
with consistent and well-characterized uncertainties). For local biomass maps, validation 
is often conducted by the map producer, either through statistical cross-validation (i.e., 
using reference data not included in model calibration) or through comparison to inde-
pendent data (e.g., from national forest inventories). These accuracy statistics are usually 
included in the publication of a biomass model, often expressed as a root mean squared 
error (RMSE), %RMSE and/or coefficient of determination  (R2). For biomass maps, the 
accuracies are often expressed as a standard error or coefficient of variation. In local exam-
ples, while some researchers are diligent about reporting the specific validation methods 
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used to generate their maps, others do not include these details, leaving map users unsure 
of whether the reported accuracies represent over-fitting to the calibration dataset, whether 
models exhibit systematic error, or whether model prediction residuals were heteroscedas-
tic. Increasingly, these local biomass maps are used as reference data for larger area maps, 
and the errors associated with these reference products propagate in the final map.

In national, continental or global product validation, the challenge becomes greater, 
with local maps only representing a small proportion of the globe. Currently, there is no 
globally representative set of ground plots or local biomass maps sufficient for validation 
at the appropriate resolution of spaceborne products. The few global or continental-scale 
biomass products that have been released have relied on spaceborne estimates of biomass 
from NASA’s GLAS instrument for validation, often the same instrument used to generate 
the biomass product in the first place. In the case of Saatchi et al. (2011), the GLAS data 
used to validate the GLAS biomass model were not included when fitting the model, and 
the associated mapped products used a Monte Carlo error propagation to perform a product 
accuracy assessment. However, there are known issues with the GLAS biomass estimates 
in areas of high biomass or complicated terrain (Duncanson et al. 2010; Simard et al. 2011; 
Sun et al. 2008), and thus, any validation depending on GLAS data likely cannot capture the 
true errors associated with a GLAS-based product. Conversely, researchers have used forest 
inventory data to validate forest structure products (Simard et al. 2011), but these inventory 
datasets represent small sample of the landscape that may not be representative of the rela-
tively coarse pixels (500 m–1 km) often associated with wide area biomass products.

We argue that it cannot be the sole responsibility of a dataset producer (be it a mis-
sion team or an independent academic) to conduct validation exercises over the range of 
scales necessary for all possible users; beyond the due diligence of transparently report-
ing the methods used to produce the map, and associated errors, an independent valida-
tion process is required. However, independent groups involved in validation exercises may 
vary in terms of the datasets available to them, the size of field inventory plots, availability 
of airborne lidar data, geographic scope of validation datasets, etc. Further, since some 
users may require different errors reporting, e.g., for IPCC compliance, national-scale 
estimates are desirable. Alternatively, ecosystem modelers will tend to require aggregated 
pixel-based errors. Additionally, users will inevitably be interested in different scales, be 
it local areas for forest management, national reporting efforts, continental carbon balance 
accounting, global ecosystem models, etc. To date, there is no clear guiding document 
focused on addressing the validation needs of many biomass product users and, for this 
reason, we present work toward a protocol that addresses this need.

3  Earth Observation Missions for Biomass Mapping

NASA’s ICESat was launched in 2003, and its GLAS instrument collected global wave-
form lidar measurements over vegetation that were used to estimate forest height and struc-
ture until the last ICESat laser failed in 2009 (Abshire et al. 2005). GLAS data were not 
designed to study forest structure, but these data have nevertheless become popular for bio-
mass mapping. These data are relatively sparse in spatial sampling, and each lidar footprint 
illuminated a nominally 65-m-diameter circle, which resulted in the mixing of reflected 
signal from ground and canopy surfaces, ultimately presenting challenges for estimating 
biomass in areas of high relief or structural complexity (Duncanson et al. 2010). Despite 
these challenges, many wide area biomass maps used GLAS data to map forest structure 
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(e.g., Baccini et al. 2008; Margolis et al. 2015; Saatchi et al. 2011; Simard et al. 2011; Su 
et al. 2016).

Several upcoming missions (e.g., GEDI, BIOMASS, NISAR) should provide improved 
data for biomass mapping compared to those earlier sensors as they are designed with a 
primary science goal of mapping forest biomass. Official mission biomass products are 
expected from each of these missions, but because of the publicly available nature of these 
mission datasets we also expect a host of other new biomass products through data fusion 
and alternative algorithms, etc. We therefore anticipate the release of products with a 
range of spatial resolutions, geographic extents and temporal domains. Table 1 shows the 
expected resolution of core biomass products from upcoming spaceborne missions them-
selves, but fusion products will likely present both coarser and higher resolution maps.

Many of these upcoming missions have specific biomass product accuracy requirements 
as part of the criteria by which mission success is determined (Table 1). Independent vali-
dation of these products at their nominal resolution would help demonstrate that require-
ments have been met. This is particularly useful if validation of biomass products from 
each mission or estimation approach can be conducted at the same set of sites, allowing 
direct comparisons between accuracies of each product in different forest types, environ-
ments, disturbance histories, etc. Comparisons between official mission products and other 
new biomass maps will also allow the community to appreciate the accuracy impacts of 
algorithmic improvements, data fusion approaches, etc., on product accuracy and ulti-
mately reduce confusion and latency in the adoption of new biomass mapping approaches.

4  The Importance of Validation for Biomass Product Users

While biomass product validation is important for product inter-comparison toward 
improved map products, and for demonstrating that missions have met their design require-
ments, it is also key for the uptake of biomass maps by many other communities. Here, we 
highlight several communities that will likely use the next generation of biomass products 
for a wide range of applications. Although this list is not exhaustive, it enables an explora-
tion of many biomass product and validation needs. We briefly discuss considerations for 
biomass validation for policy applications, carbon accounting in ‘non-forest’ ecosystems 
(woodlands, savannas), belowground biomass estimation, and for modeling activities.

4.1  Policy Applications

Aboveground biomass is an important input to several current and future policy initiatives 
and user groups, and all of these groups require information on biomass product accuracy, 
albeit in different ways. Uncertainty estimates are critical for achieving goals and com-
mitments related to forest management, climate change and sustainable development. 
For example, the Paris Agreement on Climate Change requires transparent reporting on 
national greenhouse gases (GHG) emissions, and measuring, reporting and verification of 
forest-related mitigation activities, for which improvements in the quality of forest biomass 
and carbon stocks information is essential. Biomass products are also relevant for Goal 15 
of the United Nations Sustainable Development Goals (SDGs) that includes improved for-
est carbon management, reduced deforestation, afforestation and reforestation at a global 
scale. Additional policy initiatives which will use the next generation of biomass prod-
ucts include the IPCC assessment processes and various sustainable land use initiatives 
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as well as a wide range of local/subnational stakeholders. IPCC good practices guidelines 
are focused on national scale validation and reporting and recommend that (1) nations nei-
ther over- nor underestimate biomass so far as can be judged and (2) that uncertainties 
are reduced as far as practicable (IPCC, 2006, Volume 1, Chapter 1, Section 1.2). These 
recommendations are primarily geared at countries for their national reporting and sug-
gest that biomass maps would be suitable as long as their predictions exhibit no systematic 
error at a national-scale and have lower errors than current estimation strategies. There is 
a wide range of considerations with respect to the stakeholders’ needs of biomass valida-
tion, including the spatial resolution, geographic extent and temporal domain of product 
validation, and the definition of forest or land type and biomass definition over which the 
validation is considered. Indeed, the use of biomass products by these policy communities 
is tightly linked to error reporting (Romijn et al. 2018). To suit this wide range of policy 
needs, independent product validation will need to be flexible enough to allow user-speci-
fied geographic scopes and spatial scales, including consistent and traceable error reporting 
at the national and/or regional levels, as well as by land cover class (Herold et al. 2019)

4.2  Non‑forest Vegetation Carbon Accounting

While non-forest vegetation contributes less than 20% of global biomass, they represent 
one half of terrestrial productivity and cover some 70% of the Earth’s land surface (Pan 
et  al. 2013). These non-forest ecosystems include savannas, woodlands, chaparral and 
shrublands. They are ecologically distinct from forests both in terms of a) the climatic, 
edaphic and disturbance histories that prevent them from becoming intact forest and b) the 
plant form and function of trees growing outside of closed-canopy conditions. The func-
tional and structural dissimilarities of these systems lead to special considerations for bio-
mass product validation. For example, many of the allometric models developed for spe-
cies typically found in forests do not apply to the same species growing in open canopy 
conditions. Therefore, error propagation through allometric models will not account for 
potential biases that may occur from applying the models outside of the range of environ-
mental conditions for which they were calibrated. In some regions, e.g., northern Eurasia, 
issues of low canopy density have been accounted for by direct inclusion of tree density in 
biomass conversion factors (Schepaschenko et al. 2018). However, many regions lack the 
necessary data to perform such corrections. We therefore recommend more attention to the 
development of new allometric biomass models in non-forest regions.

Non-forest vegetation also presents challenges for validation when many biomass prod-
ucts will be designed specifically for ecosystems classified as forests. Global biomass map 
producers may even remove many non-forest classes from their mapping domains or may 
adopt different forest–non-forest masks at different resolutions which will complicate 
product inter-comparisons. Additionally, due to land use and land cover change dynamics, 
‘non-forest’ vegetation at the boundaries of intact forest changes over time, where distur-
bance and recovery may lead to pixels being somewhat arbitrarily classified as forest or 
‘non-forest’ through time. This would influence the magnitudes of forest biomass stocks 
and fluxes more than the actual carbon flux associated with disturbance agents. Regardless 
of the methods used to define boundaries between ‘forest’ and ‘non-forest,’ it is impor-
tant to be able to track biomass dynamics across these boundaries consistently and with-
out bias (not systematically over or underestimating forest area) as far as possible. In an 
independent validation process, a clear indication of which forest mask was applied should 
be clearly indicated, and biomass products that include ‘non-forest’ biomass should be 
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validated specifically in these other ecosystems rather than merging ‘non-forest’ accuracies 
with non-ecosystem specific error reporting.

4.3  Belowground Biomass

The CEOS LPV biomass validation protocol is focused on aboveground biomass. How-
ever, we also recognize the importance of belowground biomass and therefore will provide 
a summary of both how soil scientists will use aboveground biomass products and also the 
state of the art of belowground biomass validation techniques. Global soil carbon has been 
estimated to be in excess of 2000 Pg in the top 1 m of soil, much of that outside of forests 
(Batjes 1996). These carbon pools include both root biomass, which is typically related to 
aboveground stocks, while Soil Organic Carbon (SOC) is often not correlated to above-
ground structure and thus cannot be estimated from space.

There is a strong need to link belowground stock and flux measurements with the 
aboveground focus of EO missions and forest inventories. Current practices for estimating 
belowground biomass include localized field work (e.g., digging pits) or applying indirect 
(remote sensing) methods such as ground penetrating radar to detect a range of soil charac-
teristics including soil depth (Wollschläger et al. 2010), carbon storage (Hruska et al. 1999) 
or root quantities and distributions (Comas et al. 2017). These field-based methods are not 
applicable to wide area mapping and can only serve to calibrate or validate spaceborne 
estimates of belowground biomass. When field data are not available, typically simple root-
to-shoot ratios are applied to estimate belowground biomass, although these are known to 
be poorly constrained in many systems and require much more attention to develop glob-
ally representative models (Mokany et  al. 2006). Spatially continuous approaches use 
spectral data to map forest type and function and assume relationships between vegetation 
reflectance and belowground biomass (e.g., Fisher et al. 2016; Hengl et al. 2014, 2017). 
Despite the considerable importance of belowground biomass to the global carbon cycle, 
and the link between aboveground and belowground carbon stocks, this field is relatively 
less mature in terms of product validation. Although the CEOS LPV biomass protocol will 
only touch on some of the considerations of belowground validation, we expect a more 
specific assessment regarding belowground biomass validation to follow as aboveground 
biomass good practices continue to mature.

4.4  Modeling Community Needs

Reliable estimates of biomass, particularly through time, present opportunities to reduce 
current knowledge gaps in carbon cycle modeling. For example, the allocation of carbon 
to different plant tissues, as well as the timescale of turnover of these tissues, remains one 
of the key uncertainties in vegetation modeling and projections of the terrestrial carbon 
sink. Many different types of models would benefit from biomass products and thus vali-
dation activities, but the nature of the models will influence their validation requirements. 
For example, carbon-pool models operating at a specific spatial resolution (e.g., 1 ha, or 1 
degree postings) would use pixel-based predictions of aboveground biomass (and error) as 
inputs. Conversely, cohort models may require resolving a biomass map into classifications 
of land cover and consider error as an average for a given land cover class (e.g., differ-
ent forest types). Similarly, forestry and economic land use models require administrative 
level error reporting (e.g., at national extents). Finally, individual-based models such as 
gap models operate within larger forest patches and thus will likely require biomass (and 
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associated height) errors at finer resolution and smaller geographic extent than the broader-
scale model types. To provide modeling groups with informative biomass product errors, 
error should be reported across multiple resolutions and spatial extents. In addition, pro-
ducers of biomass maps should be encouraged to document and quantify errors associated 
with not only the biomass products, but also from the input data (e.g., height error from 
lidar) and empirical models as they will ultimately inform modeling results and improve 
the integration of biomass estimates into modeling activities. This recommendation is 
in addition to the requirement for validation over multiple spatial scales and geographic 
extents, which is also important to a range of other communities and applications.

5  CEOS LPV Validation Protocol Structure

There are clear overlaps between the needs of several of the communities highlighted 
above. Flexibility of validation in terms of spatial scale, geographic scope, error reporting, 
forest definition selection and considerations of both biomass stocks and fluxes are recur-
ring themes when discussing user community requirements (e.g., policy, modeling, soil 
science, dryland ecology). Therefore, we aim to develop a biomass validation protocol with 
the flexibility to account for the breadth of user needs. The goal of the CEOS WGCV LPV 
biomass protocol is to provide a good practices guidance document with recommendations 
for how to conduct independent biomass product validation. Here, we present what we see 
as the primary considerations for data collection and validation design in this framework. 
We also highlight some challenges biomass map producers face with respect to enabling 
reliable, consistent and transparent product validation.

5.1  Reference Datasets

Any validation depends on the availability of high-quality reference datasets that are inde-
pendent from the data used to generate an AGB product. Large area AGB datasets used for 
validation are usually from either forest inventories, forest monitoring plots or local airborne 
lidar biomass maps, all of which include error in their estimates of biomass. Forest inven-
tory datasets typically consist of large numbers of small, geographically dispersed plots 
designed to sample across a defined geographic extent or region, often national or local, and 
are typically updated at some systematic time interval. Conversely, forest monitoring plots 
tend to be fewer in number but larger in area and collect a broader range of environmental 
datasets, with individual trees carefully identified and measured over several years to track 
biological and ecological trends as well as estimation of biomass. Although arguably more 
useful for pixel-level comparison to AGB maps, these plots typically do not represent prob-
ability samples. Finally, airborne lidar biomass maps provide wall-to-wall coverage that can 
be used to estimate biomass at multiple spatial resolutions. These lidar maps are usually 
calibrated with local field measurements, either from inventory plots, monitoring plots or 
field data often collected specifically as part of the lidar collection. These include (by defini-
tion) more error at the pixel-level than the field plots used to calibrate them.

None of these three types of reference data represent actual measurements of forest 
biomass, which is an important distinction from many of the other GCOS ECVs (e.g., 
Land Surface Temperature) where validation is performed using fiducial reference meas-
urements. Fiducial reference measurements or FRM are a specific kind of reference data, 
traceable to International System of Units (SI) working, developed with national metrology 
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institutes and produced together with documented uncertainties. As mentioned above, 
direct aboveground biomass measurements can only be collected through the destructive 
harvest and weighing of trees, which is of course inherently inappropriate for monitoring 
plots and logistically unfeasible for inventory plots (Clark and Kellner 2012). Instead of 
directly measuring biomass, field estimates rely on one of two methods—the measure-
ments of tree and forest plot data and application of allometric models (e.g., Chave et al. 
2014a, b; Jenkins et al. 2003), or the use of a Terrestrial Laser Scanning (TLS) instrument 
(Calders et al. 2015) combined with estimated wood density. In the former, individual tree 
biomass is predicted through the application of empirical models of relationships between 
measurable tree attributes (e.g., species identity, stem diameter, height) to aboveground 
biomass. These allometric size-to-mass models are estimated from destructively sampling 
trees and often from small samples (sometimes fewer than 30 trees) with a prevalence of 
small-size trees (Duncanson et al. 2015a, b). Although it is recognized that these models 
often exhibit systematic prediction errors (Ahmed et al. 2013; Chave et al. 2014b; Gonza-
lez de Tanago et al. 2018) and that these errors increase with tree size, they are currently 
the most practical approach for estimating field biomass in a cost-effective fashion. Indeed, 
statistical packages are now available to both estimate and propagate errors in field biomass 
estimates to forest plot levels (Réjou-Méchain et al. 2017).

The second (and more recent) approach for estimating field plot volume (and biomass 
where wood density information is available) is to use TLS instruments to scan forest plots 
with a ground-based lidar instrument and reconstruct detailed 3D scenes of a forest plot that 
include individual tree woody materials (Disney et al. 2018; Newnham et al. 2015). TLS 
datasets, when processed to predict plot-level tree volumes, may produce models whose 
predictions are more accurate relative to allometric biomass predictions, largely because 
they represent the full tree size distribution that may be underrepresented in allometric 
models (Calders et al. 2015; Gonzalez de Tanago et al. 2018). Although TLS data may be 
preferred when available, the relatively large cost and effort required to collect high-qual-
ity TLS data from remote forests, and the current challenges in data processing (includ-
ing large computational demands and relatively immature software availability, (Newnham 
et al. 2015; Trochta et al. 2017), mean that these measurements are typically only available 
over a relatively small set of forest monitoring plots (Disney et al. 2018). It should also be 
noted that TLS data require wood density information from tree species identification and 
thus will never fully replace field surveys but add more complete structure measurements 
of forest plots over manual diameter and height measurements. Attention is required to 
ensure that TLS data do not overestimate the woody volume of hollow trees, and we rec-
ommend further research into TLS allometric model development and correction factors 
for varying wood density and hollow trees. Instead, TLS data may be most useful to check 
and re-calibrate allometric models with larger sample sizes and across the full range of tree 
sizes, thereby reducing underestimates of biomass, particularly for large trees. Considering 
that ~ 50% of landscape-scale forest biomass may be stored in a few large trees, particularly 
in the tropics, reducing errors and biases related to large tree biomass stocks is particularly 
important (Lutz et al. 2012, 2018).

5.2  Geolocation, Temporal and Spatial Scale

Once plot-level biomass has been predicted, spaceborne products must be spatially linked 
to these reference plots. This process adds error to validation efforts because spaceborne 
and field datasets have inherent geolocation errors associated with them. This is especially 
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true for field measurements where large errors may occur due to important GNSS mul-
tipathing effects in forest ecosystems (Barton and Johnson 2004). Even with the use of 
high-grade GNSS devices, some unfavorable conditions due to the number and position of 
satellites or to local forest structure and topography may generate large geolocation errors 
(~ 10  m). Increasing the number of GNSS measurements in space and time (e.g., > 15 
measurements per plot) would be one way to achieve an accurate location, as would the 
use of a pole-mounted GPS antenna. Another major problem is that field plots sizes and 
shapes usually differ from the sizes and/or shapes of map units characterizing spaceborne 
biomass products. This is particularly problematic when attempting to validate relatively 
coarse (500 m–1 km) biomass products with smaller forest inventory plots. For instance, 
Réjou-Méchain et al. (2014) found that large errors (typically 30%) can be introduced to 
the calibration/validation procedure from using small forest plots (less than 0.25  ha) in 
this manner. Importantly, they demonstrated that this error induces bias into the estimator 
of RS model parameters and, in turn, systematic error in RS model predictions (Réjou-
Méchain et al. 2014).

Small plots are also challenging even when validating finer-resolution (e.g., 30  m) 
remote sensing products for several reasons. At such resolutions, a small spatial or configu-
ration mismatch between the field and the EO product may generate important errors due 
to the large local heterogeneity of forest biomass. Further, in areas with large tree crowns, 
satellite data for a plot may correspond to a part of a crown for a tree whose stem may not 
fall within the plot (Mascaro et al. 2011). As plot size increases, the relative errors associ-
ated with so-called edge effects and geolocation decrease. Thus, higher correlations are 
typically found between field plots and remote sensing datasets when large (e.g., ≥ 1 ha) 
plots are used (Huang et al. 2013; Zolkos et al. 2013). One solution to the small plot prob-
lem is to implement a screening procedure to remove plots that are not representative of 
the larger pixels and to obtain a subset that also maintains the frequency distribution (i.e., 
histogram) of the original dataset (Avitabile and Camia 2018).

Where this screening procedure is not practicable, and in regions with relatively large 
errors associated with plot size, (e.g., large crowns, greater geolocation uncertainties), such 
as in the tropics, we recommend the use of relatively large field plots to calibrate models 
based on satellite datasets, where possible. Additionally, we recommend validating with 
plots that are the same spatial resolution as satellite-based products to avoid issues from 
dilution bias (Réjou-Méchain et al. 2014). However, relying on large plots may reduce the 
number of plots that can be measured for validating a biomass product. Thus, there is a 
trade-off between the use of large plots and the need for capturing environmental gradients 
that drive variability in forest structure, and/or errors in spaceborne data acquisitions (e.g., 
canopy density, topography, soil moisture). Although errors from co-registration, temporal 
differences and edge effects all decrease with increasing plot size, typically sampling errors 
will increase with plot size because the sample size (number of plots) will decrease, assum-
ing constant sampling design budget constraints.

The temporal discrepancies between field plots, airborne datasets and spaceborne data-
sets are also critical for product validation. Different forest ecosystems will change at dif-
ferent rates, due to inherent differences in productivity, as well as stochastic disturbances, 
ecosystem recovery and natural demographic shifts. The rate of change of a given ecosys-
tem therefore determines the importance of collecting validation data that is temporally 
coincident with satellite biomass products. In slow growing areas with little disturbance, 
validation data from up to ~ 5 years before or after satellite data collection may be suitable, 
but in more productive ecosystems and forests that are degraded or regenerating, or have 
undergone disturbance validation data will require more frequent updating. Assuming plots 
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and satellite data can be precisely geo-referenced, one solution to determining whether 
validation data remains useful is to use a Landsat-based change detection dataset, e.g., 
Harris et al. (2012), Kennedy et al. (2010), to flag pixels that have undergone significant 
change in the time elapsed between field/airborne and satellite data acquisitions. Alterna-
tive approaches capable of resolving finer-scale disturbances (e.g., individual tree fall) may 
also emerge due to the increased availability of high spatial and temporal optical datasets, 
such as from Planet. Admittedly these approaches will likely not resolve disturbances in 
the understory, and thus, we recommend that where possible validation data should be as 
close in time as practicable to satellite data collection. Older data should only be consid-
ered when they represent geographic gaps, and local knowledge and spaceborne optical 
sensors suggest no significant change in forest biomass or cover.

5.3  Scaling from Ground Plots to Airborne Lidar Maps

A strategy to minimize the trade-off between plot size and representativeness can be the 
use of locally calibrated airborne lidar biomass maps to scale between field plots and sat-
ellite datasets. These maps are increasingly used as reference data for spaceborne prod-
ucts, primarily because they cover a much larger spatial extent than field plots and thus 
greatly increase the area over which in  situ information is mapped if their estimates are 
adequately calibrated across environmental gradients with respect to forest structural and 
species variability. Further, provided data are acquired with acceptable sensor and survey 
configurations, lidar data can easily be aggregated to multiple resolutions and thus a single 
airborne lidar campaign can serve to validate multiple biomass products with different spa-
tial resolutions.

It is generally recommended to generate the airborne lidar maps at large (e.g., 0.25 ha 
or larger) pixel sizes in the tropics because errors related to geolocation and edge effects 
are reduced as plot sizes increase. This is also true of many temperate systems (e.g., Huang 
et  al. 2013), but small plots may be appropriate in many temperate and boreal forests, 
depending on the demographic structure of the forest and quality of plot geolocation. In 
the case of the tropics, for example, if one calibrates a 25-m lidar map with 25 m plots, and 
aggregates predictions to 1 ha, errors will likely be greater than if calibrating a 1-ha lidar 
map with 1 ha plots (Labriere et al. 2018). If errors are propagated from ground plots to 
local lidar maps, finer-resolution lidar models and maps are also appropriate, e.g., McRob-
erts et al. (2018).

5.4  Error Characterization and Propagation

A key aspect of robust product validation relates to error characterization and propagation. 
We recommend the transparent reporting of which errors are considered in a validation 
process, and what error propagation technique is used to produce error estimates on the 
reference datasets used. It is essential to consider that even the highest quality field data 
and airborne lidar maps contain errors. The CEOS LPV biomass protocol will include a 
thorough discussion outlining the types of errors that should be considered (many of which 
are discussed above) and present three basic methods of error propagation. These recom-
mendations are in line with the IPCC Good Practice Guidelines, which are discussed in 
(McRoberts et al. 2019). We define ‘error’ as a deviation from field-estimated AGB val-
ues, and ‘uncertainty’ as the range of values within which the field value lies, with some 
reported level of confidence. The quantification and propagation of errors results in a 
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reported product uncertainty, and there are several different approaches adopted at report-
ing product uncertainty. Validation with independent data will quantify error (deviation 
from reference data) with associated uncertainty in that error (from uncertainties in the 
reference datasets themselves). In the case of a product generated with careful attention to 
error, we would expect that the outcome of the validation would be an error with an associ-
ated uncertainty that is within the range of uncertainty reported by the map producer.

There are several different approaches to quantifying uncertainty in a product (both by 
the map producers and the map validators). Design-based uncertainty estimation is appro-
priate where probability-based validation datasets are available and collected specifically 
to sample the population of interest. These datasets are typically only available for forest 
inventory plots, which present challenges related to small plot sizes, as discussed above. 
Also, such inventories rarely exist in tropical forest environments, and the effort required 
to establish them is prohibitive. A second form of uncertainty estimation is in model-based 
inference, where the validation datasets are often not probability samples of a forest, but a 
network of opportunistically collected plots (e.g., collected to calibrate an airborne lidar 
campaign). In model-based inference, the uncertainties are based on the effects of sam-
pling variability as reflected in the data used to construct the models and residual variabil-
ity of sample observations around their model predictions. A third technique for calculat-
ing errors and associated uncertainties is from hybrid inference, which uses a combination 
of design-based and model-based inference. McRoberts et al. (2019) present a statistically 
rigorous test based of hybrid inference that can be used to assess the validation of a coarse 
resolution global biomass map using finer-resolution, higher-quality local biomass maps. 
Hybrid inference thus provides a possible statistical solution for validation using airborne 
lidar biomass maps.

5.5  Validation and Reporting

Once a reference dataset has been collected and scaled to match the resolution of the bio-
mass product in question and the associated errors have been characterized, quantified and 
propagated, the actual product validation is conducted. The reported accuracies (defined 
as a lack of error) and uncertainties for the product in question depend on the user require-
ments for the biomass product, as discussed in Sect.  4. Ecosystem models running at a 
global scale may need the average coefficient of variation, or confidence interval, per 
1-degree grid cell. However, models running at a local or regional scale might require pixel 
level maximum or minimum estimates of biomass (e.g., from a confidence interval). Con-
versely, REDD + activities will likely focus on national-level biomass reporting and thus 
focus on the estimated errors (e.g., biases from the truth) and associated uncertainties at an 
aggregated national scale. We expect most users will aggregate uncertainty assessments to 
the appropriate scale for their application. As biomass product accuracies and uncertainties 
are likely to vary as a function of forest structure and geography (e.g., differing between 
tropical and temperate systems, mature and recovering forests), we recommend reporting 
at a variety of scales. For example, if a reference dataset is a geographically dispersed set 
of linked field and airborne lidar datasets, uncertainties should be reported at global, con-
tinental and ecoregion scales. It is unlikely that such a dataset would be representative at a 
national scale, but according to IPCC good practices the standard error per ecoregion could 
be used by a country in tandem with national and local data or available ecoregion maps 
to use the biomass product toward improved REDD + reporting (https ://reddc ompas s.org/). 
The CEOS LPV biomass protocol will include specific recommendations for reference 

https://reddcompass.org/
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datasets and error and uncertainty reporting, but it should be stressed that any independent 
validation of AGB maps should be sufficiently flexible enough to allow errors and uncer-
tainties to be reported at a variety of spatial resolutions, geographical and thematic scopes. 
It is important to note that we do not include recommendations for product harmonization 
or inter-comparison and instead suggest comparing products to fiducial reference datasets 
in order to avoid confusion when discrepancies are found among biomass products.

6  Implementation Considerations

Independent validation requires the availability of independent reference datasets. Ideal 
reference datasets can be thought of as ‘super sites’ with highly accurate field measure-
ments (Chave et al. 2019), TLS and airborne or drone lidar data (Kellner et al. 2019) (i.e., 
sites that have been surveyed in a manner allowing aggregation of lidar data at multiple 
resolutions and collected at the same time as the satellite data used to construct a given 
biomass product). To conduct a thorough product validation, these sites would have to be 
distributed across the geographic scope of interest and capture the important environmental 
gradients driving the relationships between biomass and error, such as disturbance history, 
climatic and topographic gradients, etc. However, these sites are relatively rare, particu-
larly in the tropics, where much of the aboveground biomass is stored, and where they do 
exist they are costly to maintain and repeat survey. Including reference data with larger 
geographic and temporal coverage is, thus, important for the purpose of capturing more 
regional variation in biomass estimates and associated uncertainties. Such data can be pro-
vided by forest plot observation networks, research plots and forest inventories. Setting 
up and maintaining a permanent plot network of biomass supersites is key to conducting 
meaningful validation activities.

Multiple upcoming missions with biomass mapping requirements also have require-
ments for product and/or algorithm validation, and these activities include budgets for 
new data acquisitions. These mission teams (namely GEDI, NISAR, ESA BIOMASS and 
ICESat-2) are actively working together to streamline calibration and validation data col-
lections and maximize the geographic coverage of validation data roughly representative 
of forest conditions in the year 2020 (Fig. 1). However, these mission activities will not 
sufficiently cover many geographic domains. Of particular note is the lack of sites in conti-
nental Asia and expanding collaborations with other CEOS member agencies who may be 
able to help expand data collection activities is highly desirable.

It is also important to note that enabling a transparent and reproducible map valida-
tion requires open data. Open data allow transparency to validation activities, and repro-
ducibility of results which we feel is essential for the wide adoption of the CEOS LPV 
recommendations for biomass product validation. This is however a complicated issue, as 
balance must be met between credit for the cost, skills and labor required for field data col-
lection and curation, and the importance of open data for the scientific process. The FOS 
system has struck compromises between open data and maintaining census data privacy by 
publicly releasing only plot estimates of biomass with consistency propagated error (see 
Chave et al. 2019), and in situ data collected through funds from NASA and ESA are open 
by definition; hopefully more space agencies and plot networks will follow suit. A more 
equitable solution to this problem can be found if adequate long-term funding is provided 
to plot networks to ensure not simply that tree-by-tree data are collected and processed, but 
that the (mostly tropical) people doing this are adequately rewarded, trained and respected 
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for their skills and efforts. In a more equal and secure environment, we argue that open 
publication of datasets will become a natural expectation.

Once global field and airborne lidar biomass reference datasets are compiled, a final 
challenge lies in actually conducting an independent validation and reporting the results. 
Ideally, fiducial reference data will be freely available so that any organization or 
researcher could conduct a transparent product validation. It is desirable that online tools 
become available that enable not only data access, but also error characterization and 
propagation in the generation of reference datasets such as airborne lidar maps. Exist-
ing tools such as Google Earth Engine provide unparalleled capabilities and potential for 
user-friendly product generation, but have yet to develop the necessary tools for validat-
ing products. Indeed, this requires a relatively specific set of tools and we recommend the 
development of an independent toolkit to perform biomass product validation following 
CEOS WGCV LPV biomass protocol recommendations. The BIOMASS package (Réjou-
Méchain et  al. 2017) is already widely used by many researchers and mission teams to 
propagate errors from individual tree estimates to field plots in the tropics, but comparable 
tools are not yet available to expand this to airborne lidar maps, particularly at multiple 
resolutions as is needed by the breadth of expected biomass product users. The new ESA/
NASA Multi-Mission Algorithm and Analysis Platform (MAAP) is an activity focused on 
developing cloud-based tools for biomass product generation from active remote sensing 
datasets (primarily from GEDI, NISAR, and the ESA BIOMASS Mission). The MAAP 
is currently under development and is anticipated to be a useful platform for both housing 
and implementing biomass validation data. The Forest Observation System (FOS, https ://
fores t-obser vatio n-syste m.net/) is also collating field validation datasets with preprocessed 
plot data that include propagated errors, and it is currently expanding to include airborne 
lidar-based biomass maps. The ESA Climate Change Initiative (CCI) Biomass Project 
(building on the ESA GlobBiomass project), similarly plans to support these activities by 
encouraging collaboration and cooperation in the application of the CEOS LPV protocol 
through the Global Plant Biomass Facility. The intention is to encourage and facilitate 
unified approaches to the collection of forest inventory data (including in near real time) 
and democratize access to in situ biomass estimates. All of these new activities illustrate 

Fig. 1  Existing or planned field and airborne lidar datasets for use in spaceborne mission biomass model 
fitting or product validation. The red points have been compiled by the NASA GEDI team and are used in 
their biomass model development. The blue points, compiled by the NISAR team, are planned sites for both 
model development and product validation. The turquoise sites, compiled by the Forest Observation System 
(FOS, Chave et al. 2019), represent high-quality standardized field estimates of biomass

https://forest-observation-system.net/
https://forest-observation-system.net/
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the existing gap in biomass product tools and present exciting potential opportunities for 
implementing the CEOS LPV biomass protocol.

7  Summary and Next Steps

The CEOS WGCV LPV biomass protocol document (to be published in 2019) will cover 
a thorough range of validation considerations, including the collection of new reference 
datasets, and recommendations for using airborne lidar biomass maps as tools for scaling 
between field and satellite data. The protocol will also consider the characterization, propa-
gation and ultimately reporting of errors throughout the validation process, as well as the 
existing limitations for the implementation of product validation. The protocol document is 
intended to guide both biomass map producers and users toward consistent interpretation of 
product errors, with the ultimate goals of reducing confusion about which biomass products 
are more accurate or appropriate for a given application and increasing the suitability of 
new data collections for product validation. Considering the time and cost-intensive nature 
of collecting high-quality in situ and airborne datasets, a document that can facilitate, to the 
degree possible, standardization of data collection and methods for product validation will 
hopefully help streamline new acquisition plans across different agencies, and allow for eas-
ier interpretation of mapped products and errors. Equally, establishing and maintaining per-
manent reference sites for biomass, including the ongoing acquisition of field and airborne 
data, and where in situ partners are fully involved, will be key for conducting meaningful 
and sustainable biomass product validation. We are entering an exciting era in Earth Obser-
vation, with a wealth of new datasets from forthcoming missions leading to the anticipation 
of many new biomass products. The societal and scientific needs for accurate biomass prod-
ucts are clear—and with the promotion of transparent independent product validation at the 
range of scales required by data users we expect the next generation of mission datasets to 
successfully fill what has been a limiting knowledge gap in the global carbon cycle.
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