
   
 

    
 

 

 

PREDICTING POPULATION TRENDS UNDER 

ENVIRONMENTAL CHANGE: COMPARING 

METHODS AGAINST OBSERVED DATA 

 

 

Fiona Elizabeth Bridget Spooner 

 

 

A thesis submitted in partial fulfilment of the  

requirements for the degree of: 

 

Doctor of Philosophy of  

University College London 2019 

 

 

 

Primary supervisor: 

Prof. Richard G. Pearson 

Secondary supervisor: 

Dr Robin Freeman 

 

 

 



   
 

    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



   
 

    
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I, Fiona Elizabeth Bridget Spooner, confirm that the work presented in 

this thesis is my own. Where information has been derived from other 

sources, I confirm that this has been indicated in the thesis





   
 

i 
 

ABSTRACT 
 

In this thesis I examine a range of approaches for predicting the impact of recent climate 

change and land use change on observed population trends. The thesis is split into three 

main parts. Firstly, I used linear mixed effects models to provide the first global assessment 

of the effects of environmental change on bird and mammal population trends. I find that 

populations have declined more rapidly in areas which have experienced rapid warming, 

this effect was more pronounced in bird populations.  

Secondly, I built habitat suitability models for 16 mammal species to explore the 

relationship between predicted habitat suitability and population abundance. I explored the 

correlations between time-series of rates of change in habitat suitability and corresponding 

time-series of observed population growth rates. There was little evidence to support the 

idea that population growth rates are directly linked to habitat suitability. However, when 

lagged responses are considered there is a stronger positive relationship between changes 

in habitat suitability and population growth rates, highlighting the importance of 

biodiversity time-series.  

Lastly, I built coupled niche-demographic (CND) models for three mammal species: Alpine 

ibex, brown bear and red deer. These are habitat suitability models linked with population 

models with dispersal mechanisms; they can be used to predict species abundance trends. 

CND models have been assumed have greater predictive accuracy than habitat suitability 

models, but there has been limited validation of CND model predictions against observed 

data. I found that CND models are an improvement on habitat suitability models.  However, 

both sets of models perform relatively poorly. Simpler linear mixed effects models were 

able to provide more accurate estimates of average population growth. This suggests that 
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the high data requirements and computational resources needed to run CND models may 

be excessive, as currently, more parsimonious models provide better predictions of 

population growth rates. 
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IMPACT STATEMENT 
 

In recent decades global biodiversity has faced multiple human-driven threats, leading to 

extinction rates being 1,000 times higher than expected. Two of the most significant threats 

to biodiversity are climate change and loss of habitat to anthropogenic land use. Both 

processes are anticipated to continue to threaten biodiversity for the foreseeable future. 

Understanding the patterns and processes of these threats on biodiversity is crucial to the 

effective conservation of populations and the consequent maintenance of ecosystem 

function. In this thesis I examined a range of approaches for predicting the impacts of 

recent climate change and land use change on observed animal population trends. I 

focussed on population trends of terrestrial birds and mammals, as these species tend to be 

well studied, and there is sufficient information available on them to build models across a 

spectrum of complexity.  

In Chapter Two I analysed the recent impacts of climate change and land use change on 

observed bird and mammal population trends (1950-2005), providing the first global study 

of the impacts of recent environmental change on vertebrate population trends. I found that 

both bird and mammal population trends have declined fastest in locations where mean 

temperature has increased most rapidly, this effect is more noticeable in birds. This work 

has been published in a leading international peer reviewed journal and has been presented 

to a range of audiences, most notably a major international conservation conference. This 

work was also included in the Living Planet Report (2018), a biennial report produced by 

WWF which receives high levels of publicity. Additionally, this work was cited in a 

Scientific American article – “Trump to Curb Protections as Warming Endangers 

Species”. 
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This thesis also assesses the predictive accuracy of a novel modelling techniques by 

comparing predictions of population trends to observed population trends. There is 

potential for this technique to be used to estimate species extinction risk due to climate 

change, which would have major policy impact. However, this technique has not yet been 

validated against observed population trends and this is what I present in this thesis. The 

outputs of this work will be brought about through publication in high-impact journals. 
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CHAPTER ONE: 

INTRODUCTION 
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DRIVERS OF BIODIVERSITY LOSS 
 

Over recent centuries, global biodiversity has faced increasing pressures from human 

activities, such as habitat fragmentation, introduction of non-native species, direct 

exploitation and climate change (Barnosky et al., 2011). These human-induced threats have 

led to high rates of species extinctions which are estimated to be 1,000 times the 

background rate (De Vos et al., 2015). Alongside extinctions, species have undergone 

substantial range losses (Ceballos & Ehrlich, 2002; Rodríguez, 2002; Thomas, 2004) and 

declines in abundance (Stuart et al., 2004; Craigie et al., 2010; WWF, 2018). Human 

impacts are pervasive; almost a third of protected areas are estimated to be under intense 

human pressure (Jones et al., 2018), and increases in human footprint have been directly 

linked to increases in species extinction risk (Di Marco et al., 2018). Biodiversity loss is 

having a profound impact on fundamental ecological processes, with the loss of ecosystem 

services costing >10% of the annual global gross product (IPBES, 2018). Species 

extinctions have caused declines in biomass production and decomposition rates (Hooper 

et al., 2012); losses in marine biodiversity are associated with stock collapse and decreased 

water quality (Worm et al., 2006); and habitat loss and land degradation are negatively 

impacting the well-being of 3.2 billion people (IPBES, 2018). Understanding the patterns 

and processes of the drivers of biodiversity loss is fundamental to providing effective 

conservation. 

HABITAT LOSS 

 

The primary driver of terrestrial species extinctions and population declines has been 

habitat loss and fragmentation (Millennium Ecosystem Assessment, 2005; Jetz, Wilcove, 

& Dobson, 2007; Vié, Hilton-Taylor, & Stuart, 2009), this is expected to continue 

throughout the twenty-first century (Sala, 2000). There is debate about the effect of habitat 
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loss on local species richness. It has been found that on average the effect of human induced 

habitat loss and fragmentation have decreased local species richness by 13.6% (Newbold 

et al., 2015). However, it has also been found that over time local species assemblages have 

changed in composition, by becoming more homogenised, but there has not been a 

detectable decline in local species richness (Dornelas et al., 2014).  

Future land use change projections indicate that there will be multiple future extinctions in 

biodiversity hotspots (Jantz et al., 2015) and that mammal population declines will be 

greatest in Africa and North America (Visconti et al., 2011). Habitat loss threatens the 

continued provision of multiple simultaneous ecosystem services as this requires high 

species diversity (Cardinale et al., 2012; Winfree et al., 2018), because different species 

provide ecosystem functions at different places and different times (Isbell et al., 2011).  

Habitat loss is thought to be the most prevalent cause of extinctions and population declines 

(Jetz, Wilcove and Dobson, 2007), however, anthropogenic climate change is increasingly 

considered to be an equal, if not more, important driver (Bellard, Bertelsmeier, Leadley, 

Thuiller, & Courchamp, 2012; Lemoine, Bauer, Peintinger, & Böhning-Gaese, 2007; 

Travis, 2003). 

CLIMATE CHANGE 

 

Between 1850 and 2005 average global surface temperatures increased by 0.61oC and are 

expected to increase by a further 0.3-0.7oC between 2016 and 2035 (IPCC, 2014). Climate 

change is a major global environmental threat and will be a key driver of biodiversity loss 

in the coming century (Brook et al., 2009; Dawson et al., 2011). Recent climate change has 

had significant ecological impacts (Parmesan, 2006), including changes in the distribution, 

abundance, demography and phenology of many species (Stevenson & Bryant, 2000; 

Walther et al., 2002; Thomas et al., 2004; Fordham et al., 2013). Species distributions have 

shifted pole-ward at a median rate of 16.9km per decade and moved to higher elevations at 
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a median rate of 11m per decade (Chen et al., 2011). Such changes have meant that some 

species, in particular those which are range restricted, are now at risk from extinction due 

to severe losses in climatically suitable habitat (Freeman, Scholer, Ruiz-Gutierrez, & 

Fitzpatrick, 2018; Parmesan, 2006).  

 

Climate change has also influenced species abundance, a global meta-analysis showed that 

80% of species have experienced abundance shifts in the direction predicted under climate 

change (Parmesan & Yohe, 2003). Additionally, climate change has been explicitly linked 

to population declines and extinction of range restricted amphibian species (La Marca et 

al., 2005) and the abundance declines and local extirpations of high elevation tropical bird 

species (Freeman et al., 2018). Climate change does not uniformly disadvantage all species. 

Warm-adapted bird species in Europe and the United States have increased in abundance 

since 1980, whereas cold-adapted species have declined (Stephens et al., 2016). Similarly, 

abundances of warm-adapted European montane plant species have increased between 

2000 and 2009, whilst cold-adapted species have declined (Gottfried et al., 2012).  

 

INTERACTIONS BETWEEN CLIMATE CHANGE AND HABITAT LOSS 

 

Habitat loss and climate change are both major drivers of global biodiversity loss, and they 

do not act in isolation. Habitat loss is a major contributor to climate change, whilst climate 

change can exacerbate the impacts of habitat loss (IPBES, 2018). Meta-analyses have 

shown the effects of habitat loss and fragmentation are greatest in areas where maximum 

temperature is highest (Mantyka-Pringle, Martin and Rhodes, 2012). However, the 

mechanisms by which these two processes interact and the impact of this interaction on 

biodiversity is not well understood.  
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Habitat structure is an important determinant of meta-population dynamics and changes to 

land use can have impacts on habitat patch size and connectivity. This loss of connectivity 

can diminish the ability of a species to shift its distribution (Oliver and Morecroft, 2014), 

which is a common response of species to climate change (Chen et al., 2011). This means 

that the impacts of climate change may be more severe where habitat loss has occurred. 

However, dry-adapted generalist species have been found to prosper in agricultural 

landscapes which have undergone climate warming (Frishkoff et al., 2016).   

MEASURING THE IMPACTS OF ENVIRONMENTAL CHANGE 

 

Biodiversity loss is often measured in terms of species richness and extinctions, however 

these are relatively coarse units (Dirzo et al., 2014; Selwood, Mcgeoch and Mac Nally, 

2015). There can be significant population declines within an ecosystem, causing 

breakdown of ecosystem function, but this will not be reflected in measures of species 

richness if no species become locally extinct (Ceballos and Ehrlich, 2002). Extinction is a 

protracted process and species have often ceased to have any meaningful contribution to 

ecosystem function long before they become extinct (Säterberg, Sellman and Ebenman, 

2013). Estimates of species richness can over-emphasise the contribution to ecosystem 

function of rare species and overlook declines of common species which may have a much 

greater impact (Winfree et al., 2015). However local animal population declines and 

changes in community composition can occur rapidly and have significant detrimental 

impacts on the ecosystems in which they occur (Dirzo et al., 2014). In terms of measuring 

the services and function of an ecosystem, it is more useful to monitor population trends, 

rather than species richness (Ceballos and Ehrlich, 2002).  

 

Despite its greater utility there are relatively few studies which use species abundance as 

the response metric when exploring the impacts of habitat loss and/or climate change on 
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biodiversity loss. This is because abundance is difficult and time-consuming to estimate 

compared to other metrics, such as occurrence (He and Gaston, 2000). Studies which have 

explored the effects of habitat loss and/or climate change on population trends are often 

limited to areas of greater data availability, for example Europe and North America 

(Lemoine et al., 2007; Stephens et al., 2016; Martay et al., 2017). As a result, there has 

been no previous global multi-species assessment of the observed impacts of climate 

warming and habitat loss on population trends and this is what I address in Chapters Two 

and Three. I use the Living Planet database as a source of observed population trends.  The 

Living Planet database is a long-term data set of population abundance data for vertebrate 

species (Loh et al., 2005). There are currently records for >21,000 populations of 4,260 

mammal, bird, reptile, amphibian and fish species from 1950-2017. The population trend 

data from the Living Planet database are taken from both grey and published literature, if 

certain criteria are fulfilled it is included in the database (for criteria see Loh et al., 2005). 

PREDICTING SPECIES RESPONSES TO ENVIRONMENTAL CHANGE 
 

HABITAT SUITABILITY MODELS 

 

A key area of ecological research is centred on predicting how species will respond to 

environmental change. A popular modelling approach, which has been used extensively to 

predict species responses to future change, is habitat suitability modelling (Thomas et al., 

2004). Habitat suitability models (which are synonymous with correlative niche models 

and species distribution models (Araújo & Peterson, 2012)) are used to statistically 

correlate species occurrence data with corresponding environmental variables. This is then 

used to identify statistically similar locations and estimate the distribution of suitable 

habitats (Kearney & Porter, 2004). This method of modelling is popular and well-

established because habitat suitability models perform well at predicting species range 
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shifts in response to climate change (Araújo, Whittaker, Ladle, & Erhard, 2005). These 

models have low data requirements and the modelling process is relatively simple (Phillips, 

Dudík, & Schapire, 2004). Additionally, the outputs of habitat suitability models are easy 

to validate as there are an abundance of known species ranges to which predicted maps of 

suitable habitat can be compared (Ehrlén and Morris, 2015).  

 

Species abundance is often assumed to be highest in the centre of a species range, which is 

also assumed to correspond to the centre of the species niche (Sagarin & Gaines, 2002). 

However, there is limited evidence to support this and empirical tests show results to be 

mostly inconsistent with theoretical expectations (Santini, Pironon, Maiorano, & Thuiller, 

2018). A possible reason for the lack of congruence between reality and expectation is that 

both population trends and habitat suitability fluctuate over time, and there may be lagged 

responses of species abundances to changes in habitat suitability (Hylander and Ehrlén, 

2013). I test this, for the first time, in Chapter Three by comparing time-series of population 

growth rates from the Living Planet database to time-series of modelled rates of change in 

habitat suitability. 

 

COUPLED NICHE-DEMOGRAPHIC MODELS 

 

Habitat suitability models have been criticised for over-simplifying the ecology of species 

distributions by overlooking factors such as species interactions, dispersal and population 

dynamics (Keith et al., 2008; Brook et al., 2009; Araújo & Peterson, 2012). There has been 

development of habitat suitability models to incorporate some of these ecological 

mechanisms. This has led to the creation of coupled niche-demographic models. These link 

habitat suitability models with demographic models, through incorporating population 

dynamics into the habitat suitability model and allowing species dispersal. These models 
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are more data intensive as it is necessary to parameterise the processes of survival, 

reproduction and dispersal (Brook et al., 2009), each of which may vary stochastically and, 

or deterministically. The high data requirements of these models means that they are only 

be applicable to well-studied species (Fordham et al. 2013). Coupled niche-demographic 

models are becoming widely used (Jenouvrier et al. 2012; Fordham et al. 2013), and their 

superior performance to habitat suitability models has so far been assumed. Thus far, there 

has been limited work towards assessing the predictive accuracy of coupled niche-

demographic models, because the necessarily detailed and complex observed datasets 

required for validation are rare (Fordham et al., 2017; Zurell, Thuiller, Pagel, Sarmento 

Cabral, et al., 2016).  

 

VALIDATING PREDICTED SPECIES RESPONSES 

 

Virtual species data have been used to assess the predictive accuracy of a selection of 

dynamic range models of varying complexity, including coupled niche-demographic 

models. When used to predict under present day conditions, more complex models slightly 

outperformed simple habitat suitability models. However, under climate change all the  

complex models significantly outperformed habitat suitability models. (Zurell et al., 2016). 

The only attempt at validating coupled niche-demographic models on observed data has 

been for 20 British bird species, comparing predicted range shifts to observed range shifts 

between 1970 and 2010 (Fordham et al., 2017). Here, more complex coupled niche-

demographic models tended to outperform simpler habitat suitability models. However, 

when static land use data were included there was little difference in the performance of 

the models.  

A novel feature of coupled niche-demographic models is that they provide predictions of 

abundance, and when used to produce time-series they can predict population trends. These 
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predicted population trends can be used to estimate time to extinction, thereby predicting 

species extinction risk (Buckley et al., 2010; Fordham et al., 2012). However, it is not 

known how accurate these predictions of population trends are as they have yet to be 

validated against observed population trends. I address this in Chapter Four, using observed 

population trend data from the Living Planet database to assess the predictive accuracy of 

coupled niche-demographic models. Validation of the accuracy of these models against 

observed population trends is essential in order to improve predictions of the impacts of 

climate change on biodiversity, so that coupled niche-demographic models can be used to 

their full potential as a conservation management tool (Pacifici et al., 2015).  

 

THESIS OVERVIEW  
 

In this thesis I present and evaluate techniques for predicting population trends of terrestrial 

mammal and bird species. I use a range of methods of varying levels of complexity and 

assess their predictive accuracy against observed population trend data from the Living 

Planet database. I begin this thesis with an introduction chapter, followed by three data 

chapters, ending with a discussion and conclusion chapter. In each chapter the ideas were 

conceived by Richard G. Pearson, Robin Freeman and me; I designed the research, 

collected and analysed the data; I led the writing with critical input from Richard G. Pearson 

and Robin Freeman. 

Chapter Two. I performed a global analysis of the impacts of the rate of climate warming 

and the rate of conversion to anthropogenic land use on bird and mammal population trends. 

I gathered abundance time-series data for 987 populations of mammals and birds and 

calculated the average population growth rate for each population. I also extracted annual 

measures of mean temperature and anthropogenic land use cover at the site of each 

population and calculated the corresponding average rates of climate warming and 
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conversion to anthropogenic land use over the series of years each population trend covers. 

I also gathered species body mass data and data on protected area coverage of each of the 

populations. I used linear mixed effects models to determine the amount of variation in bird 

and mammal population trends that could be explained by the following factors: rate of 

climate warming (RCW), rate of conversion to anthropogenic land use (RCA), the 

interaction between RCA and RCW, species body mass and protected area coverage. This 

provides the first global study of the impacts of climate change and anthropogenic land use 

conversion on animal population trends. This chapter has been published in Global Change 

Biology: Spooner FEB, Pearson RG, Freeman R. Rapid warming is associated with 

population decline among terrestrial birds and mammals globally. Glob Change Biol. 2018; 

24:4521–4531.https://doi.org/10.1111/gcb.14361. 

Chapter Three. In this chapter I explored the relationship between predicted habitat 

suitability trends and observed population trends. I build habitat suitability models for 16 

species and used these models to create annual maps of predicted habitat suitability across 

each species range. From these maps I extracted annual trends in habitat suitability at the 

location of 177 populations. I explored the correlations between rate of change in habitat 

suitability and population growth rates. I also investigated if correlations were higher when 

lagged responses of population growth rates to changes in habitat suitability were 

considered.  

Chapter Four. In the final data chapter, I built coupled niche-demographic models for 

three species (red deer, brown bear and Alpine ibex) for which 17 population trends are 

available in the Living Planet database. These models were based upon the habitat 

suitability models from Chapter Three. Coupled niche-demographic models incorporate the 

ecological processes of population dynamics and dispersal into habitat suitability models. 

There has been limited validation of these models against observed trends to date. In this 
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chapter I assessed the performance of these models in two ways. Firstly, I compared the 

performance of coupled niche-demographic models to habitat suitability models. I 

correlated predicted population growth rates with observed population growth rates and 

compared these predictions to the correlations between rates of change in habitat suitability 

trends and observed population growth rates, which were calculated in Chapter Three. 

Secondly, I compared the predicted average population growth rates from both the coupled 

niche-demographic models and the best performing linear mixed effects model (Chapter 

Two) to the observed population growth rates. 
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CHAPTER TWO: 

RAPID WARMING IS ASSOCIATED WITH 

POPULATION DECLINE AMONG TERRESTRIAL 

BIRDS AND MAMMALS GLOBALLY 
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ABSTRACT 

Animal populations have undergone substantial declines in recent decades. These declines 

have occurred alongside rapid, human-driven environmental change, including climate 

warming. An association between population declines and environmental change is well 

established, yet there has been relatively little analysis of the importance of the rates of 

climate warming and its interaction with conversion to anthropogenic land use in causing 

population declines. Here I present a global assessment of the impact of rapid climate 

warming and anthropogenic land conversion on 987 populations of 481 species of 

terrestrial birds and mammals since 1950. I collated spatially referenced population trends 

of at least 5 years’ duration from the Living Planet database and used mixed effects models 

to assess the association of these trends with observed rates of climate warming, rates of 

conversion to anthropogenic land use, body mass and protected area coverage. I found that 

declines in population abundance for both birds and mammals are greater in areas where 

mean temperature has increased more rapidly, this effect is more pronounced for bird 

populations. However, I do not find a strong effect of conversion to anthropogenic land 

use, body mass or protected area coverage.  Our results identify a link between rapid 

warming and population declines, thus supporting the notion that rapid climate warming is 

a global threat to biodiversity. 

INTRODUCTION 

Global animal abundance has declined by 58% since 1970 (WWF, 2016). Key drivers of 

population declines include climate change and conversion of natural habitat to 

anthropogenic land uses, both of which have had major impacts on biological systems 

(Rosenzweig et al., 2008; Newbold et al., 2016) and are widely thought to be global threats 

to biodiversity (Thomas et al. 2004; Millenium Ecosystem Assessment 2005). The response 

of animal populations to these rapid environmental changes has not been consistent: some 
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populations have experienced increasing abundance and expanding distributions; 

conversely, other populations have suffered shrinking abundances and distributions 

(Frishkoff et al., 2016; La Marca et al., 2005; Thomas, Franco, & Hill, 2006). Declines in 

animal populations result in an erosion of ecosystem function and loss of ecosystem 

services (Ehrlich & Daily, 1993; Parmesan & Yohe, 2003; Thomas et al., 2006; Winfree et 

al., 2015). 

It is well established that species have responded to climate warming through altitudinal 

and latitudinal shifts in distribution (Parmesan and Yohe, 2003) and with the advancement 

of phenological events (Root et al., 2003). However, the effect of climate warming on 

animal abundance trends has been less well explored and multi-species studies have thus 

far been limited to Europe and North America. Martay et al. (2017) found that climate could 

explain significant country-level population declines in moths and increases in winged 

aphids across Great Britain, but found no group-wide trends for butterflies, birds or 

mammals. By contrast, it has been observed that warm-adapted butterflies and beetles in 

central Europe and warm-adapted birds across Europe and North America have had higher 

population growth rates under climate warming than those which are cold-adapted (Jiguet 

et al., 2010; Bowler et al., 2015; Stephens et al., 2016). These trends may lead to a future 

divergence of population trends, with warm-adapted species increasing in abundance and 

cold-adapted species declining (Gregory et al., 2009). To our knowledge there has been no 

previous global multi-species assessment of the observed impacts of climate warming on 

population trends. Furthermore, aforementioned studies have aggregated climate to country 

or range level, and population data are often aggregated to species level, which does not 

allow for population level variation in responses to climate warming.  

Previous studies have shown that phenological and latitudinal shifts are greatest in areas 

that have experienced most warming (Rosenzweig et al., 2008; Chen et al., 2011). Natural 
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variability ensures that many populations can accommodate and respond to various types 

of change; however, local extinction occurs if the rate of climate warming exceeds the 

maximum possible rate of adaptive response (the adaptive capacity). To date, there have 

been no large-scale analyses exploring the relationship between the rate of climate warming 

(as opposed to the magnitude of warming) and animal population trends. I hypothesize that 

locations which have undergone faster climate warming will be locations where the threat 

to biodiversity is greatest and which have experienced more rapid population declines.  

Habitat loss and fragmentation are known to be the primary drivers of biodiversity loss 

(Millennium Ecosystem Assessment 2005). Global studies have shown that the conversion 

of natural habitat to anthropogenic land uses leads to local declines in both species richness 

and abundance and that these declines are greater where conversion to anthropogenic land 

use has been greater (Newbold et al., 2015). I therefore hypothesize that in areas where 

conversion to anthropogenic land use has been most rapid, there will be greater population 

declines. 

Threats to biodiversity rarely act independently and can often have exacerbating 

interactions. In particular, the interaction between anthropogenic land use conversion and 

climate warming has been described as a ‘deadly anthropogenic cocktail’ (Travis, 2003) 

because habitat loss reduces the ability of species to adapt to climate change (for instance 

by inhibiting range shifts; Brook et al. 2008; Mantyka-Pringle et al. 2012; Oliver and 

Morecroft 2014). Little is known about how the interaction between climate warming and 

anthropogenic land use conversion varies across habitats or species (Root et al., 2003; 

Brook, Sodhi and Bradshaw, 2008; Eglington and Pearce-Higgins, 2012; Oliver and 

Morecroft, 2014). Thus, this interaction remains a source of uncertainty when projecting 

future biodiversity trends (Sala, 2000). I therefore also hypothesize that there is an 

interaction between anthropogenic land use conversion and climate warming, such that the 
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greatest population declines will occur where there has been both rapid conversion to 

anthropogenic land use and climate warming. 

I note that there are many other factors which may impact population trends, not least the 

positive impact of conservation effort (Young et al., 2014) or the influence of species 

intrinsic traits (Lee & Jetz, 2011). Conservation efforts are often implemented through the 

creation and management of protected areas; thus, I hypothesize that population trends 

outside of protected areas will be more likely to be declining than those within them. 

Additionally, to account for the effect of species traits I explore the relationship between 

population growth rates and body mass, which is a correlate of many species traits (Brook, 

Sodhi and Bradshaw, 2008; Hilbers et al., 2016). Recent research has shown there is a 

significant relationship between vertebrate body mass and extinction risk, such that heavier 

species of birds and mammals are likely to be more at risk of extinction (Ripple et al., 

2017). I therefore hypothesize that larger bodied birds and mammals are more likely to 

have declining populations.  

I present a global study in which I spatially and temporally link observed changes in 

abundance for 987 populations of 481 species of birds and mammals (from 1950 to 2005) 

to changes in climate and land use. The combined historical, spatial and taxonomic 

coverage of the study allows the drawing out of generalizable trends on the impacts of 

recent anthropogenic environmental change on observed animal population trends. 

MATERIALS AND METHODS  

POPULATION TIME SERIES DATA 

I obtained observed population trends from the Living Planet database 

(http://www.livingplanetindex.org/data_portal), which contains time series of annual 

population estimates for over 18,000 vertebrate populations observed during the period 
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1950-2015. The time series are collated from the scientific literature, online databases and 

grey literature (Collen et al., 2009; McRae, Deinet and Freeman, 2017). To be included in 

the database there must be at least two years of population estimates and survey methods 

must be comparable for each year the population is estimated. Detailed criteria for inclusion 

in the database are outlined in Loh et al. (2005).  

For each time series, the population count data were logged (base 10) so that it was possible 

to compare changes in population trends irrespective of their size (prior to this, zeros were 

replaced with 1% of the mean population count of the time series so that it was possible to 

log these values, following Collen et al. 2009). If the number of population counts within 

each time series was sufficient (N > 6) the time series was fit with a Generalized Additive 

Model (GAM). GAMs are more flexible than linear models and therefore more appropriate 

for fitting to population trends which can often be non-linear (Collen et al., 2009). 

However, GAMs could not be fit reliably to time series where N < 6 data points, so for 

these time series I fit a linear regression. The smoothing parameter of each GAM was set 

to  
𝑁

2
 , because this was found to be a suitable value for fitting the data well without 

overfitting to noise (Collen et al., 2009). The fit of each linear regression or GAM to the 

population trends was assessed using R2.  

For each time series, I calculated the average logged rate of population change (𝝀𝒀
̅̅ ̅), or 

average lambda: 

                                                  𝜆𝑦 = log10(
𝑛𝑦

𝑛𝑦−1
)                                                     Eqn 1 

                                          𝝀𝒀
̅̅ ̅ =  

1

𝒀
∑ 𝜆𝑦 𝒏

0                                                          Eqn 2 

where 𝑛 is the population estimate of a given year, y, and Y is the total number of years 

from the first to last population estimates.  
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I then filtered the data to only include populations that met the following five criteria: (i) 

the location is known (many of the population trends in the Living Planet database are 

nationally aggregated so cannot be spatially linked to environmental data); (ii)  

environmental data and body mass data were available; (iii) time series span five or more 

years  (because longer time series will better reflect environmental changes); (iv) time 

series had R2  ≥ 0.5 when fit to the GAM or linear model (to ensure interpolated population 

estimates were reasonable); and (v) the population was recorded as being either inside or 

outside a protected area (any population recorded as both inside and outside a protected 

area was omitted).  

After the populations were filtered based on these criteria, there were 987 remaining 

populations at 441 unique study sites (Figure 2.1). These populations were made up of 416 

(42.1%) bird populations (292 species and 148 locations) and 571 (57.9%) mammal 

populations (189 species and 303 locations). This remaining subset had a mean time series 

length of 15.6 (±9.2) years and population estimates for 55.1% of the years within each 

time series.  Values for missing values were estimated using either log-linear interpolation 

or imputed from the GAMs. 

 
Figure 2.1 The points show the distribution and density of population time series used in the analysis. The 

black and white points signify bird and mammal populations respectively, where both classes are present the 

numbers of each are represented proportionally. 77.4% of the locations have one population. The base layer 

of the map shows the rate of temperature change, in degrees per year, between 1950 and 2005, based on 

analysis of the CRU TS v. 3.23 gridded time series data set (Harris et al., 2014). 
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CLIMATE DATA 

Global mean temperature data were gathered from the CRU TS v. 3.23 gridded time series 

(Harris et al. 2014; Figure 2.1), which provides monthly observations of land surface mean 

temperature at a spatial resolution of 0.5o. Monthly mean temperatures for the years 1950-

2005 were extracted for the location of each observed population time series. The extracted 

temperatures were filtered to include only the years over which population estimates were 

available, and an average value was calculated for each year. A linear regression was then 

fit to those averages, the slope of which gives the annual rate of climate warming (RCW) 

over the period of observed population estimates. 

LAND USE DATA 

Global land use data were gathered from the HYDE database (Klein Goldewijk et al., 

2011), which provides decadal (1940-2000 & 2005) grid cell coverage of cropland and 

pasture at a spatial resolution of 0.083̥o. The percentage cover of cropland and pasture were 

summed to calculate percentage cover of anthropogenic land use in each cell. For each 

population time series, land use values were extracted for the years covered by the time 

series and averaged for a 0.25 o x 0.25 o grid around the cell containing each population 

(Figure 2.2). This was done to encapsulate landscape level change around each population. 

The decadal values of anthropogenic land use were linearly interpolated to annual values 

and from these values the average annual rate of conversion to anthropogenic land use 

(RCA) was calculated for each population time series, where positive values mean an 

increase in cropland or pasture cover.  
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Figure 2.2 Illustration of how the rate of conversion to anthropogenic land use was calculated. (A) Example 

land use cover data for a population time series (1970-1990), where the white circle depicts the location of 

the population. Each grid of nine cells represents a decadal section of the HYDE data, which was cropped to 

the 0.25o x 0.25o grid surrounding each population. (B) The average value of cropland and pasture percentage 

cover for each decadal grid (black circles) and the linearly interpolated annual values (hollow circles). For 

each population, I calculated the average annual change in percentage cover of cropland and pasture over the 

years for which I have population trend data (for this example population the value would be 1%). 

BODY MASS 

Adult body mass data for birds and mammals were extracted from the amniote life-history 

database (Myhrvold et al., 2015). The body mass values were initially in grams and were 

logged (base 10) to normalise them. The values were then joined by species name to the 

corresponding Living Planet population time series. These body mass (BM) data were 

included as fixed effects in the candidate models. 

PROTECTED AREAS 

To account for the effect of protected areas on animal population trends I included protected 

area (PA) coverage as a binary fixed effect in the models. This information is available in 

the Living Planet Database.  

 

 



   
 

21 
 

LINEAR MIXED EFFECTS MODELS 

I aimed to test the extent to which bird and mammal population trends could be explained 

by rates of climate warming and conversion to anthropogenic land use. However, it is likely 

that there will be important species- and site-specific effects that could mask the impacts 

of climate warming and conversion to anthropogenic land use. To account for this, I used 

linear mixed effects models which allow us to understand the magnitude and direction of 

the effect size of explanatory variables on the response variable. The inclusion of random 

effects allows for a varying intercept for every grouping factor, here ‘species’ and ‘site’, 

thus allowing for responses that are specific for species and site. Nineteen competing linear 

mixed effects models were constructed for the 987 populations, with the average logged 

rate of population change (𝝀𝒀
̅̅ ̅) as the response variable and RCW, RCA, an interaction term 

between RCW and RCA, PA and BM as explanatory variables (Table 2.1). Species and 

study site were included as random effects in each of the models (Table 2.31). To facilitate 

comparison of effect size and the relative importance of each variable, the continuous fixed 

effects were scaled and centred by subtracting the mean and dividing by the standard 

deviation (Bates et al., 2015). 

Where there was no clear best performing model from the selection of competing models, 

the top models (where the cumulative sum of the AIC weights were ≤ 0.95) a conditional 

average and coefficients were taken from this model (Burnham and Anderson, 2002; 

Daskin and Pringle, 2018). The modelling process was carried out separately for birds and 

mammals because the life history characteristics of these two taxonomic groups differ 

enough for it to be expected that they will have different responses to environmental 

change.  
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Parameter Description Type of effect 

Species Name 
Species binomial, included to account 

for species specific responses 

Random 

intercept 

Study Site 

Unique ID based on the coordinates of 

populations from Living Planet 

database, included to account for site 

specific effects 

Random 

intercept 

Rate of Climate 

Warming (RCW) 

The rate of change in mean temperature 

per year, over the length of the 

population time series 

Fixed 

Rate of 

Conversion to 

Anthropogenic 

Land Use (RCA) 

The rate of change in percentage cover 

of cropland and pasture per year, over 

the length of the time series 

Fixed 

Body Mass (BM) 
Logged (base 10) body mass (g) of 

birds and mammals 
Fixed 

Inside Protected 

Area (PA) 

A binary variable recording whether 

each population is inside or outside a 

protected area 

Fixed 

Table 2.1 Parameters used in linear mixed effects models. 

All analyses were carried out using the statistical software R (R Core Team, 2018). The 

plyr (Wickham, 2011), taRifx (Friedman, 2014), mgcv (Wood, 2011) and zoo (Zeileis and 

Grothendieck, 2005) packages were used to format the population trend data. The 

GISOperations (Newbold, 2016), raster (Hijmans, 2016), doParallel (Microsoft 

Corporation and Weston 2015) and reshape2 (Wickham, 2007) packages were used to 

format and extract the environmental data. The linear mixed effects modelling was 

undertaken using the lme4 (Bates et al., 2015) and MuMIn (Barton, 2016) packages.  

RESULTS  

The mixed effects models reveal a strong association between rapidly warming climates 

and declines in populations for both birds and mammals (Figure 2.3). This association is 

more than twice as strong in birds than in mammals.  

In our analysis of the impact of RCA and RCW on bird and mammal populations I find 

(particularly in mammals) a variety of potential models with no clear ‘best’ model. I 

therefore took a model averaging approach, combining all models within a 95% confidence 
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set (Burnham and Anderson, 2002; Daskin and Pringle, 2018). I feel that this is a more 

conservative approach and, given the variability in potential effects within our analysis, 

more appropriate here. I have also explored using a ΔAIC < 6, which is also recommended 

in the literature (Burnham and Anderson, 2002), and the difference in our results is 

negligible (e.g. difference in all coefficients < 6.5% see Appendices). 
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Figure 2.3 The distribution of the coefficients of the average models for bird and mammal populations. 

Circles show the estimated coefficient values for each variable and solid lines show the 2.5 - 97.5% 

confidence intervals. As the data were scaled and centred prior to modelling the intercept shows the 

distribution of modelled annual population growth rates outside of protected areas and with mean values for 

RCA, RCW and Body Mass (as the centre of these values, when scaled, is now zero).  Another consequence 

of scaling and centring the data is that the coefficients show the change in annual population growth rate 

given a one standard deviation increase in each explanatory variable. For example, for bird populations an 

increase in the rate of mean temperature change of 0.07oC Y-1 would lead to an average annual population 

decline of 5.09%.  Confidence intervals that do not overlap with zero reveal a signal of either a positive or 

negative effect of a variable. Confidence intervals that overlap with zero show that within the averaged model 

an increase in a given variable has a mixture of both positive and negative effect sizes on the rate of population 

change across different populations.  

 

The top performing models (based on ≤ 0.95 sum of Akaike weights) can be found in Table 

2.2, with the full table of results in Table S2.1. All the explanatory variables feature within 

these top models, suggesting that each of these variables contribute to explaining variation 

in observed population trends. 

In both the bird and mammal sets of competing models, I found that all the models 

containing RCW were within the top performing models, comprised of those where the 

cumulative sum of the Akaike weights was ≤ 0.95. This suggests that these models are all 

useful and that RCW is the most important variable for explaining variation in both bird 

and mammal population trends.  
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Within the bird results there are two models where ΔAIC < 2 (highlighted in Table 2.2). 

The top performing model, in terms of AIC, is made up of RCW and PA, followed by the 

model with only RCW. The top performing model explains a large amount of the variation 

in avian population trends: 8.2% is explained with the fixed effects (marginal R2) and 

78.6% is explained by the fixed and random effects (conditional R2). This highlights the 

clear importance of these two variables in explaining bird population trends, which is also 

reflected in their relatively large effect sizes. I find that populations within protected areas 

tend to have less negative growth rates than populations outside of protected areas.  

 

Within the mammal results there are six models where ΔAIC < 2, between them containing 

each of the explanatory variables. This suggests that there are several quite different models 

that have a similar ability to explain variation in mammal population trends. The results for 

mammal populations are more complex than for bird populations; however, RCW is clearly 

an important variable, as evidenced by its presence in each of the six best models, its high 

relative variable importance (RVI) score of 0.95, and its large effect size. I found that the 

interaction term (RCW:RCA) was also an important variable in explaining population 

trends. This means that mammal populations that have experienced both high RCW and 

RCA tend to have more negative population growth rates. I also find that although the 

confidence intervals overlap zero, larger bodied mammals tend to have less negative 

population growth rates. The highest ranked model within the mammal data, in terms of 

AIC, was the model which contained, RCA, RCW, RCW:RCA, and body mass. The fixed 

effects of this model explain 2.8% (marginal R2) of the variation in mammal population 

trends and 44.0% is explained with both the fixed and random effects (conditional R2).   
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Table 2.2 Models included in the average model for explaining the growth rate of bird and mammal populations. The selection of models was based on a ≤ 0.95 cumulative sum of Akaike 

weights. The models are ranked in order of performance based on AIC, with higher ranking models listed towards the top of each table. Models within ΔAIC < 2 of the highest ranked 

models are highlighted with bold text and a grey background. A null model is included for comparison. RCW = annual rate of climate warming, RCA = annual rate of conversion to 

anthropogenic land use, BM = body mass, PA = population inside a protected area. The coefficient values have been transformed into percentage population change. According to the top 

ranked model for birds, an increase in RCW to rates expected under climate scenario RCP 8.5 (5-6oC, 2006-2100) would lead to an annual population decline of 3.85 - 4.65% in bird 

populations and 1.46 - 1.76% for mammal populations (for details see Appendices).  RVI (relative variable importance) is the sum of Akaike weights over all models including the 

explanatory variable.

A. Results from Bird Population Trends 
Model Δ AIC Akaike Weight Marg. R2 Cond. R2 Intercept RCW RCA RCW:RCA Body Mass Inside Protected Area 

RCW+PA 0.00 0.27 0.08 0.79 -6.12 (±2.63) -5.09 (±1.17)    5.60 (±3.50) 

RCW 0.42 0.22 0.06 0.79 -3.38 (±1.88) -5.29 (±1.17)     

RCW+BM+PA 2.06 0.10 0.08 0.79 -6.18 (±2.69) -5.10 (±1.16)   0.12 (±1.24) 5.62 (±3.51) 

RCA+RCW+PA 2.06 0.10 0.08 0.79 -6.13 (±2.63) -5.08 (±1.17) -0.11 (±1.28)   5.62 (±3.50) 

RCW+BM 2.48 0.08 0.06 0.79 -3.40 (±1.94) -5.30 (±1.17)   0.04 (±1.25)  

RCA+RCW 2.48 0.08 0.06 0.79 -3.39 (±1.88) -5.29 (±1.17) -0.02 (±1.29)    

RCW*RCA+PA 4.12 0.04 0.08 0.79 -6.12 (±2.63) -5.13 (±1.22) -0.11 (±1.28) -0.11 (±0.69)  5.60 (±3.51) 

RCA+RCW+BM+PA 4.13 0.04 0.08 0.79 -6.19 (±2.69) -5.08 (±1.17) -0.12 (±1.28)  0.13 (±1.25) 5.64 (±3.51) 

RCA*RCW 4.51 0.03 0.06 0.79 -3.38 (±1.88) -5.35 (±1.22) -0.02 (±1.29) -0.14 (±0.70)   

Null Model 22.48 <0.01 0.00 0.59 -1.23 (±1.88)      

    RVI  1.00 0.33 0.09 0.26 0.55 

B. Results from Mammal Population Trends 
Model Δ AIC Akaike Weight Marg. R2 Cond. R2 Intercept RCW RCA RCW:RCA Body Mass Inside Protected Area 

RCA*RCW+BM 0.00 0.17 0.03 0.44 0.68 (±0.94) -2.20 (±0.73) -0.75 (±0.82) -1.82 (±1.02) 1.24 (±0.82)  

RCA*RCW 0.12 0.16 0.02 0.45 0.38 (±0.95) -2.22 (±0.73) -0.55 (±0.81) -1.88 (±1.02)   

RCW 1.05 0.10 0.01 0.42 0.38 (±0.93) -1.72 (±0.68)     

RCA+RCW+BM 1.18 0.09 0.02 0.42 0.56 (±0.93) -1.71 (±0.68) -1.17 (±0.78)  1.28 (±0.81)  

RCW+BM 1.41 0.08 0.02 0.42 0.64 (±0.93) -1.71 (±0.68)   1.06 (±0.80)  

RCA+RCW 1.50 0.08 0.02 0.43 0.26 (±0.93) -1.73 (±0.78) -0.97 (±0.68)    

RCA*RCW+PA 1.97 0.06 0.02 0.45 -0.36 (±1.91) -2.24 (±0.73) -0.58 (±0.82) -1.86 (±1.02)  0.95 (±2.10) 

RCA*RCW+BM+PA 2.06 0.06 0.03 0.44 0.82 (±2.08) -2.20 (±0.73) -0.74 (±0.82) -1.83 (±1.02) 1.27 (±0.88) -0.17 (±2.25) 

RCW+PA 2.93 0.04 0.01 0.42 -0.27 (±1.88) -1.74 (±0.68)    0.40 (±2.08) 

RCA+RCW+BM+PA 3.24 0.03 0.02 0.42 0.62 (±2.06) -1.71 (±0.68) -1.17 (±0.79)  1.29 (±0.87) -0.07 (±2.25) 

RCA+RCW+PA 3.28 0.03 0.02 0.45 -0.59 (±1.90) -1.75 (±0.68) -1.01 (±0.78)   1.09 (±2.09) 

RCW+BM+PA 3.45 0.03 0.02 0.42 0.80 (±2.07) -1.70 (±0.68)   1.09 (±0.89) -0.19 (±2.25) 

Null Model 3.69 0.03 0.00 0.39 -0.16 (±0.92)      

RCA+PA 7.81 <0.01 <0.01 0.41 -0.23 (±1.90)  -0.98 (±0.78)   0.69 (±2.09) 

    RVI  0.95 0.72 0.45 0.50 0.27 
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If I relax the criterion that R2 for the linear regressions or GAMs must be > 0.5 for a 

population to be included in the study (see Methods), then the number of populations 

included in the analysis increases by 87% (total of 883 bird populations and 966 mammal 

populations) and the results of the mixed effects models remain similar (for details see 

Appendices). This suggests our findings are not only limited to the subset of the populations 

used in the primary analysis but are more broadly applicable across observed bird and 

mammal population trends. I also explored the effect of the heterogeneous distribution of 

population trends (Table S2.2).  

There is less of a clear correlation between population trend and either body mass or RCA. 

The 95% confidence intervals of the coefficients for these variables overlap zero, meaning 

that across all the populations the effects of body mass and RCA can be both positive and 

negative. However, these results can be used to draw out trends in the data as they reflect 

the spread of the coefficients. For example, most mammal populations tend to increase with 

body mass, whereas the bird populations are more evenly distributed around zero (Figure 

2.3).  

DISCUSSION  
 

The results reveal a strong association between rapid climate warming and declines of bird 

and mammal populations globally, showing that population declines have been greatest in 

areas that have experienced most rapid warming. The averaged model suggests that an 

increase in the rate of climate warming by one standard deviation (birds = 0.072oC per year, 

mammals = 0.079oC per year) leads to an increase in annual average population declines of 

5.1% for birds and 2.0% for mammals (Figure 2.3). Although these rates are higher than 

the projected rates of warming under more pessimistic future scenarios (e.g., RCP 8.5, 

Riahi et al. 2011) I note that these projections are global averages and that within these 
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projections there will be regions, such as the Arctic (AMAP, 2017), which are likely to 

experience the higher rates of warming found within these models. Under this scenario 

(RCP 8.5) I would expect to see a 3.85 – 4.65% annual population decline in bird 

populations and 1.46 – 1.76% annual population decline in mammal populations (for details 

see Appendices).  If the rate of climate warming continues to increase then I can expect 

greater bird and mammal population declines, these losses will be greatest at locations 

which experience most rapid climate warming (See Appendices, Figure S2.2). These 

findings echo aspects of previous global studies which suggest that future climate change 

will lead to large range contractions and increased species extinction risk (Thomas et al., 

2004; Jetz, Wilcove and Dobson, 2007).   

I found the impact of rapid climate warming to be more pronounced for bird populations 

than mammal populations (Figure 2.3). This may be because climate change can lead to the 

desynchronization of bird breeding season and the peak resource availability (Stevenson 

and Bryant, 2000; Visser, Both and Lambrechts, 2004; Keogan et al., 2018), whereas the 

seasonality of breeding in mammals is more flexible (Boutin and Lane, 2014). I note there 

are geographical differences in the representation of birds and mammals (Figure 2.1). 

Within the dataset there are populations of both classes in all continents except Antarctica, 

however, mammal populations dominate in Africa (59% of populations, 43% of sites) and 

bird populations in Europe (26% of populations, 45% of sites). This may contribute to the 

differences I see between the two groups in their response to RCW. It is also important to 

acknowledge that there is spatial bias in the dataset, there are relatively few sites in tropical 

forest habitat, particularly in South America and Southeast Asia. It is likely I would see a 

similar pattern in the results if there were data available from these regions. The RCW in 

tropical forests is relatively low (Corlett, 2011), however, species thermal niches tend to be 

narrower in the tropics meaning that the magnitude of their response to climate warming 
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may be greater (Freeman and Class Freeman, 2014). In particular, tropical montane species 

have undergone range contractions and declines in abundance associated with climate 

warming (Freeman et al 2018).  

The interaction between RCA and RCW was an important variable in explaining mammal 

population trends, where it had a similar effect size to RCW (Table 2B). This suggests that 

mammal populations are likely to have suffered greater declines in areas where there has 

been both climate warming and rapid conversion to anthropogenic land use. I do not find 

an effect of the interaction between RCA and RCW for bird populations, this may be 

because the interaction is complex and context specific (Kampichler et al., 2012); for 

example, logging and increased temperatures can lead to a decrease in transpiration and 

less rainfall (Bagley et al., 2014), which may be devastating for many populations due to 

the drying of fuels and increased chance of fire and, or drought (Malhi et al., 2008). 

However, conversion to agriculture and warmer breeding season temperatures may be 

beneficial to populations of warm-adapted generalist species (Karp et al., 2018; Pearce-

Higgins et al., 2015). Additionally, it may be that historical land use change, which would 

not be captured by RCA, has altered the landscape so profoundly that it  restricts species 

capacity to adapt to climate change (Benning et al., 2002).  

I did not find RCA to be an important variable when acting in isolation for either birds or 

mammals. The lack of a clear effect of RCA on bird populations may be because a large 

proportion (54.8%) are within protected areas and I find that bird populations within 

protected areas tend to have higher population growth rates than those outside. Within my 

dataset 60.3% of bird populations are made up of generalist species (here defined as having 

suitable habitat in more than one IUCN Level 1 habitat class), which may be more resilient 

to changing landscapes than specialist species. Conversion to agriculture does not 

uniformly disadvantage all bird species; for example, dry-adapted tropical species may 
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have higher abundance in agricultural landscapes (Karp et al., 2018). However, I note that 

the ‘winners’ of conversion to agriculture tend to be in the minority (McKinney and 

Lockwood, 1999). As previously mentioned, there are comparatively few population trends 

from tropical forests. These areas are rich in biodiversity but also heavily threatened by 

conversion to anthropogenic land use (Wright, 2005). It may be that I would detect a larger 

effect size for RCA if there were more population trend data from tropical forests. The 

global effect of increased anthropogenic land use on populations has been identified in 

other global studies, such as the PREDICTS project (Newbold et al., 2015), where finer 

resolution measures of local land use change were available. 

Additionally, the effects of converting to anthropogenic land use are more likely to be 

detected at fine spatial resolutions (Pearson and Dawson, 2003; Heikkinen et al., 2007), yet 

here I used relatively coarse resolution land use data.  The coarse resolution of the data may 

be why I was unable to identify a clear effect of increasing anthropogenic land use on 

population trends at a global scale, despite it being a well-known driver of biodiversity loss 

(Millennium Ecosystem Assessment, 2005). I explored the impact of using an alternative 

land cover data set (ESA CCI; Bontemps et al., 2013), which was available at a higher 

resolution but over a shorter time period. When using ESA CCI to quantify RCA I found 

that RCA and protected area coverage are important predictors for bird population trends. 

This finding suggests that the impacts of land use change on population trends are more 

detectable at higher spatiotemporal resolutions or that the impacts of climate change are 

more noticeable over longer time periods. 

I do not find PA to be an important predictor for mammal population growth rates; 

however, I note that 84.6% of the mammal populations are from inside protected areas, 

making it difficult to capture the effect of protected areas. I also note that other studies have 
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shown the evidence of protected areas successfully conserving species populations is thus 

far inconclusive (Geldmann et al., 2013).  

Body mass was not an important predictor of population growth rates for bird populations. 

This may be because while greater extinction risk is positively linked with increased body 

mass (Ripple et al., 2017), population declines, particularly of common species may not be 

captured by extinction risk criteria (Inger et al., 2015). Within mammal populations I found 

that smaller bodied species were more likely to have declining populations than larger 

bodied species, although the confidence intervals overlap with zero, so caution must be 

taken with the interpretation of this result. However, I note that when a less restricted set 

of population trends are included (see Appendices), the confidence intervals around this 

result are tighter and no longer overlap with zero, although the effect size is not large. This 

finding goes against my hypothesis that larger bodied mammals would be more likely to 

have declining population trends and is contrary to the finding that larger mammals have 

higher extinction risk (Ripple et al., 2017). This may be because the mammal data is 

dominated by populations within east African protected areas, where larger mammals may 

receive greater attention and conservation effort which could mean their populations are 

buffered (Barnes et al., 2016). I also explored the inclusion of other species traits, but I did 

not find important effects (for details see Appendices).  

I find that populations facing greater rates of climate warming are more likely to be 

declining at a faster rate. However, the analyses do not account for several additional 

factors, such as species exploitation, pollution and disease, which may help to further 

explain the degree of variability in population trends. Nevertheless, I provide evidence that 

populations facing high rates of climate warming tend to be in decline. Deepening our 

understanding of the processes that underlie the associations discussed here will be critical 
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for developing improved assessments of species’ vulnerability to climate warming (e.g., 

Pacifici et al. 2015). 
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CHAPTER THREE: 

PREDICTING POPULATION TRENDS FROM 

HABITAT SUITABILITY MODELS 
  



   
 

34 
 

ABSTRACT 
 

Habitat suitability models have been used to successfully estimate species ranges and 

predict shifts in these ranges driven by climate change. However, when habitat suitability 

models have been used to estimate spatial distributions of abundance the results have been 

mixed. Previous studies exploring the relationship between habitat suitability and 

abundance have used static snapshots of both these variables. However, habitat suitability 

and abundance are often dynamic and should not be expected to directly correlate, there 

may be lagged responses of abundance to changes in habitat suitability. I test this here by 

creating annual habitat suitability models for 16 mammal species (1950 – 2005) and explore 

the correlations between time-series of habitat suitability and the population growth rates 

of 177 populations, whilst accounting for lagged responses. I find that there is little 

evidence to support the idea that population growth rates are directly linked to habitat 

suitability. However, I find that when lagged responses are considered there is a stronger 

positive relationship between changes in habitat suitability and population growth rates. 

These findings suggest that lagged responses are important in understanding species 

responses to environmental change and where possible time-series, rather than static 

snapshots of data, should be used. 

INTRODUCTION 
 

Global vertebrate populations have declined on average 60% since 1970 (WWF 2018), and 

25% of mammal species are threatened with extinction (IUCN 2018). Predicting the 

response of species distributions and population trends to anthropogenic threats, such as 

climate change and habitat loss, is key to effectively conserving biodiversity (Guisan et al., 

2013). There are many methods available for modelling species distributions and 

populations which can be used to predict future states of biodiversity under a variety of 
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future scenarios. One of the most widely used approaches for predicting species 

distributions is habitat suitability modelling (Dawson et al., 2011).  

Habitat suitability models statistically associate species occurrence data with 

environmental data and use this to geographically map surfaces of habitat suitability. These 

models can then be projected onto climate change scenarios to predict future patterns of 

habitat suitability and also estimate the probability of species occurrence (Guisan & 

Thuiller, 2005; Pearson & Dawson, 2003; Peterson et al., 2011). Habitat suitability 

modelling techniques have been used effectively multiple times. For example, climate 

envelope models were used to successfully identify a relationship between the climatic 

suitability trends and population trends of 42 species of British birds (Green et al., 2008); 

and consensus bioclimatic models of the response of 116 British breeding birds to climate 

change performed well when compared to observed patterns (Araújo et al., 2005). 

Successful examples of correlative habitat suitability modelling combined with the relative 

ease of use and low data requirements mean that this technique has become widely used 

and has been influential in policy making (Guisan et al., 2013; Pearson, Dawson, & Liu, 

2004).  

Habitat suitability models are increasingly used to predict not only the probability of 

species occurrence but also more usable metrics such as species abundance; a more useful 

metric for species conservation. By it’s definition habitat suitability should be greatest in 

areas that support highest abundances (VanDerWal et al. 2009). However, when  this 

assumption has been empirically tested there have been mixed results. A meta-analysis of 

the ‘abundance-suitability’ relationship found that there was an overall positive correlation 

between habitat suitability and abundance, although it should be noted that there were 

several examples of zero or negative correlations (Weber et al., 2017).  
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Other multi-species studies have also struggled to identify a clear relationship between 

predicted habitat suitability and species abundance, finding similar numbers of positive and 

negative correlations for 246 mammal and 148 tree species (Dallas and Hastings, 2018). 

Attempts at predicting fine-scale occurrence and abundance for European butterfly species 

have been both successful (Gutiérrez et al., 2013) and unsuccessful (Filz, Schmitt and 

Engler, 2013), although there are important differences between the two studies. The 

former includes species-specific environmental variables, such as the occurrence of the 

species host plant, whereas the latter use more general bioclimatic variables. 

There is evidence for a wedge-shaped relationship between species abundance and 

predicted habitat suitability; with low species densities and abundances found across all 

levels of predicted habitat suitability, but with high densities and abundances restricted to 

areas of high predicted habitat suitability (Acevedo et al. 2017; Van Couwenberghe et al. 

2013; VanDerWal et al. 2009). The range of abundances and densities found in areas of 

high predicted habitat suitability may be explained by processes such as human exploitation 

or ecological competition which can limit abundances (Tôrres et al. 2012). However, in 

contradiction to these findings, high densities of raptors in the Iberian peninsula have been 

found outside of areas of predicted habitat suitability (Estrada and Arroyo, 2012), 

suggesting that in this case the relationship between predicted habitat suitability and 

abundance is more complex. 

The lack of a clear relationship between predicted habitat suitability and species abundance 

suggests that we are failing to consistently model the processes that drive species 

abundance. This may be because habitat suitability models do not account for important 

ecological mechanisms such as dispersal, population dynamics and species interactions. 

These processes have a fundamental impact on species abundance, however, integrating 

them into habitat suitability models is complicated and computationally intensive. 
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Additionally, previous studies which have attempted to quantify the nature of the 

relationship between predicted habitat suitability and abundance have used static estimates, 

from single points in time. These static snapshots of data do not provide any context about 

the state of the habitat, for example, whether it is in the process of becoming more or less 

suitable or if it has been in a stable equilibrium for several years. One should not expect 

predicted habitat suitability to be correlated with abundance if the habitat is in the process 

of change, as it is likely that the population dynamics are not in equilibrium with the 

environment (Weber et al., 2017). If the habitat has changed recently or is in the process of 

changing, there may be a lag in the response of abundance of the species (Tilman et al., 

1994; Thuiller et al., 2008; Hylander and Ehrlén, 2013). In particular, it is known that long-

lived species often have a delayed response to habitat disturbance due to long generation 

times and low fecundity rates (Kuussaari et al., 2009; Zarada and Drake, 2017). Lagged 

changes in abundance in response to habitat change are unlikely to be identified when 

single time points of data are used.  

In this chapter I compare time-series of abundance estimates to time-series of habitat 

suitability estimates. I explore the correlation between these two trends over a series of lag-

times in order to identify potential lagged responses of abundance to changes in habitat 

suitability. I compare trends in predicted habitat suitability with mammal abundance trends 

for 177 populations of 16 species in order to identify whether trends in predicted habitat 

suitability are correlated with observed abundance trends. 
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MATERIALS AND METHODS 

HABITAT SUITABILITY MODELLING 

To assess how well trends in habitat suitability explain animal population trends, I built 

time-series of annual habitat suitability maps (HSMs) for mammal 16 species (Table 4.1). 

For each species I generated a habitat suitability model based on average conditions for 

2006-2016, as most species’ occurrence data were available from this period (see below for 

details). To correct for sample selection bias, I also collated 10,000 target-group 

background points from species with similar distributions (Phillips et al. 2009; see below 

for details). Ecologically relevant average bioclimatic variables for 2006-2016 (Table S4.1) 

and HYDE land use data from 2005 were used to build the HSMs. Where species 

distributions covered more than one continent, I modelled each continent separately. The 

habitat suitability models created in this chapter provide the foundation for the 

computationally intensive coupled niche-demographic models in Chapter 4 which were 

only computationally tractable to run over single continents. Using the occurrence points, 

target-group background points and environmental data I built three types of habitat 

suitability models: a BIOCLIM envelope model, a generalised additive model (GAM) and 

a random forest (RF) model (see below for details on these models). For each species and 

model type, I split the data into a training dataset (75%) and a test dataset (25%). I used the 

training data set to build the models and then used the test data to evaluate the models using 

the Area Under the Curve (AUC) value. I used k-fold cross validation for each modelling 

technique, each time using different groups of data for training and testing to limit the effect 

of random partitioning on the AUC scores. The BIOCLIM, GAM and RF models were then 

run on the full data set (Figure 3.1) and combined into a weighted ensemble model based 

on their average AUC values (Figure 3.2; Araújo & New, 2007). The weighted habitat 
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suitability ensemble model was then used to predict maps of habitat suitability for each 

year from 1950 to 2005, based on the environmental conditions in those years. 

Figure 3.1 Example habitat suitability models for red deer (Cervus elaphus) in Europe. Each model had the 

same input data: occurrence data for 2006-2016; 10,000 target-group background points and average climate 

and land use variables (2006-2016). The predicted habitat suitability values range from zero to one with 

values of one representing predicted optimum habitat.  The performance of the habitat suitability models was 

assessed with AUC scores from using k-fold cross validation (k=4). The average AUC value for each method 

(BIOCLIM = 0.71, GAM = 0.88, Random Forest = 0.91) was used to weight the ensemble model. 

 

 

Figure 3.2 An ensemble model for red deer (Cervus elaphus). The ensemble was created through the 

weighted combination of three habitat suitability models (BIOCLIM, GAM and Random Forest) based on 

average AUC scores from k-fold cross validation (k = 4). Higher values correspond to higher predicted habitat 

suitability, the black circles denote the species occurrence data. 
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SPECIES OCCURRENCE DATA 

I obtained species occurrence data for 16 species from the Global Biodiversity Information 

Facility (GBIF) (Flemons et al., 2007; full list of citation DOIs in Table 4.1). This chapter 

provides the foundation for Chapter 4, which builds upon habitat suitability models by 

including mechanisms for dispersal, survival and fecundity. Thus, analysis for Chapter 4 is 

limited to species for which data to parameterize these mechanisms are available. In this 

chapter I focus on species which are sufficiently well studied to be included in Chapter 4 

(Table 3.1), and species for which there are a large number of population trends available 

within the Living Planet database to compare with habitat suitability trends. I was also 

limited to species for which the specific location of population trends was available, this is 

necessary for identifying spatially specific trends in habitat suitability. The occurrence data 

were filtered so that only occurrence records for the 2006-2016 period were retained, as 

this was when a large number of GBIF data were available from (Figure S3.1). I excluded 

occurrence points outside the known extent of each species range (IUCN, 2018) as these 

were assumed to be erroneous. The remaining presence occurrence points were used to 

parameterise habitat suitability models (Table 3.1). 

CORRECTING FOR SAMPLING BIAS 

GBIF is a repository for opportunistic and surveyed species occurrence data. As a result, 

the data within GBIF are spatially biased towards areas of greater accessibility and 

available research effort (Beck et al., 2014). In habitat suitability modelling background 

data are typically sampled randomly from the study region meaning that there is a 

potentially important difference in the environment that is being sampled by the occurrence 

points and the background points. Such bias in the occurrence points can lead to inferior 

habitat suitability model quality and poor model predictive ability (Beck et al., 2014). To 

account for this, I gathered 10,000 occurrence points of mammal or bird species with 
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distributions that overlapped with at least 50% of the distribution of the species being 

modelled (Phillips et al. 2009; Table S3.2) and used these as target-group background 

points. I used species with 50% overlapping range as the target-group background points 

should ideally be subject to the same spatial bias as the subject species and thus occur over 

the same areas. The target-group background points have a similar spatial bias to the species 

occurrence points and therefore they should be more representative of the environment 

being sampled by the occurrence points. Using spatially biased background points rather 

than random background points has been shown to provide better habitat suitability models 

across multiple modelling methods (Phillips et al. 2009).  

ENVIRONMENTAL DATA 

I collated time-series of global climate and land use data to create annual maps of predicted 

habitat suitability. Monthly gridded climate time-series of minimum temperature, 

maximum temperature and precipitation were gathered from the global CRU TS v. 3.23 

dataset (Harris et al., 2014). These climate data were used to create global maps of nineteen 

bioclimatic variables (Table 3.1) (Hijmans et al., 2017) at 0.5o spatial resolution, averaged 

over the 2006-2016 period. Additionally, I created annual maps of each of the bioclimatic 

variables for use in predicting annual maps of habitat suitability. Global land use data were 

gathered from the HYDE dataset (Klein Goldewijk et al., 2011) for 2005, the most recent 

available date. HYDE provides gridded coverage of cropland and pasture at a spatial 

resolution of 0.083o. The percentage cover of cropland and pasture were summed to 

calculate percentage cover of anthropogenic land use in each cell. The HYDE data were 

bilinearly resampled to 0.5o to match the spatial resolution of the climate data. The HYDE 

dataset provides a global map of land use for each decade in this study. I linearly 

interpolated between these data points (see Chapter 2) to create annual maps of land use 

which I could use for creating annual time-series of predicted habitat suitability.  
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Table 3.1 Species for which habitat suitability models were built. The number of occurrence points shows 

for each species the number of occurrences downloaded from GBIF, these were filtered to occurrences 

collected between 2006 and 2016 and those within the known distribution of the species. The number of 

observed population trends shows the population trends available from the Living Planet database that I can 

compare the habitat suitability trends to. Bioclimatic layers show which bioclimatic layers were included in 

the habitat suitability model for each species (1 = annual mean temperature, 2 = mean diurnal range, 3 = 

isothermality, 4 = temperature seasonality, 5 = maximum temperature of the warmest month, 6 = minimum 

temperature of the coldest month, 7 = temperature annual range, 8 = mean temperature of the wettest quarter, 

9 = mean temperature of the driest quarter, 10 = mean temperature of the warmest quarter, 11 = mean 

temperature of the coldest quarter, 12 = annual precipitation, 13 = precipitation of the wettest month, 14 = 

precipitation of the driest month, 15 = precipitation seasonality, 16 = precipitation of the wettest quarter, 17 

= precipitation of the driest quarter, 18 = precipitation of the warmest quarter, 19 = precipitation of the coldest 

quarter). The GBIF DOI is a unique reference to the original occurrence data downloaded from GBIF. 

 

HABITAT SUITABILITY MODELS 

 

BIOCLIM (Nix, 1986; Booth et al., 2014) is a climate-envelope-model which uses only 

presence occurrence data and the corresponding environmental variables. The percentile 

scores of environmental variables in each grid cell are compared to the percentile 

distribution of environmental variables at known presence locations. Locations are 

predicted to be more suitable the closer they are to the centre of the percentile distribution 

for each of the environmental variables included in the model. The advantage of using 

BIOCLIM is that the model is straightforward to implement, and it uses only presence data. 

Species 

No. 

occurrence 

points 

No. 

observed 

population 

trends Bioclimatic Layers GBIF DOI 

Alpine Ibex 172 10 1,5,6,13,15,18,19 https://doi.org/10.15468/dl.8aninz 

Blue Wildebeest 577 19 8,9,12,13,14,15,16,17,18,19 https://doi.org/10.15468/dl.zdflk2 

Brown Bear (N. America) 612 3 2,4,5,6,7,10,11 https://doi.org/10.15468/dl.x08j9g 

Common Warthog 1,900 16 8,9,12,13,14,15,16,17,18,19 https://doi.org/10.15468/dl.jxhbdk 

European Roe Deer 49,050 10 1,6,7,11,13,19 https://doi.org/10.15468/dl.h1wkdt 

Giraffe 747 18 5,6,8,12,13,14,15,16,17,18,

19 

https://doi.org/10.15468/dl.vnkjuk 

Hartebeest 825 12 12,13,14,15,16,17,18,19 https://doi.org/10.15468/dl.0vmznd 

Plain’s Zebra 1,408 20 8,9,12,13,14,15,16,17,18,19 https://doi.org/10.15468/dl.3dkwvs 

Polar Bear (N. America) 142 2 1,4,5,6,7,10,11 https://doi.org/10.15468/dl.zqwkfn 

Pyrenean Chamois 1,239 10 1,6,7,11,13,19 https://doi.org/10.15468/dl.ftqumd 

Red Deer (Europe) 8,566 5 2,4,5,6,7,10,11 https://doi.org/10.15468/dl.jaefxg 

Reindeer (Europe) 2,600 2 6,8,10,11,13,16,19 https://doi.org/10.15468/dl.plw5dd 

Reindeer (N. America) 230 9 6,8,10,11,13,16,19 https://doi.org/10.15468/dl.plw5dd 

Snowshoe Hare 449 15 1,5,6,11,13 https://doi.org/10.15468/dl.0hcaxu 

Waterbuck 829 19 8,9,12,13,14,15,16,17,18,19 https://doi.org/10.15468/dl.nemdcp 

White-tailed deer 5,894 4 1,2,4,5,6,11,19 https://doi.org/10.15468/dl.md5glw 

Wolverine (Europe) 11,040 2 1,5,6,8,11,13 https://doi.org/10.15468/dl.9umtlv 

Wolverine (N. America) 11,502 1 1,5,6,8,11,13 https://doi.org/10.15468/dl.9umtlv 
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However, these presence data are often collected opportunistically and therefore are 

geographically biased towards more accessible areas (Kadmon, Farber and Danin, 2004; 

Schulman, Toivonen and Ruokolainen, 2007). The BIOCLIM model does not include 

background points, these are used in other models to characterise the range of environments 

in the study area and to correct for spatial bias in the occurrence points. Therefore the 

suitability predictions are limited to narrower range of environments meaning that 

BIOCLIM models are less reliable for predicting outside of this range, e.g. under climate 

change (Hijmans and Graham, 2006). 

GAMs are a type of generalised linear model (GLM) which use a regression approach with 

smoothing functions (Hastie and Tibshirani, 1990). GAMs are more flexible than GLMs as 

they are “data-driven” meaning that the data determines the shape of the response curve, 

rather than fitting the data to a predetermined set of parameters (Yee and Mitchell, 1991). 

Thus, GAMs are better suited to modelling complex and often non-linear ecological 

responses than GLMs (Yee and Mitchell, 1991; Guisan, Edwards and Hastie, 2002). 

RF models are a type of machine learning model (Breiman, 2001) which can be used for 

regression or classification. Here I use them for regression, to produce maps of predicted 

habitat suitability (Evans et al., 2010). Both GAMs and random forest models require 

background locations to characterise the environment of study area. I used target-

background locations to account for spatial bias in the species occurrence data.  

OBSERVED POPULATION TRENDS 

I gathered population trends from the Living Planet database (Collen et al., 2009; McRae, 

Deinet & Freeman, 2017), which formed the basis of my analysis in Chapters 2 and 3. Some 

of the years in the population trends have missing data. In these cases I estimated missing 

data using the same method as in Chapter Two: for populations with six or more data points 
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I used GAMs (using a smoothing factor of half the number of data points) to estimate 

missing data, for populations with fewer than six data points I used linear interpolation 

(Collen et al., 2009).     

The average time-series length of populations included in the analysis was 17.6 (± 9.7) 

years. Most of the populations were from Africa (58.8%), there were also populations from 

Europe (20.9%), North America (18.6%) and Asia (1.7%). The majority of species in this 

analysis were ungulates (87.0%), there were also populations of lagomorphs (8.5%) 

andcarnivores (4.5%). 

HABITAT SUITABILITY TRENDS 

I extracted spatiotemporally coincident predicted habitat suitability values at each location 

of the 177 observed population trends, to create a habitat suitability trend for each observed 

population. I averaged the predicted habitat suitability values over a 50 km buffer around 

the given coordinates for each observed population to account for environmental changes 

over a broader area which are likely to influence the population trends. 

COMPARISON OF HABITAT SUITABILITY TRENDS AND POPULATION TRENDS 

Within the Living Planet database each population trend can be recorded at a different 

spatial scale or using a different abundance metric, although to be included in the database 

this must be done consistently across years (Loh et al., 2005). To account for this variation 

across population trends I calculate annual ‘lambdas’ which are the logged (base 10) rate 

of population change. To ensure that both observed population trends and predicted habitat 

suitability trends are on the same scale I also calculated the logged (base 10) rate of change 

in habitat suitability. This means that that I could compare the rate of change in predicted 

habitat suitability with the rate of observed population change.  
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It is possible that changes in habitat suitability will not cause immediate impacts on 

population trends but rather cause a lagged effect. To account for this, I calculated the cross-

correlation function for each population trend with the corresponding predicted habitat 

suitability trend. This allowed me to calculate the correlation between two time-series 

trends over a series of six annual lag-times (0-5 years) and thus determine how well rates 

of change of predicted habitat suitability explains variation in rates of change of population 

trends. For each of the 177 populations I calculated maximum correlation coefficient value 

for each population. I limited the maximum lag time to five years as this was the minimum 

length of the population time-series. 

All analyses were carried out using the statistical software R (R Core Team, 2018). The 

following packages were used to build habitat suitability models: raster (Hijmans, 2016), 

dismo (Hijmans et al., 2017), sp (Pebesma and Bivand, 2005; Bivand, Pebesma and 

Gomez-Rubio, 2013), rgbif (Chamberlain and Boettinger, 2017; Chamberlain et al., 

2018a), mgcv (Wood, 2011) and randomForest (Liaw and Wiener, 2002). The dplyr 

(Wickham et al., 2018), zoo (Zeileis and Grothendieck, 2005), taRifx (Friedman, 2014), 

mgcv (Wood, 2011), reshape2 (Wickham, 2007) and ggplot2 (Wickham, 2016) packages 

were used to process and visualise the trends in predicted habitat suitability and abundance.  

RESULTS 
 

The trained habitat suitability models were quite accurate across all species (AŪC ± SD = 

0.83 ± 0.14; full list of AUC values in Appendices). For each species the RF models 

performed better than BIOCLIM and GAM (BIOCLIM = 0.71 ± 0.16, GAM = 0.88 ± 0.08, 

RF = 0.91 ± 0.07) and as a result, RF had the greatest weight in the resulting ensemble 

models.  
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There is no clear relationship across all the species between predicted habitat suitability 

and population growth rates (Figure 3.3). In 13 of the 16 species there was no significant 

relationship between predicted habitat suitability and annual population growth rates. For 

two species there was a significant negative relationship (Alpine ibex and Chamois) and 

for Reindeer there was a significant positive relationship. 

Figure 3.3 The relationship between predicted habitat suitability and annual population growth rates across 

each of the 16 mammal species. Each point shows the population growth rates for each year and their 

spatiotemporally corresponding predicted habitat suitability value. Population growth rate values above zero 

indicate a growing population and values below zero indicate a declining population trend. Panels marked 

with an asterisk indicate species for which there was a significant relationship between predicted habitat 

suitability and population growth rates. 

I do not find any evidence for consistent correlations between trends in the rate of change 

of habitat suitability and population growth rates. There are almost equal numbers of 

correlation coefficients above (54.2%) and below (45.8%) zero (Figure 3.4A). The average 

correlation coefficient was -0.01 ± 0.20 (Figure 3.4A). None of the populations were found 

to have a statistically significant correlation. 
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 However, when lagged responses of population growth rates to changes in habitat 

suitability are accounted for there is an overall positive relationship between the rate of 

change of predicted habitat suitability and population growth rates (Figure 3.4B). The 

average correlation coefficient across all populations is 0.18 ± 0.15, which on average 

explains 3.1% of the variation in population growth rates. I find that 93.8% of these 

‘maximum’ coefficients were positive and the average maximum coefficient size across all 

species was 0.18 (±0.14) (Figure 3.4B). I note that none of the correlations were found to 

be significant.  The mean lag time for the maximum coefficient across all populations was 

2.2 (±1.82) years, although the most frequent lag time for the maximum coefficient was at 

zero years 0 (23.2%), with each of other lag times having similar frequencies (11.8% – 

19.2%; Table 3.2).  
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Figure 3.4 Panel A shows boxplots for each species showing the distribution of correlation coefficients 

between the rate of population change and the rate of change in predicted habitat suitability. Panel B shows 

boxplots for each species showing the distribution of the maximum correlation coefficients between the rate 

of population change and the rate of change in predicted habitat suitability at a series of lag times (t = 0-5). 

The numbers at the bottom of each column in panel B indicates the average lag time, in years, at which the 

maximum correlation was found for each species. In both panels the black dots represent each population 

with the box plots showing the spread of correlation coefficients for each species. Values closer to 1 or -1 

indicate stronger positive or negative correlations, respectively.  
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Table 3.2 The mean coefficient values for each species when lagged responses are not accounted for, 

contrasted with the species mean maximum coefficient across a series of annual lag times (0-5 years). The 

optimum lag time required to reach the maximum correlation coefficient. 

  

DISCUSSION    
 

My results show that there is evidence for a lagged response of abundance to changes in 

predicted habitat suitability. These findings help to explain the lack of consensus from 

previous studies, some of which have found a moderate and widely variable positive 

relationship between abundance and predicted habitat suitability (Weber et al., 2017) and 

others which have not found any relationship (Nielsen et al., 2005; Filz, Schmitt and 

Engler, 2013; Dallas and Hastings, 2018). These results are important as they suggest that 

there are lagged responses of species abundance to changes in predicted habitat suitability 

(Kuussaari et al., 2009). This highlights the importance of using time series of abundance 

and predicted habitat suitability rather than static snapshots, which may not be 

representative of dynamic habitats (Doherty Jr., Boulinier and Nichols, 2003; Schurr et al., 

2012).  

Species 

Mean 

correlation 

coefficient 

Mean 

maximum 

correlation 

coefficient 

Mean lag time 

for maximum 

coefficient 

Alpine ibex 0.01 (±0.05) 0.06 (±0.04) 3.40 (±1.96) 

Blue wildebeest -0.07 (±0.21) 0.13 (±0.11) 2.79 (±1.90) 

Brown bear -0.24 (±0.23) 0.04 (±0.35) 1.67 (±0.55) 

Common warthog -0.08 (±0.25) 0.23 (±0.17) 2.75 (±1.77) 

Giraffe 0.08 (±0.21) 0.21 (±0.14) 2.11 (±1.84) 

Hartebeest -0.10 (±0.21) 0.20 (±0.15) 1.83 (±1.59) 

Plain's zebra -0.02 (±0.18) 0.17 (±0.23) 2.05 (±1.73) 

Polar bear  0.08 (±0.24) 0.16 (±0.15) 1.50 (±1.41) 

Pyrenean chamois 0.00 (±0.13) 0.14 (±0.35) 1.20 (±1.29) 

Red deer 0.09 (±0.11) 0.14 (±0.28) 1.20 (±2.00) 

Reindeer -0.04 (±0.21) 0.21 (±0.28) 2.91 (±1.99) 

Roe deer 0.07 (±0.17) 0.21 (±0.44) 1.50 (±1.37) 

Snowshoe hare 0.03 (±0.16) 0.21 (±0.13) 2.60 (±2.10) 

Waterbuck 0.04 (±0.19) 0.19 (±0.14) 2.21 (±1.72) 

White-tailed deer -0.03 (±0.41) 0.21 (±0.50) 1.00 (±1.06) 

Wolverine 0.16 (±0.10) 0.36 (±0.16) 2.33 (±2.31) 
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A drawback of using historic environmental data is the limited amount of global data which 

is available from 1950 onwards, the first year for which I have population trend data. 

Available data are often spatially coarse; for instance, the environmental data used in this 

analysis were 0.5o spatial resolution. This resolution may be an appropriate spatial scale for 

exploring macroecological biodiversity trends, but it is likely that the mechanisms which 

determine patterns of species abundance function at finer spatial scales (Pearson & 

Dawson, 2003) and that finer scale resolutions are more relevant to applied conservation 

(Seo et al., 2009). Finer resolution data are available (e.g., ESA CCI) but with considerably 

less temporal coverage (1992 onwards), thus limiting the number of observed population 

trends available for analysis.  

I note that the maximum correlation between predicted habitat suitability and species 

abundance is generally quite weak, on average 0.18 ± 0.15 across all populations. This low 

correlation may be because there are several factors that influence species abundance which 

are not included in the habitat suitability model. For example, the presence of an ecological 

competitor or human exploitation at a highly suitable site might mean that abundance is 

lower than at less environmentally suitable sites where competition and exploitation are 

absent (Johnson & VanDerWal, 2009; Suttle et al., 2007). Furthermore, there are aspects 

of species behaviour which may mean they are not evenly distributed across their range. 

For example, it has been shown that it more difficult to predict densities of species that 

exhibit colonial or semi-colonial behaviour than territorial species (Estrada and Arroyo, 

2012). Therefore, it may be that habitat suitability is more strongly linked with the carrying 

capacity of a site (Thuiller et al., 2014), rather than the realised abundance (VanDerWal et 

al., 2009).  

Another possible reason why I find relatively low correlation between predicted habitat 

suitability and abundance is that habitat suitability models do not account for important 
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ecological processes, such as dispersal, population dynamics (Acevedo et al., 2017; 

Boulangeat, Gravel, & Thuiller, 2012). These mechanisms directly influence species 

abundance and including them in the modelling process is likely to improve predictions of 

species abundance. Coupled niche-demographic models allow for the integration of 

mechanisms for dispersal and population dynamics (Buckley et al., 2010; Fordham, 

Akçakaya, Araújo, Keith, & Brook, 2013; Keith et al., 2008). Preliminary studies suggest 

that coupled niche-demographic models perform better than habitat suitability models at 

predicting range changes (Fordham et al., 2017), although the predictions have yet to be 

validated against observed population trends. However, the inclusion of these mechanisms 

is both data and computationally intensive and for most species there is not yet enough 

knowledge to parameterise these models (Keedwell, 2004).  

I did not find a relationship when lagged responses were ignored; however, when I included 

them I found that predicted habitat suitability was more strongly correlated with species 

abundance. I therefore show, for the first time, that lagged responses are an important aspect 

of the relationship between predicted habitat suitability and abundance. Such lagged 

responses should be included in future studies that aim to estimate abundances from 

changing environmental conditions. The inclusion of ecological mechanisms such as 

dispersal and population dynamics into habitat suitability models may be an important step 

towards better understanding the relationship between habitat suitability and species 

abundance.  
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CHAPTER FOUR: 

ASSESSING THE PREDICTIVE ABILITY OF COUPLED 

NICHE-DEMOGRAPHIC MODELS 
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ABSTRACT 

Habitat suitability models have been the method of choice for predicting species responses 

to environmental change, due to their simplicity of use and easily validated predictions. 

However, these models have been criticised for omitting ecological processes such as 

population dynamics and dispersal. Coupled niche-demographic models have been 

developed to incorporate such processes into habitat suitability models. Inclusion of these 

processes means that coupled niche-demographic models allow for the prediction of 

abundance, rather than habitat suitability. The superiority of coupled niche-demographic 

models over habitat suitability models in terms of predictive ability has been assumed and 

there has been limited validation of coupled niche-demographic models. To test the 

predictive accuracy of coupled niche-demographic models I used them to predict 

population trends for 17 populations of three mammal species (Alpine ibex, red deer and 

brown bear), and compared the predicted population trends to observed population trends 

from the Living Planet database. I find that coupled niche-demographic models are an 

improvement upon habitat suitability models for predicting population trends. However, I 

note that both perform quite poorly and that the linear mixed effects models (created in 

Chapter Two) outperform coupled niche-demographic models in predicting average 

population growth rates.   

INTRODUCTION 

Habitat suitability models have been the most widely used method for understanding broad 

scale impacts of environmental change on biodiversity. This is because they are relatively 

straightforward to produce and there are plentiful available data to validate their 

predictions, which are typically range shifts (Ehrlén and Morris, 2015). However, there are 

multiple limitations of habitat suitability models and their use in predicting the responses 

of biodiversity to environmental change. These limitations include: difficulties making 
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accurate predictions under novel climate conditions (Webber et al., 2011); the often 

violated assumption that current species occupancy is in equilibrium with its environment 

(Varela, Rodríguez and Lobo, 2009); models are typically based on single species and do 

not consider biotic interactions which can play a key role in delimiting species distributions 

(Staniczenko et al., 2017) and ecological processes such as population dynamics and 

dispersal, which lead directly to range contraction or expansion, are not accounted for 

(Elith, Kearney, & Phillips, 2010; Guisan & Thuiller, 2005). Despite these limitations, 

habitat suitability models have been shown to provide an effective starting point for 

predicting range shifts under climate change (Fordham et al., 2017; Pearson & Dawson, 

2003).  

A number of more complex modelling strategies have been developed to tackle the 

aforementioned limitations of habitat suitability models. Coupled niche-demographic 

(CND) models are a leading example of these more complex models (Keith et al., 2008). 

CND models link ecological niche models (synonymous with habitat suitability models) 

with stochastic demographic models and incorporate mechanisms for dispersal (Keith et 

al., 2008). The output of CND models are maps of predicted abundance rather than habitat 

suitability.  Population dynamics and dispersal have a fundamental influence on the 

responses of biodiversity to environmental change (Engler & Guisan, 2009; Keith et al., 

2008; Travis et al., 2013) and it is therefore expected that explicitly accounting for these 

processes will result in improved predictions of both species occurrence and abundance. It 

has been shown that predictions of population trends from coupled niche-demographic 

models are often markedly different to predicted changes in range area, which is a metric 

that has typically been used to esimate extinction risk from climate change (Fordham et al., 

2012; Thomas et al., 2004). This highlights the importance of accounting for complex 

processes that influence abundance.  However, there has been relatively little valdiation of 
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these models as long-term records of abundance are much less plentiful than range maps 

(Urban et al., 2016).  

Virtual species data have also been used to compare habitat suitability models to a selection 

of more complex models, which to varying extents incorporated either population dynamics 

or dispersal, or both. In each case the more complex models outperformed the habitat 

suitability models (Zurell et al., 2016), suggesting that the inclusion of population dynamics 

and dispersal into habitat suitability models can provide improved predictions. Thus far, 

the most significant effort to validate coupled niche-demographic models on observed, 

rather than simulated, data has been for 20 British bird species. A range of models with 

varying levels of complexity and environmental data were trained on data from 1970, with 

the predicted range shifts validated against data from 2010 (Fordham et al., 2017). The 

more complex coupled niche-demographic models tended to outperform simpler habitat 

suitability models that accounted only for climatic variation. However, when static land use 

data were included into the simple habitat suitability models they performed similarly to 

the complex coupled niche-demographic models.  

To my knowledge, predicted population trends from coupled niche-demographic have yet 

to be validated against observed population trends, and this is what I test here. Coupled 

niche-demographic models were built for three mammal species and were used to predict 

population trends from 1950-2005. I then assessed the accuracy of these predictions against 

observed time-series of abundance from the Living Planet database in order to gauge the 

ability of coupled niche-demographic models to predict population trends.  

MATERIALS AND METHODS 

To predict mammal population trends, I selected species with sufficient available data (red 

deer, brown bear and Alpine ibex; see below for details) and built two types of models: 

habitat suitability models and coupled niche-demographic models. With the habitat 
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suitability models, I used species occurrence data in conjunction with bioclimatic and land 

use data to create maps of estimated habitat suitability for each year of the study (1950 – 

2005), these formed the basis of Chapter Three. With the coupled niche-demographic 

models, I coupled the habitat suitability models with a demographic model by scaling the 

carrying capacity of each cell by predicted habitat suitability (0-1) in order to produce 

spatial predictions of mammal population trends that vary with predicted habitat suitability. 

I then assessed the predictive accuracy of both models by comparing the predicted trends 

in both habitat suitability (HS models) and abundance (CND models) against observed 

population trends, which were taken from the Living Planet database. 

HABITAT SUITABILITY MODELS 

The CND models require time-series of annual maps of binary predicted presence or 

absence of suitable habitat. To create these, I used the habitat suitability models from 

Chapter Three and applied a threshold above which habitat is considered suitable (i.e., 

‘present’) to create time series of presence/absence predictions. I calculated a threshold 

value from the weighted ensemble model to predict areas of species presence or absence 

(Figure 5.1). There are multiple possible methods for calculating the threshold; I used the 

true skill statistic, the threshold value at which the sum of the true positive rate and true 

negative rates is maximised, as it has been shown to outperform other methods (Allouche, 

Tsoar and Kadmon, 2006). 
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Figure 4.1 (A) Ensemble habitat suitability model for red deer. Higher values correspond to higher predicted 

habitat suitability and black circles denote the original species occurrence data. (B) A weighted threshold 

value was also calculated using the true skill statistic and this threshold value was applied to the ensemble 

model to create a predicted presence/absence map. Areas in green indicate predicted presence of red deer. 

COUPLED NICHE-DEMOGRAPHIC MODELS 

Coupled niche-demographic models require several ecologically based parameters and 

therefore could only be built for species for which the following data were available: (i) at 

least 100 occurrence data points available from GBIF (Table 3.1; Flemons et al., 2007; 

Wisz et al., 2008); (ii) a transition matrix containing survival and fecundity rates, available 

from the COMADRE database (Salguero-Gómez et al., 2016); and in order to assess the 

predictive accuracy of the models, (iii) at least one observed population trend from the 

Living Planet database (Loh et al., 2005).  

The CND model used in this study is an extension of the model in the demoniche R package 

(Nenzén et al. 2012), which provides a platform for simulating spatially-explicit population 

dynamics.  The main changes made to the original demoniche package were to the dispersal 

function. This function was previously configured for plants, so only individuals in the first 

age class (i.e. seeds) would disperse, I changed this so that all stages in the transition matrix 

would be able disperse. I also changed the dispersal kernel to a half-Cauchy distribution, 
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which I could parameterise with median and maximum dispersal distances (full R code can 

be found in Appendices).  

There are two possible techniques for coupling habitat suitability models with demographic 

models: through carrying capacity and/or species vital rates. There is little consensus in the 

literature on which is the best method. There is a positive relationship between carrying 

capacity and predicted habitat suitability (Thuiller et al., 2014) and a link between high 

habitat suitability and greater densities and abundances has been established (Tôrres et al. 

2012; VanDerWal et al. 2009). However, the relationship between predicted habitat 

suitability and the vital rates of the species is less well understood, with evidence for a 

negative relationship between population growth rate and predicted habitat suitability 

(Thuiller et al., 2014), suggesting that linearly scaling vital rates to increase with predicted 

habitat suitability would not be appropriate. Here I couple the habitat suitability models 

with the population models through linearly scaling the carrying capacity of each cell, in 

each year, with predicted habitat suitability (Figure 4.2).  

The models were initiated with uniform abundances in each cell, based on density estimates 

from the literature. This is done as the true abundance values for each cell are not known. 

I account for this by assessing the models in terms of relative abundance, comparing rates 

of population growth rather than absolute abundance. For each species, the CND models 

were run for a “burn-in” period of 10 years under initial habitat conditions (predicted 

habitat suitability for 1950). Population trends consistently stabilised after the first couple 

of years of the burn-in period (Figure S4.1). After the burn-in period the model was run for 

56 years under predicted habitat suitability conditions for 1950-2005. The model output for 

each year is a predicted abundance in each cell over the species range.  
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Figure 4.2 Schematic showing the coupled niche-demographic modelling process. The habitat suitability 

models directly impact the population models through the carrying capacity values, so that cells with higher 

predicted habitat suitability have higher carrying capacity. 

TRANSITION MATRICES 

For each species I gathered transition matrices from the COMADRE database (Salguero-

Gómez et al., 2016).  Transition matrices provide survival and fecundity rates for each year 

or stage in a species life-cycle. Matrices were included in the analysis if they had values 

for both survival and fecundity and each stage in the matrix was a year, which is the 

temporal unit of the CND models. For each year in the CND model a transition matrix is 

drawn from a normal distribution where the mean is the transition matrix and the standard 

deviation is a value between 0 and 0.5, thereby building stochasticity into the model. I 

decided to limit the standard deviation around the transition matrix to 0.5 following a pilot 

study exploring how population growth rates vary with standard deviation across the three 

species (see Figure S4.2). When standard deviation was greater than 0.5 I found that more 

population growth rates tended be less than one suggesting that the increased stochasticity 

would increase the likelihood of population declines.  
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DISPERSAL  

Dispersal was incorporated into the CND model by creating species-specific dispersal 

kernels. Data on species’ dispersal ability are not reliably available from the literature; 

instead, I estimated median and maximum dispersal distance using home range data, which 

are more readily available. The majority of mammal home range data are recorded in the 

PanTHERIA database (Jones et al., 2009). If home range data were not available in 

PanTHERIA, estimates were gathered from the literature (Table 4.1). The square root of 

home range size is estimated to be linearly related to median dispersal distance by a 

constant of seven and maximum dispersal distance by a constant of 40 (Bowman et al., 

2012; Table 4.1). I used the estimated median dispersal distance as the scale parameter in 

a half-Cauchy distribution, meaning that 50% of dispersal events would be less than the 

median dispersal distance. The half-Cauchy distribution has been found to outperform 

exponential distributions (Paradis, Baillie and Sutherland, 2002) when used for creating 

dispersal kernels, as it allows for more frequent long-distance dispersal events which are 

an important component of population connectivity/metapopulation dynamics 

(Trakhtenbrot et al., 2005). However, to ensure the model was computationally tractable I 

set the probability of dispersing further than the maximum dispersal distance to zero. I 

varied the dispersal rate of each cell between 0 and 0.5 so that no more than half of the 

individuals would disperse out of a given cell over a year. 
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Table 4.1 List of all species for which the coupled niche-demographic models were built, the key parameters 

used to build the models and the sources of the key parameters. 

CARRYING CAPACITY 

Estimates of carrying capacity were gathered from the literature (Table 4.1). The carrying 

capacity of each cell was linearly scaled with predicted habitat suitability so that cells with 

high predicted habitat suitability had higher carrying capacity than cells with lower 

predicted habitat suitability values (Thuiller et al., 2014). The carrying capacity of each 

cell can change on an annual basis with changes in predicted habitat suitability. Carrying 

capacity was implemented through a ceiling function meaning that the abundance of a cell 

cannot exceed its carrying capacity for a given year (Zurell et al., 2016).  

SAMPLING LIFE HISTORY CHARACTERISTICS 

The parameters for annual dispersal rates and the standard deviation around the transition 

matrix (i.e. stochasticity of the demographic model) were difficult to quantify from the 

literature. For these two variables I estimated a reasonable range of both variables to be 0-

0.5: the dispersal rate sets the proportion of individuals which emigrate out of a cell in a 

given year and it seemed reasonable to limit this to half the population of cell; for the Alpine 

ibex and brown bear transition matrices there was little different to population growth rates 

when stochasticity was above 0.5, in the red deer populations there was a high tendency of 

the populations to crash when stochasticity was greater than 0.5 (see Figure S4.2). Latin 

Hypercube Sampling (LHS) was used to ensure equal sampling across the variable space. 

Species 

No. 

occurrences 

Mean 

dispersal 

distance 

(km) 

Max 

dispersal 

distance 

(km) 

Carrying 

capacity 

(individuals 

per km2) Sources 

Alpine ibex 172 19.8 113 1.4 

(Gossow and Zeiler, 

1997; Scillitani et al., 

2012) 

Red deer 8566 53.3 305.7 25 
(Coulson et al., 2004; 

Jones et al., 2009) 

Brown bear 

(North America) 
612 123.5 706.54 1.87 

(Jones et al., 2009; 

Santini, Isaac and 

Ficetola, 2018) 
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I set the number of LHS partitions to be 15.6 times the number of independent variables 

(Jia et al., 2007). For each of the 31 partitions I ran the resulting model 100 times to capture 

the variation from the stochastic transition matrices.  

MODEL ASSESSMENT 

OBSERVED POPULATION TRENDS 

To assess the predictive accuracy of the CND models I compared the predicted population 

trends to observed population trends from the Living Planet database 

(http://www.livingplanetindex.org/data_portal). The population trends vary in length and 

there are years within each population with missing data (Table 4.2). As in Chapters Two 

and Four, I estimate missing data in the observed population trends using either GAMs or 

LMs.  

Species ID Start year End year Years with data Country 

Alpine ibex 

a 1950 1980 31 Switzerland 

b 1950 1989 40 Switzerland 

c 1955 1964 10 Switzerland 

d 1950 1964 14 Switzerland 

e 1955 2000 45 Italy 

f 1950 1984 35 Switzerland 

g 1950 1985 35 Switzerland 

h 1989 2005 9 France 

i 1950 2002 51 Switzerland 

j 1950 1984 35 Switzerland 

Brown bear 
k 1982 1993 12 United States 

l 1973 1982 20 United States 

m 1973 1994 10 United States 

Red deer 

n 1952 1984 5 Spain 

o 1986 2005 12 Spain 

p 1979 1998 20 France 

q 1979 2001 23 France 
Table 4.2 The ID, temporal coverage, years with abundance data available and location of each observed 

population trend. 

COMPARISON OF PREDICTED POPULATION TRENDS AND OBSERVED POPULATION TRENDS 

 To assess the predictive accuracy of the CND models I compared them to observed 

population trends. The output of the CND models are annual maps of predicted abundance. 

http://www.livingplanetindex.org/data_portal
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At the location of each observed population I extracted the annual predicted abundance 

averaged over a 50km radius buffer, to create a time-series of predicted abundance. For 

each population I excluded predictions from before the first population estimate and after 

the last one. The spatial resolution of the model predictions is relatively coarse (0.5o by 

0.5o). The resolution at which the observed populations are made is likely to be more local, 

meaning that the predicted abundance values are likely to be much higher than the observed 

values simply due to the difference in scale. To allow for this I converted both the predicted 

and observed population trends to population growth rates, thereby comparing relative rates 

of abundance change rather than absolute abundance values.   

To compare the predicted trends to the observed trends I use the same method as in Chapter 

Three: at the location of each population I compare each of the 3,100 predicted population 

trends to the observed population trends using the cross-correlation function with series of 

lag times (0-5 years). I compared the correlations between the observed population trends 

and both the abundance trends predicted by the CND models, and the predicted habitat 

suitability trends calculated in Chapter Three.  

I calculated the average population growth rate for each CND model run and used the top 

performing linear mixed effects (LME) model from Chapter Two to predict average 

population growth rates for each population. The top performing LME model for mammals 

from Chapter Two had the following explanatory variables: rate of conversion to 

anthropogenic land use (RCA); rate of climate warming (RCW); the interaction between 

RCA and RCW; and body mass). I compared both the CND and LME predicted population 

growth rates to the observed population growth rates as a means of assessing the predictive 

accuracy of two contrasting modelling approaches.  

All analyses were carried out using the statistical software R ). The raster (Hijmans, 2016), 

dismo (Hijmans et al., 2017), sp (Pebesma and Bivand, 2005; Bivand, Pebesma and 
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Gomez-Rubio, 2013), rgbif (Chamberlain and Boettinger, 2017; Chamberlain et al., 

2018b), mgcv (Wood, 2011) and randomForest (Liaw and Wiener, 2002), demoniche 

(Nenzén et al., 2012),  LaplacesDemon (Statisticat, 2018), popbio (Stubben and Milligan, 

2007), snow (Tierney , lhs (Carnell, 2018) and doParallel  packages were used to build the 

coupled niche-demographic suitability models. The dplyr (Wickham et al., 2018), zoo , 

taRifx (Friedman, 2014), reshape2  and ggplot2 (Wickham, 2016) packages were used to 

process and visualise the trends habitat suitability and abundance.  

 

RESULTS 

The output from the coupled niche-demographic models closely follow the predicted 

habitat suitability trends (Figure 4.3), with extreme values becoming exaggerated in the 

CND models. The closeness of the two trends is expected as the habitat suitability models 

form the basis of the coupled niche-demographic model and is directly linked to the 

demographic models by scaling carrying capacity. The spatial patterns in habitat suitability 

dynamics are also echoed in the outputs of the CND models (Figure 4.4). However, there 

are key differences, such as high levels net increase in abundance in areas in and beyond 

cells which have seen a high net increase in predicted habitat suitability (Figure 4.4). This 

demonstrates the influence of the population dynamics and dispersal mechanisms in the 

CND models. 
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Figure 4.3 For each of the red deer populations the predicted trends in population growth rates are shown 

(grey) alongside the trends in the rates of change in habitat suitability (blue) and the observed population 

growth rates (red). 

 

 

Figure 4.4 Maps of the net change in predicted habitat suitability and average net change in predicted 

abundance for red deer between 1950-2005. Corresponding maps for the Alpine ibex and brown bear are 

available in the Appendices. 
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In order to assess the ability of the CND models to predict population trends I correlated 

trends in predicted population growth rates with observed population growth rates, for each 

of the 3,100 model runs of each of the 17 study populations. Here I assume that higher 

correlations between the predicted population growth rates and the observed population 

growth rates, suggest better performance of the CND models. I found that correlations 

between predicted population growth rates and observed population growth rates varied 

markedly within and across populations and species (Figure 4.5). Notably I found that the 

median correlation between the output from the CND models and the observed population 

trends (0.019 ± 0.155) were on average higher than the correlations between the predicted 

habitat suitability (HS) trends and observed population trends (-0.005 ± 0.153; Table 4.3), 

produced in  Chapter Three. This suggests that although the CND and HS models both 

perform quite poorly; the CND models, on average, were slightly better predictors of 

population growth rates than HS models.  

There is considerable variation in the correlations between the predicted abundance trends 

from the CND models and observed abundance trends of the Alpine ibex. This is likely to 

be because the predicted habitat suitability trends for the alpine ibex are highly variable 

over time (Alpine ibex, 𝐻𝑆̅̅ ̅̅  = 0.473 ± 0.222; brown bear, 𝐻𝑆̅̅ ̅̅  = 0.307 ± 0.163; red deer, 𝐻𝑆̅̅ ̅̅  

= 0.502 ± 0.097). Conversely, the predicted habitat suitability trends of the red deer are 

relatively high and stable, this is reflected in the low variation of the predicted population 

growth rates (Figure 4.6) and correlation coefficients (Figure 4.5). The median values of 

the correlations between the predicted and observed red deer abundance trends are 0.008 

higher on average than the correlations between the predicted habitat suitability trends and 

observed abundance trends. 
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Figure 4.5 Boxplots for each population showing the distribution of correlation coefficients between the 

observed rate of population change and the predicted rates of population change from the coupled niche-

demographic models. For each boxplot there is a corresponding red dot showing the correlation coefficient 

between the observed population growth rates and the rate of change in predicted habitat suitability. Values 

closer to 1 or -1 indicate stronger positive or negative correlations, respectively. The small black dots indicate 

outlier values from the boxplots and the letters a-q are for identification of individual populations.   

In the Alpine ibex populations there are mixed results when comparing the performance of 

the CND models to the HS models. In half the populations the predicted population trends 

from the CND models tend to have stronger correlations than the predictions from the HS 

models. In the other half of the Alpine ibex populations the opposite is true. Within the 

brown bear populations the median correlations between the predicted abundance trends 

from the CND models and the observed trends are, on average, 0.257 higher, than the 

correlations between the predicted habitat suitability trends and observed abundance trends. 

For the red deer populations the correlations are similar with both modelling strategies, this 

is likely to be because varying the dispersal rate and stochasticity around the transition 

matrix had little effect on red deer population growth rates Figure S4.5.  
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Table 4.3 The correlation coefficients between the HS models and observed population trends for each 

population contrasted with the mean correlation coefficients between each of the CND model runs and the 

observed population trends.  

Another method I used to assess the performance of the CND models was to compare the 

predicted average population growth from each of the CND predictions to the observed 

average population growth rate for each population (Figure 4.6). Using the average 

population growth rate as a metric for comparison also allowed me to compare the 

performance of the CND models to the simple linear mixed effects models built in Chapter 

2. Here the closer predicted average population growth rates are to the observed population 

growth rates the better we consider the performance of the models to be (Figure 4.6). 

Overall, I find that the simple linear mixed effects models provide better predictions of the 

average population growth rate than the CND models.  

The median predicted population growth rates (-4.94% ± 2.57%) for the Alpine ibex are 

considerably lower than the observed values (6.17% ± 7.65%; Figure 4.6). Each of the 

Alpine ibex observed population growth rates are higher than the entire range of predicted 

population growth rates from the CND model. Most of the observed populations show on 

average little change or increasing population trends. Whereas, the CND model predicts that 

Species 

 

ID 

Correlation 

coefficient (HS vs 

observed) 

 

Mean correlation 

coefficient (CND vs 

observed) 

Alpine ibex 

a 0.096  -0.265 (±0.04) 

b -0.030 -0.225 (±0.03) 

c -0.074 -0.173 (±0.23) 

d 0.107 -0.096 (±0.10) 

e 0.008 -0.045 (±0.13) 

f -0.034 -0.026 (±0.06) 

g -0.064 -0.025 (±0.06) 

h 0.036 0.089 (±0.21) 

i 0.082 0.218 (±0.05) 

j 0.071 0.299 (±0.03) 

Brown bear 

k -0.080 -0.039 (±0.04) 

l -0.130 -0.023 (±0.06) 

m -0.494 0.161 (±0.23) 

Red deer 

n -0.031 -0.013 (±0.01) 

o 0.020 0.033 (±0.01) 

p 0.036 0.039 (±0.02) 

q 0.218 0.234 (±0.05) 
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in most cases (99.4%) each of the recorded populations of this species would have faced 

declines in abundance. 

 

Figure 4.6 Each boxplot shows the distribution of the predicted average annual rate of change for each 

population. The black dots show the observed average annual rate of population change for each population.  

The red triangles show the fitted values for the top performing model for mammals from Chapter Two. The 

explanatory variables of this model are: rate of conversion to anthropogenic land use (RCA); rate of climate 

warming (RCW); the interaction between RCA and RCW; and species body mass.  The closer the boxplots or 

red triangles are to the black dot the better their respective models have performed at predicting the average 

population growth rate for that population. Values below zero indicate population decline and values above 

zero indicate growing populations.  The letters a-q are for the identification of individual populations.   

 

Within the brown bear populations, the observed population growth rates are within the 

range of predicted growth rates, suggesting the CND models are useful for this species. 

There is very little variation in the predicted population growth rates of the red deer, with 

the population trends predicted to be relatively stable. Two of the red deer populations (“n” 

and “q”) have high population growth rates which are not captured by the CND models.  

In 82.4% of the populations the estimated population growth rates from the LME models 

are closer to the observed values than the median estimates from the CND models (Figure 

4.6). Furthermore, in 64.7% of the populations the estimated population growth rates from 
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the LME models are closer to the observed values than any of the estimates from the CND 

models (Figure 4.6). In 70.6% of cases the predicted growth rates from the LME models 

are in the same direction as the observed trends (i.e. increasing or decreasing). However, 

only 23.5% of the median predicted growth rates from the CND models correctly estimate 

the correct direction of the population trend, this rises to 41.2% when I take the “best” 

estimate from the CND models. It is not possible to estimate population growth rates 

directly from predicted habitat suitability trends, so I am therefore unable to compare them 

directly to the LME and CND models using this metric. 

DISCUSSION  
 

My results suggest that both CND and HS models perform quite poorly at predicting 

mammal population trends, although the CND models do provide a slight improvement on 

the HS models. I also find that within the study populations presented here simple linear 

mixed effects models provide more accurate predictions of population growth rates than 

complex CND models. 

Within the brown bear and red deer populations the CND models consistently outperform 

the HS models, in terms of correlation coefficients (Figure 4.5). The disparity between the 

CND and HS models, for these populations, is even greater when lagged responses are 

considered (Figure 4.5). These findings suggest that CND models can provide an 

improvement upon HS models and provide support to the findings that the inclusion of 

population dynamics and dispersal is important for predicting population trends (Keith et 

al., 2008). However, it is important to highlight that the CND models performed poorly 

when predicting average population growth rates. In most cases (82.4%)  the median CND 

predictions were in the opposite direction to the observed population growth rates This 
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suggests that in their current form, the usefulness of CND models to applied conservation 

is limited.  

The CND models performed especially poorly on the Alpine ibex populations. The 

correlation coefficients between predicted and observed trends in population growth ratese 

were highly variable (Figure 4.5). Additionally, the CND models consistently 

underestimated the Alpine ibex population growth rates (Figure 4.6). The wide range in 

CND correlation coefficients is likely to be because of the high levels of variability in the 

predicted habitat suitability for the Alpine ibex populations.  

These populations have also experienced high levels of management which could be a 

contributing factor to the poor performance of the models. For example, the discrepancy 

between the observed population growth rates and the predicted growth rates might be due 

to the highly successful reintroduction efforts throughout this species’ range, which have 

not been incorporated into the models. The reintroductions increased the abundance of 

Alpine ibex from a remnant population of <100 individuals in the early 1800s to estimates 

of >20,000 individuals in the late twentieth century (Stüwe and Nievergelt, 1991). This 

species was first successfully captive bred in the early twentieth century, with 

reintroductions of ten populations taking place between 1911 and 1976 across the Alps 

Switzerland. By 1976 many populations were beginning to overlap (Stüwe and Nievergelt, 

1991) and populations were high enough for hunting to begin in 1977, with 6-10% of the 

population being culled annually. 

There is a similar pattern of the CND models underestimating population growth rates for 

the “n” and “q” red deer populations. Both of these populations were reintroduced in the 

mid-20th century and hunting was later initiated to control both populations (Escós and 

Alados, 1992). In both the reintroduced Alpine ibex and red deer populations there are very 

high levels of observed population growth rates. This rapid population growth is typical of 
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colonizing ungulates in areas where predation is rare, as is the case in the study sites of 

these populations (Breitenmoser, 1998; Larkin et al., 2003). This irruptive growth is 

typically followed by population crashes (Riney, 1964; Caughley, 1970); however, this 

might have been avoided through the introduction of hunting to each of the reintroduced 

populations (Bouquier, 2003). The CND models over-estimated the population growth 

rates for the red deer population “p”. This population underwent a cull over the study 

period, which ensured the average population growth rate was lower than it might otherwise 

be (Bonenfant et al., 2002).  

There is considerable variation in the CND model predicted population trends of the “l” 

and “m” brown bear populations, which are highly variable both in terms of correlation 

coefficients (Figure 4.5) and predicted population growth rates (Figure 4.6).  Both 

populations are from Yellowstone National Park but cover different periods of time 

(Knight, 1994). These brown bear populations are likely to be highly variable because they 

are located on an isolated patch of suitable habitat at the edge of the species range, 

>2,400km from the centre of the species’ extant North American distribution (IUCN, 

2017). These highly variable negative predicted population growth rates of the brown bear 

populations are associated with low dispersal rates and low stochasticity (Figure S4.5). This 

suggests that within the model these populations are dependent on immigration or 

stochastically occurring high population growth rates to survive.  

Although I vary each of the CND models in the same way for each species, by sampling 

dispersal rate and transition matrix stochasticity from the same sample space, there are 

considerable differences in the variation of the predicted population trends. For populations 

at sites which have great variation in predicted habitat suitability (e.g. Alpine ibex 

populations), there is a corresponding high level of variability in predicted population 

trends. Conversely, for populations at sites with stable trends in predicted habitat suitability, 
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there is very little variation in the resulting population trends. This suggests that within this 

modelling framework, the variation in predicted habitat suitability is the key driving force 

and the variables of dispersal rate and the stochasticity of the transition matrix are more 

influential when predicted habitat suitability is less stable.  In stochastic environments 

dispersal is thought to be of high importance in maintaining populations (Kuno, 1981). 

However, here Alpine ibex population growth rates were lower in the simulations with high 

dispersal rates and population stochasticity (Figure S4.5). This  may be because there were 

not enough patches of suitable habitat to maintain the populations under highly variable 

conditions (Bascompte, Possingham and Roughgarden, 2002). 

CND models are an improvement on HS models for predicting mammal abundance trends. 

However, there are still a number of improvements that could be made to CND models that 

should lead to accurate predictions. The effect of species interactions on trends in species 

abundance is likely to be of fundamental importance. Species interactions can have multiple 

impacts on species distribution and abundance (Van Der Putten, Macel and Visser, 2010), 

such as: influencing the rate at which species’ ranges shift (Svenning et al., 2014); 

significantly altering the response of species to climate change (Suttle, Thomsen and 

Power, 2007); and causing abrupt and non-linear responses under climate change (Walther, 

2010).  The impact of species interactions on species distributions can be somewhat 

addressed through the use of joint species distribution models (Pollock et al., 2014). 

However, there is not yet a method for incorporating species interactions into CND models 

(but see Fordham et al., 2013). 

Within the CND models I vary the dispersal rate across model runs and I find it to be an 

important factor in predicting population trends, particularly in habitats of fluctuating 

stability (Figure S4.5). Although I vary dispersal rate across model runs, I do not allow it 

to vary spatially or temporally or across age groups within each model run. The dispersal 
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process is likely to be much more complicated, particularly across dynamic heterogenous 

environments (Bocedi et al., 2014). Dispersal is likely vary across species range, being 

greater at range margins (Travis et al., 2013). Methods for incorporating density 

dependence and habitat suitability into probabilities of emigration and settlement may 

increase the predictive ability of CND models (Bocedi et al., 2014). 

The CND models worked best for the least managed populations (“l”, “m” and “o”), as the 

observed population growth rates are within the range of predicted growth rates for these 

populations. However, the relatively simple LME models provide more accurate estimates 

of average annual population growth rates than CND models. The superior performance of 

the LME models is partly due to the large amount of variation in population growth rates 

that is explained by the random effects, site and species (Figure S4.6). The random effects 

in the LME capture site- and species-specific processes that influence the population 

growth rates but are not explicitly accounted for in either model, such as; reintroduction, 

exploitation, species interactions and disease. However, it should be noted that LME 

models still perform well when only fixed effects are used for predictions (Figure S4.6).  

Despite the LME models providing more accurate estimates of average population growth 

rate, there are multiple benefits of using CND models. For example, CND models produce 

much richer outputs, such as, time-series of abundance maps which can be used to extract 

annual abundance estimates across the entire species range, as opposed to the average rate 

of population growth produced by the LME models. Time series maps of predicted 

abundance can be used to predict spatial patterns of extinction risk, which could be used 

for estimating time to extinction.  

Despite the increased complexity of CND models, I do not find that this results in a 

substantially improved performance. The relatively simple linear mixed effects models 

(Chapter Two) are not only faster and more straightforward to implement than the CND 
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models, but they also provide superior predictions of average population growth rates for 

the species in question. Although the CND models here account for dispersal and 

population dynamics which are important ecological processes, there are still a few ways 

in which they could be improved. Firstly, higher resolution spatiotemporal environmental 

data for smaller areas could help to capture important processes which occur at fine 

spatiotemporal scales.  Secondly, species interactions are important for delimiting species 

ranges and for mediating species responses to climate change, methods of incorporating 

species interactions into CND models (e.g. Fordham et al., 2013) are likely to provide 

improved predictions. Lastly, the relationship between both vital rates and dispersal with 

predicted habitat suitability and range position are likely to have been oversimplified here. 

Increased understanding of these relationships and the inclusion of these into the CND 

models is likely to provide more accurate predictions.  
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   CHAPTER FIVE: 

DISCUSSION 
 

  



   
 

77 
 

OVERVIEW 

 

In recent decades global biodiversity has faced multiple human-driven threats, leading to 

extinction rates being 1,000 times higher than expected (De Vos et al., 2015). Two of the 

most significant threats to biodiversity are climate change and loss of habitat to 

anthropogenic land use (Travis, 2003). Both processes are anticipated to continue to 

threaten biodiversity for the foreseeable future (Sala, 2000). Understanding the patterns and 

processes of these threats on biodiversity is crucial to the effective conservation of 

populations and the consequent maintenance of ecosystem function. In this thesis I 

examined a range of approaches for predicting the impacts of recent climate change and 

land use change on observed animal population trends. I focussed on population trends of 

terrestrial birds and mammals, as these species tend to be well studied, and there is 

sufficient information available on them to build models across a spectrum of complexity. 

This thesis is made up of two main parts: firstly, I explored the associations between recent 

climate and land use change and observed animal population trends at a global scale, to 

identify generalisable patterns; secondly, I used species occurrence points and 

environmental data to predict both habitat suitability and species abundance trends, and 

then assessed the usefulness of these predictions for predicting population trends by 

comparing them to observed trends.  

In Chapter Two I analysed the recent impacts of climate change and land use change on 

observed bird and mammal population trends (1950-2005), providing the first global study 

of the impacts of recent environmental change on vertebrate population trends. I performed 

an analysis of 987 population trends (571 mammals, 416 birds) of 481 species from 76 

countries, in each continent except Antarctica. For each population trend I calculated the 

average population growth rate. For the area surrounding each population I calculated a 
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spatiotemporally coincident annual rate of climate warming (RCW) and rate of conversion 

to anthropogenic land use (RCA). I also gathered species body mass data and data on 

protected area coverage for each population. Using these data, I built a series of linear 

mixed effects models to quantify the amount of variation in population growth rates which 

could be explained by the following variables: RCW, RCA, the interaction between RCW 

and RCA, species body mass and protected area coverage. I modelled the bird and mammal 

population trends separately. I found that both bird and mammal population trends have 

declined fastest in locations where mean temperature has increased most rapidly, this effect 

is more noticeable in birds. I did not find a strong effect of conversion to anthropogenic 

land use, body mass or protected area coverage in either bird or mammal populations. 

Further understanding of the processes that drive the association between rapid climate 

warming and population declines is crucial for developing improved assessments of species 

vulnerability to climate warming.  

Within the Appendices I further explored the findings of Chapter Two: I used alternative 

methods of model averaging; a wider range of population trends; additional species trait 

data; higher spatial and temporal resolution land use data; and extrapolated 2005-2100 bird 

and mammal population indices under contrasting climate change scenarios. I found the 

results did not vary when I used an alternative method of model averaging; nor did they 

change when I used a wider set of population trends. I did not find diet to be an important 

variable in explaining bird or mammal population trends. When the models were 

extrapolated forward under climate change scenarios the mean predicted decline of bird 

populations by 2100 was 67.6% under RCP 2.6 and 99.2% under RCP 8.5; for mammal 

populations there were predicted increases of 43.8% under RCP 2.6 and 70.3% declines 

under RCP 8.5. When I used higher resolution land use data for a smaller set of population 

trends, over a shorter time-period I found that rate of conversion to anthropogenic land use 
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was an important predictor for bird population trends. Bird populations tended to decline 

faster in areas where conversion to anthropogenic land use has been more rapid.  

I then explored the relationship between predicted habitat suitability and population 

abundance. I created BIOCLIM, GAM and random forest habitat suitability models which 

I combined into weighted ensemble models based on their AUC value (Chapter Three). I 

used weighted ensemble models to predict annual habitat suitability for each species 

annually 1950-2005. From these maps I extracted time-series in predicted habitat suitability 

at the location of 177 populations from the Living Planet database and for each population 

I calculated a time-series in population growth rates. I explored the correlations between 

time-series of rates of change in predicted habitat suitability and the corresponding time-

series of population growth rates. I found that there is little evidence to support the idea 

that population growth rates are directly linked to predicted habitat suitability. However, 

when lagged responses are considered there is a stronger positive relationship between 

changes in predicted habitat suitability and population growth rates. This suggests that 

lagged responses are important in understanding population responses to environmental 

change and where possible time-series data, rather than single time-points of abundance 

and predicted habitat suitability, should be used.  

In Chapter Four I built coupled niche-demographic models. These are habitat suitability 

models which are linked with population models and also allow dispersal. These additional 

processes mean that the coupled models can be used to predict species abundance trends 

rather than simply estimating habitat suitability. Coupled niche-demographic models have 

been assumed have greater predictive accuracy than habitat suitability models, but there 

has been limited validation of coupled niche-demographic model predictions against 

observed data. I built coupled niche-demographic models for three species: Alpine ibex, 

brown bear and red deer. I used these species as they are sufficiently well studied, this 
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means that there are data available in the literature to parameterise the population model 

and the dispersal mechanism. I used these models to predict population trends and validated 

them for the first time by comparing them to 17 observed population trends from Living 

Planet database. I found that outputs of coupled niche-demographic models are more 

correlated with observed population trends than the outputs of habitat suitability models. 

This suggests that coupled niche-demographic models are an improvement on habitat 

suitability models.  However, both sets of models perform relatively poorly, with linear 

mixed effects models (Chapter Two) providing more accurate estimates of average 

population growth rates than the coupled niche-demographic models. Further development 

of coupled niche-demographic models is required for them to be a useful tool in applied 

species conservation. My results suggest that the high data requirements and computational 

resources needed to run coupled niche-demographic models may be excessive, as currently 

more parsimonious models provide better predictions of population growth rates. 

COMPARISONS TO THE LITERATURE 

DRIVERS OF BIODIVERSITY LOSS 

Human impacts have resulted in global animal population declines and widespread 

defaunation  (Dirzo et al., 2014; WWF, 2018) and this in turn degrades ecosystem function, 

which could lead to ecosystem collapse (Chapin et al., 2000). Understanding the responses 

of animal populations to anthropogenic environmental change lies at the crux of ecology 

and is critical for implementing effective conservation. In this thesis I present a range of 

techniques for predicting the impacts of environmental change on animal population trends. 

In Chapter Two I highlighted the association between bird and mammal population declines 

and the rate of climate warming, with bird and mammal population declines being greater 

where climate warming had been most rapid. This supports previous findings which have 

found shifts in species phenology and latitude to be greatest where climate warming has 
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been greatest (Rosenzweig et al., 2008; Chen et al., 2011). When using the HYDE dataset 

to quantify the rate of conversion to anthropogenic land use (RCA) I do not find RCA to 

be an important predictor of bird or mammal population trends, which contradicts the 

findings of previous studies (Newbold et al., 2015). However, when using the ESA CCI 

land cover data set, which has higher spatial and temporal resolution but is available for a 

shorter time-period, I do find rate of conversion to anthropogenic land use to be an 

important predictor of bird population trends (Appendices). This suggests that perhaps high 

spatial and temporal resolution data are required to identify impacts of land use change 

(Pearson and Dawson, 2003; Heikkinen et al., 2007).  

PREDICTING SPECIES RESPONSES TO ENVIRONMENTAL CHANGE   

In Chapter Three I explored the correlations between time-series of predicted habitat 

suitability and abundance, specifically time-series of rates of change in predicted habitat 

suitability and time-series of population growth rates. There are mixed results in the 

literature exploring the correlations between predicted habitat suitability and abundance. 

Some studies have found a positive correlation between climatic suitability and bird 

population trends (Green et al., 2008), whereas other studies have found equal numbers of 

positive and negative correlations between predicted habitat suitability and species 

abundance (Dallas and Hastings, 2018). Most studies correlate predicted habitat suitability 

and abundance at single points in time. However, both can be dynamic, if they are not in 

equilibrium there is unlikely to be a clear correlation between them. To account for this, I 

explored correlations between predicted habitat suitability and lagged population growth 

rates over a series of years (0-5). I found that when lagged responses are not accounted for 

there is no clear relationship between the rate of change in predicted habitat suitability and 

population growth rates. This aligns with some previous findings that have not found any 

clear correlations between predicted habitat suitability and abundance (Nielsen et al., 2005; 
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Filz, Schmitt and Engler, 2013; Dallas and Hastings, 2018). Importantly, I found that 

correlations between population growth rates and predicted habitat suitability were higher 

when lagged responses were accounted for. This suggests that changes in predicted habitat 

suitability do not immediately impact abundance. This may be because declines in 

predicted habitat suitability impact species birth rates, rather than survival rates, so that 

changes in abundance are not detectable until a generation has passed (Gaillard, Festa-

Bianchet and Yoccoz, 1998; Thompson and Ollason, 2001).   

Coupled niche-demographic models have been shown to produce more accurate estimates 

of range shifts of both observed British bird species and virtual species, when compared to 

habitat suitability models (Zurell et al., 2016; Fordham et al., 2017). When built with the 

demoniche package, coupled niche-demographic models perform well at predicting the 

relative abundance of virtual species (Zurell et al., 2016). However, there are not yet any 

examples of coupled niche-demographic models being validated against observed 

population trends and this is what I presented in Chapter Four. My results are congruent 

with the literature in that they show that coupled niche-demographic models are an 

improvement upon habitat suitability models (Zurell et al., 2016; Fordham et al., 2017), for 

predicting population trends.  

CAVEATS AND LIMITATIONS 

Building upon an existing body of literature on the responses of biodiversity to 

environmental change, this thesis contributes to our knowledge of how animal populations 

are influenced by habitat loss and climate change. It has also tested novel methods for 

modelling the impacts of environmental change on spatial distributions of species 

abundance trends. There are, however, several limitations to the findings in this thesis, 

which I explore below. There is much still to learn about the impacts of climate change and 
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habitat loss on animal population trends and I suggest improvements to how these impacts 

might be modelled.  

DATA LIMITATIONS AND SCALE 

Each of the chapters in this thesis are based on either quantifying or predicting the impacts 

of changes in land use and climate on population trends since 1950. One of the key 

limitations of this thesis is that freely available data on land use and climate, which have 

data from 1950 onwards, are often both spatially and temporally coarse. This was especially 

the case for the land use data (HYDE), which were only available on a decadal basis from 

1950 onwards. I required annual data for the analysis, so I linearly interpolated the decadal 

data to annual data. This assumes that any changes in land use between decades is constant 

and monotonic. Another limitation of this dataset is that it only provides coverage of arable 

and pastoral land use cover in each cell and it does not provide information on other land 

use types, which is commonly available in more recent land use datasets (e.g. ESA CCI). 

These combined limitations may mean that the impacts of land use change have been 

underestimated within this thesis. This is supported by one of the findings in  the 

Appendices in which I used the fine scale (300m, annual) ESA CCI land use dataset to 

quantify the rate of conversion to anthropogenic land use for each population. When used 

as an explanatory variable in linear mixed effects models to explain variation in population 

growth rates I found it was an important predictor for bird populations, the same metric 

calculated with the HYDE data had not been found to be important. However, it is 

important to note that the models built with the ESA CCI data were run on a smaller set of 

populations for which at least 5 years of abundance data were available from 1992 onwards.  

The spatial resolution of available data was also a limiting factor for the coupled niche-

demographic models. The habitat suitability models were built at 0.5o resolution as this was 

the highest resolution at which historical global climate data were available. A consequence 



   
 

84 
 

of this was that dispersal distances between cells were high (>18km). Therefore, coupled 

niche-demographic models could only be run for species with sufficiently high dispersal 

ability so that individuals to move between cells.  

In this thesis I only considered the impacts of land use change and climate change on animal 

population trends. Historical data for these threats are relatively straightforward to access 

and to process. However, there are a multiple other drivers of animal population trends such 

as invasive species, pollution, direct exploitation and conservation interventions (WWF, 

2018). For these drivers there are scant global data available and historical data are even 

rarer. The lack of information on these processes within the modelling process limits both 

the amount of variation in population trends I can explain and our ability to predict 

population trends. 

I used observed population trends from the Living Planet database, both as a response 

variable when exploring the environmental correlates of population declines and to validate 

predictions of population trends made with coupled niche-demographic models. The Living 

Planet database is the foremost repository of freely available population trend data. 

However, there are some limitations to this dataset. For example, there are often years with 

missing population estimates. These are typically dealt with by fitting a generalised additive 

model, or linear model to the existing data to estimate abundance values for years with 

missing data. This is a potential source of error in each of the models used in this thesis. 

However, uninterrupted annual records of species abundance are rare and limiting analysis 

to these trends would severely restrict the amount of data which could be used.  

The coupled niche-demographic models predicted annual abundance trends across the 

entire species range (1950 – 2005). However, I was only able to assess the models at 

locations and for years which observed population data were available. This means that 
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there are predictions for large tracts of the species’ ranges and long periods of time which 

I was unable to validate.  

COUPLE NICHE-DEMOGRAPHIC MODEL LIMITATIONS 

The development of coupled niche-demographic models was driven by the idea that habitat 

suitability models should include ecological processes. However, there remain important 

functions which have been omitted from coupled niche-demographic models, most notably 

species interactions. Species interactions are known to play a key role in shaping species 

distributions (Wisz et al., 2013) and in mediating the impacts of climate change (Suttle, 

Thomsen and Power, 2007). Joint species distribution models (JSDMs) are a method for 

accommodating species interactions into habitat suitability models. JSDMs model patterns 

of species co-occurrence and shared environmental responses, they also allow predictions 

of abundance (Clark et al., 2014; Pollock et al., 2014). However, unlike coupled niche-

demographic models, they do not incorporate processes for dispersal or population 

dynamics.  

A key limitation of the coupled niche-demographic model framework I used (demoniche; 

Nenzén et al., 2012) is that it only allows relatively simple manipulation of how predicted 

habitat suitability influences population dynamics and dispersal functions. For example, 

dispersal probability varies only with distance and is not influenced by predicted habitat 

suitability, the age/stage of individuals or the location of a cell within a species range. 

RAMAS (Akçakaya, 2012) is a similar, but more established, tool which allows for the 

inclusion of more detailed information about species and environmental drivers (Lurgi et 

al., 2014). However, the cost of this software is prohibitive, as is the lack of availability of 

the detailed data required to parameterise these models.  
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FUTURE DIRECTIONS 

This thesis focussed on the application of data that are available historically at a global 

scale and thus choice was limited to a handful of datasets. However, there are several 

countries which have higher resolution historical datasets available, such as the CORINE 

land use data set which covers the UK at 25 metre resolution; the UKCP09 climate data set 

which has historical climate data for the UK at 5km resolution; the Land Cover Trends 

Dataset which covers the USA at 60m resolution; and the PRISM climate data which is 

available at 800m resolution across the USA. These countries also have a long record of 

natural history recording and thus there are several long-term abundance datasets available 

to validate coupled niche-demographic models. Future work should focus on building and 

validating high spatiotemporal resolution coupled niche-demographic models at country 

level scales. This may help elucidate the impacts of climate and land use processes which 

happen at finer scales. 

Coupled niche-demographic models could also be improved by allowing vital rates and 

dispersal to vary geographically and in relation to habitat suitability. This requires further 

work in understanding the relationships between both survival and fecundity rates, and 

habitat suitability. Additionally, further research is needed on how these relationships 

varies across species age classes. Furthermore, knowledge of how dispersal varies across 

species ranges and with habitat suitability may improve the predictive performance of these 

models (Travis et al., 2013; Bocedi et al., 2014). 

Species interactions are increasingly incorporated into habitat suitability models and have 

been shown to improve predictive accuracy. For example, adding in predator pressure and 

prey availability into habitat suitability models of Arctic fox enhanced the predictive 

accuracy (Hof, Jansson and Nilsson, 2012). Additionally, experimental studies in the Swiss 

Alps have shown that climate change is likely to lead to novel species interactions and that 
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these interactions may outweigh the direct impacts of climate change (Alexander, Diez and 

Levine, 2015). Further work modelling Californian grassland species shows that including 

biotic interaction networks improves habitat suitability models (Staniczenko et al., 2017). 

However, inclusion of species interactions into coupled niche-demographic models has so 

far been limited. The sole example involves predator-prey interactions between Iberian 

lynx and European rabbit, which was also used to explore management options (Fordham 

et al., 2013). Future work incorporating species interactions into coupled niche-

demographic models and exploring how these interactions might vary under climate change 

(Kissling and Schleuning, 2014), will likely yield improved predictions.   

CONCLUSIONS 

In this thesis I have presented the first global assessment of the impacts of recent climate 

warming and anthropogenic land use conversion on animal population trends. I have 

identified rapid climate warming to be strongly associated with bird and mammal 

population declines since 1950, at a global scale. I explored the relationship between 

changes in predicted habitat suitability and population growth rates. I found that this 

relationship is stronger when lagged responses of population growth rates to changes in 

predicted habitat suitability are considered. I built coupled niche-demographic models for 

three species: red deer, brown bear and Alpine ibex. I assessed the ability of these coupled 

niche-demographic models to predict animal population trends. I showed coupled niche-

demographic models were an improvement upon habitat suitability models for predicting 

population trends. Despite this, I found that the increased complexity of the coupled niche-

demographic models did not lead to increased accuracy in predicting mammal population 

growth rates. The linear mixed effects models (Chapter Two) outperformed the coupled 

niche-demographic models (Chapter Four) in predicting animal population growth rates. In 

this instance, following the principle of Occam’s Razor is justified. The simple models are 
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not only easier and faster to implement but also produce more accurate predictions for the 

species in question. The relatively poor performance of coupled niche-demographic models 

may be due to the following reasons: the environmental data were only available at coarse 

spatiotemporal resolutions for the required time-period; I make potentially overly simplistic 

assumptions regarding the relationship between dispersal and vital rates with predicted 

habitat suitability and range position; and I do not incorporate species interactions into the 

models. If these deficits are addressed coupled niche-demographic models may yet become 

a useful tool for understanding species vulnerability to climate change and land use change.  
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APPENDICES 
MODEL AVERAGING 

 
Model averaging provides a way of combining multiple models into a single weighted model 

which can be used to make predictions. In Chapter Two it also meant that each variable was 

included in the average model. This was advantageous in this study as I expected each of the 

explanatory variables to influence bird and mammal population trends. A criterion is required for 

selecting models to be combined into an average model, to avoid the inclusion of poorly 

performing models. There are two principle criteria that are commonly used: firstly, the selection 

of models based on the ΔAIC, i.e. the difference in AIC points between each model and the model 

with the lowest AIC score; secondly, the minimum number of models needed for the cumulative 

sum of the Akaike weights to meet a threshold value, commonly 0.95. In Chapter Two, I selected 

models to be used to create the average model using the latter method. I feel that this is a more 

conservative approach and, given the variability in potential effects within my analysis, was more 

appropriate. Here I explore the effect of using the former criterion, with models ΔAIC < 6 (as 

recommended in Harrison et al., 2018) included in the average model.  

 

The results of the averaged models under ΔAIC < 6 (Figure S2.1) are very similar to the results 

under Akaike weights ≥ 0.95, with the differences between each of the values being very small 

(<6.5%). Both methods are conservative approaches, in that they include a relatively wide set of 

models. I believe a conservative approach is appropriate here as I am attempting to capture 

complex processes where I expect each of the explanatory variables to have an important influence 

on the model.  
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Figure S2.1 The distribution of the coefficients of the average models (ΔAIC < 6) for both bird and mammal 

populations. The circles show the estimated coefficient values for each variable and the solid lines show the 2.5 - 

97.5% confidence intervals. The intercept shows the distribution of the annual population growth rates in the absence 

of the effects of explanatory variables. The explanatory variables were scaled and centred, therefore the coefficients 

show the change in annual population growth rate given a one standard deviation increase in each explanatory 

variable. When the confidence intervals do not overlap with zero this shows a clear signal of either a positive or 

negative effect of a variable. Confidence intervals that overlap with zero show that within the averaged model an 

increase in a given variable has a mixture both positive and negative effect sizes on the rate of population change 

across different populations.  
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CHAPTER TWO APPENDIX 

Table S2.2 All competing models used to explain the growth rate of bird populations. The models are ranked in order of performance based on AIC, with higher ranking models 

listed towards the top of each table. Models within < 2 ΔAIC of the highest ranked model are highlighted with bold text and a grey background.  A null model is included for 

comparison. RCW = annual rate of climate warming, RCA = annual rate of conversion to anthropogenic land use, BM = body mass, PA = population inside a protected area. The 

coefficient values have been transformed into percentage population change. According to the top ranked model for birds, an increase in RCW to rates expected under climate 

scenario RCP 8.5 (5-6oC, 2006-2100) would lead to an annual population decline of 3.85 - 4.65% in bird populations and 1.46 - 1.76% for mammal populations.  RVI (relative 

variable importance) is the sum of Akaike weights over all models including the explanatory variable. P values show the results of an ANOVA comparing each model to the null 

model, and therefore give the probability that for a given model it is purely chance that it explains more of the variation in population trends than the null model. 

Results from bird population trends  
Model Δ AIC Akaike Weight Marg. R2 Cond. R2 Intercept Rate of Climate 

Warming (RCW) 

Rate of Conversion to Anthropogenic 

Land Use (RCA) 

RCW:RCA Body 

Mass 

Inside 

Protected Area 
RCW+PA 0.00 0.28 0.08 0.79 -6.12 (±2.63) -5.09 (±1.17)    5.60 (±3.50) 

RCW 0.42 0.22 0.06 0.79 -3.38 (±1.88) -5.29 (±1.17)     
RCW+BM+PA 2.06 0.10 0.08 0.79 -6.18 (±2.69) -5.10 (±1.17)   0.12 (±1.24) 5.62 (±3.51) 

RCA+RCW+PA 2.06 0.10 0.08 0.79 -6.13 (±2.63) -5.08 (±1.17) -0.11 (±1.28)   5.62 (±3.50) 
RCW+BM 2.48 0.08 0.06 0.79 -3.40 (±1.94) -5.30 (±1.17)   0.04 (±1.25)  

RCA+RCW 2.48 0.08 0.06 0.79 -3.39 (±1.88) -5.29 (±1.17) -0.02 (±1.29)    
RCW*RCA+PA 4.12 0.04 0.08 0.79 -6.12 (±2.63) -5.13 (±1.22) -0.11 (±1.28) -0.11 (±0.69)  5.60 (±3.51) 

RCA+RCW+BM+PA 4.13 0.04 0.08 0.79 -6.19 (±2.69) -5.08 (±1.17) -0.12 (±1.28)  0.13 (±1.25) 5.64 (±3.51) 
RCA*RCW 4.51 0.03 0.06 0.79 -3.38 (±1.88) -5.35 (±1.22) -0.02 (±1.29) -0.14 (±0.70)   

RCA+RCW+BM 4.55 0.03 0.06 0.79 -3.40 (±1.94) -5.29 (±1.17) -0.02 (±1.30)  0.05 (±1.25)  
RCA*RCW+BM+PA 6.20 0.01 0.08 0.79 -6.17 (±2.70) -5.13 (±1.22) -0.12 (±1.28) -0.10 (±0.69) 0.12 (±1.25) 5.62 (±3.51) 

RCA*RCW+BM 6.59 0.01 0.06 0.79 -3.39 (±1.94) -5.35 (±1.22) -0.03 (±1.30) -0.14 (±0.70) 0.03 (±1.25)  
RCA+PA 18.89 <0.01 0.03 0.76 -6.00 (±2.62)  -0.71 (±1.26)   7.33 (±3.46) 
BM+PA 19.21 <0.01 0.02 0.76 -5.91 (±2.69)    -0.08 

(±1.28) 
7.25 (±3.46) 

NULL 19.27 <0.01 0.00 0.77 -2.34 (±1.88)      
RCA+BM+PA 20.96 <0.01 0.03 0.76 -5.98 (±2.69)  -0.71 (±1.26)  -0.04 

(±1.28) 
7.32 (±3.46) 

RCA 21.06 <0.01 <0.01 0.77 -2.36 (±1.88)  -0.65 (±1.28)    
BM 21.30 <0.01 <0.01 0.77 -2.27 (±1.94)    -0.19 

(±1.29) 
 

RCA+BM 23.11 <0.01 <0.01 0.77 -2.31 (±1.94)  -0.64 (±1.29)  -0.15 
(±1.29) 

 
     RVI 1.00 0.33 0.09 0.26 0.55 
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Table S2.3 All competing models used to explain the growth rate of mammal populations. The models are ranked in order of performance based on AIC, with higher ranking 

models listed towards the top of each table. Models within < 2 ΔAIC of the highest ranked model are highlighted with bold text and a grey background.  A null model is included 

for comparison. RCW = annual rate of climate warming, RCA = annual rate of conversion to anthropogenic land use, BM = body mass, PA = population inside a protected area. 

The coefficient values have been transformed into percentage population change. According to the top ranked model for birds, an increase in RCW to rates expected under climate 

scenario RCP 8.5 (5-6oC, 2006-2100) would lead to an annual population decline of 3.85 - 4.65% in bird populations and 1.46 - 1.76% for mammal populations.  RVI (relative 

variable importance) is the sum of Akaike weights over all models including the explanatory variable. P values show the results of an ANOVA comparing each model to the null 

model, and therefore give the probability that for a given model it is purely chance that it explains more of the variation in population trends than the null model. 

 

Results from mammal population trends 

Model Δ AIC Akaike Weight Marg. R2 Cond. R2 Intercept Rate of Climate 

Warming (RCW) 

Rate of Conversion to Anthropogenic 

Land Use (RCA) 

RCW:RCA Body 

Mass 

Inside 

Protected Area 

RCA*RCW+BM 0.00 0.17 0.03 0.44 0.68 (±0.94) -2.20 (±0.73) -0.75 (±0.82) -1.82 (±1.02) 1.24 (±0.82)  

RCA*RCW 0.12 0.16 0.02 0.45 0.38 (±0.95) -2.22 (±0.73) -0.55 (±0.81) -1.88 (±1.02)   

RCW 1.05 0.10 0.01 0.42 0.38 (±0.93) -1.72 (±0.68)     

RCA+RCW+BM 1.18 0.09 0.02 0.42 0.56 (±0.93) -1.71 (±0.68) -1.17 (±0.78)  1.28 (±0.81)  

RCW+BM 1.41 0.08 0.02 0.42 0.64 (±0.93) -1.71 (±0.68)   1.06 (±0.80)  

RCA+RCW 1.50 0.08 0.02 0.43 0.26 (±0.93) -1.73 (±0.68) -0.97 (±0.78)    

RCA*RCW+PA 1.97 0.06 0.02 0.45 -0.36 (±1.91) -2.24 (±0.73) -0.58 (±0.82) -1.86 (±1.02)  0.95 (±2.10) 

RCA*RCW+BM+PA 2.06 0.06 0.03 0.44 0.82 (±2.08) -2.20 (±0.73) -0.74 (±0.82) -1.83 (±1.02) 1.27 (±0.88) -0.17 (±2.25) 

RCW+PA 2.93 0.04 0.01 0.42 -0.27 (±1.88) -1.74 (±0.69)     

RCA+RCW+BM+PA 3.24 0.03 0.02 0.42 0.62 (±2.06) -1.71 (±0.68) -1.17 (±0.79)  1.29 (±0.87) 0.83 (±2.11) 

RCA+RCW+PA 3.28 0.03 0.02 0.45 -0.59 (±1.90) -1.75 (±0.68) -1.01 (±0.78)   1.09 (±2.09) 

RCW+BM+PA 3.45 0.03 0.02 0.42 0.80 (±2.07) -1.70 (±0.68)   1.09 (±0.89) -0.19 (±2.25) 

NULL 5.36 0.01 0.00 0.41 0.41 (±0.92)      

RCA+BM 5.48 0.01 0.01 0.41 0.60 (±0.91)  -1.18 (±0.79)  1.28 (±0.80)  

BM 5.69 0.01 0.01 0.41 0.66 (±0.92)    1.06 (±0.79)  

RCA 5.87 0.01 <0.0 0.41 0.31 (±0.92)  -0.96 (±0.78)    

RCA+BM+PA 7.46 <0.01 0.01 0.41 1.07 (±2.06)  -1.17 (±0.79)  1.37 (±0.86) -0.57 (±2.25) 

BM+PA 7.64 <0.01 0.01 0.41 1.23 (±2.06)    1.16 (±0.86)  

RCA+PA 7.81 <0.01 <0.01 0.41 -0.23 (±1.90)  -0.98 (±0.78)   0.69 (±2.09) 

     RVI 0.95 0.72 0.45 0.50 0.27 
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FUTURE PROJECTIONS 
 

In Chapter Two I showed the rate of climate warming (RCW) to be an important predictor 

of both bird and mammal population growth rates. Climate change is expected to be a major 

threat to biodiversity in the coming century. There are four Representative Concentration 

Pathways (RCPs) provided by the IPCC which outline a range of potential climate change 

pathways. Here I project models with RCW as an explanatory variable forward under two 

contrasting climate change scenarios (RCP 2.6 and RCP 8.5, both under the HadGEM2-ES 

model;  Jones et al., 2011). I expect that population declines will be considerably more 

severe under RCP 8.5 than RCP 2.6. Extrapolating forward models from Chapter Two 

allows for comparison against other published predictions of climate change impacts on 

biodiversity.  

RCP 2.6 is the “best case” scenario under which emissions peak between 2010-2020 and 

decline in the following years meaning that warming plateaus after 2050; RCP 8.5 is the 

“worst case” scenario, where emissions continue to rise at a steady rate throughout the 

twenty-first century (Figure S2.2). For each scenario I calculated the predicted annual rate 

of change in mean temperature and used these values to model a population index of both 

bird and mammal population trends from 2005 – 2100, under both scenarios (Figure S2.3).  
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Figure S2.2 Annual global mean temperature 1950 – 2100, observed temperatures from the period 1950-

2005 are shown in red and predicted temperatures under scenarios HadGEM2-ES RCP 8.5 (left) and 

HadGEM2-ES RCP 2.6 (right) are shown in blue. 

 

As expected, the population declines are more severe when the rate of increase in mean 

temperature is greater. For RCP 2.6, extrapolation of the observed trend suggests a mean 

population decline of 67.6% for birds and a 43.8% increase in mammal populations by 

2100; however, under RCP 8.5 there is a predicted mean population decline of 99.2% for 

birds and 70.3% for mammals (Figure S2.3).  

It is important to note that these extrapolations and the models they are derived from are 

based purely on statistical correlations between population changes and rates of 

environmental change. This type of ‘prediction’ has advantages, namely its simplicity and 

relatively low data requirements. However, these extrapolations are based upon average 

bird and mammal populations and do not account for the variation in responses of different 

species in different locations to climate change. These predictions also assume a linear 

continuation of the observed associations between climate warming and population trends, 

they do not account for species physiological thermal limits or impact of climate change on 

species interactions.  
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Figure S2.3 Future extrapolations of bird and mammal population indices under two contrasting climate 

scenarios. Scenario RCP 8.5 (panels A and C) is a “worst-case” scenario based on a continued increase in 

carbon emissions. The extrapolations show a mean decrease in bird populations (from a 2005 baseline) of 

99.2% (panel A) and a decrease of 70.3% for mammal populations (panel C). RCP 2.6 (panels B and D) is a 

“best-case” scenario whereby emissions peak by 2020 and decrease from then, the extrapolations under this 

scenario show an average 67.6% decrease in bird populations (panel B) but a 43.8% increase in mammal 

populations (panel D). 

 

According to the top performing model for birds (RCW + PA) under the RCP 8.5 scenario 

(5-6oC, 2006-2100) climate warming would lead to an annual population decline of 3.85–

4.65% for bird populations and 1.46–1.76% for mammal populations. Accounting for 

protected area coverage, outside of protected areas I would expect 5.5–6.3% annual 

population declines for birds and 0.8–1.2% annual population declines for mammals; inside 

protected areas I would expect a 0.1% increase to 0.7% decrease in bird populations and 

0.4–0.7% decrease in mammal populations. 

Predictions of species extinctions due to climate change vary widely, estimating that 

between 0-54% of all species could become extinct due to climate change. A recent meta-

analysis estimated that 15.7% of species are likely to become extinct due to climate change, 

under the RCP 8.5 scenario (Urban, 2015). It is difficult to compare predictions of 

extinctions and population declines; however, under RCP 8.5 these models suggest very 
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high declines for average bird populations (99.2%), which would likely lead to much higher 

levels of species extinctions than the predicted 15.7%  (Urban, 2015).  

INCLUDING A WIDER SET OF POPULATION TRENDS 
 

The Living Planet population trends used for analysis in Chapter Two were filtered under 

the following criteria: (i) only populations with a known location were included (many of 

the population trends in the Living Planet database are nationally aggregated so cannot be 

spatially linked to environmental data); (ii) only populations where environmental data and 

body mass data were available were included (see below); (iii) population time series 

spanning less than 5 years were excluded because longer time series will better reflect 

environmental changes; and (iv) only population time series that had an R2  ≥ 0.5 when fit 

to the GAM or linear model were included, to ensure interpolated population estimates 

were reasonable. 

Here I relax the last criterion to test whether the findings of Chapter Two still hold when 

using a broader and lower quality dataset. Populations which fulfilled only the first three 

criteria were included, thereby increasing the number of populations to 883 bird 

populations (463 species) and 966 mammal populations (272 species). I ran the same set of 

models on this expanded set of populations and found that the main results remain similar: 

populations have declined more rapidly where climate has warmed most quickly, and this 

is more severe for bird populations. Additionally, I find that within the wider data set body 

mass is an important predictor for mammal population trends. This means that larger bodied 

mammals are more likely to have had increasing population trends. I also note a positive 

impact of protected areas for bird populations, with populations inside of protected areas 

projected to have a positive population growth rate and those outside protected areas are 

more likely to have declining populations (Figure S2.4). 
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Figure S2.4 The distribution of the coefficients of the average models for both bird and mammal populations. 

The circles show the estimated coefficient values for each variable and the solid lines show the 2.5 - 97.5% 

confidence intervals. The intercept shows the distribution of the annual population growth rates in the absence 

of the effects of explanatory variables. The explanatory variables were scaled and centred, therefore the 

coefficients show the change in annual population growth rate given a one standard deviation increase in each 

explanatory variable. When the confidence intervals do not overlap with zero this shows a clear signal of 

either a positive or negative effect of a variable. Confidence intervals that overlap with zero show that within 

the averaged model an increase in a given variable has a mixture both positive and negative effect sizes on 

the rate of population change across different populations.  
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Table S2.4 All competing models used to explain the growth rate of 883 bird populations. The models are ranked in order of performance based on AIC, with higher ranking 

models listed towards the top of each table. RCW = annual rate of climate warming, RCA = annual rate of conversion to anthropogenic land use, BM = body mass, PA = population 

inside a protected area. The coefficient values have been transformed into percentage population change. RVI (relative variable importance) is the sum of Akaike weights over all 

models including the explanatory variable.  

Results from bird population trends 

Model Δ AIC Akaike Weight Marg. R2 Cond. R2 Intercept RCW RCA RCW:RCA Body Mass Inside Protected Area 

RCW+PA 0.00 0.32 0.07 0.64 -4.47 (±1.71) -3.26 (±0.72)    4.59 (±2.19) 

RCW+BM+PA 1.23 0.17 0.07 0.64 -4.74 (±1.74) -3.28 (±0.72)   0.65 (±0.73) 4.70 (±2.20) 

RCA+RCW+PA 1.95 0.12 0.07 0.64 -4.46 (±1.71) -3.27 (±0.72) 0.21 (±0.74)   4.58 (±2.19) 

RCW 2.23 0.11 0.04 0.63 -2.03 (±1.18) -3.40 (±0.72)     

RCA+RCW+BM+PA 3.22 0.06 0.07 0.64 -4.74 (±1.74) -3.29 (±0.72) 0.17 (±0.74)  0.64 (±0.73) 4.69 (±2.20) 

RCW+BM  3.61 0.05 0.04 0.64 -2.24 (±1.21) -3.43 (±0.72)   0.59 (±0.73)  

RCA*RCW+PA  3.76 0.05 0.07 0.64 -4.46 (±1.71) -3.20 (±0.74) 0.22 (±0.74) 0.21 (±0.45)  4.55 (±2.19) 

RCA+RCW 4.15 0.04 0.04 0.63 -2.03 (±1.18) -3.42 (±0.72) 0.24 (±0.74)    

RCA*RCW+BM+PA 5.00 0.03 0.07 0.64 -4.74 (±1.74) -3.21 (±0.74) 0.18 (±0.74) 0.23 (±0.45) 0.66 (±0.73) 4.58 (±2.21) 

RCA+RCW+BM 5.56 0.02 0.04 0.64 -2.24 (±1.21) -3.44 (±0.72) 0.20 (±0.75)  0.57 (±0.73)  

RCA*RCW 5.90 0.02 0.04 0.63 -2.05 (±1.18) -3.33 (±0.74) 0.26 (±0.74) 0.24 (±0.45)   

RCA*RCW+BM 7.27 0.01 0.04 0.64 -2.26 (±1.21) -3.35 (±0.74) 0.22 (±0.75) 0.26 (±0.45) 0.60 (±0.73)  

BM+PA 19.72 <0.01 0.02 0.60 -4.36 (±1.69)    0.55 (±0.74)  5.49 (±2.12) 

RCA+PA 20.28 <0.01 0.02 0.59 -4.14 (±1.66)  0.02 (±0.71)   5.40 (±2.11) 

RCA+BM+PA 21.76 <0.01 0.07 0.64 -4.36 (±1.69)  -0.01 (±0.72)  0.55 (±0.74) 5.40 (±2.12) 

NULL 22.48 <0.01 0.00 0.59 -1.23 (±1.15)      

BM 24.09 <0.01 <0.01 0.60 -1.39 (±1.18)    0.55 (±0.74)  

RCA 24.50 <0.01 <0.01 0.59 -1.23 (±1.15)  0.048 (±0.73)    

RCA+BM 26.12 <0.01 <0.01 0.60 -1.39 (±1.18)  0.018 (±0.73)  0.48 (±0.74)   

    RVI  1.00 0.35 0.10 0.35 0.76 
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Table S2.5 All competing models used to explain the growth rate of 966 mammal populations. The models are ranked in order of performance based on AIC, with higher 

ranking models listed towards the top of each table. RCW = annual rate of climate warming, RCA = annual rate of conversion to anthropogenic land use, BM = body mass, PA = 

population inside a protected area. The coefficient values have been transformed into percentage population change. RVI (relative variable importance) is the sum of Akaike 

weights over all models including the explanatory variable. 

Results from mammal population trends 

Model ΔAIC Akaike Weight Marg. R2 Cond. R2 Intercept RCW RCA RCW:RCA Body Mass Inside Protected Area 

RCW+BM 0.00 0.17 0.01 0.39 0.11 (±0.66) -0.85 (±0.46)   1.32 (±0.63)  

RCA+RCW+BM 0.48 0.13 0.02 0.39 0.07 (±0.67) -0.83 (±0.46) -0.65 (±0.53)   1.43 (±0.64)  

BM 1.41 0.08 0.01 0.38 0.13 (±0.66)    1.32 (±0.63)  

RCA*RCW+BM 1.59 0.08 0.02 0.39 0.10 (±0.67) -0.99 (±0.49) -0.61 (±0.53) -0.31 (±0.32) 1.41 (±0.64)  

RCW+BM+PA 1.64 0.07 0.02 0.39 -0.58 (±1.31) -0.89 (±0.46)   1.15 (±0.68) 0.90 (±1.45) 

RCA+BM 1.67 0.07 0.01 0.38 0.09 (±0.66)  -0.70 (±0.53)  1.44 (±0.63)  

RCA+RCW+BM+PA 2.10 0.06 0.02 0.39 -0.64 (±1.31) -0.86 (±0.46) -0.66 (±0.53)  1.26 (±0.69) 0.92 (±1.45) 

RCW 2.23 0.05 <0.01 0.39 -0.19 (±0.66) -0.86 (±0.46)     

RCW+PA 2.42 0.05 0.01 0.39 -1.50 (±1.19) -0.93 (±0.46)    1.83 (±1.35) 

RCA*RCW+BM+PA 3.22 0.03 0.02 0.39 -0.61 (±1.31) -1.20 (±0.49) -0.62 (±0.53) -0.31 (±0.32) 1.25 (±0.69) 0.92 (±1.45) 

BM+PA 3.29 0.03 0.01 0.38 -0.29 (±1.30)    1.22 (±0.68) 0.55 (±1.45) 

RCA+RCW 3.36 0.03 0.01 0.40 -0.24 (±0.67) -0.84 (±0.46) -0.49 (±0.52)    

RCA+RCW+PA 3.89 0.03 <0.01 0.39 -1.62 (±1.20) -0.91 (±0.46) -0.53 (±0.52)   1.90 (±1.35) 

RCA+BM+PA 3.54 0.03 0.01 0.38 -0.36 (±1.30)  -0.70 (±0.53)  1.33 (±0.68) 0.59 (±1.44) 

NULL 3.69 0.03 0.00 0.39 -0.16 (±0.66)      

RCA*RCW 4.32 0.02 0.01 0.40 -0.21 (±0.67) -1.01 (±0.49) -0.45 (±0.52) -0.34 (±0.33)   

RCA*RCW+PA 4.39 0.02 0.01 0.39 -1.58 (±1.20) -1.08 (±0.49) -0.50 (±0.52) -0.33 (±0.32)  1.90 (±1.35) 

RCA 4.69 0.02 <0.01 0.39 -0.22 (±0.66)  -0.53 (±0.52)    

RCA+PA 5.25 0.01 <0.04 0.39 -1.39 (±1.19)  -0.57 (±0.52)   1.63 (±1.34) 

    RVI  0.73 0.52 0.14 0.74 0.33 
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SPATIAL HETEROGENEITY IN THE DATA  
The Living Planet database is a comprehensive resource of animal population trends. However, there is spatial bias in the dataset as the populations 

are not uniformly spatially distributed. Within dataset used in Chapter Two there are 122 (12.4%) populations at a site in the Atlantic Forest, Brazil. 

To test whether this site was having undue influence on the results I re-ran the analysis excluding these populations (Tables S2.3 and S2.4). I found 

there were minimal changes to the coefficients and overall results suggesting this site does not disproportionately influence the results. 

Table S2.3 All competing models used to explain the growth rate of bird populations, excluding populations from a heavily surveyed site in the Atlantic Forest. The models are 

ranked in order of performance based on AIC, with higher ranking models listed towards the top of each table. Models within <2 ΔAIC of the highest ranked model are highlighted 

with bold text and a grey background.  A null model is included for comparison. RCW = annual rate of climate warming, RCA = annual rate of conversion to anthropogenic land 

use, BM = body mass, PA = population inside a protected area. RVI (relative variable importance) is the sum of Akaike weights over all models including the explanatory variable. 

P values show the results of an ANOVA comparing each model to the null model, and therefore give the probability that for a given model it is purely chance that it explains more 

of the variation in population trends than the null model. 

Results from bird populations 
Model Δ AIC Akaike Weight Marg. R2 Cond. R2 Intercept Rate of Climate 

Warming (RCW) 

Rate of Conversion to 

Anthropogenic Land Use (RCA) 

RCW:RCA Body Mass Inside Protected Area 

RCW+PA 0.00 0.26 0.08 0.79 -6.04 (±2.66) -5.12 (±1.17)    5.51 (±3.53) 

RCW 0.30 0.23 0.06 0.79 -3.33 (±1.89) -5.33 (±1.17)     

RCW+BM+PA 2.06 0.10 0.08 0.79 -6.10 (±2.72) -5.12 (±1.17)   0.13 (±1.25) 5.53 (±3.53) 

RCA+RCW+PA 2.06 0.10 0.08 0.79 -6.05 (±2.66) -5.11 (±1.18) -0.09 (±1.29)   5.52 (±3.53) 

RCW+BM 2.36 0.08 0.06 0.79 -3.35 (±1.95) -5.33 (±1.17)   0.05 (±1.25)  

RCA+RCW 2.36 0.08 0.06 0.79 -3.33 (±1.89) -5.33 (±1.18) 0.01 (±1.30)    

RCW*RCA+PA 4.11 0.03 0.08 0.79 -6.03 (±2.66) -5.16 (±1.22) -0.09 (±1.29)  -0.12 (±0.69) 5.50 (±3.53) 

RCA+RCW+BM+PA 4.13 0.03 0.08 0.79 -6.11 (±2.72) -5.12 (±1.18) -0.10 (±1.29)  0.14 (±1.25) 5.54 (±3.54) 

RCA*RCW 4.38 0.03 0.06 0.79 -3.32 (±1.89) -5.40 (±1.22) 0.01 (±1.30) -0.15 (±0.70)   

RCA+RCW+BM 4.43 0.03 0.06 0.79 -3.35 (±1.95) -5.33 (±1.18) 0.00 (±1.30)  0.05 (±1.25)  

RCA*RCW+BM+PA 6.20 0.01 0.08 0.79 -6.09 (±2.73) -5.17 (±1.22) -0.10 (±1.29) -0.11 (±0.69) 0.12 (±1.25) 5.52 (±3.54) 

RCA*RCW+BM 6.46 0.01 0.06 0.79 -3.33 (±1.95) -5.40 (±1.22) 0.00 (±1.30) -0.15 (±0.70) 0.04 (±1.25)  

RCA+PA 18.97 <0.01 0.02 0.76 -6.00 (±2.65)  -0.72 (±1.27)   7.33 (±3.48) 

Null Model 19.29 <0.01 0.00 0.77 -2.31 (±1.89)      

BM+PA 19.29 <0.01 0.02 0.76 -5.91 (±2.71)    -0.08 (±1.28) 7.25 (±3.49) 

RCA+BM+PA 21.03 <0.01 0.02 0.76 -5.99 (±2.71)  -0.71 (±1.27)  -0.03 (±1.28) 7-32 (±3.48) 

RCA 21.09 <0.01 0.08 0.77 -2.33 (±1.89)  -0.63 (±1.29)    

BM 21.32 <0.01 0.07 0.77 -2.25 (±1.95)    -0.18 (±1.29)  

RCA+BM 23.13 <0.01 <0.01 0.77 -2.29 (±1.95)  -0.63 (±1.29)  -0.15 (±1.29)  

     RVI 1.00 0.33 0.09 0.26 0.54 
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Table S2.4 All competing models used to explain the growth rate of mammal populations, excluding populations from a heavily surveyed site in the Atlantic Forest. The models 

are ranked in order of performance based on AIC, with higher ranking models listed towards the top of each table. Models within <2 ΔAIC of the highest ranked model are 

highlighted with bold text and a grey background.  A null model is included for comparison. RCW = annual rate of climate warming, RCA = annual rate of conversion to 

anthropogenic land use, BM = body mass, PA = population inside a protected area. RVI (relative variable importance) is the sum of Akaike weights over all models including the 

explanatory variable. P values show the results of an ANOVA comparing each model to the null model, and therefore give the probability that for a given model it is purely chance 

that it explains more of the variation in population trends than the null model. 

 

 

 

 

Results from mammal populations 
Model Δ AIC Akaike Weight Marg. R2 Cond. R2 Intercept Rate of Climate 

Warming (RCW) 

Rate of Conversion to 

Anthropogenic Land Use 

(RCA) 

RCW:RCA Body Mass Inside Protected Area 

RCA*RCW+BM  0.00 0.17 0.03 0.44 0.68 (±0.95) -2.20 (±0.73) -0.75 (±0.82) -1.83 (±1.02) 1.24 (±0.82)  

RCA*RCW  0.12 0.16 0.02 0.45 0.39 (±0.95) -2.23 (±0.73) -0.55 (±0.81) -1.88 (±1.02)   

RCW  1.04 0.10 0.01 0.42 0.38 (±0.93) -1.72 (±0.68)     

RCA+RCW+BM  1.18 0.09 0.02 0.42 0.57 (±0.93) -1.71 (±0.68) -1.18 (±0.78)  1.28 (±0.81)  

RCW+BM 1.40 0.08 0.02 0.42 0.64 (±0.93) -1.71 (±0.68)   1.06 (±0.80)  

RCA+RCW 1.49 0.06 0.02 0.43 0.27 (±0.93) -1.73 (±0.68) -0.97 (±0.78)    

RCA*RCW+PA 1.96 0.06 0.02 0.45 -0.36 (±1.92) -2.24 (±0.73) -0.58 (±0.82) -1.86 (±1.02)  0.96 (±2.10) 

RCA*RCW+BM+PA 2.06 0.04 0.03 0.44 0.82 (±2.08) -2.20 (±0.73) -0.74 (±0.82) -1.83 (±1.02) 1.27 (±0.88) -0.16 (±2.25) 

RCW+PA 2.92 0.03 0.01 0.42 -0.27 (±1.89) -1.74 (±0.69)    0.84 (±2.09) 

RCA+RCW+BM+PA 3.24 0.03 0.02 0.42 0.62 (±2.07) -1.71 (±0.68) -1.17 (±0.79)  1.29 (±0.87) -0.07 (±2.25) 

RCA+RCW+PA 3.27 0.03 0.02 0.43 -0.59 (±1.90) -1.75 (±0.69) -1.01 (±0.78)   1.10 (±2.10) 

RCW+BM+PA 3.45 0.03 0.02 0.42 0.80 (±2.07) -1.70 (±0.69)   1.09 (±0.89) -0.19 (±2.25) 

Null Model 5.34 0.01 0.00 0.41 0.41 (±0.92)      

RCA+PA 5.46 0.01 <0.01 0.41 0.60 (±0.92)  -1.18 (±0.79)  1.28 (±0.80)  

RCA+BM 5.67 0.01 0.01 0.41 0.66 (±0.92)    1.06 (±0.80)  

RCA 5.85 0.01 <0.01 0.41 0.31 (±0.92)  -0.96 (±0.78)    

RCA+BM+PA 7.44 <0.01 0.01 0.41 1.07 (±2.05)  -1.17 (±0.79)  1.37 (±0.86) -0.57 (±2.25) 

BM+PA 7.61 <0.01 <0.01 0.41 1.23 (±2.06)    1.16 (±0.86) -0.68 (±2.26) 

RCA+PA 7.78 <0.01 <0.01 0.41 -0.23 (±1.90)  -0.98 (±0.78)   0.70 (±2.10) 

     RVI 0.95 0.72 0.45 0.50 0.27 
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SPECIES TRAITS  
 

There are many species traits which may influence species population trends, such as 

generation length and geographic range. The only species trait I considered in Chapter Two 

was body mass, because it is a correlate of many other species traits (Brook, Sodhi and 

Bradshaw, 2008; Hilbers et al., 2016). Here I explore the effect of including diet into the 

models as a fixed effect. Diet has been found to be an important predictor of population 

density for bird species (Santini, Isaac, Maiorano, et al., 2018), with carnivorous birds 

typically being found at smaller densities. Carnivorous mammals have undergone large 

declines in both populations and ranges over the last two centuries (Ripple et al., 2014) and 

species at higher trophic levels tend to have higher levels of extinction risk (Purvis et al., 

2000). Therefore, I hypothesise that populations of carnivorous species will have lower 

population growth rates than populations of other diet types.  

I extracted diet data from the EltonTraits database (Wilman et al., 2014) for both the bird 

and mammal populations. There were five diet categories for bird species: carnivores of 

invertebrates (40.4%), carnivores of vertebrates and carrion (23.4%), omnivores (17.2%) 

plant and seed eaters (15.0%) and frugivores/nectarivores (4.0%). I classified mammal 

species as either herbivores (84.8%), carnivores (7.7%) or omnivores (7.5%). I did not find 

any important effects of diet on either bird or mammal population trends, with the 

coefficients of each dietary group having large standard error values and all models 

performing worse (in terms of AIC) given the addition of diet as a variable (Tables 3.3 and 

3.4). This suggests that, although diet seems to be an important predictor for bird species 

densities (Santini et al., 2018), it does not have an important effect on population trends.  
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Table S2.5 All competing models used to explain the growth rate of bird populations. The models are ranked in order of performance based on AIC, with higher ranking models 

listed towards the top of each table. A null model is included for comparison. RCW = annual rate of climate warming, RCA = annual rate of conversion to anthropogenic land use, 

BM = body mass, PA = population inside a protected area. RVI (relative variable importance) is the sum of Akaike weights over all models including the explanatory variable.  

 

 Results from bird populations 

Model Δ AIC AIC ωi Marg. R2 Cond. R2 Intercept RCW RCA RCW:RCA BM PA Diet: Invert Diet: Omni 

 

Diet: Plant/Seed Diet: Vert 

RCW 0.00 0.24 0.06 0.79 -3.56 (±1.95) -5.61 (±1.20)         
RCW+PA 0.04 0.24 0.08 0.79 -6.16 (±2.76) -5.38 (±1.20)    5.31 (±3.68)     
RCW+BM 2.05 0.09 0.06 0.79 -3.51 (±2.02) -5.61 (±1.20)   -0.14 (±1.28)      

RCA+RCW 2.06 0.09 0.06 0.79 -3.56 (±1.95) -5.62 (±1.21) 0.00 (±1.33)        
RCA+RCW+PA 2.11 0.08 0.08 0.79 -6.17 (±2.76) -5.37 (±1.21) -0.08 (±1.32)   5.32 (±3.69)     
RCW+BM+PA 2.11 0.08 0.08 0.79 -6.13 (±2.82) -5.38 (±1.20)   -0.06 (±1.28) 5.30 (±3.69)     

RCA*RCW 4.02 0.03 0.06 0.79 -3.54 (±1.96) -5.73 (±1.25) -0.00 (±1.33) -0.24 (±0.71)       
RCA*RCW+PA 4.11 0.03 0.08 0.79 -6.13 (±2.76) -5.46 (±1.26) -0.09 (±1.32) -0.20 (±0.70)  5.28 (±3.69)     

RCA+RCW+BM 4.12 0.03 0.06 0.79 -3.51 (±2.02) -5.61 (±1.21) 0.01 (±1.33)  -0.14 (±1.28)      
RCA+RCW+BM+PA 4.19 0.03 0.08 0.79 -6.14 (±2.82) -5.37 (±1.21) -0.08 (±1.32)  -0.06 (±1.28) 5.31 (±3.69)     

RCA*RCW+BM 6.08 0.01 0.06 0.79 -3.48 (±2.02) -5.72 (±1.25) 0.01 (±1.33) -0.25 (±0.71) -0.17 (±1.28)      
RCA*RCW+BM+PA 6.20 0.01 0.08 0.79 -6.09 (±2.83) -5.46 (±1.26) -0.08 (±1.32) -0.20 (±0.70) -0.08 (±1.28) 5.26 (±3.69)     

RCW+Diet 6.39 0.01 0.06 0.80 -7.43 (±4.75) -5.61 (±1.20)     4.46 (±4.36) 5.38 (±4.80) 2.12 (±5.11) 4.85 (±5.03) 
RCW+PA+Diet 6.44 0.01 0.09 0.80 -10.14 (±5.22) -5.38 (±1.20)    5.38 (±3.70) 4.56 (±4.36) 5.64 (±4.80) 2.45 (±5.11) 5.11 (±5.03) 
RCW+BM+Diet 8.48 <0.01 <0.01 0.78 -7.50 (±4.79) -5.61 (±1.20)   -0.20 (±1.51)  4.51 (±4.38) 5.51 (±4.89) 2.36 (±5.42) 5.12 (±5.40) 

RCA+RCW+Diet 8.50 <0.01 0.06 0.80 -7.42 (±4.75) -5.62 (±1.21) -0.03 (±1.35)    4.46 (±4.36) 5.38 (±4.80) 2.12 (±5.12) 4.84 (±5.04) 
RCA+RCW+PA+Diet 8.55 <0.01 0.09 0.80 -10.15 (±5.23) -5.37 (±1.21) -0.07 (±1.34)   5.39 (±3.70) 4.57 (±4.37) 5.64 (±4.81) 2.47 (±5.13) 5.13 (±5.05) 

RCA*RCW+Diet 10.47 <0.01 0.06 0.80 -7.41 (±4.75) -5.74 (±1.25) -0.03 (±1.35) -0.27 (±0.71)   4.50 (±4.36) 5.40 (±4.80) 2.11 (±5.12) 4.85 (±5.04) 
RCA*RCW+PA+Diet 10.58 <0.01 0.09 0.80 -10.12 (±5.23) -5.47 (±1.26) -0.07 (±1.34) -0.22 (±0.70)  5.33 (±3.70) 4.59 (±4.37) 5.65 (±4.81) 2.46 (±5.13) 5.14 (±5.05) 

RCA+RCW+BM+Diet 10.59 <0.01 0.06 0.80 -7.50 (±4.80) -5.61 (±1.21) 0.03 (±1.35)  -0.20 (±1.51)  4.51 (±4.38) 5.51 (±1.95) 2.36 (±1.95) 5.11 (±5.42) 
RCA*RCW+BM+Diet 12.57 <0.01 0.07 0.80 -7.50 (±4.80) -5.73 (±1.25) 0.02 (±1.35) -0.27 (±0.71) -0.23 (±1.51)  4.55 (±4.38) 5.54 (±4.89) 2.38 (±5.43) 5.16 (±5.42) 

RCA+PA 19.88 <0.01 0.03 0.77 -6.39 (±2.75)  -0.76 (±1.30)   7.71 (±3.63)     
BM+PA 20.19 <0.01 0.02 0.77 -6.22 (±2.82)    -0.27 (±1.32) 7.60 (±3.63)     

Null Model 20.29 <0.01 0.00 0.78 -2.55 (±1.97)          
RCA+BM+PA 21.92 <0.01 0.03 0.77 -6.30 (±2.82)  -0.75 (±1.30)  -0.22 (±1.32) 7.67 (±3.63)     

RCA 22.06 <0.01 <0.01 0.78 -2.58 (±1.97)  -0.70 (±1.33)        
BM 22.26 <0.01 0.06 0.80 -2.41 (±2.03)    -0.39 (±1.32)      

RCA+BM 24.05 <0.01 <0.01 0.78 -2.45 (±2.03)  -0.67 (±1.33)  -0.35 (±1.32)      
RCA+PA+Diet 26.27 <0.01 0.03 0.78 -10.45 (±5.40)  -0.77 (±1.31)   7.79 (±3.64) 4.38 (±4.57) 5.91 (±5.02) 2.48 (±5.35) 5.44 (±5.26) 

RCA+Diet 28.47 <0.01 <0.01 0.78 -6.46 (±4.94)  -0.69 (±1.34)    4.21 (±4.57) 5.55 (±5.03) 1.95 (±5.36) 5.04 (±5.27) 
BM+Diet 28.60 <0.01 <0.01 0.78 -6.55 (±4.99)    -0.58 (±1.57)  4.31 (±4.58) 5.85 (±5.12) 2.44 (±5.68) 5.61 (±5.66) 

RCA+BM+Diet 30.43 <0.01 <0.01 0.78 -6.70 (±4.99)  -0.69 (±1.34)  -0.59 (±1.56)  4.35 (±4.58) 5.93 (±5.12) 2.65 (±5.69) 5.83 (±5.67) 
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Table S2.6 All competing models used to explain the growth rate of mammal populations. The models are ranked in order of performance based on AIC, with higher ranking 

models listed towards the top of each table. A null model is included for comparison. RCW = annual rate of climate warming, RCA = annual rate of conversion to anthropogenic 

land use, BM = body mass, PA = population inside a protected area.  

Results from mammal populations 

Model Δ AIC AIC ωi Marg. R2 Cond. R2 Intercept RCW RCA RCW:RCA BM PA Diet: Herb Diet: Omni 

 RCA*RCW 0.00 0.14 0.02 0.48 0.57 (±1.05) -2.28 (±0.77) -0.44 (±0.88) -1.87 (±1.04)     
RCW 0.29 0.12 0.01 0.45 0.58 (±1.02) -1.80 (±0.73)       

RCA*RCW+BM 0.86 0.09 0.03 0.47 0.88 (±1.06) -2.25 (±0.77) -0.58 (±0.88) -1.81 (±1.04) 1.04 (±0.92)    
RCA+RCW 1.16 0.08 0.02 0.45 0.48 (±1.02) -1.81 (±0.73) -0.90 (±0.84)      
RCW+BM 1.25 0.08 0.02 0.44 0.86 (±1.04) -1.79 (±0.73)   0.96 (±0.90)    

RCA*RCW+PA 1.69 0.06 0.02 0.48 -0.45 (±2.00) -2.30 (±0.77) -0.50 (±0.88) -1.84 (±1.04)  1.34 (±2.20)   
RCA+RCW+BM 1.79 0.06 0.02 0.44 0.80 (±1.03) -1.80 (±0.73) -1.04 (±0.84)  1.11 (±0.90)    

RCW+PA 2.00 0.05 0.01 0.45 -0.40 (±1.97) -1.83 (±0.73)    1.28 (±2.18)   
RCA+RCW+PA 2.73 0.04 0.02 0.45 -0.69 (±1.99) -1.85 (±0.73) -0.96 (±0.84)   1.54 (±2.19)   

RCA*RCW+BM+PA 2.87 0.03 0.03 0.47 0.43 (±2.21) -2.26 (±0.77) -0.59 (±0.89) -1.80 (±1.04) 0.95 (±0.99) 0.55 (±2.36)   
RCW+BM+PA 3.26 0.03 0.02 0.44 0.45 (±2.18) -1.80 (±0.73)   0.88 (±0.97) 0.51 (±2.35)   

RCA*RCW+Diet 3.45 0.03 0.02 0.48 -1.56 (±2.99) -2.31 (±0.77) -0.45 (±0.88) -1.93 
(±1.05) 

  2.31 (±3.15) 3.10 (±3.98) 
RCA+RCW+BM 3.77 0.02 0.02 0.44 0.24 (±2.18) -1.82 (±0.73) -1.05 (±0.85)  1.00 (±0.97) 0.68 (±2.36)   

RCW+Diet 3.94 0.02 0.01 0.45 -1.19 (±2.93) -1.82 (±0.73)     1.95 (±3.08) 2.33 (±3.91) 
RCA*RCW+BM+Diet 4.22 0.02 0.03 0.47 -0.56 (±3.05) -2.28 (±0.77) -0.57 (±0.88) -1.90 (±1.05) 1.17 (±1.00)  1.41 (±3.18) 3.45 (±3.94) 

Null Model 4.40 0.02 0.00 0.43 0.59 (±1.01)        
RCA+RCW+Diet 4.77 0.01 0.02 0.45 -1.42 (±2.93) -1.84 (±0.73) -0.93 (±0.84)    2.12 (±3.08) 2.36 (±3.91) 
RCW+BM+Diet 4.89 0.01 <0.01 0.43 -0.30 (±3.00) -1.80 (±0.73)   1.06 (±0.98)  1.14 (±3.13) 2.67 (±3.89) 

RCA*RCW+PA+Diet 5.15 0.01 0.02 0.48 -2.51 (±3.39) -2.33 (±0.77) -0.50 (±0.88) -1.91 (±1.05)  1.37 (±2.22) 2.20 (±3.14) 3.21 (±3.97) 
BM  5.28 0.01 0.02 0.44 0.88 (±1.02)    0.98 (±0.89)    

RCA 5.36 0.01 <0.01 0.43 0.50 (±1.02)  -0.87 (±0.84)      
RCA+RCW+BM+Diet 5.41 0.01 0.02 0.44 -0.42 (±2.99) -1.81 (±0.73) -1.04 (±0.84)  1.21 (±0.98)  1.20 (±3.11) 2.75 (±3.87) 

RCW+PA+Diet 5.66 0.01 0.01 0.45 -2.09 (±3.33) -1.85 (±0.73)    1.29 (±2.20) 1.84 (±3.08) 2.44 (±3.91) 
RCA+BM 5.88 0.01 0.01 0.42 0.82 (±1.01)  -1.02 (±0.85)  1.13 (±0.89)    

RCA+RCW+PA+Diet 6.37 0.01 0.02 0.45 -2.49 (±3.34) -1.87 (±0.73) -0.98 (±0.84)   1.53 (±2.21) 2.00 (±3.07) 2.50 (±3.90) 
RCA+PA 7.12 <0.01 <0.01 0.43 -0.39 (±1.99)  -0.92 (±0.85)   1.16 (±2.20)   
BM+PA 7.33 <0.01 <0.01 0.43 0.84 (±2.18)    0.97 (±0.96) 0.05 (±2.36)   

RCA+BM+PA 7.93 <0.01 0.01 0.42 0.65 (±2.17)  -1.02 (±0.85)  1.10 (±0.96) 0.21 (±2.36)   
BM+Diet 8.93 <0.01 <0.01 0.42 0.14 (±2.97)    1.13 (±0.97)  0.65 (±3.10) 2.40 (±3.87) 

RCA+Diet 9.12 <0.01 <0.01 0.43 -1.01 (±2.90)  -0.89 (±0.84)    1.64 (±3.05) 2.05 (±3.88) 
RCA+BM+Diet 9.53 <0.01 0.01 0.42 0.03 (±2.94)  -1.03 (±0.85)  1.28 (±0.97)  0.70 (±3.06) 2.47 (±3.84) 
RCA+PA+Diet  10.90 <0.01 <0.01 0.43 -1.83 (±3.32)  -0.93 (±0.85)   1.18 (±2.22) 1.55 (±3.04) 2.15 (±3.88) 
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ALTERNATIVE LAND USE CHANGE DATA 
 
In Chapter Two I did not find the rate of conversion to anthropogenic land use (RCA) to be 

an important predictor of either bird of mammal population trends. This was unexpected as 

habitat loss is a major threat to biodiversity. It is possible I did not find RCA to be important 

because I used the HYDE land use dataset which is both spatially and temporally coarse. I 

used the HYDE database as it provides the greatest temporal coverage of all freely available 

land use datasets. This was necessary as I required data from 1950, the first year in which 

trends from the Living Planet database are available.  Here I explore the use of the ESA 

CCI data set (Bontemps et al., 2013), which provides global land cover maps of 36 land 

cover classes, available annually from 1992-2015 at 300m spatial resolution. I repeat the 

analysis from Chapter Two but use the ESA CCI dataset to quantify the RCA. This allows 

me to explore whether RCA is an important predictor of bird and mammal population 

trends at a finer spatiotemporal scale. 

 

The ESA CCI data covers a considerably shorter timespan than the HYDE data. 

Consequently, this truncates the population trends to 1992 onwards and limits analysis to 

population trends at least five years in length available from 1992 or after. There were 481 

populations (birds = 278, mammals = 203) available for this analysis. I recalculated average 

rates of warming and population growth rates for each truncated population trend. There 

are 36 land cover classes in the ESA CCI dataset, I reclassified the classes into either 

anthropogenic or natural (Table 3.5). For each population I calculated the percentage of 

anthropogenic land cover in a 3 km buffer for each year 1992-2015. I used this to calculate 

a rate of change in anthropogenic land cover for each population.  
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CCI Land Cover Category Model 

Category 

Cropland, rainfed Anthropogenic 

Urban areas Anthropogenic 

Cropland, irrigated or post-flooding Anthropogenic 

 Mosaic cropland (>50%)/natural vegetation (tree, shrub, herbaceous cover) (<50%) Anthropogenic 

 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%)/ cropland (<50%) Natural 

Tree cover, broadleaved, evergreen, closed to open (>15%) Natural 

Tree cover, broadleaved, deciduous, closed (>40%) Natural 

Tree cover, broadleaved, deciduous, closed (>40%) Natural 

Tree cover, broadleaved, deciduous, open (15-40%) Natural 

Tree cover, needleleaved, evergreen, closed to open (>15%) Natural 

Tree cover, needleleaved, evergreen, closed (>40%) Natural 

Tree cover, needleleaved, evergreen, open (15-40%) Natural 

Tree cover, needleleaved, deciduous, closed to open (>15%) Natural 

Tree cover, needleleaved, deciduous, closed (>40%) Natural 

Tree cover, needleleaved, deciduous, open (15-40%) Natural 

Tree cover, mixed leaf type (broadleaved and needleleaved) Natural 

Mosaic tree and shrub (>50%)/herbaceous cover (<50%) Natural 

Mosaic herbaceous cover (>50%)/tree and shrub (<50%) Natural 

Shrubland Natural 

Evergreen shrubland Natural 

Deciduous shrubland Natural 

Grassland Natural 

Lichens and mosses Natural 

Sparse vegetation (tree, shrub, herbaceous cover) (<15%) Natural 

Sparse shrub (<15%) Natural 

Sparse herbaceous cover (<15%) Natural 

Tree cover, flooded, fresh or brackish water Natural 

Tree cover, flooded, saline water Natural 

Shrub or herbaceous cover, flooded, fresh/saline/brackish water Natural 

Bare areas Natural 

Consolidated bare areas Natural 

Unconsolidated bare areas Natural 

Water bodies Natural 

Permanent snow and ice Natural 

Herbaceous cover Natural 

Tree or shrub cover Natural 

Table S2.7 Land cover categories in the ESA CCI database and the reclassification categories I assigned to 

calculate rate of conversion to anthropogenic land use for each population.  

 

I used the same selection of models and model averaging method as in Chapter Two. When 

using ESA CCI to quantify RCA I found that RCA and protected area coverage are 

important predictors for bird population trends. This finding suggests that the impacts of 

land use change on population trends are more detectable at higher spatiotemporal 

resolutions. This result shows that within this selection of population trends bird population 
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declines are higher where RCA has been more rapid. I also found that bird populations 

inside protected areas have higher population growth rates than those outside (Figure 3.3). 

This suggests that protected areas are effective for conserving bird populations. However, 

it is difficult to state this with certainty as only 16.3% of the bird species in this study are 

found both inside and outside protected areas, therefore these two sets of populations are 

not directly comparable. Additionally, protected area coverage appears to be the most 

important variable in explaining the variation in the bird population trends as it is in each 

of the top performing models (Table 3.6) and each of these models have relatively high 

marginal R2 values (>10%).  

 

Figure S2.5 The distribution of the coefficients of the average models for both bird and mammal populations. 

The circles show the estimated coefficient values for each variable and the solid lines show the 2.5 - 97.5% 

confidence intervals. The intercept shows the distribution of the annual population growth rates in the absence 

of the effects of explanatory variables. The explanatory variables were scaled and centred, therefore the 

coefficients show the change in annual population growth rate given a one standard deviation increase in each 

explanatory variable. When the confidence intervals do not overlap with zero this shows a clear signal of 

either a positive or negative effect of a variable. Confidence intervals that overlap with zero show that within 

the averaged model an increase in a given variable has a mixture both positive and negative effect sizes on 

the rate of population change across different populations.  
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For mammal populations I found only body mass to be important for explaining population 

trends, with population growth rates tending to be higher for larger mammal species (Figure 

3.3). Body mass features in each of the top performing models for mammal populations, 

but marginal R2 values are relatively low (≥3%) and few models outperform the null model. 

As in Chapter Two, the mammal population growth rates are more difficult to explain than 

the bird population growth rates, using the variables I have selected. I do not find RCW to 

be an important variable for predicting population growth rates in either bird or mammal 

populations (Figure S2.5). This is surprising as it was a key variable in explaining both bird 

and mammal population growth rates in Chapter Two. It is possible that it is no longer 

important because I use a considerably shorter time-period here, and that longer time-

periods are required to detect the impacts of climate warming.  
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Table S3.7 All competing models used to explain the growth rate of bird populations. The models are ranked in order of performance based on AIC, with higher ranking models 

listed towards the top of each table. A null model is included for comparison. RCW = annual rate of climate warming, RCA = annual rate of conversion to anthropogenic land use, 

BM = body mass, PA = population inside a protected area. RVI (relative variable importance) is the sum of Akaike weights over all models including the explanatory variable.  

  

Results from bird populations 
Model Δ AIC Akaike Weight Marg. R2 Cond. R2 Intercept RCW RCA RCW:RCA Body Mass Inside Protected Area 

RCA*RCW+PA 0.00 0.17 0.17 0.82 -11.16 (±4.22) 0.60 (±1.97) -4.83 (±1.97) 4.51 (±1.66)  18.24 (±5.22) 
RCA*RCW+BM+PA 0.48 0.13 0.17 0.82 -10.51 (±4.46) 0.60 (±1.97) -4.91 (±1.97) 4.55 (±1.66) -1.51 (±3.00) 18.42 (±5.24) 

RCA+PA 1.43 0.08 0.12 0.81 -10.63 (±4.30)  -3.14 (±1.90)   18.22 (±5.92) 
RCA+RCW+PA 1.60 0.07 0.14 0.82 -11.19 (±4.36) 2.70 (±1.88) -3.35 (±1.92)   18.79 (±5.40) 

RCW+PA 1.64 0.07 0.11 0.82 -11.14 (±4.37) 2.44 (±1.89)    18.15 (±5.41) 
RCA+BM+PA 1.69 0.07 0.12 0.82 -10.18 (±4.55)  -3.18 (±1.91)  1.08 (±3.05) 18.36 (±5.34) 

RCA+RCW+BM+PA 2.11 0.06 0.13 0.83 -10.69 (±4.59) 2.72 (±1.89) -3.41 (±1.93)  1.19 (±3.02) 18.95 (±5.43) 
BM+PA 2.22 0.05 0.09 0.81 -10.30 (±4.56)    0.74 (±3.06) 17.74 (±5.34) 

RCW+BM+PA 2.42 0.05 0.11 0.82 -10.80 (±4.60) 2.45 (±1.89)   0.83 (±3.04) 18.25 (±5.43) 
RCA*RCW 3.23 0.03 0.07 0.82 -1.35 (±2.90) 0.48 (±2.02) -4.59 (±2.02) 4.55 (±1.70)   

RCA*RCW+BM 3.31 0.03 0.07 0.83 -0.76 (±3.35) 0.48 (±2.02) -4.65 (±2.03) 4.58 (±1.70) 1.09 (±3.09)  
RCA 3.36 0.03 0.02 0.82 -0.76 (±2.94)  -2.88 (±1.95)    

Null Model 3.39 0.03 0.00 0.81 -1.01 (±2.94)      
RCA+RCW 3.56 0.03 0.03 0.83 -1.08 (±2.98) 2.60 (±1.93) -3.10 (±1.97)    

RCW 3.70 0.03 0.01 0.82 -1.32 (±2.98) 2.35 (±1.93)     
RCA+BM 4.32 0.02 0.02 0.82 -0.39 (±3.41)  -2.91 (±1.96)  0.67 (±3.14)  

BM 4.40 0.02 <0.01 0.81 -0.80 (±3.40)    0.38 (±3.15)  
RCA+RCW+BM 4.70 0.02 0.03 0.83 -0.65 (±3.43) 2.62 (±1.93) -3.13 (±1.98)  0.79 (±3.11)  

RCW+BM 5.27 0.01 0.01 0.82 -1.07 (±3.42) 2.36 (±1.93)   0.48 (±3.13)  
    RVI  0.91 0.94 0.80 0.29 0.98 
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Table S3.8 All competing models used to explain the growth rate of mammal populations. The models are ranked in order of performance based on AIC, with higher ranking 

models listed towards the top of each table. A null model is included for comparison. RCW = annual rate of climate warming, RCA = annual rate of conversion to anthropogenic 

land use, BM = body mass, PA = population inside a protected area. RVI (relative variable importance) is the sum of Akaike weights over all models including the explanatory 

variable.  

Results from mammal populations 
Model Δ AIC Akaike Weight Marg. R2 Cond. R2 Intercept RCW RCA RCW:RCA Body Mass Inside Protected Area 

BM 0.00 0.26 0.03 0.58 -1.76 (±2.96)    5.51 (±2.26)  
RCA+BM 0.92 0.17 0.03 0.58 -2.58 (±3.05)  5.71 (±5.17)  5.91 (±2.27)  

BM+PA 1.52 0.12 0.03 0.58 1.68 (5.45)    6.09 (±2.36) -4.57 (±6.17) 
RCW+BM 2.10 0.09 0.03 0.58 -1.78 (±2.97) -0.35 (±2.41)   5.46 (±2.27)  

RCA+BM+PA 2.52 0.07 0.04 0.58 0.67 (±5.51)  5.57 (±5.17)  6.46 (±2.38) -4.31 (±6.14) 
RCA+RCW+BM 3.05 0.06 0.03 0.58 -2.58 (±3.05) -0.22 (±2.40) 5.69 (±5.18)  5.89 (±2.29)  

Null Model 3.24 0.05 0.00 0.61 2.49 (±2.30)      
RCW+BM+PA 3.66 0.04 0.03 0.58 1.65 (±5.49) -0.16 (±2.42)   6.06 (±2.39) -4.51 (±6.21) 

RCA+RCW+BM+PA 4.68 0.03 0.04 0.58 0.67 (±5.54) -0.03 (±2.41) 5.56 (±5.17)  6.45 (±2.41) -4.30 (±6.18) 
RCA 4.81 0.02 <0.01 0.61 2.09 (±2.35)  3.85 (±5.29)    

RCA*RCW+BM 5.18 0.02 0.03 0.58 -2.70 (±3.10) -0.20 (±2.39) 5.09 (±5.87) -2.25 (±11.40) 6.02 (±2.37)  
RCW 5.18 0.02 <0.01 0.61 2.39 (±2.31) -0.95 (±2.44)     

RCA+RCW 6.79 0.01 <0.01 0.61 2.01 (±2.37) -0.89 (±2.44) 3.77 (±5.29)    
RCA*RCW+BM+PA 6.86 0.01 0.04 0.58 0.54 (±5.68) -0.03 (±2.41) 5.27 (±5.87) -1.15 (±11.52) 6.51 (±2.46) -4.21 (±6.25) 

RCA+PA 6.92 0.01 <0.01 0.61 2.66 (±5.64)  3.81 (±5.31)   -0.68 (±6.05) 
RCW+PA 7.29 0.01 <0.01 0.61 3.04 (±5.61) -0.92 (±2.45)    -0.79 (±6.06) 

RCA*RCW 8.79 <0.01 0.01 0.61 2.06 (±2.36) -0.89 (±2.44) 4.92 (±6.07) 4.24 (±11.34)   
RCA+PCW+PA 8.93 <0.01 <0.01 0.61 2.42 (±5.67) -0.87 (±2.44) 3.74 (±5.31)   -0.50 (±6.06) 
RCA*RCW+PA 10.93 <0.01 0.01 0.61 2.89 (±5.79) -0.85 (±2.44) 4.96 (±6.07) 4.61 (±11.61)  -1.00 (±6.19) 

    RVI  0.73 0.52 0.14 0.74 0.33 
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CHAPTER THREE APPENDIX 
 

Species Model Mean 

AUC 

Std 

Dev. 

Alpine ibex  

(Capra ibex) 

Bioclim 0.369 0.045 
GAM 0.922 0.023 

Random Forest 0.939 0.009 

Blue wildebeest 

(Connochaetes taurinus) 

Bioclim 0.586 0.004 
GAM 0.841 0.007 

Random Forest 0.869 0.026 

Brown bear 

(Ursus arctos) 

Bioclim 0.949 0.018 
GAM 0.984 0.011 

Random Forest 0.995 0.003 

Common warthog 

(Phacochoerus africanus) 

Bioclim 0.710 0.009 
GAM 0.805 0.004 

Random Forest 0.815 0.004 

Giraffe  

(Giraffa Camelopardalis) 

Bioclim 0.766 0.026 
GAM 0.945 0.004 

Random Forest 0.949 0.007 

Hartebeest  

(Alcelaphus buselaphus) 

Bioclim 0.674 0.016 
GAM 0.838 0.003 

Random Forest 0.875 0.010 

Plain’s zebra  

(Equus burchellii) 

Bioclim 0.655 0.012 
GAM 0.849 0.007 

Random Forest 0.874 0.007 

Polar bear  

(Ursus maritimus) 

Bioclim 0.949 0.018 
GAM 0.984 0.011 

Random Forest 0.995 0.003 

Pyrenean chamois 

(Rupicapra pyrenaica) 

Bioclim 0.970 0.002 
GAM 0.984 0.001 

Random Forest 0.984 0.001 

Red deer  

(Cervus elaphus) 

Bioclim 0.610 0.007 
GAM 0.880 0.006 

Random Forest 0.940 0.004 

Reindeer  

(Rangifer tarandus) 

Bioclim 0.658 0.012 
GAM 0.911 0.008 

Random Forest 0.947 0.006 

Roe deer  

(Capreolus capreolus) 

Bioclim 0.547 0.008 
GAM 0.749 0.001 

Random Forest 0.842 0.002 

Snowshoe hare  

(Lepus americanus) 

Bioclim 0.791 0.019 
GAM 0.872 0.013 

Random Forest 0.930 0.008 

Waterbuck  

(Kobus ellipsiprymnus) 

Bioclim 0.632 0.027 
GAM 0.776 0.009 

Random Forest 0.784 0.007 

White-tailed deer 

(Odocoileus virginianus) 

Bioclim 0.670 0.011 
GAM 0.880 0.004 

Random Forest 0.930 0.001 

Wolverine  

(Gulo gulo) 

Bioclim 0.786 0.164 
GAM 0.858 0.133 

Random Forest 0.886 0.114 
Table S3.1 AUC scores for the three types of habitat suitability model built for each species. For each species 

the three models were combined into a weighted ensemble model based on the AUC scores.    
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Figure S3.1 The number of occurrence records available (1980-2016) on GBIF for each species. I used data 

from 2006-2016 as most (61.6%) of the occurrence data is record from 2006 onwards and 2016 was the last 

complete year when the study began.  
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Modelled Species Target Background Species 

Distribution 

Intersection with 

Modelled 

Species (%) 

Alpine ibex 

(Capra ibex) 

Chamois (Rupicapra rupicapra) 88.8 

Red deer (Cervus elaphus) 88.9 

Alpine marmot (Marmota marmota) 99.9 

Mountain hare (Lepus timidus) 95.9 

Stoat (Mustela erminea) 96.4 

Rock ptarmigan (Lagopus mutus) 86.3 

Rock partridge (Alectoris graeca) 79.3 

Blue wildebeest  

(Connochaetes taurinus) 

African pipit (Anthus cinnamomeus) 99.4 

African fish eagle (Halieetus vocifer) 100 

Lilac-breasted roller (Coracias caudatus) 99.9 

Brown bear  

(Ursus arctos) 

American black bear (Ursus americanus) 64.2 

Coyote (Canis latrans) 81.6 

Stoat (Mustela erminea) 99.3 

Canada lynx (Lynx canadensis) 73.15 

Snowshoe hare (Lepus americanus) 64.9 

American beaver (Castor canadensis) 65.4 

Common warthog  

(Phacochoerus africanus) 

Serval (Leptailurus serval) 89.2 

African fish eagle (Halieetus vocifer) 96.6 

Hartebeest (Alcelaphus buselaphus) 55.2 

Giraffe 

(Giraffa camelopardalis) 

Serval (Leptailurus serval) 81.9 

Common warthog (Phacochoerus africanus) 69.3 

Cape buffalo (Syncerus caffer) 63.5 

African fish eagle (Halieetus vocifer) 84.2 

Hartebeest (Alcelaphus buselaphus) 59.2 

Hartebeest 

(Alcelaphus buselaphus) 

Serval (Leptailurus serval) 84.6 

Common warthog (Phacochoerus africanus) 80.0 

Cape buffalo (Syncerus caffer) 63.4 

African fish eagle (Halieetus vocifer) 98.4 

Plain's zebra 

(Equus burchellii) 

Serval (Leptailurus serval) 92.0 

Common warthog (Phacochoerus africanus) 71.3 

African fish eagle (Halieetus vocifer) 90.9 

Waterbuck (Kobus ellipsiptymnus) 71.5 

Polar bear 

(Ursus maritimus) 

Arctic fox (Vulpes lagopus) 92.9 

Reindeer (Rangifer tarandus) 78.0 

Wolverine (Gulo gulo) 66.4 

Snowy owl (Bubo scandiacus) 89.8 

Pyrenean chamois 

(Rupicapra pyrenaica) 

Common blackbird (Turdus merula) 100 

Common starling (Sturnus vulgaris) 99.2 

Red deer 

(Cervus elaphus) 

European badger (Meles meles) 99.5 

Common starling (Sturnus vulgaris) 65.7 

Reindeer - Europe 

(Rangifer tarandus) 

Brown bear (Ursus arctos) 89.9 

Eurasian lynx (Lynx lynx) 85.8 

Wolverine (Gulo gulo) 98.4 

Sable (Martes zibellina) 74.0 

Peregrine Falcon (Falco peregrinus) 98.6 

Reindeer - North America 

(Rangifer tarandus) 

American black bear (Ursus americanus) 62.0 

Coyote (Canis latrans) 55.1 

Stoat (Mustela erminea) 83.3 

Canada lynx (Lynx canadensis) 68.3 

Snowshoe hare (Lepus americanus) 61.0 
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American beaver (Castor canadensis) 59.8 

Roe deer 

(Capreolus capreolus) 

Common blackbird (Turdus merula) 95.8 

Common starling (Sturnus vulgaris) 99.1 

Snowshoe hare 

(Lepus americanus) 

American black bear (Ursus americanus) 95.5 

Red fox (Vulpes vulpes) 97.8 

Coyote (Canis latrans) 84.1 

Grey wolf (Canis lupus) 79.6 

Stoat (Mustela erminea) 94.8 

Canada lynx (Lynx canadensis) 79.5 

Brown bear (Ursus arctos) 64.9 

American beaver (Castor canadensis) 95.9 

Black-capped chickadee (Poecile atricapillus) 67.9 

Waterbuck 

(Kobus ellipsiprymnus) 

Hartebeest (Alcelaphus buselaphus) 57.4 

Cape buffalo (Syncerus caffer) 58.5 

African fish eagle (Halieetus vocifer) 95.4 

Serval (Leptailurus serval) 55.4 

Common warthog (Phacochoerus africanus) 76.8 

White-tailed deer 

(Odocoileus virginianus) 

Red-eyed vireo (Vireo olivaceus) 82.0 

Cattle egret (Bubulcus ibis) 80.2 

Wolverine - Europe 

(Gulo gulo) 

Sable (Martes zibellina) 60.0 

Peregrine Falcon (Falco peregrinus) 91.3 

Wolverine - North America 

(Gulo gulo) 

American black bear (Ursus americanus) 64.4 

Coyote (Canis latrans) 81.6 

Stoat (Mustela erminea) 99.3 

Canada lynx (Lynx canadensis) 73.1 

Brown bear (Ursus arctos) 100 

American beaver (Castor canadensis) 65.4 

Table S3.2 For each species habitat suitability model I identified mammal and bird species with similar 

ranges to the modelled species and used their occurrence data as target-background points. I only used species 

occurrence data as target-background points if their range covered at least 50% of the modelled species range.  
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CHAPTER FOUR APPENDIX 
 

 

Figure S4.1 Each panel shows all the predicted abundance trends for a red deer population over the years 

1939-2005.  The burn-in period was from 1939-1949, the predicted abundance quickly stabilises after the 

first few years. The annually changing habitat suitability maps are initiated in 1950.   
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Figure S4.2 The distribution of population growth rates over a range of increasing levels of stochasticity, for 

each species. For each species a transition matrix was gathered from COMADRE. For each species I sampled 

from a normal distribution with the mean as the transition matrix and the standard deviation as a value 

between 0.1 and 2, at 0.1 intervals. For each interval I sampled the normal distribution 10,000 times and 

calculated the population growth rate for the resulting transition matrix. 
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Figure S4.3 Maps of the net change in predicted habitat suitability and average net change in predicted 

abundance for brown bear between 1950-2005.   

 

 

FigureS 4.4 Maps of the net change in predicted habitat suitability and average net change in predicted 

abundance for Alpine ibex between 1950-2005.   
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Figure S4.5 The variation in the average population growth rate for each species across the sample space 

for the dispersal rate and transition matrix stochasticity parameters. Each panel shows a different species, 

with a corresponding legend. 
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Figure S4.6 Each boxplot shows the distribution of the predicted average annual rate of change for each 

population. The red triangles show the fitted values for the top performing model for mammals from Chapter 

Two, with both the fixed and random effects. The blue crosses show the fitted values for the same model 

using predictions made with only fixed effects. The explanatory variables of this model are: rate of conversion 

to anthropogenic land use (RCA); rate of climate warming (RCW); the interaction between RCA and RCW; 

and species body mass. The black dots show the observed average annual rate of population change for each 

population. Values below zero indicate population decline and values above zero indicate growing 

populations.  The letters a-q are for the identification of individual populations.   

 

R CODE USED FOR COUPLED NICHE-DEMOGRAPHIC MODELS 

 

FUNCTION TO CREATE THE DISPERSAL KERNEL  

 

demoniche_create_csv<-function (Populations, Nichemap = "oneperiod",dispersal_constants
 = c(50, 100)) 
{ 
  require(LaplacesDemon) 
  require(sp) 
  if (exists("BEMDEM")) 
    rm(BEMDEM, inherits = TRUE) 
  if (is.vector(Populations)) 
    print("There must be at least two populations!") 
  if (is.vector(Nichemap) | (Nichemap == "oneperiod")[1]) { 
    min_dist <- sort(unique(dist(Populations[, 2:3])))[1] 
    extent <- expand.grid(X = seq(min(Populations[, "X"]), 
                                  max(Populations[, "X"]), by = min_dist), Y = seq(min(
Populations[,"Y"]), max(Populations[, "Y"]), by = min_dist)) 

    Nichemap <- cbind(HScoreID = 1:nrow(extent), extent, 
                      matrix(1, ncol = length(Nichemap), nrow = nrow(extent), 
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                             dimnames = list(NULL, paste(Nichemap)))) 
  } 
  if (is.vector(Nichemap[, -c(1:3)])) { 
    Nichemap <- Nichemap[Nichemap[, -c(1:3)] != 0, ] 
  } else { 
    Nichemap <- Nichemap[rowSums(Nichemap[, -c(1:3)]) != 0, ] 
  } 
  years_projections <- colnames(Nichemap)[4:ncol(Nichemap)] 
  if ((ncol(Nichemap) - 3) != length(years_projections)) 
    print("Number of years of projections is not equal to the number of habitat scores!
") 
  colnames(Populations) <- c("PatchID", "XCOORD", "YCOORD", 
                             "area_population") 
  colnames(Nichemap) <- c("HScoreID", "XCOORD", "YCOORD", years_projections) 
  if (max(Nichemap[, 4:ncol(Nichemap)]) > 100) { 
    Nichemap[, 4:ncol(Nichemap)] <- Nichemap[, 4:ncol(Nichemap)]/1000 
  } 
  if (max(Nichemap[, 4:ncol(Nichemap)]) > 10) { 
    Nichemap[, 4:ncol(Nichemap)] <- Nichemap[, 4:ncol(Nichemap)]/100 
  } 
  Niche_ID <- data.frame(matrix(0, nrow = nrow(Nichemap), ncol = 4)) 
  Niche_ID[, 1:3] <- Nichemap[, 1:3] 
  colnames(Niche_ID) <- c("Niche_ID", "X", "Y", "PopulationID") 
  rownames(Niche_ID) <- Nichemap[, 1] 
  destination_Nicherows <- 1:nrow(Populations) 
  for (pxs in 1:nrow(Populations)) { 
    rows <- which(spDistsN1(as.matrix(Nichemap[, 2:3], ncol = 2), 
                            matrix(as.numeric(Populations[pxs, 2:3]), ncol = 2), 
                            longlat = TRUE) == min(spDistsN1(as.matrix(Nichemap[,2:3], 
                            ncol = 2), matrix(as.numeric(Populations[pxs, 2:3]), ncol =
                            2), longlat = TRUE))) 
    Niche_ID[rows, 4] <- Populations[pxs, 1] 
    destination_Nicherows[pxs] <- rows[1] 
  } 
  Niche_values <- as.matrix(Nichemap[, 4:(length(years_projections) + 3)], ncol = lengt
h(years_projections)) 
    dist_populations <- spDists(as.matrix(Niche_ID[, 2:3]), longlat = TRUE) 
    dimnames(dist_populations) <- list(Niche_ID[, 1], Niche_ID[,1]) 
    disp_prob<-function(x){ 
      data4<-dist_populations[x,] 
      dispersal_probabilities_row<-dhalfcauchy(data4, scale=dispersal_constants[1], log
      =FALSE) 
      dispersal_probabilities_row[data4 > dispersal_constants[2]]<-0 
      return(dispersal_probabilities_row) 
    } 
     
    disp_prob_out<-lapply(1:nrow(dist_populations), disp_prob) 
    disp_prob_out_m<-do.call("rbind", disp_prob_out) 
    diag(disp_prob_out_m)<-0 
    sea<-which(Nichemap[,4] == - 1) 
    disp_prob_out_m[,sea]<-0 
     
    scale_ldd<-function(x){ 
      dispersal_probs<-disp_prob_out_m[x, ]/sum(disp_prob_out_m[x, ]) 
      return(dispersal_probs) 
    } 
     
    rep_scale_ldd<-lapply(1:nrow(disp_prob_out_m), scale_ldd) 
    dispersal_probabilities<-do.call(rbind,rep_scale_ldd) 
     
    write.table(dispersal_probabilities, "disp_probs_hc_max.csv", row.names = FALSE,   
    col.names = FALSE) 
 } 

 

FUNCTION TO SETUP THE COUPLED NICHE-DEMOGRAPHIC MODEL 
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demoniche_setup_csv<-function (modelname, Populations, stages, Nichemap = "oneperiod", 
                              matrices, matrices_var = FALSE,                          
                              prob_scenario = c(0.5, 0.5), proportion_initial,         
                              density_individuals, transition_affected_niche = FALSE, 
                              transition_affected_env = FALSE,                         
                              transition_affected_demogr = FALSE, 
                              env_stochas_type = "normal", noise = 1,                  
                              fraction_SDD = FALSE, 
                              fraction_LDD = FALSE, dispersal_constants = c(50, 100),  
                              no_yrs, Ktype = "ceiling", K = NULL, Kweight = FALSE, 
                              sumweight = FALSE, spin_years = spin_years,              
                              dispersal_probabilities) 
{ 
  require(sp) 
  if (exists("BEMDEM")) 
    rm(BEMDEM, inherits = TRUE) 
  if (is.vector(matrices)) { 
    matrices <- matrix(matrices, ncol = 2, nrow = length(matrices)) 
    print("You are carrying out deterministic modelling.") 
    colnames(matrices) <- c("matrixA", "matrixA") 
  } 
  if (length(proportion_initial) != length(stages)) 
    print("Number of stages or proportions is wrong!") 
  if (nrow(matrices)%%length(stages) != 0) 
    print("Number of rows in matrix is not a multiple of stages name vector!") 
  if (is.vector(Populations)) 
    print("There must be at least two populations!") 
  if (sum(proportion_initial) > 1.02 | sum(proportion_initial) < 
      0.99) 
    print("Your 'proportion_initial' doesn't add to one...") 
  if (is.numeric(sumweight)) { 
    if (length(sumweight) != length(stages)) 
      print("Length of sumweight does not correpond to length of stages!") 
  } 
  list_names_matrices <- list() 
  for (i in 1:ncol(matrices)) { 
    M_name_one <- paste(colnames(matrices)[i], sep = "_") 
    list_names_matrices <- c(list_names_matrices, list(M_name_one)) 
  } 
  if (is.vector(Nichemap) | (Nichemap == "oneperiod")[1]) { 
    min_dist <- sort(unique(dist(Populations[, 2:3])))[1] 
    extent <- expand.grid(X = seq(min(Populations[, "X"]), 
                                  max(Populations[, "X"]), by = min_dist),             
                                  Y = seq(min(Populations[,"Y"]),                      
                                  max(Populations[, "Y"]), by = min_dist)) 
    Nichemap <- cbind(HScoreID = 1:nrow(extent), extent, 
                      matrix(1, ncol = length(Nichemap), nrow = nrow(extent), 
                             dimnames = list(NULL, paste(Nichemap)))) 
  } 
  if (is.vector(Nichemap[, -c(1:3)])) { 
    Nichemap <- Nichemap[Nichemap[, -c(1:3)] != 0, ] 
  } else { 
    Nichemap <- Nichemap[rowSums(Nichemap[, -c(1:3)]) != 0, ] 
  } 
  years_projections <- colnames(Nichemap)[4:ncol(Nichemap)] 
  if ((ncol(Nichemap) - 3) != length(years_projections)) 
    print("Number of years of projections is not equal to the number of habitat scores!
") 
  colnames(Populations) <- c("PatchID", "XCOORD", "YCOORD", 
                             "area_population") 
  colnames(Nichemap) <- c("HScoreID", "XCOORD", "YCOORD", years_projections) 
 

  if (max(Nichemap[, 4:ncol(Nichemap)]) > 100) { 
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   Nichemap[, 4:ncol(Nichemap)] <- Nichemap[, 4:ncol(Nichemap)]/1000 
  } 
  if (max(Nichemap[, 4:ncol(Nichemap)]) > 10) { 
    Nichemap[, 4:ncol(Nichemap)] <- Nichemap[, 4:ncol(Nichemap)]/100 
  } 
  Niche_ID <- data.frame(matrix(0, nrow = nrow(Nichemap), ncol = 4)) 
  Niche_ID[, 1:3] <- Nichemap[, 1:3] 
  colnames(Niche_ID) <- c("Niche_ID", "X", "Y", "PopulationID") 
  rownames(Niche_ID) <- Nichemap[, 1] 
  if (length(density_individuals) == 1) { 
    density_individuals <- rep(density_individuals, times = nrow(Populations)) 
  } 
  n0_all <- matrix(0, nrow = nrow(Nichemap), ncol = length(stages)) 
  destination_Nicherows <- 1:nrow(Populations) 
  for (pxs in 1:nrow(Populations)) { 
     rows <- which(spDistsN1(as.matrix(Nichemap[, 2:3], ncol = 2), 
                            matrix(as.numeric(Populations[pxs, 2:3]), ncol = 2), 
                            longlat = TRUE) == min(spDistsN1(as.matrix(                
                            Nichemap[,2:3], ncol = 2),  
                            matrix(as.numeric(Populations[pxs,2:3]), ncol = 2),        
                            longlat = TRUE))) 
    Niche_ID[rows, 4] <- Populations[pxs, 1] 
    n0_all[rows[1], ] <- n0_all[rows[1], ] + (Populations[pxs,4] * proportion_initial *
    density_individuals[pxs]) 
    destination_Nicherows[pxs] <- rows[1] 
  } 
  Niche_values <- as.matrix(Nichemap[, 4:(length(years_projections) + 
                                            3)], ncol = length(years_projections)) 
  if (is.numeric(K)) { 
    populationmax_all <- matrix(mean(K), ncol = length(years_projections), 
                                nrow = nrow(Nichemap)) 
    colnames(populationmax_all) <- years_projections 
    rownames(populationmax_all) <- Niche_ID[, "Niche_ID"] 
  } 
  if (length(K) == 1) { 
    populationmax_all <- matrix(K, ncol = length(years_projections), 
                                nrow = nrow(Nichemap)) 
  } 
  if (length(K) == nrow(Populations)) { 
    populationmax_all <- matrix(0, ncol = length(years_projections), 
                                nrow = nrow(Nichemap)) 
    for (rx in 1:length(destination_Nicherows)) { 
      populationmax_all[destination_Nicherows[rx], ] <- populationmax_all[destination_N
icherows[rx], 
                                                                          ] + K[rx] 
    } 
    populationmax_all[populationmax_all == 0] <- mean(K) 
  } 
  if (length(K) == length(years_projections)) { 
    populationmax_all[rowSums(n0_all) == 0, ] <- matrix(K,                             
                    ncol = length(years_projections),                                  
                    nrow = nrow(Nichemap) - nrow(Populations)) 
    populationmax_all[rowSums(n0_all) > 0, ] <- matrix(K, 
    ncol = length(years_projections), nrow = nrow(Populations), byrow = TRUE) 
  } 
  if (length(dim(K)) == 2) { 
    populationmax_all[, ] <- matrix(colMeans(K), ncol = length(years_projections), 
                                    nrow = nrow(Nichemap), byrow = TRUE) 
    populationmax_all[rowSums(n0_all) > 0, ] <- K  } 
   
  if (is.null(K)) { 
    populationmax_all <- matrix("no_K", ncol = length(years_projections), 
                                nrow = nrow(Nichemap)) 
  } 
   
  dist_latlong <- round(as.matrix(dist(Niche_ID[1:(length(unique(Niche_ID[,2]))+2), 2:3
])), 1) 



   
 

142 
 

  neigh_index <- sort(unique(as.numeric(dist_latlong[1,])))[2:3] #distance two closest 
cells 
  if (sumweight[1] == "all_stages")  
    sumweight <- rep(1, length(proportion_initial)) 
  if (Kweight[1] == "FALSE") 
    Kweight <- rep(1, length(proportion_initial)) 
  if (transition_affected_env[1] == "all") 
    transition_affected_env <- which(matrices[, 1] > 0) 
  if (transition_affected_niche[1] == "all") 
    transition_affected_niche <- which(matrices[, 1] > 0) 
  if (transition_affected_demogr[1] == "all") 
    transition_affected_demogr <- which(matrices[, 1] > 0) 
  if (any(matrices < 0)) 
    print("There are some negative rates in the transition matrices!") 
  if (any(matrices_var < 0)) 
    print("There are some negative rates in the standard deviation transition matrices!
") 
  if (max(transition_affected_niche) > nrow(matrices)) { 
    print("Stages affected by Habitat suitability values does not comply with the size 
of matrix! Not that the matrix is made with 'byrow = FALSE") 
  } 
  if (max(transition_affected_env) > nrow(matrices)) { 
    print("Stages affected by environmental stochasticity does not comply with the size
 of matrix! Note that the matrix is made with 'byrow = FALSE") 
  } 
  if (max(transition_affected_demogr) > nrow(matrices)) { 
    print("Stages affected by demographic stochasticity does not comply with the size o
f matrix! Note that the matrix is made with 'byrow = FALSE") 
  } 
  BEMDEM <- list(Orig_Populations = Populations, Niche_ID = Niche_ID, 
                 Niche_values = Niche_values, years_projections = years_projections, 
                 matrices = matrices, matrices_var = matrices_var,                     
                 prob_scenario = prob_scenario, noise = noise, stages = stages,        
                 proportion_initial = proportion_initial,                              
                 density_individuals = density_individuals,                            
                 fraction_LDD = fraction_LDD, fraction_SDD = fraction_SDD,             
                 dispersal_probabilities = dispersal_probabilities, 
                 dist_latlong = dist_latlong, neigh_index = neigh_index, 
                 no_yrs = no_yrs, K = K, Kweight = Kweight,                            
                 populationmax_all = populationmax_all, 
                 n0_all = n0_all, list_names_matrices = list_names_matrices, 
                 sumweight = sumweight,                                                
                 transition_affected_env = transition_affected_env, 
                 transition_affected_niche = transition_affected_niche, 
                 transition_affected_demogr = transition_affected_demogr, 
                 env_stochas_type = env_stochas_type,                                  
                 dispersal_probabilities = dispersal_probabilities ) 
  assign(modelname, BEMDEM, envir = .GlobalEnv) 
  eval(parse(text = paste("save(", modelname, ", file='", modelname, 
                          ".rda')", sep = ""))) 
} 

 

FUNCTION TO RUN THE DEMOGRAPHIC MODEL 

 

demoniche_population_function<-function (Matrix_projection, Matrix_projection_var, n, p
opulationmax,  
          K = NULL, Kweight = BEMDEM$Kweight, onepopulation_Niche,  
          sumweight, noise, prob_scenario, prev_mx, transition_affected_demogr,  
          transition_affected_niche, transition_affected_env, env_stochas_type,  
          yx_tx)  
{ 
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 prob_scenario_noise <- c(prob_scenario[prev_mx[yx_tx]] *  
                             noise, 1 - (prob_scenario[prev_mx[yx_tx]] * noise))       
 rand_mxs <- sample(1:2, 1, prob = prob_scenario_noise, replace = TRUE) 
 
    one_mxs <- Matrix_projection[, rand_mxs] 
  prev_mx[yx_tx + 1] <- rand_mxs 
  if (Matrix_projection_var[1] != FALSE) { 
    one_mxs_var <- one_mxs * (Matrix_projection_var[, rand_mxs]) 
    if (is.numeric(transition_affected_niche)) { 
      one_mxs[transition_affected_niche] <- one_mxs[transition_affected_niche] *  
        onepopulation_Niche 
    } 
    if (is.numeric(transition_affected_env)) { 
      switch(EXPR = env_stochas_type, normal = one_mxs[transition_affected_env] <- rnor
m(length(one_mxs[transition_affected_env]),  
                                                                                       
  mean = one_mxs[transition_affected_env], sd = one_mxs_var[transition_affected_env]),  
             lognormal = one_mxs[transition_affected_env] <- rlnorm(length(one_mxs[tran
sition_affected_env]),  
                                                                    meanlog = one_mxs[t
ransition_affected_env],  
                                                                    sdlog = one_mxs_var
[transition_affected_env])) 
    } 
  } 
  one_mxs[one_mxs < 0] <- 0   #changing any negative values to zero 
  A <- matrix(one_mxs, ncol = length(n), nrow = length(n),  
              byrow = FALSE) 
  Atest <- A 
  Atest[1, ][-1] <- 0   #getting fertility values  
  if (sum(colSums(Atest) > 1)) {      #picking out survival scores higher than 1  
    for (zerox in which(colSums(Atest) > 1)) { 
      Atest[, zerox] <- Atest[, zerox]/sum(Atest[, zerox]) 
    } 
    A[-1, ] <- Atest[-1, ] #changing survival values 
  } 
  n[is.na(n)]<-0 
  n <- as.vector(A %*% n)    #n is the number of ibex in each stage of the matrix - a r
ow from n0s which is all of the populations - here it is multipled by the matrix 
  n <- floor(n) 
 
  if (sum(n) > 0) { 
    if (is.numeric(populationmax)) { 
      if (sum(n * Kweight) > populationmax) { 
        n <- n * (populationmax/sum(n * sumweight))   #where carrying capacity comes in
 - brings n back down to carrying capacity  
      } 
    } 
  } 
  print(sum(n)) 
  return(n) 
} 

 

FUNCTION TO RUN THE DISPERSAL MODEL 

 

dispersal_faster_csv<-function (seeds_per_population, fraction_LDD, fraction_SDD,      
                      dispersal_probabilities, dist_latlong, neigh_index,              
                      niche_values, stages)  
{ 
  seeds_per_population_migrate_LDD <- round(seeds_per_population * fraction_LDD) 
  seeds_per_population_migrate_SDD <- round(seeds_per_population * fraction_SDD) 
  seeds_per_population_new_SDD <- seeds_per_population_new_LDD <- matrix(0, nrow = nrow
(seeds_per_population), ncol = ncol(seeds_per_population)) 
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  if (fraction_SDD > 0) { 
    source_patches <- which(colSums(seeds_per_population_migrate_SDD) > 0) 
    for (px_orig in source_patches) { 
      for (pxdisp_new in 1:length(seeds_per_population_migrate_SDD[1,])) { 
        if (dist_latlong[pxdisp_new, px_orig] == neigh_index[1]) { 
          seeds_per_population_new_SDD[,pxdisp_new] <- round(seeds_per_population_new_S
DD[,pxdisp_new] + (seeds_per_population_migrate_SDD[,px_orig] * 0.2)) 
        } 
        if (length(neigh_index) == 2) { 
          if (dist_latlong[pxdisp_new, px_orig] == neigh_index[2]) { 
            seeds_per_population_new_SDD[,pxdisp_new] <- round(seeds_per_population_new
_SDD[,pxdisp_new] + (seeds_per_population_migrate_SDD[,px_orig] * 0.05)) 
          } 
        } 
      } 
    } 
  } 
   
  if (fraction_LDD > 0) { 
 
    source_patches_ldd<-which(colSums(seeds_per_population_migrate_LDD)>0) 
     
    disp_prob<-dispersal_probabilities 
     
    sample_ages<-function(x, dp){ 
      new_patches<-sample(1:length(dp),x,prob=dp, replace =TRUE) 
      return(new_patches) 
    } 
     
    disp_out<-function(stg,seeds_new, stage_out){ 
       
      a<-data.frame(table(stage_out[[stg]])) #slowness 
      a$Var1<-as.numeric(as.character(a$Var1)) 
      a$Freq<-as.numeric(as.character(a$Freq)) 
       
      if (nrow(a)>0){ 
        seeds_new[stg,a$Var1]<-seeds_new[stg,a$Var1] +a$Freq 
      } else { 
        seeds_new[stg,]<-seeds_new[stg,] 
      } 
      return(seeds_new[stg,]) 
    } 
     
    
    dispersal<-function(j, seeds_ldd, disp_prob){ 
       
      dp<-disp_prob[j,] 
      print(j) 
      ages<-matrix(seeds_ldd[,j], ncol = 1) 
      stage_out<-lapply(X = ages, FUN = sample_ages, dp = dp ) 
      st<-as.matrix(1:length(stage_out)) 
       
      if(length(stage_out)>0){ 
        seeds_new_out<-sapply( X = st,FUN  =  disp_out,  seeds_new =  seeds_new, stage_
out = stage_out) 
        #seeds_newt<-t(seeds_new_out) 
         
        return(seeds_new_out) 
         
      } else { 
         
        return(seeds_new)   
         
      } 
    } 
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    seeds_new<-seeds_per_population_new_LDD 
     
    source_patches<-as.matrix(source_patches_ldd, ncol = 1) 
     
    check_disp<-apply(X = source_patches,1, FUN = dispersal, seeds_ldd = seeds_per_popu
lation_migrate_LDD, disp_prob = disp_prob) 
     
    seeds_per_population_new_LDD<-matrix(rowSums(check_disp), ncol = ncol(seeds_per_pop
ulation_new_LDD) , nrow = length(stages), byrow = T) 
     
    print(paste("no. source_patches ", length(source_patches_ldd), sep="")) 
    print(paste("no. to migrate ",sum(colSums(seeds_per_population_migrate_LDD)), sep="
")) 
    print(paste("no. which migrated ", sum(colSums(seeds_per_population_new_LDD)), sep=
"")) 
     
    } 
       
 
  seeds_stay <- (seeds_per_population - seeds_per_population_migrate_SDD -   #seeds tha
t migrate must go out of the cell and are taken off the total 
                   seeds_per_population_migrate_LDD) 
  print(sum(seeds_stay+ seeds_per_population_new_SDD + seeds_per_population_new_LDD)) 
   
  return(seeds_stay + seeds_per_population_new_SDD + seeds_per_population_new_LDD) 
} 

 

FUNCTION TO RUN THE COUPLED NICHE-DEMOGRAPHIC MODEL 

 

demoniche_model_csv<-function (modelname, Niche, Dispersal, repetitions, foldername)  
{ 
  BEMDEM <- get(modelname, envir = .GlobalEnv) 
  require(popbio) 
  require(lattice) 
  Projection <- array(0, dim = c(BEMDEM$no_yrs, length(BEMDEM$stages),  
                                 nrow(BEMDEM$Niche_ID),                         
                                 length(BEMDEM$years_projections)),  
                                 dimnames = list(paste("timesliceyear",         
                                 1:BEMDEM$no_yrs,sep = "_"),                    
                                 c(paste(BEMDEM$stages)),                       
                                 BEMDEM$Niche_ID[,"Niche_ID"],                  
                                 paste(BEMDEM$years_projections))) 
  eigen_results <- vector(mode = "list", length(BEMDEM$list_names_matrices)) 
  names(eigen_results) <- unlist(BEMDEM$list_names_matrices) 
  yrs_total <- BEMDEM$no_yrs * length(BEMDEM$years_projections) 
  population_sizes <- array(NA, dim = c(yrs_total,                              
                            length(BEMDEM$list_names_matrices),repetitions),    
                            dimnames = list(paste("year", 1:yrs_total,sep = ""),
                            BEMDEM$list_names_matrices,                         
                            paste("rep", 1:repetitions, sep = "_"))) 
  population_results <- array(1:200, dim = c(yrs_total, 4,                      
                        length(BEMDEM$list_names_matrices)),                    
                        dimnames = list(paste("year", 1:yrs_total, sep = ""),   
                        c("Meanpop", "SD", "Max", "Min"),                       
                        paste(BEMDEM$list_names_matrices))) 
  metapop_results <- array(NA, dim = c(yrs_total,                               
                     length(BEMDEM$list_names_matrices), repetitions),          
                     dimnames = list(paste("year", 1:yrs_total,sep = ""),       
                     BEMDEM$list_names_matrices, paste("rep", 1:repetitions,  
                     sep = "_"))) 
  simulation_results <- array(NA, dim = c(length(BEMDEM$list_names_matrices),  
                                  7 + length(BEMDEM$years_projections)),        
                                  dimnames = list(BEMDEM$list_names_matrices,  
                     c("lambda", "stoch_lambda", "mean_perc_ext_final",         
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                     "initial_population_area",initial_population",             
                      "mean_final_pop", "mean_no_patches_final",                
                     paste("EMA", BEMDEM$years_projections)))) 
  EMA <- array(0, dim = c(repetitions, length(BEMDEM$list_names_matrices),  
                          length(BEMDEM$years_projections), 2), dimnames = list(
                          paste("rep", 1:repetitions, sep = "_"),               
                          BEMDEM$list_names_matrices,BEMDEM$years_projections,  
                          c("EMA", "No_populations"))) 
  population_Niche <- rep(1, nrow(BEMDEM$Niche_ID)) 
  simulation_results[, "initial_population_area"] <- sum(BEMDEM$Orig_Populations
              [,"area_population"]) 
  simulation_results[, "initial_population"] <- round(sum(colSums(BEMDEM$n0_all)
 * BEMDEM$sumweight), 0) 
  dir.create(paste(getwd(), "/", foldername, sep = ""), showWarnings = FALSE) 
  for (rx in 1:repetitions) { 
    print(paste("Starting projections for repetition:", rx),  
          quote = FALSE) 
    for (mx in 1:length(BEMDEM$list_names_matrices)) { 
      print(paste("Projecting for scenario/matrix:",                            
      (BEMDEM$list_names_matrices)[mx]),  
            quote = FALSE) 
      yx_tx <- 0 
      Matrix_projection <- cbind(BEMDEM$matrices[, 1],  
                                 (BEMDEM$matrices[, mx])) 
      if (BEMDEM$matrices_var[1] != FALSE) { 
        if (ncol(BEMDEM$matrices_var) > 1) { 
          Matrix_projection_var <- cbind(BEMDEM$matrices_var[, 1],              
          (BEMDEM$matrices_var[, mx])) 
        } else { 
          Matrix_projection_var <- cbind(BEMDEM$matrices_var[,1],               
          (BEMDEM$matrices_var[, 1])) 
        } 
      } else { 
        Matrix_projection_var <- FALSE 
      } 
      prev_mx <- rep(1, times = yrs_total + 1) 
      for (tx in 1:length(BEMDEM$years_projections)) { 
       # print(tx) 
        if (Niche == TRUE) { 
          population_Niche <- BEMDEM$Niche_values[, tx] 
        } 
        for (yx in 1:BEMDEM$no_yrs) { 
          yx_tx <- yx_tx + 1 
          if (tx == 1 && yx == 1) { 
            n0s <- BEMDEM$n0_all[rowSums(BEMDEM$n0_all) >  
                                   0, ] 
            n0s_ID <- which(rowSums(BEMDEM$n0_all) >  
                              0) 
          } else { 
            if (tx != 1 && yx == 1) { 
              ###added by me### 
              paste(sum(is.na(Projection[BEMDEM$no_yrs, , , tx - 1]))," NAs")   
              Projection[BEMDEM$no_yrs, , , tx - 1][is.na(Projection[BEMDEM$no_y
rs, , , tx - 1])]<-0 
              ###### 
              n0s <- t(Projection[BEMDEM$no_yrs, , colSums(Projection[BEMDEM$no_
yrs, , , tx - 1]) > 0, tx - 1]) 
              n0s_ID <- which(colSums(Projection[BEMDEM$no_yrs, , , tx - 1]) > 0
) 
          } else { 
              n0s <- t(Projection[yx - 1, , colSums(Projection[yx -1, , , tx]) >
 0, tx]) 
              n0s_ID <- which(colSums(Projection[yx - 1, , , tx]) > 0) 
            } 
          } 
           
          population_Niche_short <- population_Niche[n0s_ID] 
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          if (nrow(n0s) > 0) { 
            for (px in 1:nrow(n0s)) { 
              n <- as.vector(n0s[px, ]) 
              populationmax <- BEMDEM$populationmax_all[n0s_ID[px], tx] 
              #added by FS 
              populationmax[is.na(populationmax)]<-min(BEMDEM$populationmax_all) 
              ## 
              Projection[yx, , n0s_ID[px], tx] <- demoniche_population_function(
Matrix_projection = Matrix_projection, Matrix_projection_var = Matrix_projection
_var, n = n, populationmax = populationmax, onepopulation_Niche = population_Nic
he_short[px], sumweight = BEMDEM$sumweight, Kweight = BEMDEM$Kweight, prob_scena
rio = BEMDEM$prob_scenario, noise = BEMDEM$noise, prev_mx = prev_mx, transition_
affected_demogr = BEMDEM$transition_affected_demogr, transition_affected_niche =
 BEMDEM$transition_affected_niche, transition_affected_env = BEMDEM$transition_a
ffected_env, env_stochas_type = BEMDEM$env_stochas_type, yx_tx = yx_tx) 
            } 
          } 
          metapop_results[yx_tx, mx, rx] <- length(intersect(which(colSums(Proje
ction[yx, , , tx]) > 1), n0s_ID)) 
          if (sum(Projection[yx, , , tx]) > 0) { 
            if (Dispersal == TRUE) { 
              if (Niche == TRUE) { 
                population_Niche <- BEMDEM$Niche_values[, tx] 
              } 
              print(paste("Year ", tx+1849, sep="")) 
              disp <- dispersal_faster_csv(seeds_per_population =               
              Projection[yx,, , tx], fraction_LDD = BEMDEM$fraction_LDD,        
              dispersal_probabilities = BEMDEM$dispersal_probabilities, 
              dist_latlong = BEMDEM$dist_latlong,                               
              neigh_index = BEMDEM$neigh_index, 
              fraction_SDD = BEMDEM$fraction_SDD,                               
              niche_values = population_Niche, stages = BEMDEM$stages) 
              Projection[yx, , , tx] <- disp   #age here 0 years/seed 
               } 
          } 
          population_sizes[yx_tx, mx, rx] <- sum(rowSums(Projection[yx,, , tx]) 
* BEMDEM$sumweight) 
        } 
        EMA[rx, mx, tx, 1] <- min(apply((Projection[, , , tx] * BEMDEM$sumweight
), 1, sum)) 
        EMA[rx, mx, tx, 2] <- sum(colSums(Projection[yx, , , tx]) > 1) 
        simulation_results[mx, 7 + tx] <- mean(EMA[, mx, tx, 1]) 
      } 
      pop <- data.frame(cbind(BEMDEM$Niche_ID[, 2:3], (colSums(Projection[yx,,,]
 * BEMDEM$sumweight)))) 
       
      print(sum(pop)) 
      write.csv(pop, paste(getwd(), "/", foldername, "/",BEMDEM$list_names_matri
ces[mx],"_pop_output.csv", sep="")) 
    } 
  } 
  rm(Projection) 
  print("Calculating summary values", quote = FALSE) 
  for (mx in 1:length(BEMDEM$list_names_matrices)) { 
    for (yx_tx in 1:yrs_total) { 
      population_results[yx_tx, "Meanpop", mx] <- mean(population_sizes[yx_tx, 
                                                                        mx, ]) 
      population_results[yx_tx, "SD", mx] <- sd(population_sizes[yx_tx, 
                                                                 mx, ]) 
      population_results[yx_tx, "Min", mx] <- min(population_sizes[yx_tx, 
                                                                   mx, ]) 
      population_results[yx_tx, "Max", mx] <- max(population_sizes[yx_tx, 
                                                                   mx, ]) 
    } 
  } 
  return(population_results) 
} 


