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Position-Based Control of Under-Constrained
Haptics: A System for the Dexmo Glove

Sebastian Friston ', Elias Griffith

Abstract—The Dexmo glove is a haptic exoskeleton that provides
kinesthetic feedback in virtual reality. Unlike many other gloves
based on string—pulleys, the Dexmo uses a free-hinged link-bar
to transfer forces from a crank to the fingertips. It also uses
an admittance-based controller parameterized by position, as
opposed to an impedance-based controller parameterized by force.
When setting the controller’s target position, developers must use
its native angular coordinate system. The Dexmo has a number of
uninstrumented degrees of freedom. Mature forward models can
reliably predict the hand pose, even with these unknowns. When it
comes to computing angular controller parameters from a target
pose in Cartesian space however, things become more difficult.
Complex models that provide attractive visuals from a small
number of sensors can be non-trivial or even impossible to invert.
In this letter, we suggest side-stepping this issue. We sample the
forward model in order to build a lookup table. This is embedded
in three-dimensional space as a curve, on which traditional queries
against world geometry can be performed. Controller parameters
are stored as attributes of the sample points. To compute the driver
parameters for a target position, the application constrains the
position to the geometry, and interpolates them. This technique is
generalizable, stable, simple, and fast. We validate our approach
by implementing it in Unity 2017.3 and integrating it with a Dexmo
glove.

Index Terms—Data gloves, force feedback, virtual reality, robot
control.

1. INTRODUCTION

APTIC feedback extends the immersion of Virtual

Environments (VEs) to new sensory modalities. Tactile
feedback reproduces surface texture, while force feedback
reproduces strain [1]. Haptic interface design is challenging due
to the degrees-of-freedom and range-of-motion that must be
supported. These lead to conflicting requirements: devices must
be stiff but also lightweight; able to apply large forces on de-
mand, but otherwise offer no impedance [2]. Tool-based devices,
such as the Phantom Omni, provide high fidelity interaction,
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but only where the virtual form closely matches the real. Hand
exoskeletons and similar devices have received continued inter-
est as they can support more complex arrangements of forces.

One such device is the Dexmo, a commerical product [3]
based on the passive glove presented by Gu et al. [4]. Unlike
many other devices, the Dexmo uses admittance control, which
renders positions, rather than impedance control, which renders
forces. Users set the desired pose, and a local control loop
attempts to drive it.

While well known in teleoperation, admittance control of
haptic gloves is less common than impedance control. Some
admittance gloves use angular coordinate systems, with tar-
get finger positions expressed as angular distances from the
palm [5]. This approximates finger flex and can be passed to
the driver as a target between the maximum and minimum
extents of the user’s pose. Expressing virtual interactions in the
palm-fixed angular coordinate system could be challenging for
VE designers however. Further, such systems could not take
advantage of the latest hand pose estimation techniques.

In this letter we present a position-based approach for under-
instrumented/under-actuated devices that can determine posi-
tion parameters for an admittance controller without needing
to directly compute the inverse function of the robot. We follow
data-based approaches to inverse kinematics in computer graph-
ics [6], [7], and implement the function between world-position
and driver parameters as a lookup table embedded in 3D space.
We sample the forward model for different controller parameters
and store the results as vertices in 3D space. To determine param-
eters for a target pose, the barycentric coordinates on the prim-
itives relating these vertices are computed, and the parameters
simply read from the geometry. This approach supports complex
hand models with multiple uninstrumented linkages. It supports
devices with asymmetric motor-sensor degrees-of-freedom. It is
simple to understand, and offers more deterministic performance
than iterative approaches used in traditional inverse-kinematics.

Lately, a number of underinstrumented & underactuated hap-
tic devices have been presented. These trade-off fidelity and
dynamic range for portability and ease-of-use, in an effort to aid
adoption and accessibility. This goal is furthered by control sys-
tems accessible to VE developers without deep robotics exper-
tise. Our contribution is showing how embedded lookup tables
can be used for driving admittance based haptics, and how their
ease of implementation & integration with existing engines can
simplify VE design. We describe a control system for the Dexmo
glove based on this principle, and demonstrate its use with differ-
ent haptic simulation techniques in an off-the-shelf game engine.
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II. PREVIOUS WORKS

Bergamasco et al. [8] provide a good introduction to exoskele-
tons as haptic interfaces. Exoskeletons provide multiple points
of attachment, allowing them to generate more complex arrange-
ments of forces than tool-based devices. A further benefit for Vir-
tual Reality (VR) is that exoskeletons can be body-fixed, instead
of ground-fixed, resulting in potentially larger working volumes.

Foumashi er al. [9] survey 28 robotic hand exoskeletons
up to 2011. They included haptic interfaces and rehabilitation
robots. Even so, there are common characteristics. For example,
almost all exoskeletons were dorsal, used ligaments between
the finger joints, and used actuators allowing them to actively
push and pull. More recent devices have continued this trend. For
example, Burton et al. [10] introduced an exoskeleton optimised
for circular power-grasps. Ma and Ben-Tzvi [11] introduced an
exoskeleton for remote-control of a mobile robot. Both designs
used antagonistic cables and open pulleys.

The benefit of dorsal exoskeletons is that they don’t inherently
impede the normal workspace of the hand. Some designers how-
ever have explored palmar devices. Endo et al. [12] introduced
the HIRO III - a five-fingered ground-fixed robot that behaves as
a mirror of the hand. The robot has a limited range compared to
hand-fixed robots, but significantly improved fidelity, with 3 De-
grees of Freedom (DOF) force feedback at each fingertip. The
Wolverine by Choi et al. [13] is a very lightweight admittance
device designed to reproduce grasping sensations between three
fingers and the thumb.

The Wolverine is one of a few newer devices that optimise
for portability over fidelity or dynamic range. The workspace
of hand-fixed exoskeletons can still be limited due to the need
for powerful actuators, as most popularly seen in the Cyber-
Grasp, for example [14]. In their survey of wearable devices,
Pacchierotti et al. [15] consider 23 hand-mounted devices and
23 fingertip-mounted devices. They consider devices wearable
only if they are also small, easy to carry, and do not impair the
motion of the hand. Some of these achieve portability through
the use of backpack mounting of the actuators, but more recently
dorsal mounted DC motors and other small servo units have been
explored.

The original Dexmo glove [4] was also an admittance device,
but dorsal mounted, unlike the Wolverine. Each finger had three
linkages, with an electronic brake on the middle one that could
lock the relative orientations of the adjoining linkages, and there-
fore the entire digit. This arrangement allows the exoskeleton to
follow the natural trajectory of the digits and be locked in place
with only one actuator. The link bar mechanism is simpler than
the string-pulley arrangements of previous devices, making the
device lower cost and more robust. A later iteration of the device
was commericalised by Dexta Robotics. In this version, dorsal
mounted motors above the metacarpals drive bars that pull or
push normal to the fingernails via slider-crank like arrangements.
Igbal et al.’s [16] HEXOSYS 1II is perhaps the most similar
device to the Dexmo. It also uses a two-part linkage with a
single dorsal mounted motor. Springer and Ferrier [5] used
the arrangement as well, but with a chain rather than a dorsal
motor. Koyama et al. [17] used link-bars, but in an extended

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 4, NO. 4, OCTOBER 2019

arrangement with multiple actuators to support two DOFs for
each finger. Alternately, Sarakoglou er al.’s [18] HEXOTRAC
uses single actuators but multiple encoders, with DOFs above
each joint. This improves tracking and avoids the potential joint
misalignment of rigid linkages which can lead to undesirable
constraints and internal forces.

Works on active haptic robots commonly use force-position
(impedance-based) control systems [1], [19], [20], similar to
bilateral force-reflection systems. In this case the haptic device
acts as a force display. The simulation computes the forces that
should be felt by the user based on the avatar position, and the
control loop uses a model of the robot to map these to motor
torques. Force computation can be performed with traditional
computer graphics principles, such as the god-object algorithm
[21]. More exotic implementations have been explored though.
For example McNeely et al. [22] used voxel mapping to support
6 DOF haptic feedback, while Popescu et al. [23] used the god-
object/HIP algorithm but with hardware acceleration to improve
performance.

Carigan and Cleary [24] compare impedance and admittance-
based control specifically for haptics. Admittance-based systems
sense forces from the user and use these to compute the posi-
tion of the haptic robot. The robot acts as a position-display.
Admittance-based systems have an inner and outer loop, where
the outer loop includes the simulation that sets the parameters
of the inner loop (the position), and the inner loop consists of a
feedback loop between the robot’s sensors and drivers in order
to achieve this position.

Both schemes have been extensively studied for teleoperation
[25]-[27]. However, impedance-based control has been most
popular for haptic devices until now because it has been cheaper
and simpler to design for [20]. This is no longer the case for
devices such as the Dexmo. The driver units have coincident
DC motors & encoders, making admittance-based controllers
for each unit straightforward to design, whereas the under-
instrumented linkages make computing an inverse function to
map forces to torques more difficult.

As a commerical product, the Dexmo provides a black-box
API to its admittance controller (inner loop). The parameters are
bend angles, so it is easy to imagine each encoder coupled to its
coincident motor with a PID controller. The true implementation
is immaterial to the outer loop however. The problem of the outer
loop is how to derive parameters in the position-space of the
inner loop from the position-space of the simulation, and this is
the subject of the current work.

III. DEXMO HAPTIC GLOVE

The latest iteration of the Dexmo (Figure 1) is an active device
with 21 DOFs, 11 of which are instrumented, and 5 of those are
driven. The thumb has three sensed DOFs and the remaining
fingers two. The driver units are identical on each finger. They
crank a primary bar which pulls or pushes normal to the fingertip
via a secondary bar connected to finger cups via two hinge joints.

To control the glove, a simple API is used to set the desired
rotation of the primary bar, and the stiffness with which the
glove should attempt to drive this pose. The parameter is a
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Fig. 1. The Dexmo glove, annotated with the joints that are sensed but not
actuated (A), sensed and actuated (B) and not sensed or actuated (C) for the
Index finger and Thumb. Other fingers have identical arrangements to the Index
finger.

normalised value between the maximum and minimum rotations
at the extremes of the user’s finger flex and extension, measured
during a calibration stage.

IV. POSE ESTIMATION

The Dexmo is under-instrumented, in that the distal linkage
rotations are unknown. When a hand adopts a circular power
grasp however, the fingers follow a predictable trajectory [28].
The angles of the Proximal Interphalangeal (PIP) and Distal
Interphalangeal (DIP) joints can be modelled as linear functions
of each other and Metacarpal (MCP) flex [29]-[31]. Therefore,
in the case of the Dexmo and similar devices, the rotation of the
primary bar is an approximation MCP flex, or, distance along
the power grasp trajectory.

A. Hand Model

The Dexmo SDK provides a graphical hand model. We also
define our own mechanical model in Denavit-Hartenberg [32]
(DH) Parameters. A number of works model aspects of the
human hand. Some characteristics can be modelled reliably,
while for others (most commonly the Carpometacarpal (CMC)
projections), no models exist and there are only exemplary
measurements. We could not find a model of the human hand,
parameterised entirely by DH-parameters from the wrist, so
we created one based on a number of models presented in the
literature [31], [33], [34]. The complete model is provided in the
supplementary materials and our code.’

B. Forward Model

The virtual hand is controlled by directly setting the nor-
malised rotations from the Dexmo API. The thumb CMC has two
dedicated sensors, as does the MCP abduction parameters. The
MCEP, DIP and PIP of all fingers and the thumb (interphalangal)
are set from the primary bar rotation.

A nice property of this approach is that the exact dimensions
of the user’s hand, and even their dynamic range, are decoupled
from the virtual hand. Our above method of estimating the
unknowns in the hand pose is relatively simple. Hand pose esti-
mation is a well studied problem however (e.g. [30], [35]-[37]).

'Our implementation is available in the CASMS Haptics Repository
https://bitbucket.org/account/user/casms/projects/HAP
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Fig. 2. Springer and Ferrier’s position control variables [5]. y is the virtual
object position in the finger’s coordinate system.
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Fig. 3.  Dexmo gesture-based outer control loop. g is one of a set of discrete
gestures that are translated to admittance parameters by G.

For example, the human palm is capable of hollowing [33]. We
have included the joints necessary for this in our virtual hand.
While we do not currently drive them, it is conceivable that
more advanced - perhaps even context aware - models (e.g. [38])
could improve the accuracy of the pose estimation without any
additional sensor DOFs.

V. HAPTIC FEEDBACK

The Dexmo’s inner loop is proprietary, however its API
behaves similarly to the control system proposed by Springer
and Ferrier [5]. Like the Dexmo, theirs is parameterised by
finger bend angle (). Their system is based around a contact
drum shown in Figure 2. As described in Section IV, the finger
will follow a predictable trajectory that can be expressed with a
single DOF (3). A contact distance from the finger to the virtual
object () is defined in the same coordinate system, and the
drum position which inhibits user motion is set to the virtual
object position (7). In Springer and Ferrier’s system, force is
defined as a function of torque and implemented via PWM. The
force is set per object and applied based on whether the contact
distance « is greater or less than zero. This is simlar to the
Dexmo, which applies a constant torque when the target position
is exceeded: F' =~ a(f <), where a is a unitless stiffness
parameter provided to the API from the object’s material. The
Dexmo also allows the comparison to be inverted to make the
constraint dorsal.

This parameterisation requires that the geometry be defined
in the angular coordinate system of the palm. The control system
then for the Dexmo is shown in Figure 3. Encoder measurements
(e) are converted (C) to bend angles () by the Dexmo SDK.
These drive a forward model (£”) that computes the hand pose in
the VE. For gesture-based interaction, or where geometry is palm
fixed (e.g. [23]), the simulation (V) needs only to determine a
discrete gesture (g) that maps (G) to a target parameter () for
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Fig. 4. Ideal position-based outer control loop. z’ is a target position for a
fingertip that is converted to a bend angle ~y for the Dexmo API by F'~1.

Fig. 5.

The sampled curves for all five fingers of our hand model.

the admittance controller (P) (via any internal transforms, e.g.
C~1). The Dexmo SDK provides a number of gesture-based
examples. However it may not always be easy or possible to
define an environment function that computes bend angles.

VI. POSITION-BASED CONTROL

For VE design, it would be preferable to use traditional
computer graphics techniques to perform collision detection,
andrely on the system to compute y from a target pose (Figure 4).

This however requires F'~': the transform of a position in
simulation space (z') to admittance controller space (7). Recall
from Section IV that one of the benefits of indirectly driving the
virtual hand, is that the pose estimation model can be arbitrarily
complex. This is more visually attractive. However it could
make solving F~! analytically difficult, or even impossible.
An alternative would be to create a constrained IK system that
models the linkages of the hand and robot. Another would be to
turn it into an optimisation problem and use a numerical solver.
The constrainted nature of our problem however facilitates a far
simpler solution - a look-up table.

A. Sampling the Workspace

In a pre-processing step, we sample the forward model I’ with
different driver parameters (). We store the resulting fingertip
positions () in 3D space. For each vertex, an attribute contains
the driver parameters that achieved that position. The vertices
are connected to form a set of lines and thus a curve. Now in
order to determine the parameter 7y required to achieve a target
position z’, we simply have to lookup the barycentric coordinates
of that position on the curve, use them to interpolate the driver
parameters. Figure 5 shows these sampled trajectories for the
five fingers of our DH hand model. Each finger has 128 samples
and linearly interpolates between them.
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B. Asymmetry

The Dexmo has an asymmetric number of sensor-motor
DOFs. While the metacarpals are instrumented and actuated,
the finger spread is only sensed. There is no point in sampling
sensor-only DOFs in the lookup table, as the glove will be
unable to effect any change for these. Instead, we transform
the geometry based on the pose of these sensor-only DOFs.
The geometry then represents at any given time the potential
workspace of the drivers in Cartesian space and implicitly, we
only try to drive parameters that will actually affect the hand
pose. The same technique of transforming the workspace of each
actuator allows us to incorporate not only additional degrees of
freedom, but other arbitrary transforms. For example, to convert
arig from a left hand to a right hand, all we do is apply a scale
of —1 in the x-axis.

Vertex positions encode the real-world range of motion, so the
most complex embedding would be a tetrahedral mesh (3 DOF).
Driver parameters are stored as vertex attributes, for which any
number are supported.

This approach allows us to use an arbitrarily complex hand
model and controller. The multiple degrees of freedom and their
relationships - real or assumed - are encoded in the fingertip
positions. The approach allows the same model used for visual
feedback to be used to compute haptic feedback, maximising
sensory coherence, and works equally well whether the model
is real-world scale or not. It is not clear however what would
happen if free and driven joints were interleaved in the same
kinematic chain.

VII. VALIDATION

We developed our system out of necessity and so did not
have an alternative with which to compare it. Instead to assess
its practicality we built it into haptic VEs utilising a variety of
approaches towards haptic rendering and simulation.

A. Goal Computation

With an implementation of F~! we need to modify the simu-
lation function V' to compute a target position. We experimented
with two ways to do this.

1) God Object Mode: The fingertip from the forward model
is considered a haptic proxy and is provided with a god-object.
A closest-point query between the god-object and the curve
identifies the target position.

2) Intersection Point Mode: The curve is tested directly
against the world geometry. The intersection point is considered
the target position.

We find intersection point mode to be the best approach. This
is because the god-object has more degrees-of-freedom than
the curve and its deriative in curve-space can vary with time,
relative position & world geometry. This makes the mode less
well conditioned than the direct intersection approach, which
depends only on the hand pose and curve shape, and so is more
dynamically stable. The effect is confounded by latency, as
the longer between outer loop updates the larger the jump in
parameter can be, resulting in oscillations.
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Dexmo Driver Torque Measurements
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Fig. 6.  Driver controller Characteristic for a range of Stiffnesses.

Fig. 7. Measuring the torque of a Dexmo finger driver. The attachment point
is 50 mm from the pivot.

B. Simulation

As an admittance-based device, the simulation must be driven
by the hand pose. We experimented with two ways to do this.

1) Force Reflection: To apply forces back to the simulation
we estimate the forces applied by the user’s fingers. The Dexmo
does not implement Hooke’s Law but rather applies a constant
torque according to a parameter a, until the actuator returns to
its target pose (Section V). To map between a and real-world
force, we sampled the stiffness of the controller with a force
gauge (Figures 6 & 7). Holding Torque is the maximum torque
necessary to backdrive the actuator, while the Stall Torque is
the torque driven at zero speed. We fit a function (Equation 1)
to stiffness samples between 0 — 1.5 to describe the true torque
(R? =0.99, RMSE = 0.021). We use the Holding Torque as
this is the largest torque the user can exert.

7(a) = 0.2016¢® — 0.614a> + 0.802a — 0.04523 (1)

Computing force from the torque requires the power-grasp
radius. This can be determined as part of the pose estimation,
as the distance between the MCPs joint and the fingerip. This is
only accurate so far as the hand model represents the dimensions
of the user’s hand however. Establishing those dimensions is not
part of the calibration. We accept some error in exchange for a
simpler calibration procedure, but the error is bounded by the
range of human hand dimensions.

2) Collision-Based Simulation: The problem with force-
reflection is that underinstrumented & underactuated devices
limit grasp isotrophy (the ability for finger joints to accurately
apply forces and torques) [39]. This makes stable grasping
through force and torque closure difficult. Compounding this
is the lack of friction as forces are applied from infinitesimally
small points. Friction forms an important component of force
closure. Techniques such as the Friction Cone Algorithm are
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Fig. 8.  Grasps of handheld objects using geometric colliders.
almost always necessary, as without friction at least four points
of contact are required for stable grasping [40].

An alternative to force-reflection is to rely on geometric col-
lision constraints. Haptic feedback is provided via intersection
tests, which in theory constrain the hand pose to the bounds of the
virtual object as in Section VII-A2. Additionally though, a geo-
metric model of the hand participates in the physical simulation.
The virtual objects’ behaviour are driven by collisions with hand
model. This results in more stable grasps with higher manipu-
lability, as the hand geometry provides the user with additional
degrees of freedom and larger numbers of contact points.

The drawback is that because the device is underactuated,
simulated contacts cannot be accurately rendered to the user.
It is easy then for the user to severely violate collision con-
straints provoking high energy responses. The signifiance of
these will depend on the simulation. PhysX is an impulse-based
simulation that is vulnerable to large forces, whereas the uncon-
ditionally stable Position-Based Dynamics approach would be
more forgiving [41]. A second drawback is low fidelity force
rendering. Simulated impulses are not reflected back into the
glove. Therefore only when an object is over-constrained will
the users recieve significant force feedback; otherwise, collisions
will be resolved completley within a single frame, and the haptic
feedback will depend mostly on the framerate (the maximum
penetration per frame).

Figure 8 shows the geometric hand from the Dexmo SDK
grasping a number of simple objects (the PhysX engine requires
dynamic bodies be convex). All grasps rely on geometric colli-
sions to a different degree. Overhand grasps would be possible
with force-reflection only, but not with the power grasp assump-
tion of the Dexmo, while others (e.g. lifting from below) are
only possible with geometric collisions.

C. Force Rendering

We can invert the samples taken in Section VII-B1 and fit
another function (Equation 2) in order to compute stiffness
values with which to drive specific torques/forces to the user
(R? =0.95, RMSE = 0.437). In this case we use the Stall
Torque as this is the maximum that can be actively exerted
by the device. As described in Section VII-B1, the torque is
proportional only to the Stiffness parameter. To render force
we compute Stiffness given a target torque, and simply set the
position to be above or below the current pose to provoke its
actuation.

a(T) = —203.37% + 163.87 + 1.8267 — 0.03613  (2)
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Fig. 9. Actual force exerted by Dexmo for intended forces provided to the
controller.

Fig. 10.
force rendering mode.

Virtual environment with synthetic weights used to drive Dexmo in

Figure 9 shows the fidelity of the Dexmo force rendering based
on Equation 2 across its dynamic range. Figure 10 shows a VE
with a set of virtual objects used to demonstrate force rendering
in VR.

PhysX is an impulse-based simulation engine. Therefore the
force for each finger was computed from the integral of the
impulses applied to the finger’s colliders by the simulation,
divided by the period of the frame. In this case, the force was
applied directly, as this best matched the geometric arrangement
of our VE. However, as the Dexmo is underactuated, this is
unlikely to be a good solution for all VEs. Sarac et al. [42]
proposed a number of rendering strategies that could be applied
to differnt VEs. Ultimatley though, we advise against the use of
force-reflection.

It is well known from teleoperation that in latent force-
reflection systems, user input in the form of position, and system
response in the form of force, can become out of phase [43]-[45].
In this case the user experience is undermined and the system can
become unstable, which we experienced during our tests. The
typical haptic loop frequency is 1000 Hz. Though our technique
can approach this (Section IX), latency is limited by the slowest
component. In this case, the Unity framerate that we measured
at ~100 Hz, and the Dexmo update rate we constrained to 30
Hz on the advice of Dexta Robotics (personal communication).

Due to the oscillations caused by the low bandwidth, we
could not measure constant forces exerted by virtual weights,
however we were able to measure the maximum forces at the
oscillation peaks. These are shown in Figure 11. Such measures
will have some inertial component, however as can be seen they
are minimal and the response is consistent with the expected
behaviour of the controller, based on its slightly above unity
gain shown in Figure 9.
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Fig. 11. Maximum forces exerted for virtual weights.

VII. IMPLEMENTATION

We implemented our system in Unity 2017.3 with Dexmo’s
managed client library.

A. Hand Model

Both the Dexmo graphical model and our DH model were
implemented as hierarchies of scene-graph nodes. A function
would take the bend parameters and apply proportional rotations
to the transforms as described in Section IV. In the Dexmo API
sensor and driver parameters are in the same space - normalised
between the extremes of user flex and extension.

B. Lookup Table

We identified which nodes belonged to kinematic chains
downstream of the actuators, and therefore should be sampled
in the lookup tables. A function set the model parameters and
measured the endpoint of a chain, representing the tip of the
corresponding finger.

Whenever the hand model changes, we construct for each
finger a set of vertices/lines as described in Section VI. We use
the Unity messaging system to repeatedly update all transforms
within a single function call allowing us to do this in one instant
at design time. For the purposes of the lookup construction, F'is
a function call that sets the normalised rotation parameters of the
hand controller script, updates all the transforms, and reads back
the fingertip positions in Unity world coordinates. The curve is
stored in the local space of first actuated node’s parent. For the
Dexmo, this is the finger spread, or, MCP abduction, joint.

C. Collision Detection

For collision detection, we iterate over each line forming
the sampled curve, testing it against potential colliders with a
raycast. The ray is from the line’s origin and the ray-intersection
distance determines whether or not the segment intersects. Unity
provides raycast tests for all colliders. The first intersection that
lies within a segment is considered to be the target point. If the
tests reach the end of the curve, there is considered to be no
intersection. When there is no intersection, the stiffness of the
finger controller is set to zero. Potential colliders are identified
with a broadphase pass. Curves are encompassed with bounding
boxes, and we rely on Unity to identify potentially intersecting
colliders that are then tested as above.
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Fig. 12.
environment grasping a book, with visualisations of the hand DH-model, finger
trajectories and bounding boxes for the collision detection broadphase.

Virtual hand in a haptically-enabled architectural visualisation virtual

IX. PERFORMANCE

Our problem is grounded in the real-world biophysics of the
hand, which gives an upper bound on complexity. For example,
with a finger length of 10 cm and an MCP range of 130°,
128 sample points would achieve a sampling spatial resolution
of approximately 1.7 mm (and recall that the parameters are
interpolated between these). This allows us to take a brute-force
approach more often than would otherwise be practical. Charac-
terising the performance of our technique is difficult. Individual
raycasts are typically fast, but the number of potential colliders
has a multiplicative effect on the processing time. This makes our
approach highly dependent on the scene and 3rd party physics
engine.

We validated our approach by integrating the Dexmo into a
VR architectural visualisation environment (Figure 12). Haptic
feedback was enabled for the entire environment and its contents
by creating static Mesh Colliders from the scene’s graphical
geometry. The scene contained 898,675 triangles across 668
colliders. Updating the haptic parameters for all five fingers
took approximately 1.19 ms per frame, when grasping as shown
in Figure 12. Of this 0.31 ms was spent performing the actual
raycasts. PhysX, which Unity uses as its physics engine, spent
0.01 ms in the broad phase.

It is important to remember that what we describe constitutes
the outer loop of the control system. Therefore these execution
times will not affect stiffness. They will however determine the
highest spatial frequencies that can be displayed as they limit
the change in stiffness over time.

X. CONCLUSION

The Dexmo is a haptic glove designed to provide kinesthetic
feedback. Like a number of recent designs, it has been opti-
mised for portability and ease-of-use. One way this has been
done is to use link-bars instead of more delicate and expensive
pulley-string systems. Such arrangements however introduce
challenges in pose estimation and control system design. The
Dexmo uses an admittance-based controller, where an inner
loop drives a target pose set by an outer loop incorporating the
simulation. The inner loop can operate at high rates, but requires
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the outer loop to specify positions in an angular coordinate
system, rather than forces in a Cartesian system.

The problem of estimating angular position is undercon-
strained. Models with more DOFs than the glove can sense
must be constructed, and assumptions made about the relation-
ships between the glove parameters and hand model in order
to estimate hand pose. While this is doable for pose estima-
tion, inverting it to compute driver parameters is non-trivial.
Traditionally, abstractions-based on palm-fixed geometry and
abstract measures such as curvature would be used. However
this complicates the design of the VE.

We propose a new way to compute the target pose for such
underconstrained haptic devices. Our approach is based around
sampling the forward model to build a lookup table. The lookup
table is queried by expressing it as geometry in the Cartesian
space of the simulation. Here it can be transformed to express
the workspace of the actuators at any time based on additional
sensed or assumed properties. Basic collision detection and
geometric queries can be performed on the geometry to solve
for a target pose, and the required actuator parameters to achieve
it. The actuator parameters can then be fed to the inner-loop.

While we have only tested it on the Dexmo, the technique
should generalise to similar devices, including those that can
actuate in multiple embedded dimensions. Further, while the
Dexmo SDK uses the same parameter space for its controller
as it does to report finger pose, this is not a requirement of
our technique. To compute the actual pose for use by this
inverse function we tested two algorithms. We find the open-loop
intersection point to be superior to the god-object, as it is the most
stable. However, both algorithms were straightforward. Our
embedded trajectory describes to the application the potential
workspace of the actuator. In the future it, is worth exploring
algorithms that can better take advantage of this to provide the
optimal kinesthetic cues given these constraints. For controlling
the simulation, we experimented with force-reflection and col-
lision constraints. We found collision constraints to be superior
because they provided additional DOFs with which to establish
contact points. This improved the manipubility of the simulation
beyond what is possible with force-reflection, due to the limited
grasp isotrophy of the underinstrumented device.

New haptic devices are being optimised for portability and
ease-of-use in an effort to aid adoption and accessibility. To
achieve this goal VE developers need equally accessible control
systems with which to drive them. Our experimental VEs vali-
date the embedded 3D lookup table for controlling admittance-
based haptics, by demonstrating its practicality in real VEs. We
hope that this method can contribute to the continued develop-
ment and adoption of accessible, low cost haptics.
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