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Abstract

Decreases in low-frequency power (2–30 Hz) alongside high-frequency power increases

(>40 Hz) have been demonstrated to predict successful memory formation. Parsimoniously,

this change in the frequency spectrum can be explained by one factor, a change in the tilt of

the power spectrum (from steep to flat) indicating engaged brain regions. A competing view

is that the change in the power spectrum contains several distinct brain oscillatory finger-

prints, each serving different computations. Here, we contrast these two theories in a paral-

lel magnetoencephalography (MEG)–intracranial electroencephalography (iEEG) study in

which healthy participants and epilepsy patients, respectively, studied either familiar verbal

material or unfamiliar faces. We investigated whether modulations in specific frequency

bands can be dissociated in time and space and by experimental manipulation. Both MEG

and iEEG data show that decreases in alpha/beta power specifically predicted the encoding

of words but not faces, whereas increases in gamma power and decreases in theta power

predicted memory formation irrespective of material. Critically, these different oscillatory sig-

natures of memory encoding were evident in different brain regions. Moreover, high-fre-

quency gamma power increases occurred significantly earlier compared to low-frequency

theta power decreases. These results show that simple “spectral tilt” cannot explain com-

mon oscillatory changes and demonstrate that brain oscillations in different frequency

bands serve different functions for memory encoding.

Introduction

Understanding the neural processes that mediate encoding of new memories is fundamental.

Encoding processes are at the first stage of transforming transient experiences into memories,
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which essentially make us who we are. The subsequent memory paradigm allows investigating

these processes by contrasting neural activity during later-remembered events with activity

during later-forgotten events at encoding [1]. Electrophysiological methods, like intracranially

recorded electroencephalography (EEG) or EEG/magnetoencephalography (MEG), are partic-

ularly promising to offer a mechanistic understanding of memory formation processes. M/

EEG and intracranial EEG (iEEG) index neural synchronization and desynchronization pro-

cesses [2,3], which have been directly linked to synaptic plasticity [4–6]. A number of subse-

quent memory studies demonstrate that memory formation is indicated not by one particular

frequency but instead by complex changes in multiple frequencies ranging from 2 to 100 Hz,

encompassing theta, alpha, beta, and gamma frequency bands [7,8]. A common finding is that

power decreases in low frequencies (<30 Hz) paired with increases in high-frequency power

(>40 Hz) are beneficial for memory formation. This change in the spectral pattern can result

from two different processes: (1) a change in the “spectral tilt” (i.e., a shift from low-frequency

activity to high-frequency activity [9–11]) or (2) changes at multiple distinct frequency bands

related to distinct subprocesses involved in memory formation. Here, we contrast these two

frameworks in a subsequent memory paradigm and show that memory-related frequency

components can be dissociated on three levels: experimental condition, temporal dynamics,

and brain regions.

Decreases in low-frequency power are often accompanied by increases in high-frequency

power during various tasks. This is especially true for alpha/beta power decreases and gamma

power increases [12–14]. Human EEG shows a 1/f-like characteristic whereby power decreases

with increasing frequency [11,15]. A change in the “tilt” of this 1/f spectrum can parsimoni-

ously explain such low-frequency decreases accompanied by gamma power increases

[8,11,16]. The “spectral tilt” idea makes no assumptions about synchronization processes but

instead views a shift from low- to high-frequency activity as a proxy for increased neural firing

[10,17,18]. Evidence for the spectral tilt theory comes from recent brain-stimulation studies

that were able to boost memory encoding by stimulating specifically during periods character-

ized by “bad memory states,” i.e., increased low- and decreased high-frequency activity

[19,20].

The spectral tilt framework makes three specific predictions, which will be tested here: (1)

Increases in gamma power should be accompanied by decreases in alpha/beta and theta power

and vice versa. Therefore, it should not be possible to experimentally dissociate gamma power

increases from alpha/beta and theta power decreases. (2) Decreases in low-frequency (alpha/

beta/theta) power and increases in high-frequency (gamma) power should occur in strongly

overlapping brain regions; and (3) low-frequency decreases and high-frequency increases

should occur at the same time. In sum, the “tilt” assumption suggests that high-frequency

increases and low-frequency decreases reflect the same process. Following this assumption,

many iEEG studies confine analysis to broadband high-frequency power changes, presuming

that high-frequency increases reliably map brain activity [21–25]

The “spectral fingerprints” framework assumes that oscillatory changes in different fre-

quencies indicate different neural processes in different brain regions [26], each reflecting a

specific function in the service of memory [7,27,28]. The framework of “spectral fingerprints”

has a specific relevance when studying memory formation, because the idea that several dis-

tinct subprocesses contribute to memory formation is integral to many memory models [29–

31]. Prior work has linked different oscillatory changes to assumed memory subprocesses. For

instance, theta oscillations have been related to binding processes in a medial temporal lobe

(MTL) network [32–34], whereas alpha/beta power decreases have been related to semantic

processing during memory encoding [35–37]. Gamma power increases in sensory areas have

been suggested to reflect locally synchronized activity and to indicate bottom-up sensory
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processing [3,38]. The “spectral fingerprints” framework therefore arrives at very different pre-

dictions compared to the spectral “frequency tilt” framework. Specifically, it suggests that it

should be possible to experimentally dissociate gamma power increases from theta and alpha/

beta power decreases. It further suggests that the power changes of different frequency bands

could occur in different brain regions and at different time points.

To test the two frameworks against each other, we employed the same memory task while

recording iEEG in patients and MEG in healthy participants. It is important to note that many

subsequent memory studies arguing in favor of spectral fingerprints used noninvasive MEG/

EEG [32,37], whereas most studies finding evidence for a spectral tilt used intracranially

recorded EEG [8,20]. To investigate whether specific spectral fingerprints can be dissociated

by varying encoding demands, we utilized the well-established finding that memory encoding

of words is crucially different from encoding of unfamiliar faces. Specifically, encoding of

words heavily depends on semantic processing [39], whereas encoding of unfamiliar faces

solely depends on visual processing [40,41]. Therefore, we recorded MEG and iEEG during

encoding of words and faces (see Fig 1A) to rule out differences in recording methods as a con-

founding factor (i.e., higher sensitivity of iEEG to capture high-frequency dynamics [42,43]).

This combined measurement also allowed us to capture changes in a large frequency range (2–

100 Hz) on a whole-brain and at a more local level.

Results

Behavioral results

Memory performance is shown by means of receiver operating characteristic (ROC) curves in

Fig 1B and 1C, depicting memory performance in the MEG sample (healthy participants) and

the iEEG sample (patients). Recognition performance in the MEG sample was higher for

words (mean d0 = 1.99) than for faces (mean d0 = 0.83, t19 = 7.836, p< 0.0001). A similar effect

was observed in the iEEG sample, which was slightly weaker likely because of the higher vari-

ance in performance between patients (mean d0 words = 1.37 versus mean d0 faces = 0.90; t12 =

2.12, p = 0.052). A follow-up analysis directly comparing memory performance in the MEG

and iEEG samples revealed better memory performance in the MEG compared to the iEEG

sample (ANOVA material × group, difference d0 MEG versus iEEG, F1,31 = 41.18, p< 0.0001).

The difference in memory performance between words and faces was also more pronounced

in the MEG compared to the iEEG sample (interaction material × group, F1,31 = 7.40,

p = 0.011). These results are in line with previous studies demonstrating the difficulty of mem-

orizing unfamiliar faces [41,44]. The difference in recognition performance already hints at

different processes involved in encoding of words in contrast to faces.

Material-specific effects: Lower-frequency bands

The experiment involved two main factors: material (words versus faces) and subsequent

memory (remembered versus forgotten). In a first step, we analyzed overall differences of

material, i.e., differences in power between processing a word or face item independent of

memory. This allowed us to identify time-frequency windows of interest for later analysis and

served as a first test to check for colocalized low- and high-frequency power decreases/

increases.

Sensor-level analysis of the MEG data revealed significant differences in the lower frequen-

cies, i.e., the alpha/beta band. A cluster permutation statistic across sensors, frequency bands

(2–30 Hz), and time (0–1.5 s post stimulus) revealed two significant clusters spanning alpha/

beta frequency bands (word< face, pcorr = .007, word > face, pcorr = .002; see Fig 2A and see

S1 Fig for additional t-sum time-frequency plot): One cluster exhibited relative greater alpha/
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beta power decreases (8–20 Hz) for words than for faces, located at left frontal sensor sites at

0.3–1.5 s post stimulus. A second cluster exhibited relatively stronger alpha/beta power

decreases (8–20 Hz) for faces than for words and was located at posterior sensors in the same

time interval (0.3–1.5 s). In accordance with the sensor-level results, source analysis revealed

significant clusters in regions commonly involved in word and face processing, respectively

(Fig 2B): Stronger alpha/beta power decreases for words compared to faces (shown in red)

were localized to areas typically involved in semantic processing encompassing the inferior

and middle frontal gyrus, supramarginal gyrus, Heschl’s gyrus and temporal pole, and middle

Fig 1. (A) Paradigm. The experiment was split in two blocks: one block for word encoding and recognition and one

for faces, respectively. The paradigm was slightly adapted for the iEEG patient sample. Behavioral performance in the

MEG dataset (B) and iEEG dataset (C). ROC curves show memory performance for faces and words; error bars plot

SEM for each rating. A left upward shift of the ROC indicates higher recognition performance—i.e., more hits and

fewer false alarms. (D) Electrode coverage in the iEEG patient sample: The bipolar referenced virtual electrode

locations of each contact included in the reported analysis are plotted here; colors code different patients. Data and

scripts underlying this figure are deposited here: https://osf.io/3csku/. iEEG, intracranial electroencephalography;

MEG, magnetoencephalography; ROC, receiver operating characteristic.

https://doi.org/10.1371/journal.pbio.3000403.g001
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and superior temporal gyrus (peak t19 = −4.16 at MNI −54, 0, 50 corresponding to left precen-

tral gyrus, word< face pcorr = 0.049, t-sum = −826.60). Stronger alpha/beta power decreases

for faces compared to words (shown in blue) were localized to areas typically involved in visual

processing (Fig 2B), spanning lingual, occipital middle, fusiform, temporal middle, and infe-

rior gyrus in the right hemisphere. The peak of the source localization was in right inferior

occipital gyrus (t19 = 9.04, MNI 46, 80, 10, source cluster: pcorr < 0.001, t-sum = 62,700.7). In

Fig 2. MEG main effect of material: Word-faces. (A) Main effect of material: word versus face condition irrespective

of memory: significant clusters (pcorr < 0.05) returned by a cluster permutation statistic clustering across sensors,

frequencies (“Freq”), and channels. One cluster showed a greater decrease in alpha/beta power for words relative to

faces at left frontal sensors; another cluster showed a stronger decrease in alpha/beta power for faces relative to words

at posterior sensors. Time-frequency plots show average t-values in the significant sensor cluster highlighted in the

topography plot. (B) Significant sources (pcorr < 0.05) showing a main effect of material in alpha/beta power in the

time-frequency window identified in sensor-level data. (C) Electrodes (p< 0.05, uncorrected) in iEEG showing a

significant change in alpha/beta power in the respective time-frequency window identified in MEG. (G) The overlap of

MEG and iEEG material effects is visualized by plotting for each category of iEEG electrodes (“w< f”: light blue,

“w> f”: orange, or no significant difference [“n.s.”]: gray), the percentage of electrodes located in areas of significant

(“sig.”) MEG source clusters (clusters of w< f: red, w> f: blue, or no significant difference: white). The numbers

plotted on top of the bars denote the absolute numbers of electrodes in each source area respectively. (D-F and H)

Corresponding analysis in the HF range. No significant MEG cluster emerged for word> face. Data and scripts

underlying this figure are deposited here: https://osf.io/3csku/. HF, high frequency; iEEG, intracranial

electroencephalography; LF, low frequency; MEG, magnetoencephalography.

https://doi.org/10.1371/journal.pbio.3000403.g002
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summary, the material effects in MEG are in line with the hypothesis that areas involved in

material-specific processing of stimuli show a relative decrease in alpha/beta power. A qualita-

tively similar picture of event-related alpha/beta increase in the range of 8–20 Hz also arises

when plotting average stimulus-related changes to baseline power separately for faces and

words (see S1 Fig for details). Decreases in alpha/beta power seem to closely map to areas

involved in face and word processing as found with functional MRI (fMRI) [45].

In a next step, we assessed whether similar material-specific effects occurred in the iEEG

data. To this end, the main effect of material in the time-frequency window identified in the

MEG analysis (i.e., 8–20 Hz, 0.31.5 s) was calculated in each single electrode across the whole

patient sample. Fig 2C shows all electrodes exhibiting a significant main effect of material

(p< 0.05, uncorrected) in the alpha/beta frequency range, as assessed by a separate ANOVA

with the factors material and memory in each electrode. Electrodes showing stronger alpha/

beta power decreases for words relative to faces were spread across the left hemisphere

(highlighted in orange in Fig 2C). In contrast, electrodes showing stronger alpha/beta power

decreases for faces relative to words are predominantly located in the right posterior and ven-

tral visual stream (highlighted in light blue in Fig 2C). The location of MEG sources and the

distribution of significant iEEG electrodes for the words versus faces contrast showed a good

degree of overlap visually (Fig 2A–2C). To formally test this overlap, a χ2 test of independence

was calculated by counting the number of significant iEEG electrodes (Fig 2C) separately for

areas inside and outside of significant source clusters in MEG source analysis (Fig 2B). The

localization of significant iEEG electrodes and the MEG source clusters was not independent

(Fig 2G, χ2
4 = 79.79, p< 0.0001): iEEG electrodes were more likely to exhibit significant mod-

ulation of alpha/beta power (marked in light blue and orange) if located in regions that exhibit

the same modulation in MEG (marked in blue and red). The results depicted in Fig 2G show

that a face-selective electrode (uncorrected significant “w > f” alpha/beta difference, light

blue) is more likely located in the “w > f” MEG cluster (dark blue). Furthermore, word-selec-

tive electrodes (uncorrected significant “w < f” alpha/beta difference, orange) are more likely

located in the “w< f” MEG cluster (red) or in no MEG cluster than in the “w> f” MEG cluster

(dark blue). This χ2 test requires categorization of electrodes into different groups, which we

here did based on uncorrected p< 0.05. Two control analyses show that similar results are

obtained when using a different categorization approach (i.e., direction of difference positive/

negative) or when using a correlation analysis, which does not require any categorization at all

(S2 Fig). Together, these findings demonstrate a good overlap of iEEG and MEG results,

despite the different properties of iEEG and MEG in spatial resolution and spatial sampling.

Material-specific effects: Higher-frequency bands

Material-specific effects in the higher-frequency range (40–100 Hz) were analyzed congruently

with effects in the lower-frequency range. First, time-frequency windows of interest were iden-

tified via an open cluster permutation statistic across all MEG sensors, in a frequency range

from 40 to 100 Hz and a time range from 0 to 1.5 s post stimulus. This analysis revealed three

clusters exhibiting a significant increase in gamma power related to faces in contrast to words,

all located at posterior sensors (approximately 50–90 Hz, 0.3–1.0 s post stimulus, pcorr = .011,

pcorr = .011, pcorr = .046, Fig 2D, S1 Fig for additional t-sum time-frequency plot). These face-

driven gamma power increases were localized to areas involved in visual processing (right

cuneus, occipital superior gyrus, superior parietal gyrus and precuneus, peak in right cuneus,

t19 = −8.07, MNI 16, −80, 30, source cluster p< 0.001, t-sum = −2,797.9). Plotting average

power changes contrasted to prestimulus baseline show a qualitatively similar picture of event-

related gamma increase in the range of 50–90 Hz stronger in the posterior “face” cluster than
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in “word” cluster (see S1 Fig for details). This result is consistent with the hypothesis that task

active regions can be identified by increases in high-frequency power. However, this result was

specific to face stimuli, as no clusters showing significant high-frequency power increases for

word stimuli were identified.

Analogous to the low-frequency power analysis, the main effect of material in iEEG data

was analyzed in the time-frequency window identified in the MEG data (50–90 Hz, 0.3–1 s).

In Fig 2H, all electrodes showing significant increases in high-frequency (gamma) power for

faces compared to words are highlighted in orange, and all electrodes showing gamma power

increases for words are shown in blue (all p< 0.05, uncorrected). To quantify the overlap

between the two modalities, a χ2 test of independence was calculated. Here, only electrodes

with power increases for faces compared to words were tested, since no gamma power

increases for words were found in the MEG data. The number of iEEG electrodes showing sig-

nificant relative power increases for faces was higher in areas exhibiting the same effect in

MEG (Fig 2H, χ2
2 = 26.25, p< 0.0001; see S2 Fig for control analyses). Thus, changes in

gamma power show a similar concordance of MEG and iEEG data as changes in alpha/beta

power. Interestingly, in occipital areas, decreases in alpha/beta power seem to co-occur with

increases in gamma power, whereas no such relationship was evident for areas related to the

processing of words.

Material-specific high-frequency effects in low-frequency clusters

Material-specific effects were found in the form of low-frequency power decreases in the

alpha/beta range and high-frequency gamma power increases. In line with the spectral tilt

hypothesis, our results suggest that gamma power increases are related to decreases in alpha/

beta power in occipital areas. However, no comparable increase in gamma power was evident

in areas involved in word processing in the MEG using whole-brain statistics. To assure that

such word-related high-frequency (gamma) power increases were not overlooked because of a

lack of statistical power or weaker signal-to-noise ratio, we employed a region of interest

(ROI) analysis focusing on gamma changes in MEG sources and iEEG electrodes exhibiting

material-related alpha/beta power changes (Fig 3). High-frequency effects of material were

assessed exclusively in MEG source clusters exhibiting material-related alpha/beta power

changes (see Fig 2B for the respective clusters). In iEEG, an examination of gamma power

changes was restricted to electrodes exhibiting material-related alpha/beta power changes. To

calculate a random-effects group statistic in the iEEG data (that is comparable to the MEG

data), power spectra were averaged in each patient across all electrodes exhibiting a significant

negative or positive main effect of material in alpha/beta power. For both modalities, we then

compared gamma power effects in those clusters (MEG) or electrodes (iEEG) exhibiting mate-

rial-specific low-frequency power decreases.

In the clusters/electrodes that exhibited face-specific alpha/beta power decreases, a concur-

rent increase in gamma power was evident, which parallels the above findings. Specifically,

both modalities, MEG and iEEG, showed a significantly stronger gamma power increase for

faces compared to words (Fig 3A and 3B, MEG: t19 = −5.733, p< 0.0001, iEEG: t8 = −2.337,

p = 0.0476). Concerning the clusters/electrodes exhibiting word-specific alpha/beta power

decreases, however, no colocalized increases in high-frequency (gamma) power were evident

(Fig 3C and 3D, MEG: t19 = 0.60, p = 0.56, iEEG: t7 = −1.260, p = 0.283). This pattern of results

suggests that the co-occurrence of gamma increases and alpha/beta power decreases may be

limited to specific brain areas. In posterior sensory-processing regions, our results agree with

the spectral tilt hypothesis, showing increases in gamma power co-occurring with decreases in

low-frequency power. However, in left lateralized areas exhibiting strong alpha/beta power

Spectral fingerprints vs spectral tilt during memory formation
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decreases specific to word processing, no concurrent increases in gamma power were evident,

neither in MEG nor in the more spatially resolved iEEG data. This absence of a significant

effect does not exclude the possibility of a colocalized gamma power increase beneath the sta-

tistical threshold. However, the spectral tilt hypothesis does predict a strong co-occurrence of

low-frequency decreases and high-frequency increase; thus, this single dissociation (effect in

alpha/beta but no effect in gamma) is violating a key prediction of the spectral tilt hypothesis.

Subsequent memory effects

Subsequent memory effects (SMEs, i.e., effects of memory encoding) were investigated in two

time-frequency windows in which material-specific effects were evident: alpha/beta (8–20 Hz,

0.3–1.5 s) and gamma power (50–90 Hz, 0.3–1.0 s). Note that this selection of frequency-time

windows exhibiting significant material-dependent power changes does not bias the finding-

memory effects or interaction, as these are statistically independent contrasts. Additionally, to

alpha/beta and gamma power changes, theta power changes were investigated in a third time-

frequency window from 2 to 5 Hz and from 1.0 to 1.5 s based on prior studies [33,46]. We

were specifically interested in interactions of memory and material, i.e., whether SMEs in spe-

cific frequency bands vary with material.

To parallelize analysis of iEEG data to the analysis of MEG data, a two-stage procedure was

used. In a first stage, ROIs (in MEG) or electrodes of interest (iEEG), which showed a main

effect of memory (i.e., SMEs independent of material), were identified. In MEG, these ROIs

were source clusters exhibiting significant main effects of memory; in iEEG, we selected elec-

trodes with uncorrected p< 0.05 main effects of memory (similar to prior analysis of material-

dependent changes). In the second stage, the data within these SME ROIs were tested for

material × memory interactions. Notably, this procedure does not artificially inflate statistical

power for finding interactions—it slightly biases the results against finding interactions, since

Fig 3. Material-specific high-frequency power changes in MEG source clusters and iEEG electrodes exhibiting

material-specific power changes in the alpha/beta range. Time-frequency (“Freq”) plots show t-values for the

contrast of words versus faces in MEG source clusters (A, C) and in iEEG electrodes (B, D). Bar plots show average

power values for the word and face condition separately for the time-frequency window marked with dashed boxes;

black dots show the respective single-subject averages. Asterisks mark significant differences depending on material

(p< 0.05). Brain plots are replicated from Fig 2 to highlight the respective ROIs. Data and scripts underlying this

figure are deposited here: https://osf.io/3csku/. iEEG, intracranial electroencephalography; MEG,

magnetoencephalography; n.s., no significant difference; ROI, region of interest.

https://doi.org/10.1371/journal.pbio.3000403.g003
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only ROIs with a tendency for showing SMEs in the same direction across materials are con-

sidered. This procedure can readily be applied to MEG as well as to iEEG data, which is not

trivial, since locations of electrodes vary from patient to patient, whereas MEG data provide

whole-brain coverage in every subject. This analysis allows for random-effects analysis of

memory × material interactions in iEEG data at the expense of limiting analysis to electrodes

and patients exhibiting significant main effects of memory. Since this selection may theoreti-

cally distort the findings, an additional fixed-effects analysis (FEA) was run including all elec-

trodes combined across all patients (657 electrodes, Fig 4G). The FEA tested whether the

number of “significant” (i.e., uncorrected p< 0.05) electrodes across all patients exceeded the

number of “significant” electrodes in a randomly permuted sample. This fixed-effect permuta-

tion analysis omits spatial clustering. iEEG data, in contrast to MEG data, only allow spatial

clustering with strong limitations: spatially neighboring electrodes are more likely belong to

one patient, magnifying the problem of outliers (i.e., single subject–driven effects). To validate

the findings reported here, however, the results of an additional spatially cluster permutation

statistic are reported in the S1 Text, which broadly replicate the results reported below (S3

Fig).

Theta

In MEG, data decreases in theta power (2–5 Hz, 1–1.5 s) were observed for later-remembered

compared to later-forgotten items (source p< 0.001, t-sum = −3,446.8; Fig 4A). Theta power

decreases spanned a temporo-cortical network including inferior frontal, parietal, and tempo-

ral regions with a peak in the left inferior frontal gyrus (t19 = −5.82, MNI −56, 40, −10). This

negative theta SME did not differ between words and faces (interaction memory × material:

t19 = −1.02, p = 0.32).

These effects were paralleled in the iEEG data: significant decreases in theta power were

observed for later-remembered compared to later-forgotten items (i.e., negative SME) in the

same time-frequency window (2–5 Hz, 1–1.5 s, FEA: 29 electrodes, pcorr = 0.0134, Fig 4G). No

significant positive SME—i.e., increase in power for remembered versus forgotten—was found

(FEA: 11 electrodes, pcorr = 0.66). In electrodes selected for exhibiting negative theta SMEs, no

difference in SMEs depending on material across patients was evident (Fig 3B; analysis includ-

ing 10 patients, 1–6 electrodes per patient, p = 0.13, t9 = −1.66). In the FEA across all elec-

trodes, this result was replicated; no significant material-dependent difference of SMEs was

found (FEA: SME words < SME faces: p = 0.37, 18 electrodes Fig 4G, SME words > SME

faces: pcorr = 0.75, 12 electrodes). Together, we observed the same pattern of results in MEG

and iEEG. The data indicate that decreases in theta power predict memory formation indepen-

dent of material.

Alpha/Beta

In the MEG data, decreases in alpha/beta power (8–20 Hz, 0.3–1.5 s) predicted later memory

(source-level p = 0.005, t-sum = −2,092.4). This negative SME was localized in areas encom-

passing typical encoding relevant regions: left superior frontal, inferior-medial temporal areas

including the left hippocampus (peak right inferior temporal, t19 = −4.75, MNI: 74, −40, −20;

Fig 4C). Importantly, the alpha/beta power SMEs significantly differed between faces and

words, as indicated by a significant material × memory interaction (p = 0.020, t19 = −4.38).

Alpha/beta SMEs were significantly stronger for words in contrast to faces.

The same pattern of effects was evident in the iEEG data. Significant decreases in alpha/

beta power were related to successful encoding across electrodes (FEA: alpha/beta: pcorr =

0.028, 30 electrodes, Fig 4G); no significant increase in alpha/beta power during memory
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Fig 4. Material-independent and material-dependent SMEs. SMEs (remembered [“rem.”]-forgotten [“forg.”]) were

analyzed in three time-frequency windows of interest. (A, C, E) Significant source clusters (pcorr < 0.05) for main

effects of memory (SMEs irrespective of material). (B,D,F) iEEG electrodes exhibiting significant (p< 0.05,

uncorrected) positive or negative main effects of memory are highlighted in orange or blue, respectively. Bar plots on

the right show average normalized power for all condition averages for the respective MEG source cluster or iEEG

electrodes plotted to the left, respectively. Black dots show the respective single-subject averages. Asterisks mark

significant interaction effects (p< 0.05). (G) Results of a fixed-effects permutation analysis including all iEEG

electrodes across all patients. The number of significant (“sig.”) electrodes in the data exhibiting a significant effect is

highlighted in red relative to the distribution of significant electrodes in randomly shuffled data. Data and scripts

underlying this figure are deposited here: https://osf.io/3csku/. iEEG, intracranial electroencephalography; MEG,

magnetoencephalography; SME, subsequent memory effect.

https://doi.org/10.1371/journal.pbio.3000403.g004
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formation was found (FEA: pcorr = 0.49, 16 electrodes, Fig 4G). Across patients with electrodes

showing negative alpha/beta SME, a similar significant difference in SMEs was evident as in

MEG: here, again, a significant material × memory interaction was observed (p = 0.0027, t8 =

−4.28, 9 patients, 1–7 electrodes per patient), which was driven by stronger power decreases

for later-remembered words compared to later-forgotten words (Fig 4D). The same significant

difference in SMEs between words and faces was obtained for alpha/beta power decreases

across all electrodes (FEA: words < faces: pcorr = 0.032, 32 electrodes, SME words > SME

faces: pcorr = 0.66, 13 electrodes, Fig 4G).

These stronger negative alpha/beta SMEs for words than for faces in MEG and iEEG data

suggest a specific role of alpha/beta power decreases during memory formation for verbal

material. This result further demonstrates that decreases in low-frequency power do not uni-

formly contribute to later memory, since this interaction effect was specific to the alpha/beta

band but not evident in the theta range.

Gamma

In the gamma time-frequency window (50–90 Hz, 0.3–1 s) a significant positive SME—i.e.,

increases for later-remembered items—emerged in the MEG data localized to occipital and

parietal regions (Fig 4E, p = 0.048, t-sum = 479.06). The peak of the source was located in left

superior occipital gyrus (max t19 = 4.34, MNI −14, −90, 10), spanning typical regions involved

in visual processing: left calcarine gyrus, cuneus, lingual gyrus, and occipital superior and mid-

dle gyrus. These gamma power changes in visual areas did not vary with material (interaction

p = 0.42, t19 = −0.81).

In accordance with MEG results, a significant number of electrodes showed significant

gamma power increases related to memory formation in iEEG data (FEA: pcorr = 0.0001, 43

electrodes, Fig 4G). Contrary to the MEG results, a small but significant number of electrodes

showed a decrease in gamma power for later-remembered items (FEA: pcorr = 0.036, 27 elec-

trodes, Fig 4G). This negative gamma SME could have been missed in MEG because of the

limited spatial resolution and overall slightly worse signal-to-noise ratio in high frequencies or

could be a false positive in the iEEG data because of the inflated statistical power of the FEA.

Concerning the material specificity of memory effects, however, similar results as in MEG data

were again observed: gamma power SMEs did not vary with material (interaction

material × memory p = 0.39, t9 = 0.91, 10 patients with 2–13 electrodes, Fig 4F). Similarly, no

significant influence of material on SMEs was found in the FEA for the gamma frequency

range (FEA: SME words < SME faces: pcorr = 0.24, 21 electrodes, SME words > SME faces:

pcorr = 0.75, 13 electrodes, Fig 4G). Results from both iEEG and MEG showed that increases in

gamma power index successful memory formation independently of material, thus mirroring

the results of theta power.

To conclude, fixed-effects and random-effects analysis of iEEG data fully replicates the find-

ings obtained in MEG: negative alpha/beta SMEs vary with material; positive gamma SMEs

and negative theta SMEs are found irrespective of material. To further show the frequency

specificity of reported SMEs, S5 Fig shows the average power spectra in each selected ROI in

iEEG and MEG data. This frequency-specific pattern of SME material dependency demon-

strates that changes in specific frequency bands index specific processing demands during

encoding.

Latency differences between gamma and theta SMEs

The analyses described above demonstrate a functional dissociation of decreases in low-fre-

quency and increases in higher-frequency power, suggesting that these changes do not reflect a
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single process. Specifically, alpha/beta power decreases varied with material during memory

formation, whereas theta power decreases and gamma power increases did not. However,

power decreases in theta and power increases in gamma did show a similar pattern of SMEs—

i.e., both accompany memory formation independent of material. Therefore, in a further anal-

ysis, we focused on the relationship between these two frequency bands. More specifically, we

asked whether theta power decreases and gamma power increases occur in the same regions

and at the same time. In iEEG data, we calculated gamma SMEs in electrodes exhibiting signif-

icant negative theta SMEs and vice versa. Power spectra from all selected electrodes were aver-

aged in each subject and entered into a dependent t test (with N subjects as random variable).

In electrodes exhibiting a significant positive gamma SME, no significant negative theta SME

was evident in the early time window, in which gamma power changes were observed (Fig 5A

and 5B, 2–5 Hz, 0.3–1.0 s, t9 = −1.162, p = 0.275). However, in a later time window, theta

power significantly decreased for remembered versus forgotten items (2–5 Hz, 1.0–1.5 s, t9 =

−3.137, p = 0.0120, Fig 5B). This result indicates that theta and gamma SMEs can be located at

the same regions but seem shifted in time (i.e., gamma SME precedes theta SME).

This same analysis was repeated, now investigating whether gamma SMEs can be found in

electrodes exhibiting significant theta SMEs (Fig 5C). Again, no significant gamma SMEs were

evident at the same time window when theta SMEs were predominant (50–90 Hz, 1.0–1.5 s:

t9 = 0.058, p = 0.958, Fig 5D). However, in the early time window, gamma SMEs were observed

but did not reach significance (50–90 Hz, 0.3–1.0 s, t9 = 1.785, p = 0.11, Fig 5D). This result

agrees with the preceding analysis in suggesting that theta and gamma SMEs may overlap spa-

tially but can be temporally dissociated.

To formally assess whether negative theta SMEs and positive gamma SMEs are indeed

shifted in time, theta (2–5 Hz) and gamma power (50–90 Hz) time courses were correlated

across trials for every combination of time points from 0 to 1,500 ms post stimulus in elec-

trodes selected based on negative theta SMEs or positive gamma SMEs, respectively. As theta

and gamma SMEs exhibit a negative relationship, the analysis regarding timing differences is

focused on the theta latency and gamma latency combination at which a significant negative

correlation is evident. A cluster permutation test was used to investigate whether correlations

are significantly positive or negative across electrodes at different theta–gamma time course

combinations in theta SME electrodes as well as gamma SME electrodes. This analysis revealed

two significant clusters in theta SME electrodes (Fig 5F negative cluster: pcorr = 0.02, positive

cluster: pcorr = 0.001), as well as in gamma SME electrodes (Fig 5C negative cluster: pcorr =

0.001, two-positives cluster: pcorr = 0.001 and 0.018). Importantly, the negative clusters were

shifted in time: theta power around 1,000–1,500 ms correlated consistently negative with ear-

lier gamma power (approximately 300–900 ms) in theta electrodes, and a similar time lag was

evident in gamma electrodes. We also observed positive correlations along the diagonal of the

time-by-time matrix, i.e., for non-time-lagged correlations. There are several possible causes

for this positive correlation, such as event-related potentials (ERPs), a coupling of theta and

gamma activity, baseline shifts, etc. Although the present analysis cannot disentangle the cause

of these positive time-locked correlations, they are further contradicting a spectral tilt explana-

tion of SMEs, as a tilt explanation of SMEs would predict a negative correlation along the diag-

onal. Together, this analysis shows that positive gamma SMEs and negative theta SMEs may be

related but are shifted in time, which does not fit with a tilt-based explanation of memory-

related power changes.

Intracranial EEG data are inherently restricted to the clinically defined implantation sites,

and therefore, one cannot exclude that theta and gamma effects overlap in areas where no elec-

trodes were implanted. This limitation does not exist for whole-brain recording methods like

MEG. Therefore, we investigated whether the general timing of theta and gamma SMEs on a
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Fig 5. Timing differences of theta and gamma SMEs. (A–D) Differences in timing in iEEG data. Time-frequency

(“Freq”) plots depict t-values of SMEs in iEEG electrodes exhibiting a significant positive (“pos”) SME in the gamma

frequency range or a significant negative (“neg”) SME in the theta frequency range, respectively. Dashed lines highlight

the time windows of gamma SMEs (0.3–1 sec) and theta SMEs (1.0–1.5 sec). (B) Bar plots show average theta SMEs in

electrodes defined by gamma SMEs and gamma SMEs in electrodes showing theta SMEs for the earlier gamma and

later theta time window. Black dots show the respective single-subject averages; black asterisks mark significant

differences (p< 0.05). (E, F) Differences in timing of theta and gamma SMEs in MEG. (C and F) Plots show clusters of

significant correlations between gamma and theta power time courses for every latency combination; significant

clusters are highlighted by transparency. (G) Bars show the t-sum across significant negative and positive source-level

sensors of gamma and theta SMEs calculated on power averages in a 300-ms windows with 100-ms increments. Red

and blue asterisks mark significant positive gamma SMEs of negative theta SMEs at the given time point, respectively.

(H) For each MEG dataset, the 5% source-level sensors were identified that exhibited the highest frequency-specific

SMEs across 0.2–1.5 s. The average area under the SME curve reached at each time point in these frequency- and

subject-specific ROIs is plotted for gamma and theta SMEs; the gray area highlights the significant cluster (random

cluster permutation) in which gamma SMEs significantly precede theta SMEs. Data and scripts underlying this figure

are deposited here: https://osf.io/3csku/. iEEG, intracranial electroencephalography; MEG, magnetoencephalography;

n.s., no significant difference; ROI, region of interest; SME, subsequent memory effect.

https://doi.org/10.1371/journal.pbio.3000403.g005
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whole-brain level followed our previous findings. To provide a more time-resolved depiction

of SMEs, a cluster permutation statistic on the source data was calculated in sliding time win-

dows of 300 ms (with increments of 100 ms) in the gamma frequency band (50–90 Hz) and

the theta band (2–5 Hz). In Fig 5E, the respective positive and negative t-sums across all signif-

icant source sensors are plotted. From this plot, it is evident that positive gamma SMEs appear

earlier than negative theta SMEs.

To formally quantify these latency differences between gamma SMEs and theta SMEs, we

calculated the percentage of the area under the curve at each time point by cumulating the SME

curve across time for each subject and frequency-specific peak source sensors (5% absolute

highest gamma or theta SME summed across 0.2–1.5 s). This analysis allows for an unbiased

contrast of latency between SMEs of the two frequencies. Each frequency starts at the same

point (0%) and finishes at the same point (100%). Analogously, this analysis is like pitching two

horses against each other in a race and measuring the distance covered at each time point to see

which one is faster. This area-under-the-curve method is more sensitive to detect differences in

timing than classical peak latency comparisons [47] and is not affected by differences in time

resolution (e.g., smoothness between gamma and theta SMEs; see S8 Fig). In Fig 5F, the area

under the curve for negative theta SMEs and positive gamma SMEs is shown for each time bin

from 0.2 to 1.5 s. The latency curve for positive gamma SMEs is leading in respect to the theta

SME curve, indicating gamma SMEs earlier in time compared to theta SMEs. A cluster permu-

tation statistic permuting the individual latency curve across subjects showed a significant dif-

ference in the timing of gamma and theta SMEs (cluster permutation pcorr = 0.018). Note that

this result remains stable also when employing different selection criteria (i.e., no thresholding

of SME curves and no preselection of peak effect sensors, see S9 Fig).

Together, these results illustrate that low-frequency negative SMEs can be colocated to simi-

lar regions where positive SMEs in higher frequencies are observed. However, the SMEs in the

gamma and theta frequency bands are temporally dissociated, with increased gamma power

preceding decreases in theta power during the encoding of subsequently remembered items.

This latter result indicates that the two frequency bands index different cognitive processes

that occur at different time points in the service of memory.

Fitting spectral tilts: SMEs in spectral slopes and residual power

To further rule out that the reported memory effects can be explained by a simple shift in the

tilt of the frequency spectra, we used a robust regression to fit slopes to the average power spec-

trum across trial in each condition of every MEG and iEEG dataset. Since prior literature used

varying frequency spans to fit the tilt (i.e., slope) of the spectrum, slopes were calculated based

on three different frequency ranges (2–30 Hz, 30–90 Hz, 2–90 Hz). Based on the fitted slope

and offset, the residual power spectrum was calculated by subtracting the fitted regression line.

Interestingly in both datasets, MEG and iEEG, there were task-related differences between esti-

mated slopes. These differences, however, highly depended on which frequency bands the fit

was based on (see S2 Text and S6 and S7 Figs). Investigating SMEs in residual frequencies

showed stable SMEs in the respective frequency bands, even after subtraction of the condition-

specific frequency tilt (S6 and S7 Figs), except gamma SMEs in MEG data. This pattern of

results demonstrates that a simple shift in the power spectrum might contribute to reported

SMEs but cannot completely explain the full pattern of results.

Discussion

The present results support the hypothesis that power changes in different frequency bands

during memory encoding represent distinct fingerprints of differentiable encoding processes.
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In line with prior studies, decreases in theta and alpha/beta power and increases in gamma

power predicted subsequent memory. Unlike the reported uniform decreases in low-frequency

power and increases in high-frequency power predicting memory formation [8,20], the pres-

ent results demonstrate that theta, alpha/beta, and gamma power changes during encoding

exhibit dissociable characteristics inconsistent with the frequency tilt hypothesis: (1) areas

involved in word and face processing exhibit material-dependent decreases in alpha/beta

power, whereas concurrent increases in gamma power were evident only in posterior sensory-

processing regions but not in left lateralized areas responsive to word processing; (2) negative

alpha/beta SMEs depend on material and are stronger for words than for faces, whereas nega-

tive theta SMEs and positive gamma SMEs do not depend on material; and (3) negative theta

SMEs and positive gamma SMEs differ in timing, with gamma SMEs preceding theta SMEs. A

particular strength of this study is that we show the same pattern of results in two independent

datasets recorded in MEG and in iEEG. The reported dissociations are therefore present at dif-

ferent spatial scales and independent of how the signal is being measured.

Our results replicate the commonly found pattern of low-frequency power decreases and

high-frequency power increases during memory encoding. However, in-depth analysis of this

pattern revealed functionally, spatially, and temporally distinct signatures exhibited by differ-

ent frequency bands. A simple analysis of time-averaged power spectral density [11,17], as pro-

posed for analyzing spectral tilts in the data, would have concealed the diverse frequency- and

time-specific patterns underlying memory formation. That said, summarizing complex

changes in the power spectrum in simpler metrics like tilt or broadband shifts clearly offers

useful tools for characterizing overall brain states [48,49], especially regarding pathological

states or age-related changes [11]. However, these metrics have a risk of concealing more fine-

grained temporal and spectral dynamics underlying complex cognitive processing, like mem-

ory formation. To understand the neural dynamics involved in cognition, the explanatory

value of spectral tilts or broadband shifts remains therefore limited. The specific relation of

alpha/beta decreases to the encoding of words and the differences in timing of theta and

gamma SMEs demonstrate that decreases in lower frequencies and increases in higher fre-

quencies are not a uniform, ubiquitous marker of memory encoding. Instead, they index sepa-

rable processes, which likely have explanatory value to understand transformation of

experiences in durable memory traces and are key for developing frequency-specific and oscil-

lation-informed stimulation approaches [50].

Alpha/beta power in both iEEG and MEG specifically varied depending on the type of

material to be encoded. Alpha/beta SMEs were stronger for the encoding of words in contrast

to faces, i.e., material differing with respect to semantic-processing properties. This interaction

is specific to the alpha/beta band and thus cannot be explained from a spectral tilt perspective.

If successful encoding of words is simply related to a “flatter” tilt of the power spectrum, we

should also see similar SMEs specific for words in the theta band and mirroring SMEs in

higher frequencies. However, in both datasets, MEG and iEEG, theta SMEs did not show the

same interaction pattern as alpha/beta SMEs. An additional analysis fitting spectral tilt and

analyzing SMEs in the tilt-corrected power spectra revealed that across different tilt fits, SMEs

largely remained stable in the tilt-corrected power spectra (see S6 and S7 Figs). These findings

together show that a simple tilt model cannot explain the reported memory-related power

changes.

The present findings are consistent with frameworks that propose specific roles of different

frequency bands, i.e., spectral fingerprints of cognitive processing [26,27] of different fre-

quency bands to multiplex content-specific memory processes [51]. The dissociable roles of

gamma and alpha/beta band oscillations have been studied in attention tasks [12,52]. Gamma

oscillations in general have been hypothesized to play an important role in local bottom-up
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sensory processing, whereas changes in alpha/beta oscillations have been related to long-range

cortical communication and top-down processing [12,53,54]. This view of bottom-up and

top-down processes is also in line with the current findings: gamma power increases were con-

fined to occipital sensory areas and evident early after the stimulus, whereas decreases in

alpha/beta and theta power were evident in widespread distributed cortical and medio-tempo-

ral regions in a later time window, reflecting possibly higher-level processes involving top-

down control. The pattern of distinct spectral fingerprints in the present data concurs with

cognitive memory models like Tulving’s SPI model [29] or PIMMS [30], which hypothesize

memory encoding not as one monolithic process but highlight the role of different subpro-

cesses. Our results show dissociable spectral fingerprints, which resemble commonly assumed

stages in these models: perceptual, semantic, and episodic processes.

Previous behavioral research has shown that words are especially well remembered if

semantically processed [39], whereas memory for unfamiliar faces does not benefit from

semantic encoding strategies [40]. We demonstrate that decreases in alpha/beta power specifi-

cally index encoding of verbalizable material. This finding agrees with previous studies show-

ing that decreases in alpha/beta power are specifically related to semantic encoding [36,37,55].

Beta oscillations in particular have been connected to language and semantic processes

[56,57]. On a more general level, alpha/beta decreases have been linked to cortical information

processing [58], or to distributed top-down networks [59,60]. This view is also in line with

prior studies that reported complex item-specific representations being coded in the alpha/

beta frequency range [61–63]. Because of these hypothesized features, alpha/beta oscillations

might be a specific marker of the neural mechanisms behind the processing of distributed

semantic features [64]. In light of the present results and prior studies, alpha/beta decreases

during memory formation seem to be specific spectral fingerprints of semantic processing.

The higher memory performance for words compared to faces on a cognitive level also high-

lights the important role of the semantic system as the main route to episodic memory [65].

The specific relationship of alpha/beta power decreases to the encoding of verbalizable mate-

rial is a promising first step to a deeper understanding of the interaction of semantic and epi-

sodic memory.

Decreases in theta power and increases in gamma power related to subsequent memory are

unspecific for the material that is to be encoded. Theta power decreases were spanning wide-

spread cortical areas including MTL, frontal lobe, and temporal and parietal areas, resembling

the core memory network [66] and matching prior results [8,34]. Changes in the gamma band

during encoding were specifically located in cortical areas involved in sensory-visual process-

ing, in line with previously reported SMEs in visual cortex [67], and in ventral occipitotem-

poral regions [8,23]. The insensitivity of the theta and gamma power changes to material and

the general prominence of theta power changes in memory-encoding studies suggest a role of

theta decreases as a marker of MTL-related memory-encoding mechanisms independent of

how stimuli are processed.

A careful analysis of the temporal dynamics of the gamma and theta SMEs revealed disso-

ciable time courses of these effects. SMEs in gamma power preceded SMEs in theta (Fig 5).

Such a latency difference is in line with the view of gamma power indexing early perceptual

processing stages, whereas theta power changes reflect later MTL-related memory processes.

Theoretical models of memory put these two computations usually at opposing ends of the

processing cascade [29,30]. Methods that average power spectra across time are unable to

detect these differences [17,20] and lose a major advantage of electrophysiological recordings,

i.e., its high temporal resolution. Together, the timing difference between gamma and theta

SMEs demonstrates that theta power decreases and gamma power increases reflect different

neural processes, which occur in sequence during memory encoding.
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Our findings show that low-frequency decreases and high-frequency increases do not nec-

essarily overlap in time and space. In addition to the differences in timing between gamma

and theta SMEs, gamma power increases did not consistently occur in the same brain regions

as alpha/beta power decreases during processing of words. Whereas gamma power increases

co-occurred with alpha/beta power decreases in occipital/posterior regions [68], no such colo-

calization was evident in left lateralized areas involved in semantic processing. Consequently,

if the analysis in our study was limited to increases in broadband gamma power changes, a

common practice in iEEG analysis [9, 21–25], the prominent changes in alpha/beta power

related to word processing would have been missed. Our findings are exemplary in demon-

strating that limiting analysis to very narrow parts of the time-frequency spectrum restricts the

potential insights that can be drawn from the data.

Stimulus-related gamma power changes are a currently debated topic. There is evidence

that stimulus-related gamma power changes can be caused by two different mechanisms: a

broadband activity change potentially indicating increased multiunit activity [9,16,69,70] or

narrow band power changes indicating a true oscillatory response [3,71]. In the present analy-

sis, we did not tackle this problem. All reported analysis is focused on relative broadband activ-

ity averaged from 50 to 90 Hz. The focus of the presented results is on whether low- and high-

frequency changes during memory formation are indicating different processes or a uniform

frequency tilt. However, an in-depth analysis of gamma changes during memory formation

could reveal insights in whether gamma changes can also be broken down into different

processes.

A unique aspect of the present study is that oscillatory brain activity was measured with two

modalities and in two separate subject groups. Intracranial recordings in patients with epilepsy

and MEG recordings in a healthy student population exhibited concordant pattern of results.

Importantly, both MEG and iEEG come with their own specific strengths and limitations

[42,43]. MEG sensors, for instance, have different noise levels as a consequence of the sensors

being mounted in a dewer, which results in different distances of sensors from brain tissue and

different susceptibility to movement artifacts. These problems could affect signal-to-noise

ratio at certain brain areas and frequency ranges, making it, for example, difficult to detect

gamma effects in frontal regions. This problem does not exist with iEEG, in which electrodes

are implanted directly in the brain tissue, thus allowing one to record electrophysiological

activity in all frequency bands with high spatial resolution. MEG has two major advantages

over iEEG: (1) whole-head coverage in all subjects and (2) activity recorded in healthy partici-

pants rather than in a patient population. Although often seen as the gold standard for

electrophysiological studies in humans, iEEG data inherently suffer from the fact that the data

are recorded in a nonhealthy brain, possibly confounded with changes in frequency spectra,

epileptogenic changes, and artifacts [72,73]. Here, we sought to combine the two methods in a

complementary manner in order to overcome their respective limitations. Indeed, the tight

overlap between iEEG and MEG results described here lends confidence in both results in that

the iEEG data verify the MEG source reconstruction, and the MEG data alleviate concerns

about the generalizability of the iEEG findings. MEG and iEEG results are remarkably similar

despite differences in the sample (homogenous student sample in MEG versus a more diverse

patient sample in iEEG), differences in memory performance, and slight differences in para-

digm timing (see Fig 1A). Prior studies have combined M/EEG and iEEG, albeit typically in

very small samples [32,33]. The present study is, to the best of our knowledge, the first to com-

bine MEG and iEEG data of comparable sample sizes to study oscillatory processes in memory

encoding. The present results therefore offer a unique validation of the commonly implied

interchangeability of MEG and iEEG results.
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An open question that remains is why decreases in theta power are involved in memory

encoding in general, whereas alpha/beta power decreases are specifically involved in the

encoding of semantically meaningful material. Arguably, both processes involve the integra-

tion of representations coded in widespread neural networks. Interestingly, power decreases,

which indicate a decrease in local synchronization, are often found to co-occur with increases

in long-range phase synchronization [8,74–76]. Therefore, decreases in power (i.e., local con-

nectivity) might be a prerequisite for the formation of large-scale, fine-grained connectivity

vital for distributed neural representations. The present findings thereby open up important

follow-up questions concerning the relationship of local power decreases and network

connectivity.

To conclude, we recorded electrophysiological activity during memory encoding in two

complementary modalities, MEG and intracranial EEG. Our data provide evidence that the

reported decreases in low-frequency power and concurrent increases in high-frequency power

during memory encoding are not general markers of neural activity. Instead, the different

responses in low- and high-frequency bands reflect spectral fingerprints of dissociable mem-

ory-encoding processes. Considering interactions of different memory system networks, the

specific relationship of alpha/beta power changes to semantic processing opens a window to

the relationship of semantic and episodic memory, which has, as yet, not been well studied.

Speculatively, interactions of alpha/beta and theta networks might specifically mark the inter-

play between semantic and episodic memory, which crucially shapes human memories

[29,30].

Material and methods

Ethics statement

The protocols adhered to the Declaration of Helsinki and were approved by the ethics commit-

tee of the University Konstanz, University of Birmingham, the Friedrich Alexander University

of Erlangen, and National Hospital for Neurology and Neurosurgery (ERN_14–0651, 142_12,

and 10/H0715/63, respectively). All participants gave their written, informed consent.

Participants

Thirty-two volunteers participated in the MEG experiment (compensated with course credit

or €10/hour). Data from 11 participants were excluded because of low trial numbers in one of

the conditions (minimum 30 trials) after rejecting MEG artifacts and trials with early-response

button presses. One additional dataset was excluded because of an erroneous head-shape digi-

tization, resulting in a sample of 20 subjects (mean age = 23.5 y, range 18–33 y, 6 male). All

subjects were right-handed, spoke German as their native language, reported no history of

neurologic or psychiatric disease, and had normal or corrected-to-normal vision.

An additional 22 patients with pharmaco-resistant epilepsy who were implanted with intra-

cranial electrodes for diagnostic purposes volunteered to participate in a matching memory-

encoding study. Data of 17 patients were recorded at the University Hospital Erlangen, and

data of five patients were recorded in cooperation with University College London at the

National Hospital for Neurology and Neurosurgery. Data of eight patients were excluded from

later analyses because of either technical problems during recordings, left-handedness, or

insufficient memory performance. In the remaining dataset of 13 patients (mean age = 35.54 y,

range: 20–60 y, 3 male), eight patients were native German speakers, four were native English

speakers, and one spoke Slovenian. Word material and instructions were translated

accordingly.
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Material

Word material was drawn from the MRC Psycholinguistic Database [77], translated into Ger-

man/English/Slovenian depending on the respective participant (264 words during experi-

ment, additional 12 words for practice trials). Neutral unfamiliar faces (264 faces during

experiment, additional 12 faces for practice trials) were drawn from several face material data-

bases ([78] and pics.stir.ac.uk). All face stimuli had an emotionally neutral expression and

were presented in grayscale on a black background. Use of word and face material during

encoding and as new material during recognition was counterbalanced across participants.

Procedure

Every participant completed two task blocks: one block of word encoding and recognition and

one block of encoding and recognizing unfamiliar faces (order counterbalanced across partici-

pants). During the whole experiment, MEG or iEEG was recorded.

During the encoding phase, participants were instructed to judge each item presented for

pleasantness on a 1–6 scale. The encoding phase was followed by a distractor task to prevent

working-memory contributions to the recognition test. The distractor task was a variation of

the inattentional blindness task as used in [79]. During the recognition phase, all previously

shown items were presented randomly intermixed with new items, i.e., lures. Participants were

instructed to provide confidence ratings ranging from 1, very sure old, to 6, very sure new.

Prior to each phase, participants completed a short practice phase to familiarize them with the

paradigm. In the MEG sample, responses were given using two response boxes with three but-

tons placed on the right and left side of the body; response-hand use was counterbalanced

across participants. Because of the test setting in the hospital bed in the iEEG sample,

response-hand use was not controlled, as flexible response-hand use was not always possible.

Patients completed the same paradigm as healthy controls with small adaptions (a reduced

number of trials, self-paced responses and additional breaks, see Fig 1A).

Behavioral analysis

An ROC approach was used to analyze memory performance. A single-process unequal-vari-

ance model was fitted to the data to obtain bias-free measures of memory strength [80,81] and

classify hits and misses relative to individually defined neutral response criteria for MEG/iEEG

analysis (for details of fitting procedures, see [35,37]). In short, this approach assumes that

memory strength can be modeled by separate normal distributions for new and old items. The

distance d0 of the mean of these distributions yields a bias-free measure of memory strength.

The model assumes that subjects respond with a certain confidence rating i whenever their

subjective memory strength exceeds a certain criterion ci. The crossover of the distributions of

new and old items represents the point of the neutral response criterion, as this point repre-

sents the memory strength that has an equal probability to be elicited by new and old items.

An item that during recognition received a confidence rating i was classified as a hit if the cor-

responding estimated criterion ci was higher than the individually estimated neutral criterion

in the recognition block; otherwise, the trial was classified as a miss. As demonstrated previ-

ously, this procedure enhances signal-to-noise ratio by considering individual differences in

the use of confidence ratings for hit-and-miss trial definition [35].

MEG recording and processing

MEG was recorded with a 148-channel whole-cortex magnetometer (MAGNES 2500 WH, 4D

Neuroimaging, San Diego, CA, United States) in a magnetically shielded room while
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participants were in a supine position. Data were continuously recorded at a sampling rate of

678.17 Hz and bandwidth of 0.1–200 Hz. The participants’ nasion, left and right ear canal, and

head shape were digitized prior to each session with a Polhemus 3Space Fasttrack.

All analyses were carried out in MATLAB (The MathWorks, Natick, MA, USA) using the

fieldtrip toolbox (www.ru.nl/fcdonders/fieldtrip, [82]). Data from encoding phases were

epoched in trials −1.5 to 3 s around each item onset during encoding. Line noise was removed

by a discrete Fourier transform filter. Idiographic artifacts (channel jumps, muscle artifacts,

noisy channels) were excluded from further analysis by visual inspection. Infomax indepen-

dent component analysis was applied to correct for residual artifacts (e.g., eyeblinks, eye move-

ments, heartbeat-related activity, or tonic muscle activity). On average, 105.8 word-hit trials

(SD = 18.7, range: 75–129), 51.6 word-miss trials (SD = 18.4, range 31–88), 85.8 face-hit trials

(SD = 17.3, range: 39–111), and 71.8 faces-miss trials (mean = 71.8, SD = 18.0, range: 49–111)

passed artifact correction. MEG sensor-level data were transformed into planar gradients for

sensor-level analysis. This procedure emphasizes activity directly above a source, simplifying

interpretation of MEG topographies [83]. Source analysis was carried out using a linearly con-

strained minimal variance (LCMV) beamformer [84], calculating a spatial filter based on the

whole length of all trials. Individual structural MR images were aligned with the MEG sensor

coordinates using NUT-MEG [85]. Individual single-shell head models [86] were constructed

using structural MRIs of each participant. The brain space was divided in 10-mm grid voxels

and normalized to the MNI brain using a warping procedure. Source time courses for each

grid point were calculated and subjected to a wavelet analysis described below.

Data were filtered to obtain lower-frequency oscillatory power between 2 and 30 Hz using

wavelets with a 5-cycle length; resulting time-frequency data were smoothed with a Gaussian

kernel (FWHM 200 ms and 2 Hz) to account for interindividual differences and changes in

time-frequency resolution across frequencies. To obtain higher-frequency oscillatory power in

the gamma range (30–100 Hz), a multitaper approach was used with a 300-ms window and a

spectral smoothing of ±10 Hz, resulting in the use of five tapers. Resulting data were z-trans-

formed to the respective mean and standard deviation across time for every time-frequency

bin separately for two different recording blocks of words and faces but not separately for hits

and misses (e.g., [8]). Average mean and SD used for z-transformation are plotted in S4 Fig,

showing that mean and SD across trials subtracts also the average 1/f characteristics of the

mean signal.

iEEG recording and processing

Intracranial data were recorded from subdural grid, strip, and depth electrodes (AdTech,

recording system Deltamed, Natus or Nicolet, NicVue) referenced to a scalp electrode. The

implantation scheme depended on the suspected epileptic foci and was therefore highly vari-

able across patients (see Fig 1C). Locations of electrodes were determined using coregistered

postimplantation MRIs and postimplantation CTs. Locations were then transformed to MNI

coordinates by normalizing the postimplantation MRIs to standard MNI space using SPM8.

Data were continuously recorded at different sampling rates (4 datasets: 512 Hz, 8 datasets:

1,024 Hz, 1 dataset: 4,096 Hz).

Data from encoding phases were epoched in trials from −1.5 to 3 secs around each item

onset during encoding and downsampled to a sampling rate of 500 Hz to match sampling rate

across datasets. Data were referenced to bipolar montages to obtain maximally focal spatial

resolution [87]. To this end, each electrode was re-referenced to its neighboring electrode (for

grid electrodes across the horizontal and vertical dimension). Coordinates of these bipolar

“virtual” electrodes were calculated as located between the respective physical electrodes.
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Electrodes within or bordering areas later resected or identified as the epileptic foci were

excluded from analysis. Data were carefully visually inspected by a trained neurologist and a

second individual; electrodes with epileptogenic activity were excluded from analysis. Individ-

ual trials that exceed the mean range, variance, or kurtosis by more than 5 SDs were automati-

cally rejected. Channels yielding fewer than 10 trials after artifact correction in any condition

were rejected. This resulted in a dataset of 657 bipolar channels (of 926 recorded channels,

mean = 51.85 per patient, SD = 24.37, range 9–88). The mean number of trials across channels

and patients for word hits was 63.61 (SD = 10.44, range: 47.16–83.72), for face hits 47.84

(SD = 13.45, range: 19.15–68.70), for word misses 27.39 (SD = 10.40, range: 12.61–43.45), and

for face misses 41.63 (SD = 15.56, range: 24.47–72). iEEG data were filtered to obtain oscil-

latory power, z-transformed, and smoothed using the same settings as MEG data.

Statistical analysis: Memory and material effects

The study follows a 2 × 2 design with the factors memory (remembered versus forgotten) and

material (face versus word). The analysis scheme of iEEG and MEG data differed as a result of

the different nature of these two datasets.

MEG data were analyzed using a conventional repeated-measurements random-effects

design. Task contrasts of interest were interaction effects and main effects of the 2 × 2

repeated-measurements design (i.e., power spectrum for material × memory). In order to stay

within the fieldtrip cluster statistic framework, these contrasts were calculated using the cluster

permutated t-contrasts. In each subject, power spectra at each sensor/source-level sensor were

averaged across all trials for each cell of the 2 × 2 design matrix (word hits, word miss, face hit,

face miss). Main effects were analyzed by contrasting the means across the respective cells

using dependent t-contrasts (i.e., mean of word hits and word misses versus mean of face hits

and face misses as main effect of material). Interaction effects were calculated by contrasting

the material-specific SMEs (i.e., word hit minus word miss contrasted to face hit minus face

miss). Averaging of cell-specific means prevents a potential biasing of main effects by trial-

number differences across condition (i.e., more word-hit trials than face-hit trials). This analy-

sis scheme of t tests for testing interaction and main effects is equivalent to a 2 × 2 repeated-

measures ANOVA.

Statistical analysis of MEG data was carried out using the fieldtrip cluster permutation

approach [88]. The cluster permutation test consists of two steps: First, clusters of coherent t-

values exceeding a certain threshold along selected dimensions (time, frequency, electrodes/

grid voxels) are detected in the data. Second, summed t-values of these clusters are compared

to a null distribution of t-sums of random clusters obtained by permuting condition labels

across subjects. This procedure effectively controls for type I errors due to multiple testing. For

sensor analysis, 3D clusters (electrodes × time × frequency) were built by identifying neighbor-

ing time-frequency-channel bins involving at least two neighboring channels with a p-value

below 0.01 (lower p-threshold to identify coherent clusters in higher-dimensional clustering).

For source-space analysis, clusters were formed across the spatial dimension (p-level threshold

0.05).

iEEG electrodes across the whole patient sample covered widespread brain areas; however,

the varying electrode implantation scheme in each patient impeded a similar random-effects

analysis as in MEG. iEEG analysis was restricted to the two time-frequency windows identified

in MEG analysis (alpha/beta 8–20 Hz, 0.3–1.5 s, gamma: 50–90 Hz, 0.3–1 sec) or a priori

defined (theta 2–5 Hz, 1–1.5 s). A 2 × 2 ANOVA (memory × material) was calculated on the

single trials in each single electrode. Concordance of iEEG and MEG results was tested using

χ2 tests of independency. Calculating a χ2 test requires two different categorical variables in
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one single population (here: iEEG effect direction and location relative to MEG-source clus-

ters). The overlap of iEEG and MEG effects was consequently estimated by counting the num-

ber of iEEG electrodes in each significant MEG-source cluster showing an uncorrected

p< 0.05 negative, positive, or no difference. These absolute numbers of electrodes in each

MEG-defined region was used to construct a contingency table, and a χ2 test of independence

was employed to assess statistical significance of the dependency of MEG and iEEG effects. In

a control analysis, χ2 test of independence was additionally calculated employing a more liberal

categorization of iEEG electrodes based solely on direction of effects (positive or negative dif-

ference, see S2 Fig).

To elucidate differences in SMEs (i.e., interaction of material × memory) in iEEG data in a

group random-effects manner, all electrodes showing a significant main effect of memory in a

frequency band of interest were averaged in each subject and subjected to the same random-

effects repeated-measurement ANOVA analysis schema as MEG data. This random-effects

group analysis of an interaction was restricted to preselected electrodes exhibiting a main effect

of memory. This preselection is no circular analysis (no “double dipping”), as interaction

effects are independent of main effects.

To further ensure that the preselection of memory-effect electrodes is not missing effects,

an additional FEA combining all electrodes across all patients was carried out. To this end, a

random distribution of the number of electrodes showing a negative or positive main or inter-

action across the whole patient/electrode sample was estimated by randomly shuffling the trial

labels (word–face, remembered–forgotten) in each subject 10,000 times and calculating the

number of significant electrodes in each permutation. If the number of electrodes exhibiting a

significant main or interaction effect in the data was observed in less than 5% of permutation,

the pattern of results was regarded as significant.

Analysis of latency differences

For analysis of timing differences of gamma and theta SMEs in iEEG, we employed a correla-

tion analysis. For this analysis, theta (2–5 Hz) and gamma power (50–90 Hz) were correlated

across trials in selected electrodes for every time point × time point combination by calculating

Fisher z-transformed Pearson’s correlation coefficients. To assess whether and at which time

point combinations are consistently positive or negative correlations evident across selected

electrodes, a cluster permutation test was applied. As a first-level statistic, t-values were calcu-

lated testing correlations against zero. These t-values were then summed across coherent 2D

cluster in time × time space. To assess the significance of these t-sum values, this procedure

was repeated 1,000 times for randomly shuffled trials to generate a distribution of coherent 2D

clusters under the null hypothesis. The summed t-values of coherent clusters from the real

data were then compared against the summed t-values of coherent clusters from the random-

ized data.

For analysis of timing differences of gamma and theta SMEs in MEG, we employed an

area-under-the-curve analysis, which has been shown to be more reliable in finding latency

differences compared to peak latency analysis [89]. First, a t-contrast was calculated for theta

and gamma power for all remembered versus forgotten trials in each subject for each source-

level sensor at each time bin between 200 and 1,500 ms. Second, these t-value time courses

were thresholded at zero; for gamma SMEs, all negative t-values were set to zero (as timing of

positive SMEs was of interest), and vice versa for theta SMEs (all positive t-values were set to

zero). Third, frequency-specific peaks were identified by summing these thresholded t-value

time series across the whole time series and selecting the 5% of sensors with the highest abso-

lute t-sum. Fourth, the t-value time series was averaged across the peak sensors in each subject,
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and the area under the SME curve was calculated by integrating across the time dimension

(i.e., summing at each time point the t-values up to this time point relative to the t-sum across

all time bins). These specific thresholding and sensor-selection criteria were employed to allow

for a conservative estimation of latency differences. Running the timing analysis in the ROIs

reported in Fig 4 biases the analysis to show earlier gamma and later theta effects. This necessi-

tates an approach in which sensors are selected based on criteria that render any timing com-

parison between the two frequency bands fair (i.e., unbiased). Important points to be

considered are that (1) the selected sensors should carry signal (i.e., there should be an SME),

as timing analysis on sensors without an effect just leads to a flat curve. (2) Selection should be

specific for each frequency band because gamma and theta effects appear at different locations.

(3) Gamma and theta effects likely differ in spatial extent; therefore, selecting a fixed number

of sensors helps selecting spatially limited “hotspots.” (4) Thresholding (i.e., setting negative/

positive values to zero) simplifies calculating the area under the curve and ensures that the

analysis is not primarily driven by later/earlier effects in the opposing direction. S9 Fig shows

that the results of the analysis remain stable when using more-liberal selection and threshold-

ing criteria (i.e., average across all sensors, and no thresholding of SME curves). This area-

under-the-curve procedure returns a time-resolved curve illustrating for each time point the

percentage of the SME curve covered. To assess statistical differences in area-under-the-curve

measure of theta and gamma SMEs, again a cluster permutation approach was utilized, shuf-

fling the condition (theta/gamma) 1,000 times across subjects and clustering significant t-val-

ues along the time dimension.

Supporting information

S1 Fig. (A) Cluster statistics results corresponding to Fig 2. t-Sum plots show significant clus-

ters exhibiting material-specific changes in lower (2.30 Hz) and higher frequencies (40–100

Hz), respectively. (B) Relative change to baseline in MEG (−600- to −100-ms prestimulus) sep-

arately for the “word” cluster (see Fig 2B, red frontal cluster) and (C) in the “face” cluster (see

Fig 2B, blue posterior cluster). Note that relative increases and decreases largely match the

selected time-frequency bands of interest and that the general pattern of differences is qualita-

tively similar to the reported results contrasting z-transformed data. MEG, magnetoencepha-

lography.

(TIF)

S2 Fig. (A and C) The overlap of MEG and iEEG material effects is visualized by plotting for

each category of iEEG electrodes (2, “w < f”: light blue, “w > f”: orange, or no significant dif-

ference: gray); the percentage of electrodes located in areas exhibit nominally positive or nega-

tive differences in MEG (w < f: red, w> f: blue). This analysis is a replication of the analysis in

Fig 2 using more-liberal criteria for categorizing negative/positive effects in MEG. The num-

bers plotted on top of the bars denote the absolute numbers of electrodes in each source area,

respectively. χ2 Test of independence shows that distribution of iEEG effects and MEG differ-

ences is not independent (alpha/beta: χ2
2 = 38.75, p< .0001, gamma χ2

2 = 7.14, p = .028). (B

and D) Scatterplots of differences of word–face alpha/beta or gamma power, respectively, in

iEEG electrodes and the corresponding MEG source sensor. Both gamma power and alpha/

beta power changes correlated significantly between iEEG electrodes and matching MEG

source sensors. iEEG, intracranial electroencephalography; MEG, magnetoencephalography.

(TIF)

S3 Fig. Results of a spatial cluster permutation analysis clustering across electrodes with a

maximal distance of 2 cm. Orange highlights electrodes belonging to a significant positive
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cluster; blue highlights clusters belonging to a significant negative cluster. Note that the overall

pattern of results is similar to reported uncorrected electrodes plots in Figs 2 and 4 and to per-

mutation statistics based on significant electrodes numbers (Fig 4G).

(TIF)

S4 Fig. Average mean and SD across all subjects and sensors in MEG used for z-transfor-

mation. Note that the average mean subtracted from the data when z-transforming the data

already subtracts part of the frequency tilt by subtracting the average signal. MEG, magnetoen-

cephalography.

(TIF)

S5 Fig. Average power spectra of all conditions in SME ROIs (see Fig 4). Black and red dots

mark uncorrected and FDR-corrected significant SMEs, respectively. Note that the difference

in spacing of dots in higher and lower frequencies results from the difference in frequency res-

olution. The significance test here is directly depending on the reported results in Fig 4. Signif-

icance in this plot is solely highlighted to illustrate the frequency specificity of reported SMEs,

i.e., that low-frequency negative SMEs do not necessarily coappear with positive high-fre-

quency SMEs. FDR, false discovery rate; ROI, region of interest; SME, subsequent memory

effect.

(TIF)

S6 Fig. Results of the spectral tilt fit in MEG data in SME ROIs source cluster (see Fig 4).

Bar plots show average fitted slopes for each condition and fit; dots mark individual subjects.

Asterisks highlight significant effects. Note that task-related differences in slopes are varying

with fitted frequency band. Raw power plots show the raw power spectrum in log–log space

with fitted frequency tilts spanning the respectively fitted frequency bands. Residual power

spectrum plots show power spectra after tilt correction; crosses highlight detected peaks in the

spectrum. Black and red dots mark uncorrected or FDR-corrected significant SMEs, respec-

tively. Note here that SMEs mostly remain stable after tilt correction, except for gamma effects,

which in MEG vanish when correcting tilt. FDR, false discovery rate; MEG, magnetoencepha-

lography; ROI, region of interest; SME, subsequent memory effect.

(TIF)

S7 Fig. Results of the spectral tilt fit in iEEG data in SME ROI electrodes (see Fig 4). Bar

plots show average fitted slopes for each condition and fit; dots mark single electrodes. Aster-

isks highlight significant effects. Note that task-related differences in slopes are varying with

fitted frequency band. Raw power plots show the raw power spectrum in log–log space with

fitted frequency tilts spanning the respective frequency bands used for fitting. Residual power

spectrum plots show power spectra after tilt correction; crosses highlight detected peaks in the

spectrum. Black and red dots mark uncorrected or FDR-corrected significant SMEs, respec-

tively. Note here that SMEs mostly remain stable after tilt correction. FDR, false discovery rate;

iEEG, intracranial electroencephalography; ROI, region of interest; SME, subsequent memory

effect.

(TIF)

S8 Fig. Simulation approach using Gaussian distributed curves with substantial differences

in SDs demonstrating that the area-under-the-curve method is sensitive to latency differ-

ence also when contrasting signals with differences in smoothness.

(TIF)

S9 Fig. AUC latency analysis replicating the analysis in Fig 5H using different thresholding

for area calculation and varying sensor definitions. (A) AUC for SME curves based on
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subject-specific averages across all source sensors and using no threshold for area calculation.

(B) AUC for SME curves based on subject-specific averages across all source sensors and using

a threshold for area calculation (theta SME area< 0, theta SME area> 0). (C) AUC for SME

curves based on subject-specific averages across individual 5% sensor with highest average

effects (200–1,500 ms) and using no threshold for area calculation. The average area under the

SME curve reached at each time point in these frequency- and subject-specific ROIs is plotted

for gamma and theta SMEs; the gray area highlights the significant cluster (random cluster

permutation) in which gamma SMEs significantly precede theta SMEs. Plots below show the

average SME curves. Note that the latency difference remains significant irrespective of used

thresholding or sensor selection. AUC, area under the curve; ROI, region of interest; SME,

subsequent memory effect.

(TIF)

S1 Text. Supplementary methods: Spatial cluster permutations statistics iEEG. iEEG, intra-

cranial electroencephalography.

(DOCX)

S2 Text. Supplementary methods: Spectral tilt fit.

(DOCX)
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