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Ensemble weather forecasts often under-represent uncer-
tainty, leading to over-confidence in their predictions. Multi-
model forecasts combining several individual ensembles have
been shown to display greater skill than single-ensemble
forecasts in predicting temperatures, but tend to retain some
bias in their joint predictions. Established postprocessing
techniques are able to correct bias and calibration issues in
univariate forecasts, but are generally not designed to han-
dle multivariate forecasts (of several variables or at several
locations, say).

We propose a flexible multivariate Bayesian postpro-
cessing framework, based on a directed acyclic graph rep-
resenting the relationships between the ensembles and the
observed weather. The posterior forecast is inferred from
available ensemble forecasts and an estimate of the shared
discrepancy, obtained from a collection of past forecast-
observation pairs. We also propose a novel approach to
selecting an appropriate training set for estimation of the
required correction, using synoptic-scale analogues to ob-
tain a regime-dependent estimate of the adjustment.

The proposed technique is applied to forecasts of sur-
face temperature over theUKduring thewinter period from
2007-2013. Although the resulting parametricmultivariate-
normal probabilistic forecasts aremarginally less sharp than
those of the leading competitor, they capture the spatial
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structure of the observations better than a correlation struc-
ture based on either the ensembles or climatology alone,
and are robust to changes in the variables and spatial do-
main of the forecast, at a greatly reduced computational
cost.
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1 | INTRODUCTION

Most weather forecasts are generated by numerical weather prediction (NWP) models, propagating a ‘best guess’ of
the initial weather state through a model of the atmosphere in order to predict the future state. The uncertainty
associated with the forecast is typically assessed from the dispersion of an ensemble obtained by running the model
multiple times with perturbed initial conditions; if the forecast ensemble dispersion is small, then the uncertainty
about the issued forecast is assumed to be small, and vice versa.

Despite many recent modelling improvements, numerical weather forecasts remain susceptible to errors from
various sources, and it is generally accepted that the output of any ensemble prediction system (EPS) will require some
form of postprocessing if it is to be useful (Wilks, 2011). Model biases are particularly prevalent when considering the
surface weather quantities of most interest to many users (Atger, 2003), and although the uncertainty surrounding the
initial conditions is sampled (at least partly) through the use of perturbed ensembles, further uncertainty arises from
the choice of parameterisation schemes, boundary conditions, and processes at unresolved scales. ManyNWPmodels
now include schemes to partially account for this model uncertainty, for example by perturbing selected parameters -
as in the UKMet Office’s ‘random parameter’ scheme (Bowler et al., 2008; Baker et al., 2014) - or perturbing the effect
of the parametrizations on certain variables - as in the ECMWF’s ‘stochastic perturbed parametrization tendencies’
(Palmer et al., 2009) - to obtain a more representative ensemble spread that is physically consistent. However, many
EPS forecasts are still found to be overconfident - that is, the ensemble spread tends to be smaller than the forecast
error - with this underdispersiveness becoming worse at longer leadtimes (Weigel et al., 2008). If a forecast is to be
useful to support planning and decision making, it is important not only to correct any biases in the deterministic
forecast, but to accurately quantify the associated uncertainty.

A common approach to improving the calibration of the raw output from an EPS is to postprocess the forecast
in some way, with the joint aims of bias correction and spread calibration (uncertainty quantification). Methods in-
clude Model Output Statistics (MOS) (Glahn and Lowry, 1972; Jewson et al., 2004; Gneiting et al., 2005), analogue
ensembles (Hamill et al., 2006; Hamill and Whitaker, 2006), Bayesian Model Averaging (BMA) (Raftery et al., 2005),
the adjustment of rank histograms to the desired uniformity (Hamill and Colucci, 1997; Eckel and Walters, 1998), en-
semble best member dressing (Roulston and Smith, 2003), Kalman filtering (Delle Monache et al., 2011), and quantile
regression methods (Taillardat et al., 2016; Bentzien and Friederichs, 2012).

Regardless of the numerical model and postprocessing method used, single-ensemble forecasts cannot fully ac-
count for uncertainty due to the choice of a particular model. A complementary approach, allowing further sampling
of potential uncertainty, is to construct a multi-model ensemble (MME) combining the output of several EPSs. Sev-
eral studies have shown that even a very simple MME forecast, obtained by unweighted averaging of all available
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member forecasts, can, in the long run, outperform even the best of its constituent models (Hagedorn et al., 2005;
Doblas-Reyes et al., 2005; Johnson and Swinbank, 2009;Weigel et al., 2009). More sophisticated approaches toMME
postprocessing include ensemble BMA (Fraley et al., 2010) and ensembleMOS (Yuen et al., 2017), both of which apply
a bias correction and variance adjustment to a weighted average of the individual EPS forecasts.

In this paper, we propose a novel Bayesian framework, developed around a directed acyclic graph representing
the structure of the MME forecast system, to postprocess multivariate forecasts from several EPSs simultaneously.
Performance of the new postprocessing technique is evaluated against an established MOS technique, and against
uncorrected multi-ensemble forecasts.

Any statistical postprocessing of this kind requires a training dataset of past forecast-verification pairs (by which
we mean a past forecast and its verifying observation or analysis), from which the necessary correction can be es-
timated. Typically, a moving-window approach has been used to select this training set (Gneiting et al., 2005); al-
ternatively, previous years’ reforecast data from the same operational model, date and synoptic time may be used
to provide a training set of greater size (Hagedorn et al., 2008; Hamill, 2012), or analogues from an archive of prior
forecasts may be selected on the basis of their similarity to the current prediction (Hamill et al., 2006; Delle Monache
et al., 2013; Junk et al., 2015). We propose a new source of synoptic-scale analogues for construction of a training
dataset, choosing candidate forecasts generated under weather regimes similar to that of the forecast of interest.

We begin with a motivating example in Section 2, with a discussion of two MME postprocessing methods in
Section 3. Section 4 introduces the new postprocessing framework, and Section 5 suggests the process by which a
training set can be obtained. Section 6 defines themetrics used to assess forecast performance, with results presented
in Section 7. We conclude with a summary and discussion in Section 8.

2 | DATA

The MME system considered in this paper consists of component ensembles from the ECMWF, NCEP and UK Met
Office, with 50, 20 and 23 perturbed members respectively - among the largest ensembles available during the study
period. In addition, these three ensembles all apply different approaches to handling initial-condition uncertainty and
model uncertainty, so should be exploring quite different areas of the state space of potential models. The ensem-
ble forecasts were obtained from the TIGGE archive (Bougeault et al., 2010). We consider forecasts of 2m surface
temperature at midnight during the winter period (December-January-February, excluding leap days) from December
2007 to February 2014, issued at 24h intervals up to 15 days ahead. October and November forecasts were also used
as candidate training cases, but were not postprocessed. We use the term ‘forecast instance’ to refer to a forecast
issued on a single day for a given leadtime and at a particular synoptic time; here, we have 7 × 90 = 630 forecast
instances to postprocess at each leadtime. Forecasts were downloaded from TIGGE on a 1◦ latitude-longitude grid
over the region from 50 to 60◦N and 6◦W to 2◦E, covering the British Isles.

ERA-Interim reanalyses of 2m surface temperatures on the same grid are used to verify the postprocessed fore-
casts (Dee et al., 2011). It is possible that the ECMWF ensemble forecasts may perform better than the other two
ensembles in this respect, since these forecasts are based on a similar model to the reanalysis. However, the relative
performance of different combinations of contributing ensembles is outside of the scope of this paper.

The study area consists of forecasts at 13 ‘locations’: alternating grid cells over the land mass of the UK (Figure
1). This choice was made to limit the size of the data set for ease of processing and interpretation, while including
relatively heterogeneous climatologies.
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3 | CURRENT METHODS IN MME POSTPROCESSING

We begin by considering two established postprocessing schemes by which a MME forecast might be corrected,
in order to better understand the motivation for the new approach introduced in Section 4. These methods have
been chosen because, like the proposed framework, they are parametric methods and produce multivariate-normal
probabilistic forecasts; this allows for direct comparison of the skill of all three methods.

3.1 | Multi-model superensemble

The simplest method of combining multiple ensemble forecasts is to pool the ensemble members into a single su-
perensemble, defining the predictive density as multivariate normal, with its mean and covariance matrix specified as
the mean and covariance matrix of all members. Several studies have found pooling to be a straightforward way to
improve the average performance of single-ensemble raw forecasts (Hagedorn et al., 2005; Doblas-Reyes et al., 2005;
Johnson and Swinbank, 2009).

Figure 2 shows a bivariate example of a pooled superensemble forecast generated by this MME system, along
with the verifying reanalysis. All three ensembles predict strong positive correlation between temperatures in the
two locations; each ensemble’s members are tightly clustered, indicating a high degree of confidence in the forecast,
although the individual ensembles are fairly distinct. The ellipse contains 95% of the predictive density, and is much
larger than the spread of any one ensemble. The pooled spread has been shown to better reflect the true forecast
uncertainty than that of any single component ensemble, with the improvements shown to be due to extra information
in the additional ensembles, and not simply to increased ensemble size (Hagedorn et al., 2005). Johnson and Swinbank
(2009) attribute the improvement to the various models exploring different regions of the phase space.

It has been suggested that one of the reasons for the superior performance of multi-model ensembles is that the
errors from component ensembles cancel one another out, leading to a bias-corrected forecast (Hagedorn et al., 2005).
This can only occur if the errors of the component ensembles (and their members) are independently distributed
around the true value. However, many NWP models share grid resolutions, parameterisations, and even code, and
so are likely to display errors of a similar type (such as similar wet/dry or cold/warm biases), as in Figure 2. A more
sophisticated approach that can account for a potential common bias is clearly called for.

F IGURE 1 Locations in the study.
Each cell is labelled with the name of the
largest city within its boundaries.

F IGURE 2 One-day-ahead ensemble predictions of
temperatures in Kirkcaldy and Glasgow, issued on 19
January 2010.
The ellipse is a 95% prediction region calculated from a bivariate
normal distribution with the same mean and covariance matrix as the
pooled superensemble.
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3.2 | Nonhomogeneous Gaussian Regression

Model Output Statistics (Glahn and Lowry, 1972; Wilks, 2011) is among the most commonly applied statistical post-
processing techniques. The exact form of MOS applied will vary according to the weather quantities to be calibrated;
in the case of surface temperatures, where the ensemble forecasts generally have approximately Gaussian distribu-
tions, MOS often takes the form of a nonhomogeneous Gaussian regression (NGR) (Hagedorn et al., 2008, 2012;
Junk et al., 2015). This means that, given an ensemble of forecasts {y1, ... , yk } of some weather quantityY0, with the
forecasts having sample variance s2, the NGR predictive distribution ofY0 has the form

Y0 ∼ N (a + b1y1 + · · · + bk yk , c + ds
2) (1)

The coefficients a , b1, ... , bk , c and d are estimated by least-squares regression and optimisation over a training set of
forecast-observation pairs, with each training case consisting of forecasts from the same k ensemble members as the
forecast to be postprocessed. The regression is described as nonhomogeneous because, just as the predictive mean
depends on the predictors y1, ... , yk , the predictive variance depends on the sample variance s2 of the predictors. In
order to ensure that the NGR variance is strictly positive, c and d are constrained to be greater than 0.

The NGR approach is readily applied to a multi-model context, as described in Gneiting et al. (2005) and imple-
mented in the freely available R package ensembleMOS (Yuen et al., 2017). Given a collection of m ensemble forecasts
ofY0 at locations l = 1, ... , p , with the i th ensemble having ni members, we denote the j th forecast produced by the
i th ensemble at location l as yi j (l ). Here, upper case indicates a random variable, while lower case denotes realised
values of those random variables. The ni members of the i th ensemble are considered to be exchangeable, having
identical statistical properties, and so the linear regression equation (1) is applied to the ensemble mean forecasts
ȳi (l ) = n

−1
i

∑ni
j=1

yi j (l ), and s̄(l ) is the standard deviation of the ensemble means ȳi (l ) (Gneiting et al., 2005).

NGR is a univariate postprocessing method, estimating a single set of regression coefficients; forecasts at several
locations may be postprocessed independently, or the ensemble mean forecasts may be pooled across some or all
regions, in which case forecasts at all of the pooled locations are assumed to obey a common regression relationship
with their verifying observations (Fraley et al., 2007; Lerch and Baran, 2017). Pooling across locations gives a larger
set of forecast-error pairs fromwhich to estimate each set of coefficients, and so can produce more numerically stable
estimates where the amount of available observations would otherwise be small. However, if the pooled sites are not
sufficiently homogeneous, the resulting forecasts may retain substantial local biases and dispersion errors. Due to
the inhomogeneity of the errors observed at each location in the temperature forecasts, and in order to ensure a fair
comparison with the proposed alternatives, we choose the former option, estimating separate NGR parameters at
each location from the same training set of forecast instances. Hence the predictive distribution at location l is

Y0(l ) ∼ N (a(l ) + b1(l )ȳ1(l ) + · · · + bm (l )ȳm (l ), c(l ) + d (l )s̄
2(l )) [ l ∈ 1, . . . , p (2)

The coefficients a, b1, . . . , bm are initially estimated from an appropriately chosen set of training data by least-squares
regression, then all coefficients are numerically optimised by minimising the Continuous Ranked Probability Score
(CRPS, see Section 6.3), following Gneiting et al. (2005). The fitted coefficients provide information about the perfor-
mance of the ensemble members over the training data. The b1, ... , bm are weights applied to the individual ensemble
forecast means, according to their relative performances, with a a simple bias correction to the weighted mean fore-
cast thus obtained. The variance component of (2) is intended to capture the fact that previous studies have observed
a systematic relationship between the magnitude of forecast errors and the spread of the ensembles producing them
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(Gneiting et al., 2005). An understanding of the strength of the spread-error relationship within the training set can
be gained from d , with larger values of d indicating a stronger relationship; when d = 0, the spread and error are
essentially independent, and the resulting distribution is reduced to a linear regression, inflated by c to replicate the
uncertainty of the errors in the training data. As such, NGR offers an intuitive, appealing way to simultaneously cor-
rect a multi-ensemble forecast and assess the relative performance of the constituent ensembles. However, it should
be noted that when - as is often the case - several ensembles are highly collinear, negligible weights may be assigned
to all but the single most skilful forecast (Gneiting et al., 2005), so the weights should not be interpreted as direct
measures of performance.

As described above, the NGR procedure produces postprocessed forecast distributions for each variable indepen-
dently. In some applications however, it is important to consider all quantities simultaneously and hence to produce
a postprocessed joint forecast distribution. Given that the marginal forecast distributions are normal, it is natural to
specify a multivariate normal distribution for the joint forecasts. To do this, we follow the approach used by Feld-
mann et al. (2015), Berrocal et al. (2007) and others, and use a continuous copula function to provide the dependence
structure between the NGR-postprocessed marginal forecasts and so obtain a multivariate predictive density

Y0 ∼ MVN
(
µngr ,VngrPVngr

)
, (3)

where µngr is the vector of NGR marginal predictive means, Vngr is the diagonal matrix of NGR marginal predictive
standard deviations, and P is a correlation matrix specified by the user.

In geospatial statistics, it is common to specify the elements pi j of P through a parametric stationary, isotropic
correlation function of the distance between location si and location s j (Möller et al., 2013). However, attempts at
fitting this type of function to the data set described in Section 2 produced unstable parameter estimates, suggesting
that the assumptions of stationarity and isotropy do not hold in this case. Alternative recently proposed approaches
construct a discrete empirical copula, based on the rank structure either of the forecast ensemble (Ensemble Copula
Coupling, ECC - Schefzik et al. (2013)) or of a climatological sample (the Schaake Shuffle, Clark et al. (2004); Schefzik
(2016)). These empirical copula approaches have been shown to be effective in obtaining jointly calibrated forecasts,
but deliver a discrete forecast distribution based directly on the input samples, whereas the distribution in equation (3)
is continuous. Since we require predictive densities, we adapt the approach of Schefzik (2016), and use the empirical
correlation structure of the observations in the training set to estimate P. A separate correlation matrix is estimated
for each forecast instance, using the same set of training cases that are used to estimate the NGR parameters.

Fitting by CRPS minimisation means that NGR forecasts generally perform well when assessed via single scoring
rules - particularly, of course, the CRPS. However, recent research suggests that optimisation by CRPS minimisation
can lead to forecasts that are sharper (having lower variance) than competitors, but at the cost of calibration (Wilks,
2018): this contravenes the maxim of Gneiting et al. (2008) that sharpness should be improved only while respecting
forecast calibration. Wilks (2018) proposes the introduction of a penalty function in the optimisation step to ensure
that calibration, rather than sharpness, is maximised; however, this approach has not been widely adopted, so we
have chosen to use the standard form of the algorithm provided by the ensembleMOS package in R (Yuen et al., 2017).

NGR methods also fail to exploit the full range of information provided by the available ensemble forecasts. By
establishing the regression relationship only over the ensemble mean forecasts, and potentially discarding whole
ensembles in the weighted average, information from the full spread of the MME is lost - although this was found
to be a key part of the success of superensemble forecasts in Hagedorn et al. (2005) and Weigel et al. (2009), where
even less skilful ensembles were able to contribute to a well-calibrated combined forecast by increasing the forecast
spread and exploring additional regions of the phase space. In the next section, we present an intuitive and easily
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applied framework designed to address these issues and produce a properly calibrated, bias-corrected multivariate
multi-ensemble forecast, making use of all available information.

4 | A NEW APPROACH TO POSTPROCESSING OF MME FORECASTS

The proposed method applies a new approach to MME postprocessing, treating the ensemble forecasts as related
elements of a single forecasting system. A graphical representation of the relationships between the ensembles is used
to derive an expression for the posterior distribution of the weather quantities of interest in a Bayesian framework.
Sources of uncertainty about each element of the forecast are explicitly quantified in a way that is easy to understand
and interpret.

The method is developed from that presented in Chandler (2013) in the context of climate projections. A key
difference, however, is that climate projections aim to make statements about the statistical properties of future
weather, such as regional or global mean temperatures; in the current weather forecasting context, the aim is to
forecast the actual weather quantities, rather than their statistical properties.

We begin by revisiting the representation of the available forecast data. Here, for each forecast instancewe have a
collection of ensemble forecasts fromm models, made on a single day for a given leadtime and at a particular synoptic
time; each forecast instance is postprocessed separately. For a given forecast instance, we have a vector of weather
quantities of interest, Y =

{
Y1, . . . ,Yp

}′, with p the number of variables we wish to forecast. The value of Y that is
eventually observed is denoted Y0. Again, we use upper case to denote random variables, and lower case to denote
realisations of those random variables. In the case study presented in this paper, Y contains surface temperatures at
each of the 13 grid cells shown in Figure 1, hence p = 13 here.

For each i = 1, . . . ,m , the i th ensemble provides a set of ni forecasts of the vector Y, with the j th forecast
from the i th ensemble being labelled Yi j . Forecasts of surface temperature are commonly assumed to be reasonably
well represented by multivariate normal distributions on the basis of plots such as Figure 2, in which the individual
ensembles typically show a roughly elliptical scatter (Wilson et al., 1999; Wilks, 2002). The members of the i th
ensemble are thus assumed to be drawn independently from multivariate normal distributions, conditional on the
ensemble’s population mean, µi :

Yi j |µi ∼ MVN (µi ,Ci ) (4)

We now consider the fact that, while forecasts from a single ensemble are generally more similar to one another
than they are to forecasts from other ensembles, ensembles may also be more similar to one another than they are
to reality, for the reasons discussed in Section 3.1. The consequence of this is that if one ensemble predicts too
low a temperature, it is likely that the other ensembles will display a similar tendency. To reflect this dependence,
the individual ensemble mean forecasts µi are themselves assumed to be dispersed around a mutual consensus, ξ,
according to the covariance matrix Σ, and to be independent of one another only conditional on this consensus. This
consensus ξ can be thought of as the centre of the population of possible ensembles; if we could sample an infinite
number of ensembles from an infinite number of models for a particular forecast, the mean of the infinite sample of
µi s would lie at ξ, although each individual ensemble may be systematically offset from the consensus.

The consensus can be decomposed into the ‘true’ value, Y0, plus a shared discrepancy ∆. The distribution of
∆ for any forecast instance can be estimated using the mean and covariance of an appropriate training set of past
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forecast-observation pairs, as discussed in Section 5. Thus we have

µi |ξ ∼ MVN (ξ, Σ) where ξ = Y0 + ∆ (5)

∆ ∼ MVN (η,Λ) (6)

The structure of equations (4) to (6) is illustrated graphically in Figure 3. Here, the arrows encode conditional inde-
pendence relationships: if there is no path between point A and point B without passing through point C, then A and
B are said to be conditionally independent, given C. Thus, since there is no path from Yi1 to Yi2 that does not pass
through µi , Yi1 and Yi2 are assumed to be independent, given µi . This means that, if µi is known, then information
about the value of Yi1 cannot tell us anything new about the value of Yi2. These assumed conditional independence
relationships will be exploited in the subsequent derivations.

For computational purposes, the data structure in Figure 3a can be simplified without loss of information by
exploiting the fact that the sample mean and covariance matrix are sufficient statistics for the parameters of a multi-
variate normal distribution - they capture all of the available information provided by the sample about the population
mean and covariance (Cox and Hinkley, 1974, p173). This enables us to replace the individual members Yi j of ensem-
ble i by the ensemble mean Yi , and to replace equation (4) with

Yi |µi ∼ MVN (µi , n−1Ci ) (7)

without loss of information (see supplementary paper, Section S1.2, for details of this equivalence). This in turn can
be combined with equation (5), to deduce that the sampled ensemble means

{
Yi

}
are independent of each other

conditional on the ensemble consensus ξ, with

Yi |ξ ∼ MVN
(
ξ, Σ + n−1i Ci

)
. (8)

This leads to a simplified graphical structure, shown in Figure 3b. Ci is estimated using the sample covariancematrix of
forecasts from the i th ensemble, and Σ using the sample covariance matrix of the ensemble means. Strictly speaking,
this estimate of Σ will be biased due to the use of the sample means Yi in place of the underlying means µi : however,
when (as here) each ensemble has many members, this bias will be small. A further issue is that the elements of Σ
will be estimated imprecisely if m , the number of ensembles, is small. Again, this is the case here (m=3): this should
be borne in mind below when considering the performance of the method in practice. For more discussion of the
relevant estimation issues in a closely related problem, see Chandler (2013).

The role of the individualmembers of each ensemble is to provide an estimate ofCi : having obtained this, equation
(8) implies that only the ensemble means are needed. An important difference between this and other approaches
such as NGR is that the latter approach uses only the sample variance of the ensemble means (the diagonal elements
of Σ), thereby losing the additional information on ensemble spread.

To simplify the notation, let Di = Σ + n−1i Ci , and so

Yi |ξ ∼ MVN (ξ,Di ) where ξ = Y0 + ∆. (9)

In the framework set out above, the aim of the postprocessing is to use the forecast ensembles
{
Yi j

}
to make state-

ments about the value of Y0 that will be realised. As in Chandler (2013), this is most conveniently done in a Bayesian
framework which also allows the incorporation of additional knowledge about Y0 via a prior distribution. We use a
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multivariate normal prior here for convenience:

Y0 ∼ MVN (α, Γ) (10)

If we have no particular prior assumptions about the distribution ofY0, we can set a non-informative prior with Γ−1 = 0
(meaning that the variance, Γ, is infinite); regardless of the value of α specified, such a prior will contribute nothing
to the final posterior forecast. In working with the inverse Γ−1, we follow standard practice in Bayesian analyses
(Bernardo and Smith, 2001), where the inverse of any covariance matrix is usually referred to as a precision matrix.

F IGURE 3 Schematic diagram of relationships between elements of the multi-ensemble system
Quantities known at the time of forecasting are shown as filled nodes, with unknown quantities represented by open nodes.

(a) Full MME structure
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(b) Simplification used to derive the posterior form
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It can be shown, using arguments adapted from those in Chandler (2013) and presented in detail in the online sup-
plement to this paper, that the posterior distribution ofY0, conditioned on the ensemble forecasts, is itselfmultivariate-
normal, with

Y0 |Yi j ,∆ ∼ MVN (τ , S) (11)

S−1 = Γ−1 + (ΣD + Λ)−1 , (12)

τ = S
[
Γ−1α + (ΣD + Λ)

−1

{
ΣD

m∑
i=1

D−1i yi − η
}]
, (13)

where ΣD =
(∑m

i=1 D−1i
)−1

, a covariance matrix representing the uncertainty about the ‘true’ position of the ensemble
consensus ξ.

The posterior precisionmatrix S−1 is the sumof the prior precision Γ−1 and the precision (ΣD+Λ)−1 of the estimate
of the discrepancy-corrected consensus, ξ − η, which is represented by the term in braces {} in equation (13). The
precision of ξ−η is the inverse of the sum of the uncertainty Λ about the estimated discrepancy, and the uncertainty
ΣD about the ensemble consensus.

The posterior mean vector τ is a weighted sum of terms representing the prior estimate α and the mean vector
ξ − η, inferred from the ensemble forecasts adjusted by the expected discrepancy, as described in equation (6). The
weights given to these two components are determined by the covariance matrices of the prior distribution, Γ, and
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F IGURE 4 Example of postprocessing a collection of ensemble forecasts using the Bayesian framework.
Ellipses represent regions containing 95% of the multivariate-normal density with the specified mean and covariance matrix.
(a) Ensemble members Yi j from three ensembles, with ensemble sample means Yi and covariances Ci .
(b) The ensemble consensus ξ and associated uncertainty ΣD , adjusted by the estimated discrepancy correction η and uncertainty Λ.
(c) The discrepancy-adjusted consensus ξ − η is combined with the prior estimateα, weighted by their respective covariances ΣD + Λ and
Γ, to obtain the posterior mean τ and covariance S.

(a) (b) (c)

of the discrepancy-adjusted consensus, ΣD + Λ, respectively. Figure 4 shows the various components involved in
postprocessing a multi-model ensemble forecast, using the ensembles introduced in Figure 2 as a case study and
with the mean and covariance of the prior distribution estimated from a sample climatology, using the observations
from the week centred on the forecast issue date in the ten years prior to the forecast issue year. The postprocessed
forecast variance reflects both the relationship between the temperatures in the two regions and the spread of the
errors in the training set.

Experiments not presented in this paper have shown that postprocessed forecasts with an informative prior com-
ponent are, in general, less skilful than those with a non-informative prior having Γ−1 = 0, being sharper but with
less accurate mean forecasts. We conjecture that this is because the discrepancy-adjusted forecasts are, to the best
of our knowledge, the best source of information available to us when predicting the future weather: adding further
information in the form of an informative prior reduces the posterior variance but rarely brings a corresponding im-
provement in the accuracy of the mean forecast, shifting the posterior mean away from the forecasts and towards
the prior. An alternative perspective is that because the forecasts are based on dynamical data assimilation, they have
already implicitly accounted for the ‘prior’ information. For this reason, a non-informative prior is used in the case
study described in Section 7, which means that the posterior mean vector and covariance matrix in (12) and (13) can
be simplified to

S−1 = (Λ + ΣD)−1 τ = ΣD

m∑
i=1

D−1i yi − η. (14)

Finally, we note that even if we did not consider the multivariate-normal assumption to hold, the same posterior form
would be obtained by treating the problem as a form of Bayes linear analysis in which our prior expectations of the
mean and variance of the temperature are adjusted by the forecasts and discrepancy: the posterior mean is then the
optimum linear combination of the forecast information, and the posterior covariance matrix is a valid summary of
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the uncertainty in this optimum linear combination (Goldstein and Wooff, 2007).

5 | CALIBRATION USING ANALOGUES TO THE CURRENT FORECAST

All statistical postprocessing techniques require an appropriate training set of past forecast-observation pairs, from
which a correction to the current forecast can be derived; the more similar the errors of the training case are to those
of the current forecast instance, the better the estimate of the necessary adjustment. Training cases are often taken
from the w days immediately preceding the forecast date, using a ‘moving window’ approach (Gneiting et al., 2005).
The use of such a training set implicitly assumes that the biases of recent forecasts will persist for the current forecast.
This may be true to some extent, but since forecast biases are also known to be flow-dependent and to vary with the
dominant weather pattern (Eckel and Mass, 2005; Greybush et al., 2008; Ferranti et al., 2015), it does not necessarily
provide the most appropriate basis for estimation of future forecast biases; the relevance of a moving window training
set is likely to reduce with both increasing forecast leadtime and increasing size of the training set (and corresponding
earlier start date). More pertinent information may be obtained by selecting a training set of forecasts that predict
similar weather to that anticipated by the current forecast.

5.1 | Selection of analogues to the current forecast

Webegin by identifying instances in the training set that are, in some sense, similar to the instance to be postprocessed.
Given an archive of ‘candidate’ forecasts, we can define a distance metric to identify those candidates that are closest
to the current forecast instance. The candidates found to be most similar to the forecast of interest are referred to
as analogues; their errors provide a sample of forecast errors that is expected to be representative of those of the
present forecast instance.

Following the metric proposed in Delle Monache et al. (2011), we calculate the Euclidean distance ‖F,C‖ from
each p-dimensional candidate vector C to the current forecast vector F. Each variable l is first normalised by dividing
by its standard deviation σl over all candidates. Those candidates with the smallest values of

‖F,C‖ =

√√√ p∑
l=1

(
F (l ) − C (l )

σl

)2
(15)

are selected as analogues to F (Delle Monache et al., 2013; Junk et al., 2015).
The vectors F and C are typically chosen to contain the specific forecast quantities of interest, with candidates

selected from the same season and at the same synoptic time and leadtime as the forecast to be postprocessed. In
the multi-ensemble framework presented here, F and C are vectors of length m × p containing the forecast ensemble
mean temperatures at all locations, with m = 3 ensembles and p = 13 locations giving a 39-dimensional candidate
search space. We refer to analogues selected in this way as direct analogues (DA).

5.2 | Analogue selection by weather regime

A potential difficulty with the direct analogue approach is that as the dimension p increases, the quality of the selected
analogues is likely to fall, since the aggregated distance cannot discriminate between (for example) candidates with
several moderate outliers, and candidates with a single large outlier. This issue is likely to become particularly acute
when forecasts at a large number of spatial locations are to be postprocessed. To address this problem, it will be
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helpful to reduce the dimensions of the candidate vectors before calculating the distances in (15). Here, we propose
to identify analogues by applying dimension reduction techniques to the forecast pressure fields, on the basis that
these provide a good characterisation of the physical state of the atmosphere.

Dimension reduction techniques such as principal component analysis (PCA, often also known as Empirical Or-
thogonal Function (EOF) analysis in the climate andmeteorological literature) have long been applied to pressure fields
in order to categorise prevailing weather conditions (Jenkinson and Collison, 1977; Jones et al., 1993), and to obtain
indices of large-scale synoptic structure (Wilks, 2011). Since pressure fields are physical quantities, and not parame-
terised by the NWP models, they tend to be fairly well forecast, and so provide a robust basis on which to identify
analogues. The predictands in our case study are surface air temperatures, which are known to be particularly affected
by large-scale circulation patterns in mean sea level pressure (MSLP) fields (Della-Marta et al., 2007). We therefore
choose to apply PCA to MSLP fields, and search for analogues among the resulting lower-dimensional candidates.

The efficiency of the principal component reduction is such thatwe need not constrain ourselves only to searching
for analogous weather patterns within the relatively small forecast area shown in Figure 1. Since synoptic weather
conditions in the surrounding regions also affect the local weather (Neal et al., 2016), theMSLP fields used in this study
cover the North Atlantic European region and central Europe (35◦ to 70◦N, 30◦W to 20◦E; shown in Figure 5); other
studies have found this to be the optimal domain size for reconstructing surface temperatures from MSLP-derived
regime classifications (Beck et al., 2016).

We begin by identifying the principal modes of climatological variation in the region of interest. For this, a long
archive of data is necessary; in this study, the entire available archive of ERA-Interim MSLP reanalysis data was used,
giving 38 winters from 1979 to 2016: a total of T = 3420 time points. Each field contains L = 1836 MSLP values,
arranged on a 1◦ latitude-longitude grid. Following standard practice (e.g. North et al. (1982); Wilks (2011)), the
MSLP fields are adjusted so that each point on the regular grid is weighted by the area it represents, by multiplying
the value at each latitude θ by

√
cos(θ). For each forecast instance, we convert each pressure field into a daily anomaly

field by subtracting its mean, and spatial principal components analysis is performed on these daily anomalies. The
resulting eigenvectors (EOFs) represent the dominant modes of spatial variation in the climatological record, with
the corresponding normalised eigenvalues indicating the proportion of the data’s total variance explained by each
eigenvector.

Following Jolliffe (2011), we retain only the first q eigenvectors, where q is the smallest number of eigenvectors
needed to capture at least 90% of the variance in the raw data. In the present study, the first six eigenvectors are
retained; plots of the spatial patterns represented by the first four of these eigenvectors are shown in Figure 5. The
retained modes have fairly straightforward interpretations: the first is associated with pressure systems centred to
the north-west of Scotland, the second and third are indices of the strength of north-south and east-west pressure
gradients over the UK, and so on. Higher-numbered modes display patterns of increasing complexity.

Having obtained the (L × q ) matrix of principal eigenvectors, denoted E, we project each forecast’s latitude-
adjusted MSLP anomaly field ãf onto the eigenvectors to obtain a q-vector u of principal component scores, which
form the coordinates of the points in the basis defined by E:

u = ET ãf (16)

The climatological modes represented by E need only be obtained once, from the reanalysis data. When a new forecast
instance requires postprocessing, we need only obtain its anomaly field ãf and apply (16) to obtain the principal
component scores. Analogues to the new instance are then selected in the q-dimensional principal component space,
as in Section 5.1. The new principal component scores are then added to the archive of potential candidate scores, to
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be searched when postprocessing the next forecast instance.

In the particular case of a multi-ensemble forecast, we first obtain themean latitude-adjustedMSLP anomaly field
of each of the m ensembles. Principal component scores are obtained separately for each ensemble by projecting the
m mean fields onto E; the joint state of the m-ensemble forecast is thus represented by q ×m variables, where q and
m are both small, and analogues are selected on the basis of the Euclidean distance (15) calculated over this state
space. We refer to analogues selected in this principal component space as weather regime analogues (WR).

Unlike direct analogues in the forecast variable space, the WR candidate archive need not be recalculated if the
forecast domain changes slightly. Not only is the principal-component representation a very compact and efficient
way to store and represent the search space, but - perhaps more importantly - the analogues chosen will remain the
same for any choice of forecast variables or locations for which the synoptic domain remains appropriate. This means,
for example, that any subset of forecasts in western Europe could be postprocessed independently using the same
training cases obtained in the WR search space, and could be expected to produce mutually consistent and coherent
forecasts.

F IGURE 5 Spatial plots of the elements of the first four eigenvectors of the ERA-Interim winter archive of MSLP
fields, with the percentage of variance explained by each eigenvector. Cumulative percentages of variance explained
are given in parentheses.

(a) First eigenvector: (b) Second eigenvector: (c) Third eigenvector: (d) Fourth eigenvector:
38% (38%) 23% (61%) 17% (78%) 7% (84%)
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6 | FORECAST VERIFICATION METHODS

6.1 | Calibration

A successfully postprocessed forecast should not only reduce biases in the mean forecast, but should also be well
calibrated; that is, it should correctly represent the uncertainty in the forecast. A forecast is well calibrated if the
verifying observation is indistinguishable from a random draw from the predictive distribution. Alternatively framed,
a forecast is considered to be well calibrated if it gives accurate probabilistic forecasts; that is, does it rain on 10% of
the days when the forecast says that there is a 10% chance of rain?

We employ several verification methods to evaluate the accuracy and calibration of both the marginal (single-
location) and joint (regional) forecasts. Following the principle of Gneiting et al. (2007), we aim to maximise the
sharpness of the forecasts, subject to calibration.
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6.1.1 | PIT histograms

Calibration of a forecast distribution for a single variable - in this case, a temperature forecast for a single location -
can be assessed through the probability integral transform (PIT). This is the value attained by a predictive cumulative
distribution function at its verifying observation (Gneiting et al., 2007; Jolliffe and Stephenson, 2012). If a postpro-
cessing method produces well calibrated forecasts for a particular location at a given leadtime, a histogram of the PITs
of all 630 forecast instances (90 days for each of the 7 available years) will be uniform. ∩-shaped histograms indicate
overdispersion: the forecasts are under-confident, and the observation falls too often in the centre of the forecast
distribution. A ∪-shape indicates underdispersion: an over-confident forecast, with the observation falling too often
in the tails of the forecast. Systematic bias in the forecasts will result in a skewed or triangular histogram.

6.1.2 | Modified band depth rank histograms

A multivariate analogue to the PIT histogram, allowing evaluation of the calibration of all variables simultaneously,
is the modified band depth rank (BDR) histogram, proposed by Thorarinsdottir et al. (2016). The band depth is a
measure of the centrality of an observation within a multi-dimensional forecast (López-Pintado and Romo, 2009);
in the modified case used here, each probabilistic forecast is represented by a synthetic ensemble of p-dimensional
forecasts. The method is computationally slow, limiting the size of ensemble that can practically be used; reflecting
the size of the largest available ensemble in the source data, we have used M = 50 ensemble members, with each
member forecast randomly generated from the multivariate Gaussian predictive density. The verifying observation is
then ranked within the synthetic ensemble according to its modified band depth.

Let X = {x1, ..., xM+1 } = {Y0, F1, ..., FM } denote a vector of length p × (M + 1), consisting of the vector obser-
vations Y0 and the synthetic forecast vectors F1, ..., FM . The observation and forecast vectors all have dimension p ,
corresponding to the number of grid cells considered simultaneously. We first calculate the prerank of each vector x
in X:

r (x) = 1

p

p∑
l=1

(M + 1 − rankX(x l )) (rankX(x l ) − 1) +M (17)

where rankX(x l ) =
∑M+1
i=1 1{xi l ≤ x l } is the component-wise rank of the l th element of the vector x within {X}.

The preranks measure the centrality of each element in X, with more central elements attaining higher ranks, and
extreme outlying elements attaining the lowest (Thorarinsdottir et al., 2016). The band depth rank of the observation,
y0 = x1, is the rank of r (x1) in {r (x1), ..., r (xM+1)}, with ties broken at random. For ease of interpretation, the ranks
are normalised to lie between 0 and 1 by subtracting 1 and dividing by M before plotting.

As with the PIT, a calibrated forecast will produce a uniform histogram; however, non-uniform BDR histograms
have a somewhat different interpretation. Modified BDR reflects a centre-outward ordering of the rank of the observa-
tion within the predictive distribution: the closer the BDR is to one, themore central (deeper) the observation is within
the multivariate forecast (Thorarinsdottir et al., 2016). Here, a ∩-shaped histogram indicates an over-correlated joint
forecast, while ∪-shaped histograms indicate insufficient correlation in the predictive distributions. A skew histogram
with too many high ranks indicates an overdispersive forecast, with the observation falling close to the centre of the
forecast distribution more often than it should, and too many low ranks indicates that the observation often falls far
from the centre of the predictive distribution, suggesting that the forecast is either underdispersive or systematically
biased.
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6.1.3 | Summaries of histogram shapes

Histograms are most commonly used descriptively, as a visual diagnostic tool; however, when comparing multiple
marginal distributions across several postprocessing methods, it is useful to be able to produce an objective numerical
summary of the shape of the data used to construct a histogram.

Any non-central tendencies in the histogram are summarised using the sample skewness, with symmetric his-
tograms obtaining a perfect score of 0. The extent of under- or over-dispersion in the histogram data is quantified by
comparing the variance of the values to that of the ideal uniform distribution. For PITs, this is the continuous uniform
distribution on the interval [0, 1], which has variance 1/12 (Casella and Berger, 2002). For the unnormalised band depth
ranks R , this would be the discrete uniform distribution on the interval [1,M + 1], which has variance M (M+2)

12 (Casella
and Berger, 2002); for the normalised ranks Z = R−1

M , the calibrated discrete uniform distribution would therefore
have variance M (M+2)

12 /M 2 = M+2
12M . Thus, we define a dispersion index for the PITs and BDRs respectively as

d i spP IT = 12 Var(P IT ) d i spBDR = 12
M

M + 2
Var(BDR ) (18)

A symmetric, ∪-shaped histogram has higher variance than a uniform histogram, and will have a dispersion index
greater than 1, while a ∩-shaped histogram will have a dispersion index less than 1. Any skew in the histogram will
reduce the value of the dispersion index slightly. The interpretation of the shape statistics is slightly different for PIT
and BDR histograms, as described above.

6.1.4 | Bootstrapped confidence intervals

The significance of any departures from uniformity in the histograms is assessed by a bootstrap procedure, following
Efron and Tibshirani (1994) and Hamill (1999). Taking the source data for a single histogram (630 values), we take
10000 bootstrap samples of size 630 with replacement, and calculate the required summary statistic for each of these
10000 bootstrap samples. A significant departure from uniformity is suggested if the 2.5% and 97.5% percentiles of
the resulting bootstrap distribution do not bracket the theoretical value for a uniform distribution. When testing for
skewness, the theoretical value under the assumption of uniformity is 0, while the theoretical value of the dispersion
index is 1.

6.2 | Sharpness

Subject to calibration, we aim to maximise the sharpness of the forecast distribution (Gneiting et al., 2008); sharper,
more confident forecasts have a smaller spread than less confident forecasts. The sharpness of the univariate marginal
forecasts is measured by the standard deviation of the marginal predictive distribution, with sharpness of the joint
forecasts measured by the multivariate equivalent, the determinant sharpness, given by

DS = (detA)1/(2p) (19)

whereA is the postprocessed forecast covariance matrix and p is the dimension ofA (Gneiting et al., 2008). Given two
equally well calibrated forecasts, the sharper (ie. with the lower value of DS) is more desirable; however, a sharper
forecast that is not well calibrated is overconfident in its prediction, and so of less use in decision making.
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6.3 | Accuracy

The accuracy of the marginal deterministic (mean) forecasts produced by each postprocessing method is assessed us-
ing the mean absolute error (MAE), which gives the average magnitude of the expected errors for each postprocessing
method.

The Brier score (Brier, 1950; Jolliffe and Stephenson, 2012) is used to evaluate success in forecasting binary
events, such as the event that the temperature falls below a certain threshold. By integrating the Brier score over all
possible thresholds, we obtain the analogue for continuous probabilistic forecasts: the Continuous Ranked Probability
Score or CRPS (Hersbach, 2000), a negatively-oriented scoring rule with lower scores indicating better overall forecast
performance. The CRPS is generally highly correlated with the MAE, but rewards sharpness and calibration of the
predictive density as well as accuracy; in fact, it has been shown that it may reward sharper forecasts in preference to
well calibrated ones (Wilks, 2018), so care should be taken when interpreting the CRPS. The CRPS can be extended
to the multivariate case in the form of the energy score (Gneiting et al., 2008), defined as

E S (F , x) = ÅF ‖X − x‖ −
1

2
ÅF ‖X − X′ ‖, (20)

where ‖ · ‖ denotes the Euclidean norm, x is the verifying observation, F is the forecast distribution, and X and X′ are
independent random vectors with distribution F . When d = 1, the energy score reduces to the CRPS, which in turn
reduces to the MAE when evaluating point forecasts.

No closed form is available for the energy score, so following Gneiting et al. (2008), the energy score for a sin-
gle forecast instance with realising observation y is evaluated over a random sample X of size k = 10000 from the
multivariate predictive density F , using the computationally efficient Monte Carlo approximation

E S (F , y) = 1

k

k∑
i=1

‖Xi − y‖ −
1

2k 2

k∑
i=1

k∑
j=1



Xi − Xj 

 . (21)

We use the implementation provided by the R package scoringRules (Jordan et al., 2018).
The energy score has been shown by Pinson and Tastu (2013) to have very limited sensitivity to the covariance

structure of the forecasts, and to be strongly dominated by the forecast mean vector, particularly in higher dimensions.
Our experience has shown that the energy score is closely related to the mean of the MAE across all locations, and
it is for this reason that we treat the energy score primarily as a measure of forecast accuracy, and rely on histogram
methods to diagnose forecast calibration.

All scores are aggregated over the 630 forecast instances for each synoptic time, leadtime and location. The signif-
icance of differences in scores between postprocessing methods is again assessed using a bootstrapped confidence
interval. 10000 bootstrap samples of size 630 are drawn with replacement from the 630 instances and used to recal-
culate the required score difference 10000 times. If the central 95% interval of the resulting bootstrap distribution
does not contain zero, the difference between the two scores is said to be significant.

7 | RESULTS

In this section we compare the performance of different ensemble postprocessing techniques, when applied to the
forecasts of UK temperatures introduced in Section 2.

We begin by comparing the performance of the various postprocessing techniques, with training datasets ob-
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tained using the standard ‘moving window’ (MW) approach (Section 5). An uninformative prior is used in calculating
the Bayesian posterior forecast, as described in Section 4. We then move on to comparing the relative performance of
MW-calibrated forecasts with those corrected using direct analogues in temperature space (DA), and with a training
set drawn from weather regime analogues (WR), using the methods of Section 5.

All postprocessing was carried out using 25 training cases. A sensitivity analysis (not presented here) indicates
that the size of the training set is not a key factor in the performance of any of the postprocessing methods or training
sets, with most scores seen to change by less than 0.1 at short to medium leadtimes, and up to 0.3 at leadtimes of
greater than ten days; the choice of training set size made no qualitative difference to the conclusions drawn below.

To maximise the usefulness of the relatively short (7-year) available forecast archive, analogues are selected using
amodified cross-validation approach (Wilks, 2011), rather than frompast candidates in the strictly chronological sense.
For each instance, candidates for the current year are excluded from the search, with the exception of the 25 days
immediately preceding the forecast issue date; each method therefore has access to candidates drawn from 6winters,
plus 25 days immediately prior to the date on which the forecast was actually issued, ensuring parity between the
three training sets.

7.1 | Bayesian postprocessing vs NGR

7.1.1 | Marginal forecasts

We first evaluate the performance of the postprocessed marginal forecasts. Table 1 shows the mean and range of
the MAE and CRPS over all 13 locations. Both postprocessing methods show a significant improvement over the raw
superensemble forecast at leadtimes up to six days ahead; the largest improvements are made at higher latitudes,
where the raw forecasts tend to be less skilful due to systematic regional biases.

TABLE 1 Mean (min, max)MAE and CRPS (in ◦C), and ES over all locations, at selected leadtimes, for each
postprocessing method. A 25-day moving window was used as a training set for the NGR and Bayesian
postprocessors.

MAE CRPS; ES

Leadtime Superensemble Bayesian NGR Superensemble Bayesian NGR

2 days 1.2 (0.9, 1.9) 0.9 (0.7, 1.0) 0.7 (0.6, 0.8) 0.9 (0.6, 1.3); 3.6 0.6 (0.5, 0.7); 2.7 0.5 (0.4, 0.6); 2.3

5 days 1.9 (1.7, 2.4) 1.6 (1.4, 1.8) 1.4 (1.2, 1.5) 1.3 (1.2, 1.7); 5.4 1.2 (1.0, 1.3); 4.8 1.0 (0.8, 1.1); 4.2

10 days 2.7 (2.4, 3.0) 2.7 (2.2, 2.9) 2.3 (1.9, 2.5) 1.9 (1.7, 2.2); 7.7 1.9 (1.6, 2.0); 7.7 1.6 (1.4, 1.7); 6.6

15 days 3.1 (2.9, 3.3) 3.1 (2.5, 3.2) 2.7 (2.2, 2.9) 2.1 (2.0, 2.3); 8.5 2.2 (1.8, 2.3); 8.6 1.9 (1.5, 2.0); 7.6

NGR postprocessed forecasts generally have lower MAE and CRPS than their Bayesian posterior counterparts,
with the MAE generally around 0.2-0.4◦C lower. The lower CRPS achieved by the NGR forecasts is due partly to this
improved accuracy, but also largely to the greater sharpness of those forecasts (Table 2). The NGR forecasts are in
fact slightly too sharp at the shortest and longest leadtimes, with the 90% predictive interval found to contain the
verifying observation in around 88% of all instances at all leadtimes. The Bayesian forecasts achieve around 94%
coverage at the shortest leadtimes, dropping to around 83% at the longest, suggesting that the forecasts are initially
overdispersive, covering too large an area, and later become overconfident.

Inspection of selected PIT histograms (Figure 6) gives a more detailed understanding of the calibration of the
postprocessed forecasts than the summary scores can. The histograms shown for Kirkcaldy forecasts are typical of
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TABLE 2 Mean (min, max) marginal and joint sharpness and coverage over all locations at selected leadtimes, for
each postprocessing method. A 25-day moving window was used as a training set for the NGR and Bayesian
postprocessors. Coverages are proportions of occasions for which the verifying observation fell between the 5th
and 95th percentile of the corresponding marginal forecast distribution.

Sharpness; determinant sharpness Marginal coverage

Leadtime Superensemble Bayesian NGR Superensemble Bayesian NGR

2 days 1.4 (1.2, 1.8); 0.7 1.3 (1.1, 1.6); 0.7 0.8 (0.8, 1.0); 0.2 0.81 (0.69, 0.94) 0.94 (0.91, 0.95) 0.88 (0.86, 0.90)

5 days 2.3 (2.0, 2.7); 1.0 2.2 (1.9, 2.4); 0.8 1.7 (1.4, 1.8); 0.4 0.88 (0.81, 0.95) 0.91 (0.89, 0.92) 0.90 (0.87, 0.92)

10 days 3.4 (2.8, 3.8); 1.2 3.1 (2.6, 3.3); 0.9 2.7 (2.2, 2.9); 0.6 0.89 (0.83, 0.92) 0.86 (0.84, 0.88) 0.89 (0.85, 0.90)

15 days 3.7 (3.1, 4.0); 1.1 3.4 (2.8, 3.5); 0.9 3.1 (2.5, 3.2); 0.7 0.89 (0.84, 0.92) 0.83 (0.82, 0.86) 0.87 (0.86, 0.88)

those obtained for predictions in Scotland and northern England, while those for Bristol are broadly representative of
those obtained for forecasts in the south of the study area.

The raw superensemble PIT histograms show significant negative skew in Scotland, with a spike of values in the
right-hand bin revealing that the observed temperature was very often in the extreme upper tail of the forecasts,
indicating a persistent, systematic cold bias. Table 3 shows the range of skewness seen in the PIT histograms at all
13 locations; all of the superensemble histograms have some degree of negative skew at all leadtimes, indicating that
the bias is common to forecasts throughout the UK. However, the bias is not constant at all locations, being larger in
more northerly regions and at shorter leadtimes, with forecasts in Scotland being, on average, 1−1.5◦C too low at the
shortest leadtimes, and those in southern England between 0.4 and 1◦C too low.

F IGURE 6 PIT histograms showing the marginal calibration of postprocessed forecasts of surface temperatures
at selected locations in the north and south of the UK at various leadtimes. A 25-day moving window was used as a
training set for the NGR and Bayesian postprocessors. The dashed line indicates the ideal uniform distribution.

(a) Forecasts of temperatures in Kirkcaldy

2 days ahead 5 days ahead 10 days ahead 15 days ahead

(b) Forecasts of temperatures in Bristol

2 days ahead 5 days ahead 10 days ahead 15 days ahead

The NGR and Bayesian forecasts, which estimate a separate bias and calibration correction for each location,
are able to remove this systematic regional bias almost completely, producing histograms that are much closer to
uniformity than those of the superensemble forecasts. At the shortest leadtimes the NGR and Bayesian forecasts still
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display a very slight residual bias, particularly (as in Figure 6a) in the northernmost regions where the raw ensemble
bias is the strongest. The residual bias manifests in the PIT histograms as a slight bulge at around the 70th percentile of
the transformed values, rather than as a tail of high values, indicating that the bias is small with respect to the spread of
the forecast errors, and is slightly more pronounced in the Bayesian histograms, reflecting the slightly higher accuracy
of the NGR forecasts. The shapes of the Bayesian and NGR histograms at all locations (including those not shown
here) are very similar, indicating that consistent improvements are achieved with both postprocessing methods.

The PIT histograms of the Bayesian postprocessed forecasts are slightly humped at the shortest leadtimes, having
dispersion indices lower than 1, reflecting the fact that the forecasts are generally slightly underconfident in their
predictions. The forecast overdispersion lessens with increasing leadtime, with longer-leadtime forecasts becoming
slightly underdispersive. The NGR forecasts are well calibrated at all leadtimes, while the low dispersion indices of
the superensemble PITs is due to the systematic bias, with a large concentration of values in the rightmost bin of the
histogram.

TABLE 3 Mean (min, max) skewness and dispersion of PITs at all locations at selected leadtimes, for each
postprocessing method. A 25-day moving window was used as a training set for the NGR and Bayesian
postprocessors.

PIT skewness PIT dispersion

Leadtime Superensemble Bayesian NGR Superensemble Bayesian NGR

2 days -0.9 (-1.4, -0.3) -0.2 (-0.4, -0.1) -0.1 (-0.2, 0.0) 0.6 (0.5, 0.8) 0.8 (0.7, 0.9) 1.0 (1.0, 1.1)

5 days -0.6 (-1.0, -0.3) -0.1 (-0.2, 0.0) -0.1 (-0.1, 0.0) 0.8 (0.7, 0.9) 0.9 (0.9, 1.0) 1.0 (0.9, 1.1)

10 days -0.3 (-0.6, -0.1) 0.0 (-0.1, 0.1) 0.0 (0.0, 0.1) 0.9 (0.8, 1.0) 1.1 (1.1, 1.2) 1.1 (1.0, 1.1)

15 days -0.3 (-0.5, -0.1) -0.1 (-0.1, 0.0) -0.1 (-0.1, 0.0) 1.0 (0.9, 1.0) 1.2 (1.1, 1.2) 1.1 (1.0, 1.1)

7.1.2 | Joint forecasts

The results for the energy score follow a similar pattern to those for the MAE (Table 1), with the NGR postprocessed
forecasts having improved accuracy over the superensemble forecasts at all leadtimes, while the Bayesian forecasts
were jointly more accurate only at shorter leadtimes. The NGR predictive densities are also jointly much sharper than
either the Bayesian or superensemble forecasts, with a much lower determinant sharpness. This is partly due to the
sharper marginal forecasts, but the NGR correlation matrices also generally specify stronger correlations between
the forecast errors than either the superensemble or Bayesian postprocessed forecasts, further increasing the joint
sharpness.

The modified band depth rank histograms in Figure 7a show the joint calibration of the postprocessed forecasts.
The histograms for the superensemble and Bayesian joint forecasts are dominated by the marginal effects already
discussed in Section 7.1.1, with the effects particularly obvious at the shortest leadtimes. Here, the peak at the
right-hand side of the distribution represents a high proportion of the observations falling close to the centre of the
Bayesian posterior predictive distributions, indicating that the forecasts are jointly overdispersive; although the effect
in any single marginal forecast is quite small, the cumulative effect is magnified in the joint forecast. As in the marginal
forecasts, the effect reduces and reverses with increasing leadtime, with a preponderance of points in the leftmost bin
indicating too many points falling too far from the centre of the distribution, and reflecting the underdispersiveness of
the marginal forecasts. At these longer leadtimes, apart from the spikes in the leftmost or rightmost bins, the Bayesian
BDR histograms are fairly uniform, and give no indication of any misspecification in the correlation structure of the
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forecasts.

The raw superensemble’s systematic marginal cold bias is reflected in heavy over-population of the lowest ranks
of the histograms, as the observation frequently falls far from the centre of the forecast distribution. As the leadtime
increases, the superensemble histograms become close to uniform, but care must be taken to remember the marginal
calibration issues when interpreting this. The PIT skewness indicates that, even at 15 days’ leadtime, there is still some
residual systematic cold bias in the forecasts, which we would expect to result in a peak of values in the leftmost bins
of the histogram. At the same time, the superensemble forecasts are less sharp than the Bayesian posterior forecasts
(Table 2), which we have already seen to be overdispersive at these leadtimes, and which would manifest in a peak of
values in the rightmost bin of the histogram. It seems reasonable to conclude, then, that the too-large spread of the
joint forecasts is, to some extent, counteracting the bias at all leadtimes, and that the joint superensemble forecasts
are in fact both biased and overdispersive, although there is no reason to suspect that the correlations between the
variables are misspecified.

The NGR histograms display a different problem: the ∩-shaped histograms, particularly at shorter leadtimes,
indicate that the correlations specified by the predictive distributions are too high, with too many observations falling
in the ‘shoulders’ of the distribution, rather than in the centre and the fringes of the joint distribution. This is because,
being based purely on a sample of climatology as described in Section 3.2, the NGR correlation structure is unable to
adapt fully to the specific features of each individual forecast, while the Bayesian correlations are based on amixture of
the forecasts and previous forecast errors. Bootstrapped confidence intervals indicate that, while the histograms look
quite symmetric, there is a small but persistent positive skewness at all leadtimes, indicating that the joint forecasts
are also slightly too sharp, with too many observations falling far from the centre of the predictive distributions.
Thus, although the marginal distributions appear to be well calibrated, their cumulative effect is to produce a slightly
underdispersive forecast.

A further investigation was carried out to investigate how well the correlation structure of the observations is
captured by each postprocessing method. To fully separate the effect of marginal calibration from joint calibration,
each set of NGR marginal forecasts was combined with the correlation matrices of the superensemble and Bayesian
posterior forecasts, and the joint calibration assessed again. Figure 7b shows the BDR histograms obtained from these
hybrid forecasts. At shorter leadtimes, forecasts taking their dependence structure only from either the superensem-
ble or the training set are rather over-correlated, producing peaked BDR histograms; forecasts using the Bayesian
posterior correlation matrix as their copula are close to uniform, and show no significant dispersion issues. At longer
leadtimes, all three copula methods produce similar BDR histograms, with the only significant departure from unifor-
mity being the skewness resulting from a preponderance of observations falling in the tails of the distribution, due to
the underdispersiveness of the NGR marginal distributions mentioned above.

7.2 | Effect of training set selection

We now consider the effect that the choice of training set has on forecast performance. Results are presented for
Bayesian postprocessed forecasts, with the discrepancy estimated using training sets obtained by a moving window
(MW), direct analogues (DA), and by weather regime analogues (WR), as described in Section 5. All training sets
consisted of 25 members. Forecasts postprocessed by applying NGR to the same training sets showed a similar
pattern of results, which are not reported here. Each selectionmethodwas found to produce quite different collections
of forecast-observation pairs, with training sets having on average around 10% of their members (2-3 instances) in
common with their counterparts.
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F IGURE 7 Modified band depth rank (BDR) histograms showing the joint calibration of postprocessed forecasts
of surface temperatures across all grid cells at various leadtimes. A 25-day moving window was used as a training
set for the NGR and Bayesian postprocessors. The dashed line indicates the ideal uniform distribution.

(a) Postprocessed forecasts

2 days ahead 5 days ahead 10 days ahead 15 days ahead

(b) NGR marginals combined with superensemble and Bayesian posterior correlation functions

2 days ahead 5 days ahead 10 days ahead 15 days ahead

7.2.1 | Marginal forecasts

All three training sets obtain almost identical MAE, CRPS, and ES at all leadtimes (Table 4), with MAE differences
between the three forecasts of extremely small magnitude (generally only around 0.1◦C), and only found to be sta-
tistically significant at leadtimes greater than 8 or 9 days. Conversely, the CRPS for the DA and WR training sets is
slightly (but, again, significantly) higher at these longer leadtimes; this is because the analogue-trained forecasts are
less sharp than those usingMW training sets at those leadtimes (Table 5). This decreased sharpness leads to improved
coverage at leadtimes greater than 10 days, with nominal 90% predictive intervals for both DA and WR-trained sets
achieving an average of 88% coverage at this range. The PIT histograms in Figure 8 reflect this improved coverage,

TABLE 4 Mean (min, max)MAE and CRPS (in ◦C), and ES over all locations, at selected leadtimes, for Bayesian
posterior forecasts using each training set.

MAE CRPS; ES

Leadtime MW DA WR MW DA WR

2 days 0.9 (0.7, 1.0) 0.8 (0.7, 1.0) 0.9 (0.8, 1.1) 0.6 (0.5, 0.7); 2.7 0.6 (0.5, 0.7); 2.7 0.7 (0.6, 0.8); 2.8

5 days 1.6 (1.4, 1.8) 1.6 (1.4, 1.8) 1.7 (1.5, 1.8) 1.2 (1.0, 1.3); 4.8 1.1 (1.0, 1.3); 4.8 1.2 (1.1, 1.3); 4.9

10 days 2.7 (2.2, 2.9) 2.7 (2.1, 2.8) 2.6 (2.1, 2.8) 1.9 (1.6, 2.0); 7.7 1.9 (1.5, 2.0); 7.5 1.9 (1.5, 2.0); 7.5

15 days 3.1 (2.5, 3.2) 2.9 (2.4, 3.1) 3.0 (2.6, 3.2) 2.2 (1.8, 2.3); 8.6 2.1 (1.7, 2.2); 8.3 2.1 (1.9, 2.2); 8.4

with the DA and WR histograms being closer to uniform - and having dispersion indices closer to 1 - after around
7 days (Table 6); MW overdispersiveness continues to increase with leadtime, but this does not occur with the DA
and WR forecasts. Furthermore, at the shortest leadtimes, the DA and WR PIT histograms are both less skewed and
closer to uniformity than the MW histograms, suggesting that replacing a training set that assumes persistence in
the forecast errors with a training set that assumes flow dependence of the errors may be able to improve both the
short-term overdispersiveness and longer-term underdispersiveness of the forecasts.
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TABLE 5 Mean (min, max) marginal and joint sharpness and coverage over all locations at selected leadtimes, for
Bayesian posterior forecasts using each training set. Coverages are proportions of occasions for which the verifying
observation fell between the 5th and 95th percentile of the corresponding forecast distribution.

Sharpness; determinant sharpness Marginal coverage

Leadtime MW DA WR MW DA WR

2 days 1.3 (1.1, 1.6); 0.7 1.2 (1.1, 1.7); 0.6 1.3 (1.2, 1.7); 0.7 0.94 (0.91, 0.95) 0.93 (0.91, 0.95) 0.94 (0.91, 0.96)

5 days 2.2 (1.9, 2.4); 0.8 2.0 (1.8, 2.4); 0.8 2.2 (1.9, 2.5); 0.8 0.91 (0.89, 0.92) 0.90 (0.88, 0.92) 0.91 (0.90, 0.93)

10 days 3.1 (2.6, 3.3); 0.9 3.2 (2.7, 3.4); 0.9 3.2 (2.6, 3.5); 0.9 0.86 (0.84, 0.88) 0.88 (0.87, 0.90) 0.88 (0.87, 0.90)

15 days 3.4 (2.8, 3.5); 0.9 3.5 (3.0, 3.7); 0.9 3.7 (3.1, 3.8); 0.9 0.83 (0.82, 0.86) 0.88 (0.86, 0.90) 0.89 (0.87, 0.90)

F IGURE 8 PIT histograms showing the marginal calibration of Bayesian postprocessed forecasts of surface
temperatures in the north and south of the UK at various leadtimes, comparing the performance of training sets
selected using a moving window, direct analogue or principal-component analogue approach. The dashed line
indicates the ideal uniform distribution.

(a) Forecasts of temperatures in Kirkcaldy

2 days ahead 5 days ahead 10 days ahead 15 days ahead

(b) Forecasts of temperatures in Bristol

2 days ahead 5 days ahead 10 days ahead 15 days ahead

TABLE 6 Mean (min, max) skewness and dispersion of PIT histograms at all locations at selected leadtimes, for
Bayesian posterior forecasts using each training set.

PIT skewness PIT dispersion

Leadtime MW DA WR MW DA WR

2 days -0.2 (-0.4, -0.1) -0.1 (-0.3, 0.0) -0.1 (-0.3, -0.1) 0.8 (0.7, 0.9) 0.8 (0.7, 0.9) 0.8 (0.8, 0.9)

5 days -0.1 (-0.2, 0.0) -0.1 (-0.2, 0.0) 0.0 (-0.2, 0.0) 0.9 (0.9, 1.0) 1.0 (0.9, 1.0) 0.9 (0.9, 1.0)

10 days 0.0 (-0.1, 0.1) 0.0 (-0.1, 0.1) 0.0 (-0.1, 0.1) 1.1 (1.1, 1.2) 1.1 (1.0, 1.1) 1.1 (1.0, 1.1)

15 days -0.1 (-0.1, 0.0) 0.0 (-0.1, 0.1) -0.1 (-0.2, 0.0) 1.2 (1.1, 1.2) 1.1 (1.0, 1.1) 1.0 (1.0, 1.1)

7.2.2 | Joint forecasts

As with their marginal score equivalents, the three training sets produce forecasts with very similar energy scores
(Table 4), with the DA-trained forecasts jointly slightly sharper than either the MW or WR forecasts at the shortest
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leadtimes, and the MW-trained forecasts slightly sharper at longer leadtimes (Table 5). Although the change in these
summary scores is small, their impact is clear in the BDR histograms in Figure 9, with the DA histograms in particu-
lar having a reduced number of values in the rightmost bin at shorter leadtimes. As the leadtime increases and the
MW forecasts become jointly more underdispersive, the DA and WR histograms are again more symmetric, support-
ing the conclusion in Section 7.2.1 that the flow-dependent training sets produce forecasts with better dispersion
characteristics.

F IGURE 9 Modified band depth rank (BDR) histograms showing the spatial calibration of Bayesian
postprocessed forecasts of surface temperatures across all grid cells at various leadtimes. The dashed line indicates
the ideal uniform distribution.

2 days ahead 5 days ahead 10 days ahead 15 days ahead

Bootstrapped confidence intervals indicate that the dispersion indices for BDR histograms for all three training
sets are generally close to 1; all three were found to have significant departures from uniformity only at the longest
leadtimes, and those departures were very close to the threshold of the 5% significance level, suggesting that any
correlation misspecification in any of the Bayesian postprocessed forecasts is very slight.

8 | SUMMARY AND DISCUSSION

We have proposed a novel postprocessing method for multi-model ensemble forecasts, based on an understanding
of the relationships between the component ensembles and the true forecast. The specification presented here may
be applied in its current form to any variables for which the forecasts may be assumed to have an approximately
multivariate-normal distribution; even where this is not the case, the posterior mean gives the optimum linear combi-
nation of the available forecast information, with the posterior covariance matrix summarising the uncertainty about
the mean (Goldstein andWooff, 2007). The postprocessed forecasts are significantly less biased and better calibrated,
both marginally and jointly, than those of the raw superensemble, and the spatial dependencies of the Bayesian post-
processed forecasts better capture the correlation structure of the observations than a copula based on either the
ensembles or a sampled climatology alone, particularly at leadtimes of up to one week.

The NGR postprocessed marginal forecasts are sharper than those produced by the Bayesian framework in
its present form, having consistently lower MAE and CRPS; however, this improvement comes at a high computa-
tional cost due to the numerical optimisation required. Postprocessing of all available forecast instances using the
ensembleMOS package in R (Yuen et al., 2017) was found to take around 30 times as long as producing the Bayesian
posterior forecasts, even over this relatively small spatial domain, and with longer postprocessing times recorded
as larger training sets were tested. Thus, if computational cost is an issue, we would always recommend using the
Bayesian framework in preference to the NGR approach, unless very high accuracy is critical.

The implementation of the Bayesian framework presented here is a fairly naive one, in that all forecast instances
are postprocessed independently of one another, and the distribution of the consensus discrepancy ∆ is simply es-
timated from the means and covariances of the forecast errors in the training data. However, part of the appeal of
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the Bayesian approach is its potential flexibility. The full Bayesian framework specified in equations (11)-(12) includes
a prior estimate of the distribution of the vector of ‘true’ weather quantities, which is omitted in the single-instance
implementation used here. However through this prior, the Bayesian approach lends itself naturally to sequential
postprocessing of a sequence of forecasts, with one day’s t -day-ahead posterior forecast providing the next day’s
(t − 1)-day-ahead prior, for example.

Similarly, a more sophisticated approach to estimation of η and Λ might be expected to produce further improve-
ments in forecast skill. Instead of estimating the parameters directly from historical forecast errors as we have done
here, the distribution of ∆ could be obtained using Bayesian inference over the training data. This, again, offers scope
for inclusion of an informative prior, perhaps reflecting expert judgement of the expected correlation structure. Infer-
ence of the distribution of ∆ is of particular interest, because the resulting posterior distribution would no longer be
multivariate normal, but would instead describe a multivariate t distribution; this may better reflect the distribution
of the observations and so produce better-calibrated forecasts, particularly at longer leadtimes, where the Bayesian
posterior forecasts currently tend to be slightly underdispersive.

One limitation of the proposed framework is its scalability: as presented here, the approach can only be applied
to relatively small spatial domains, due to the difficulty of estimating the necessary covariance matrices from the small
ensembles available. When the dimension p is greater than the number of members of any of the member ensem-
bles, the estimate of the corresponding covariance matrix Ci will be singular, and the posterior cannot be evaluated.
Further work is planned to investigate alternative methods of estimating the spatial covariance matrices to allow the
method to be applied to larger regions. Likewise, Σ is estimated from only m points for each forecast instance, and so
may be estimated imprecisely. In principle, this parameter uncertainty could itself be incorporated into the posterior
distribution, although this is non-trivial and the computational complexity would increase dramatically: research into
this possibility is ongoing.

The approach could also be extended to postprocess low-resolution forecasts with∆ estimated from a training set
matching past forecasts to higher-resolution observations, providing scope for applications to forecast downscaling.
In this case, the low resolution can itself be regarded as a source of shared discrepancies in the forecast ensembles,
so that the same framework applies.

In addition to the new postprocessing framework, we suggest a new method for selection of a training set of
synoptic-scale analogues. Forecasts postprocessed using analogues selected in MSLP principal component space
(WR) and analogues selected in variable space (DA) were found to have joint and marginal calibration comparable to
or better than forecasts postprocessed using a moving-window (MW) training set, suggesting that choosing a training
set based on an assumption of flow-dependence, rather than persistence, of forecast errors produces better-calibrated
forecasts. Since there is no evidence that one single method of training set selection can be said to be universally ‘best’,
selection of the most appropriate approach is likely to depend on the application.

The MW training set is convenient to obtain, requiring no additional archive of candidate forecasts; for the post-
processing of forecasts in a relatively small area, at leadtimes of less than a week, it remains a reasonable choice.
However, if the forecast area is increased, a larger training set will be required for estimation of the necessary covari-
ance matrices; simply increasing the size of an MW training set will eventually result in a reduction in the quality of
the postprocessed forecasts, due to the increasing remoteness of the training cases from the forecast under consider-
ation. Similarly, when postprocessing larger regions, selection of direct analogues will become impractical due to the
corresponding increase in the size of the analogue search space; a great advantage of the WR method is that the di-
mension of the candidate search space remains relatively small. Perhaps most usefully, if the forecast region changes
slightly (within the bounds of the region to which PCA was applied), new analogues do not need to be identified -
thus, forecasts postprocessed using the Bayesian framework with a synoptic-scale WR analogue training set can be
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expected to remain stable even if they are recalculated as part of a different forecast domain. In addition, while the
DA-postprocessed forecasts performed slightly better over the collection of surface temperature forecasts examined
in the case study, a WR training set may produce more skilful forecasts when several different weather quantities are
to be postprocessed together.
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