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Abstract 14 

 15 

Overactive DNA repair contributes to therapeutic resistance in cancer. However, pan-cancer 16 

comparative studies investigating the contribution of all DNA repair genes in cancer 17 

progression employing an integrated approach have remained limited. We performed a multi-18 

cohort retrospective analysis to determine the prognostic significance of 138 DNA repair genes 19 

in 16 cancer types (n=16,225). Cox proportional hazards analyses revealed a significant 20 

variation in the number of prognostic genes between cancers; 81 genes were prognostic in 21 

clear cell renal cell carcinoma while only two genes were prognostic in glioblastoma. We 22 

reasoned that genes that were commonly prognostic in highly correlated cancers revealed by 23 

Spearman’s correlation analysis could be harnessed as a molecular signature for risk 24 

assessment. A 10-gene signature, uniting prognostic genes that were common in highly 25 

correlated cancers, was significantly associated with overall survival in patients with clear cell 26 

renal cell (P<0.0001), papillary renal cell (P=0.0007), liver (P=0.002), lung (P=0.028), pancreas 27 

(P=0.00013) or endometrial (P=0.00063) cancers. Receiver operating characteristic analyses 28 

revealed that a combined model of the 10-gene signature and tumor staging outperformed 29 

either classifier when considered alone. Multivariate Cox regression models incorporating 30 

additional clinicopathological features showed that the signature was an independent 31 

predictor of overall survival. Tumor hypoxia is associated with adverse outcomes. Consistent 32 

across all six cancers, patients with high 10-gene and high hypoxia scores had significantly 33 

higher mortality rates compared to those with low 10-gene and low hypoxia scores. Functional 34 

enrichment analyses revealed that high mortality rates in patients with high 10-gene scores 35 

were attributable to an overproliferation phenotype. Death risk in these patients was further 36 

exacerbated by concurrent mutations of a cell cycle checkpoint protein, TP53. The 10-gene 37 



signature identified tumors with heightened DNA repair ability. This information has the 38 

potential to radically change prognosis through the use of adjuvant DNA repair inhibitors with 39 

chemotherapeutic drugs.  40 
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Introduction 47 

 48 

Genetic material must be transmitted in its original, unaltered form during cell division. 49 

However, DNA faces continuous assaults from both endogenous and environmental agents 50 

contributing to the formation of permanent lesions and cell death. To overcome DNA damage 51 

threats, living systems have evolved highly coordinated cellular machineries to detect and 52 

repair damages as they occur. However, DNA repair mechanisms and consequently DNA 53 

damage responses (DDR) are often deregulated in cancer cells and such aberrations may 54 

contribute to cancer progression and influence prognosis. Overexpression of DNA repair genes 55 

allows tumor cells to overcome the cytotoxic effects of radiotherapy and chemotherapy. As 56 

such, inhibitors of DNA repair can increase the vulnerability of tumor cells to chemotherapeutic 57 

drugs by preventing the repair of deleterious lesions[1].   58 

 59 

There are six main DNA repair pathways in mammalian cells. Single-strand DNA damage is 60 

repaired by the base excision repair (BER), nucleotide excision repair (NER) and mismatch 61 

repair (MR) pathways. The poly(ADP-ribose) polymerase (PARP) gene family encodes critical 62 

players of the BER pathway involved in repairing damages induced by ionizing radiation and 63 

alkylating agents[2,3]. Replication errors are corrected by the MR pathway while the NER 64 

pathway is responsible for removing bulky intercalating agents[4,5]. Tumor cells with 65 

deficiencies in the NER pathway have increased sensitivity to platinum-based 66 

chemotherapeutic drugs (cisplatin, oxaliplatin, etc.)[6,7]. Double-strand breaks induced by 67 

ionizing radiation are more difficult to repair and thus are highly cytotoxic. Dysregulation of 68 

genes involved in the homology-directed repair (HDR), non-homologous end joining (NHEJ) 69 

and Fanconi anemia (FA) pathways are associated with altered repair of double-strand breaks.  70 



 71 

Aberrations in DNA repair genes are widespread in most cancers; hence they represent 72 

attractive candidates for pharmacological targeting to improve radiosensitivity and 73 

chemosensitivity[8]. In a process known as ‘synthetic lethality’, faults in two or more DNA 74 

repair genes or pathways together would promote cell death, while defects in a single pathway 75 

may be tolerated[1]. Functional redundancies in repair pathways allow tumor cells to rely on a 76 

second pathway for repair if the first pathway is defective. Based on the principles of synthetic 77 

lethality, inhibition of the second pathway will confer hypersensitivity to cytotoxic drugs in cells 78 

with another malfunctioning pathway. This promotes cell death because DNA lesions can no 79 

longer be repaired by either pathway. For instance, PARP inhibitors (targeting the BER 80 

pathway) could selectively kill tumor cells that have BRCA1 or BRCA2 mutations (defective HDR 81 

pathway) while not having any toxic effects on normal cells[9,10].  82 

 83 

Since one DDR pathway could compensate for another, there is a need for a pan-cancer, large-84 

scale, systematic study on all DNA repair genes to reveal similarities and differences in DDR 85 

signaling between cancer types, which is limited at present. In this study, we explored pan-86 

genomic expression patterns of 138 DNA repair genes in 16 cancer types. We developed and 87 

validated the prognostic significance of a 10-gene signature that can be used for rapid risk 88 

assessment and patient stratification. There are considerable variations in the success of 89 

chemotherapy and radiotherapy regimes between cancer types. Such differences may be 90 

explained by the complex cancer-specific nature of DDR defects. Prognostic biomarkers of DNA 91 

repair genes are needed to allow the use of repair inhibitors in a stratified, non-universal 92 

approach to expose the particular vulnerabilities of tumors to therapeutic agents.  93 



Materials and methods 94 

A list of 138 DNA repair genes is available in Table S1.  95 

Study cohorts 96 

We obtained RNA-sequencing datasets for the 16 cancers from The Cancer Genome Atlas 97 

(TCGA)[11] (n=16,225) (Table S2). TCGA Illumina HiSeq rnaseqv2 Level 3 RSEM normalized data 98 

were retrieved from the Broad Institute GDAC Firehose website. Gene expression profiles for 99 

each cancer types were separated into tumor and non-tumor categories based on TCGA 100 

barcodes and converted to log2(x + 1) scale. To compare the gene-by-gene expression 101 

distribution in tumor and non-tumor samples, violin plots were generated using R. The 102 

nonparametric Mann-Whitney-Wilcoxon test was used for statistical analysis.  103 

 104 

Calculation of 10-gene scores and hypoxia scores 105 

The 10-gene scores for each patient were determined from the mean log2 expression values 106 

of 10 genes: PRKDC, NEIL3, FANCD2, BRCA2, EXO1, XRCC2, RFC4, USP1, UBE2T and FAAP24). 107 

Hypoxia scores were calculated from the mean log2 expression values of 52 hypoxia signature 108 

genes[12]. For analyses in Figure 5, patients were delineated into four categories using median 109 

10-gene scores and hypoxia scores as thresholds. The nonparametric Spearman’s rank-order 110 

correlation test was used to determine the relationship between 10-gene scores and hypoxia 111 

scores.  112 

 113 

Differential expression analyses comparing expression profiles of high-score and low-score 114 

patients 115 



Patients were median dichotomized into low- and high-score groups based on their 10-gene 116 

scores in each cancer type. Differential expression analyses were performed using the linear 117 

model and Bayes method executed by the limma package in R. P values were adjusted using 118 

the Benjamini-Hochberg false discovery rate procedure. We considered genes with log2 fold 119 

change of > 1 or < -1 and adjusted P-values < 0.05 as significantly differentially expressed 120 

between the two patient groups.  121 

 122 

 123 

Functional enrichment and pathway analyses 124 

To determine which biological pathways were significantly enriched, differentially expressed 125 

genes were mapped against the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 126 

Genomes (KEGG) databases using GeneCodis[13]. The Enrichr tool was used to investigate 127 

transcription factor protein-protein interactions that were associated with the differentially 128 

expressed genes[14,15].  129 

 130 

 131 

Survival analysis 132 

Univariate Cox proportional hazards regression analyses were performed using the R survival 133 

and survminer packages to determine if expression levels of individual DNA repair genes as 134 

well as those of the 10-gene scores were significantly associated with overall survival. 135 

Multivariate Cox regression was employed to determine the influence of additional clinical 136 

variables on the 10-gene signature. Hazard ratios (HR) and confidence intervals were 137 

determined from the Cox models. HR greater than one indicated that a covariate was positively 138 

associated with even probability or increased hazard and negatively associated with survival 139 



duration. Non-significant relationship between scaled Schoenfeld residuals supported the 140 

proportional hazards assumption in the Cox model. Both survival and survminer packages were 141 

also used for Kaplan-Meier analyses and log-rank tests. For Kaplan-Meier analyses, patients 142 

were median dichotomized into high- and low-score groups using the 10-gene signature. To 143 

determine the predictive performance (specificity and sensitivity) of the signature in relation 144 

to tumor staging parameters, we employed the receiver operating characteristic (ROC) analysis 145 

implemented by the R survcomp package, which also calculates area under the curve (AUC) 146 

values. AUC values can fall between 1 (perfect marker) and 0.5 (uninformative marker).  147 

 148 

TP53 mutation analysis 149 

TCGA mutation datasets (Level 3) were retrieved from GDAC Firehose to annotate patients 150 

with mutant TP53. To ascertain the association of TP53 mutation with the 10-gene signature 151 

on overall survival, we employed the Kaplan-Meier analysis and log-rank tests implemented in 152 

R.  153 

 154 

All plots were generated using R pheatmap and ggplot2 packages[16]. Venn diagram was 155 

generated using the InteractiVenn tool[17].  156 



Results 157 

 158 

Prognosis of DNA repair genes in 16 cancer types and the development of a 10-gene signature 159 

A total of 187 genes associated with six DDR pathways found in mammalian cells were curated: 160 

BER (33 genes), MR (23 genes), NER (39 genes), HDR (26 genes), NHEJ (13 genes) and FA (53 161 

genes)[18] (Fig. 1, Table S1). Of the 187 genes, 49 were represented in two or more pathways, 162 

yielding 138 non-redundant candidates. To determine which of the 138 DNA repair genes 163 

conferred prognostic information, we employed Cox proportional hazards regression on all 164 

genes individually on 16 cancer types to collectively include 16,225 patients[11] (Table S2). In 165 

clear cell renal cell carcinoma, 81 genes were found to be significantly associated with overall 166 

survival; this cancer had the highest number of prognostic DNA repair genes (Table S3). This is 167 

followed by 54, 53, 46, 44 and 33 prognostic genes in cancers of the pancreas, papillary renal 168 

cell, liver, lung and endometrium respectively (Table S3). In contrast, cancers of the brain 169 

(glioblastoma: 2 genes), breast (5 genes), cervix (6 genes) and esophagus (7 genes) had some 170 

of the lowest number of prognostic DNA repair genes (Table S3), suggesting that there is a 171 

significant degree of variation in the contribution of DNA repair genes in predicting survival 172 

outcomes. Spearman’s rank-order correlation analysis revealed a hub of five highly correlated 173 

cancers (lung, papillary renal cell, pancreas, liver and endometrium), indicating that a good 174 

number of prognostic DNA repair genes were shared between these cancers (Spearman’s 175 

rho=0.21 to 0.44) (Fig. S1). We rationalized that prognostic genes that are common in these 176 

highly correlated cancers could form a new multigenic risk assessment classifier. Ten genes 177 

were prognostic in the five highly correlated cancers: PRKDC (NHEJ), NEIL3 (BER), FANCD2 (FA), 178 

BRCA2 (HDR and FA), EXO1 (MR), XRCC2 (HDR), RFC4 (MR and NER), USP1 (FA), UBE2T (FA) and 179 

FAAP24 (FA), which, interestingly, represent members from all six DDR pathways.  180 



 181 

A 10-gene signature predictive of DDR signaling is an independent prognostic classifier in 6 182 

cancer types 183 

The ten genes above were employed as a new prognostic model to evaluate whether they 184 

were significantly associated with overall survival in all 16 cancer types. A 10-gene score for 185 

each patient was calculated by taking the mean expression of all ten genes. Patients were 186 

median dichotomized based on their 10-gene scores into a low- and high-score groups. The 187 

10-gene signature could predict patients at significantly higher risk of death in the five cancers 188 

that were initially highly correlated (Fig. S1), and in one additional cancer (clear cell renal cell 189 

carcinoma) (Fig. 2). Kaplan-Meier analyses demonstrated that patients categorized within 190 

high-score groups had significantly poorer survival rates: clear cell renal cell (log-rank 191 

P<0.0001), papillary renal cell (P=0.0007), liver (P=0.002), lung (P=0.028), pancreas 192 

(P=0.00013) and endometrium (P=0.00063) (Fig. 2). Expression profiles of the 10 genes in 193 

tumor and non-tumor samples showed a general distribution that were comparable among 194 

the six cancer types. Mann-Whitney-Wilcoxon tests revealed that a vast majority of genes were 195 

significantly upregulated in tumor samples with a few minor exceptions (Fig. S2). USP1 was 196 

significantly downregulated in tumors of papillary renal cell and endometrium (Fig. S2). Only 197 

four non-tumor samples were available in the pancreatic cancer cohort, precluding robust 198 

statistical analyses. Due to limitations in sample size, only UBE2T was observed to be 199 

significantly upregulated in pancreatic tumors (Fig. S2). 200 

 201 

To evaluate the independent predictive value of the signature over the current tumor, node 202 

and metastasis (TNM) staging system, we applied the signature on patients separated by TNM 203 

stage: early (stages 1 and/or 2), intermediate (stages 2 and/or 3) and late (stages 3 and/or 4) 204 



disease stages. Remarkably, the signature successfully identified high-risk patients in early 205 

(liver, lung, pancreas, endometrium), intermediate (papillary renal cell, liver, pancreas, 206 

endometrium) and late (clear cell renal cell, papillary renal cell, liver, endometrium) TNM 207 

stages (Fig. 3). Collectively, this implied that the signature offered an additional resolution of 208 

prognosis within similarly staged tumors and that the signature retained excellent prognostic 209 

ability in individual tumor groups when considered separately.  210 

 211 

To evaluate the predictive performance of the 10-gene signature on 5-year overall survival, we 212 

employed receiver operating characteristic (ROC) analyses on all six cancers. Comparing the 213 

sensitivity and specificity of the signature in relation to TNM staging revealed that the signature 214 

outperformed TNM staging in cancers of the papillary renal cell (AUC=0.832 vs. AUC=0.640), 215 

pancreas (AUC=0.697 vs. AUC=0.593) and endometrium (AUC=0.700 vs. AUC=0.674) (Fig. 4). 216 

Importantly, when the signature was used in conjunction with TNM staging as a combined 217 

model, its performance was superior to either classifier when they were considered 218 

individually: clear cell renal cell (AUC=0.792), papillary renal cell (AUC=0.868), liver 219 

(AUC=0.751), lung (AUC=0.693), pancreas (AUC=0.698) and endometrium (AUC=0.764) (Fig. 220 

4).  221 

 222 

We next employed multivariate Cox regression models to examine whether the association 223 

between high 10-gene scores and increased mortality was not due to underlying clinical 224 

characteristics of the tumors. Univariate analysis revealed that TNM staging is not prognostic 225 

in pancreatic cancer (hazard ratio [HR]=1.339, P=0.153); hence this cancer was excluded from 226 

the multivariate model involving TNM (Table 1). For the five remaining cancer types, even 227 

when TNM staging was considered, the signature significantly distinguished survival outcomes 228 



in high- versus low-score patients, confirming that it is an independent prognostic classifier: 229 

clear cell renal cell (HR=1.555, P=0.0058), papillary renal cell (HR=1.677, P=0.032), liver 230 

(HR=1.650, P=0.029), lung (HR=1.301, P=0.032) and endometrium (HR=2.113, P=0.013) (Table 231 

1).  232 

 233 

 234 

Crosstalk between DDR signaling and tumor hypoxia 235 

Tumor hypoxia is a well-known barrier to curative treatment. It is often associated with poor 236 

prognosis[19,20], which may be a result of tumor resistance to chemotherapy and 237 

radiotherapy[21,22]. Since both the upregulation of DNA repair genes and hypoxia are linked 238 

to therapeutic resistance, we rationalized that incorporating hypoxia information in the 10-239 

gene signature would allow further delineation of patient risk groups. Patients with high 10-240 

gene scores had significantly poorer survival outcomes and we predict that these patients have 241 

tumors that are more hypoxic, and that oxygen deprivation could influence DDR signaling to 242 

enhance tumor resistance to apoptotic stimuli leading to more aggressive disease states. We 243 

calculated hypoxia scores for each patient using a mathematically derived hypoxia gene 244 

signature consisting of 52 genes[12]. Hypoxia scores were defined as the mean expression of 245 

the 52 genes. Patients for each of the six cancer types were divided into four categories using 246 

the median 10-gene and hypoxia scores: 1) high scores for both 10-gene and hypoxia, 2) high 247 

10-gene and low hypoxia scores, 3) low 10-gene and high hypoxia scores and 4) low scores for 248 

both 10-gene and hypoxia (Fig. 5A). Remarkably, significant positive correlations were 249 

observed between 10-gene scores and hypoxia scores consistent across all six cancer types: 250 

clear cell renal cell (rho=0.363, P<0.0001), papillary renal cell (rho=0.518, P<0.0001), liver 251 

(rho=0.615, P<0.0001), lung (rho=0.753, P<0.0001), pancreas (rho=0.582, P<0.0001) and 252 



endometrium (rho=0.527, P<0.0001) (Fig. 5A). This suggests that tumor hypoxia may influence 253 

DDR signaling and potentially, patient outcomes.  254 

 255 

We generated Kaplan-Meier curves and employed the log-rank test to determine whether 256 

there were differences in overall survival outcomes among the four patient groups. Combined 257 

relation of hypoxia and 10-gene scores revealed significant associations with overall survival in 258 

all six cancers (Fig. 5B). Patients classified within the ‘high 10-gene and high hypoxia’ category 259 

had significantly poorer survival rates compared to those with low 10-gene and low hypoxia 260 

scores: clear cell renal cell (HR=2.316, P<0.0001), papillary renal cell (HR=7.635, P=0.0011), 261 

liver (HR=2.615, P=0.00013),  lung (HR=1.832, P=0.0021), pancreas (HR=2.680, P=0.00079) and 262 

endometrium (HR=2.707, P=0.0075) (Table 2; Fig. 5B). Our results suggest that the combined 263 

effects of hypoxia and heightened expression of DNA damage repair genes may be linked to 264 

tumor progression and increased mortality risks. It remains unknown in this context whether 265 

the basis for differential sensitivity to chemotherapy would be explained, in part, by DNA repair 266 

ability of tumor cells exposed to chronic hypoxia environments.  267 

 268 

 269 

Patients with high 10-gene scores had an overproliferation phenotype due to cell cycle 270 

dysregulation 271 

The cell cycle represents a cellular gatekeeper that controls how cells grow and proliferate. 272 

Cyclins and cyclin-dependent kinases (CDKs) allow cells to progress from one cell cycle stage 273 

to the next; a process that is antagonized by CDK inhibitors. Many tumors overexpress cyclins 274 

or inactivate CDK inhibitors, hence resulting in uncontrolled cell cycle entry, loss of checkpoint 275 

and uninhibited proliferation[23–25]. Targeting proteins responsible for cell cycle progression 276 



would thus be an attractive measure to limit tumor cell proliferation. This has led to the 277 

development of various CDK inhibitors as anticancer agents[26,27]. DNA repair is tightly 278 

coordinated with cell cycle progression. Certain DNA repair mechanisms are dampened in non-279 

proliferating cells, while repair pathways are often perturbed during tumor development. 280 

Perturbation can take the form of defective DNA repair or over-compensation of a pathway 281 

arising from defects in another pathway[28]. As a result, DNA repair inhibitors could prevent 282 

the repair of lesions induced by chemotherapeutic drugs to trigger apoptosis and to enhance 283 

the elimination of tumor cells.  284 

 285 

We rationalize that patients with high 10-gene scores would have heightened ability for DNA 286 

repair thus allowing tumor cells to progress through the cell cycle and continue to proliferate. 287 

Using Spearman’s rank-order correlation, we observed that the expression of each of the 10 288 

signature genes was positively correlated with the expression of genes involved in cell cycle 289 

progression (cyclins and CDKs) and negatively correlated with genes involved in cell cycle arrest 290 

(CDK inhibitors) (Fig. 6A). Interestingly, the patterns of correlation were remarkably similar 291 

across all six cancer types, implying that elevated expression of DNA repair genes is associated 292 

with a hyperproliferative phenotype. We next asked whether patients within the high 10-gene 293 

score category had an overrepresentation of processes associated with cell cycle dysregulation 294 

as this could explain the elevated mortality risks in these patients. To answer this, we divided 295 

patients from each of the six cancer types into two groups (high score and low score) based on 296 

the mean expression of the 10 signature genes using the 50th percentile cut-off. Differential 297 

expression analyses between the high- and low-score groups revealed that 394, 425, 1259, 298 

1279, 714 and 977 genes were differentially expressed (-1 > log2 fold-change > 1, P<0.05) in 299 



clear cell renal cell, papillary renal cell, liver, lung, pancreas and endometrial cancers 300 

respectively (Table S4).  301 

 302 

Analyses of biological functions of these genes revealed functional enrichment of ontologies 303 

associated with cell division, mitosis, cell cycle, cell proliferation, DNA replication and 304 

homologous recombination consistent in all six cancer types (Fig. 6B). This suggests that the 305 

significantly higher mortality rates in patients with high 10-gene scores were due to enhanced 306 

tumor cell proliferation exacerbated by the ability of these cells to repair DNA lesions as they 307 

arise. Additional ontologies related to tumorigeneses such as PPAR and TP53 signaling were 308 

also associated with poor prognosis (Fig. 6B). A total of 87 differentially expressed genes (DEGs) 309 

were found to be in common in all six cancer types (Fig. S3) (Table S5). To dissect the underlying 310 

biological roles of the 87 DEGs at the protein level, we evaluated the enrichment of 311 

transcription factor protein-protein interactions using the Enrichr platform[14].TP53 312 

represents the most enriched transcription factor involved in the regulation of the DEGs as 313 

evidenced by the highest combined score, which takes into account both Z score and P value 314 

(Table S6). This indirectly corroborated our results on enriched TP53 signaling obtained from 315 

the KEGG pathway analysis (Fig. 6B). Taken together, these results highlight the interplay 316 

between DDR signaling, cell cycle regulation and TP53 function in determining prognosis.  317 

 318 

 319 

Prognostic relevance of a combined model involving the 10-gene signature and TP53 mutation 320 

status 321 

An important role of TP53 is its tumor suppressive function through TP53-mediated cell cycle 322 

arrest and apoptosis[29]. Hence, somatic mutations in TP53 can confer tumor cells with a 323 



growth advantage and indeed, this is a well-known phenomenon in many cancers[30–32]. We 324 

rationalized that TP53 deficiency resulting in defective checkpoint may synergize with the 325 

overexpression of DNA repair genes to prevent growth arrest and promote tumor proliferation. 326 

To test this hypothesis, we examined TP53 mutation status in all six cancer types and observed 327 

that TP53 mutation frequency was the highest in pancreatic cancer patients (58%) followed by 328 

lung cancer (57%), endometrial cancer (21%), liver cancer (16%), papillary renal cell (1.8%) and 329 

clear cell renal cell (1.2%) (Table S7). Cancers with TP53 mutation frequency of at least 10% 330 

were selected for survival analyses. Univariate Cox regression analyses revealed that TP53 331 

mutation status only conferred prognostic information in pancreatic (HR=1.657, P=0.044), 332 

endometrial (HR=1.780, P=0.041) and liver (HR=2.603, P<0.0001) cancers but not in lung 333 

cancer (HR=1.428, P=0.056) (Table 1). Cancers, where TP53 mutation offered predictive value, 334 

were taken forward for analyses in relation to the 10-gene signature. Cox regression analyses 335 

revealed that a combination of TP53 mutation and high 10-gene score resulted in a significantly 336 

higher risk of death (Table 3; Fig. 6C). Survival rates were significantly diminished in patients 337 

harboring high 10-gene scores and the mutant variant of TP53 compared to those with low 10-338 

gene scores and wild-type TP53: liver (HR=3.876, P<0.0001), pancreas (HR=4.881, P=0.0002) 339 

and endometrium (HR=3.719, P=0.00028) (Table 3; Fig. 6C). Moreover, in multivariate Cox 340 

models involving TNM staging and TP53 mutation status, the 10-gene signature remained a 341 

significant prognostic factor (Table 1). This suggests that although the 10-gene signature 342 

provided additional resolution in risk assessment when used in combination with TP53 343 

mutation status, its function is independent. However, in the multivariate model, TP53 was 344 

significant only in liver cancer (HR=2.085, P=0.0044), suggesting that TP53 mutation was not 345 

independent of the signature or TNM staging in pancreatic and endometrial cancers (Table 1). 346 

Overall, the results suggest that defects in cell cycle checkpoint combined with augmented 347 



DNA repair ability were adverse risk factors contributing to poor prognosis. Both TP53 348 

mutation status and 10-gene scores could offer additional predictive value in risk assessment 349 

by further delineation of patients into additional risk groups.  350 

  351 



Discussion and Conclusion 352 

 353 

We systematically examined the associations between the expression patterns of 138 DNA 354 

repair genes in 16 cancer types and prognosis. Our pan-cancer multigenic approach revealed 355 

genes that work synergistically across cancers to inform patient prognosis that would 356 

otherwise remain undetected in analysis involving a single gene or a single cancer type. We 357 

developed a 10-gene signature that incorporates the expression profiles of 10 highly correlated 358 

DNA repair genes for use as risk predictors in six cancer types (n=2,257). This signature offers 359 

more precise discrimination of patient risk groups in these six cancers where high expression 360 

of signature genes is associated with poor survival outcomes. Importantly, we demonstrated 361 

that the signature could improve the prognostic discrimination of TNM when used as a 362 

combined model, which is particularly useful to allow further stratification of patients within 363 

similar TNM stage groups (Fig. 4).  364 

 365 

Intrinsic differences in DNA repair machineries in cancer cells may pose a significant challenge 366 

to successful therapy. Mutations in DNA repair genes allow the generation of persistent DNA 367 

lesions that would otherwise be repaired. Germline mutations of DNA repair genes are linked 368 

to increased genome instability and cancer risks[33] and abrogation of genes in one DNA repair 369 

pathway can be compensated by another pathway[1]. BRCA1 and BRCA2 mutations sensitize 370 

cells to PARP1 inhibition, a protein involved in the BER pathway[10]. Since BRCA1 and BRCA2 371 

are important for homology-directed repair, PARP1 inhibition in BRCA1/2-defective cells would 372 

result in dysfunctional HDR and BER pathways preventing lesion repair and thus leading to 373 

apoptosis[10].  374 

 375 



In addition to genetic polymorphism, upregulation of DNA repair genes in tumors promotes 376 

resistance to radiotherapy and chemotherapy as the cells would have enhanced ability to 377 

repair cytotoxic lesions induced by these therapies. Overexpression of ERCC1 involved in the 378 

NER pathway in non-small-cell lung cancer is linked to poor survival in cisplatin-treated 379 

patients[7]. The 1,2-d(GpG) cross-link lesion generated by cisplatin treatment is readily 380 

repaired by the NER pathway; hence ERCC1 overexpression would promote cisplatin 381 

resistance. Low MGMT expression in astrocytoma is associated with longer survival outcomes 382 

in patients treated with temozolomide[34]; an observation that is consistent with the role of 383 

MGMT in repairing lesions caused by temozolomide thus allowing MGMT deficient tumor cells 384 

to accumulate enough unrepairable damage. The ribonucleotide reductase (RNR) enzyme 385 

plays an important role in DNA repair and RNR activity is tightly coordinated with cell cycle 386 

progression to maintain a balance between DNA replication and dNTP production[35]. 387 

Overexpression of the RNR subunit, RRM2, is associated with poor outcomes in breast[36,37] 388 

and colorectal cancers[38]. In prostate cancer, overexpression of RRM2 promotes 3D colony 389 

formation and invasive phenotypes where RRM2 activates epithelial-to-mesenchymal 390 

transition through the upregulation of E-cadherin and P-cadherin[39]; an observation that is 391 

consistent with our results showing significant positive correlation between expression of DNA 392 

repair genes with genes involved in cell cycle progression (Fig. 6). EXO1 is involved in DNA MR 393 

and HR[40]. EXO1 expression promotes survival of ovarian cancer cells post cisplatin 394 

treatment[41]. Overexpression of EXO1 is positively correlated with tumor aggression and 395 

unfavorable prognosis in astrocytoma[42] and in liver cancer[43], where in the latter, EXO1 396 

knockdown suppresses clonogenic cell survival and increases radiosensitivity[43]. XRCC5 is a 397 

subunit of the Ku heterodimer protein involved in NHEJ and is overexpressed in multiple cancer 398 

types including head and neck[44], colorectal[45] and lung[46] cancers. Overexpression of 399 



XRCC5 is also a poor prognostic marker in gastric cancer[47]. The MRN complex, consisting of 400 

MRE11, RAD50 and NBS1 proteins, is essential for repairing double-stranded breaks. Tumors 401 

deficient in the MRN complex are more sensitive to the DNA-damaging effects of radiotherapy 402 

and likewise, high MRN expression is associated with poor disease-free and overall survival in 403 

colorectal cancer patients receiving neoadjuvant radiotherapy[48]. FEN1 is an endonuclease 404 

involved in BER and NHEJ. FEN1 is overexpressed in breast, brain, lung, testis, prostate and 405 

gastric cancers[49–52]. Moreover, FEN1 overexpression is linked to high tumor grade and poor 406 

survival outcomes in ovarian and breast cancers[53]. Non-small-cell lung cancer patients with 407 

FEN1 overexpression have poor differentiation and poor prognosis and knock-down of FEN1 408 

attenuates homologous DNA repair, which promotes the cytotoxic effects of cisplatin[54].  409 

Similarly, FEN1 downregulation in glioma cells causes increased sensitivity to temozolomide 410 

damage [50]. TP53 plays essential roles in cell-cycle arrest and apoptosis through the activation 411 

of checkpoint genes[29]. We show that patients with high 10-gene scores that concurrently 412 

have mutant TP53 exhibited significantly higher mortality rates (Fig. 6C), suggesting that 413 

defects in cell cycle checkpoint coupled with an increased propensity for DNA repair may lead 414 

to dramatically poorer outcomes. Taken together, our study along with reports from others 415 

confirmed that hyperactive DNA repair is linked to tumor aggression and adverse patient 416 

outcomes.  417 

   418 

 419 

Multiple studies have reported the associations between dysfunctional DNA repair pathways 420 

and cancer, but most of these studies are restricted to investigations on a limited number of 421 

genes and in one cancer at a time. One of the key advantages of our study is that it is an 422 

unbiased exploration transcending the candidate-gene approach that takes into account the 423 



multifaceted interplay of DNA repair genes in diverse cancer types. We rationalize that since 424 

ionizing radiation and chemotherapy are the main treatment options currently available for 425 

cancer patients, a molecular signature capable of discriminating patients with increased 426 

expression of DNA repair genes that would benefit from adjuvant therapy through 427 

pharmacological inhibition of DNA repair to overall improve therapeutic outcomes.  428 

 429 

Tumor hypoxia is also a well-known cause of therapy resistance. A notable finding of our study 430 

is that patients having both high 10-gene and hypoxia scores had significantly poorer survival 431 

rates compared to those with low 10-gene and hypoxia scores (Fig. 5). Previous reports suggest 432 

that low oxygen conditions may interfere with DNA damage repair. For example, hypoxia could 433 

compromise HR function through decreased RAD51 expression[55]. However, results 434 

concerning the effects of hypoxia on DDR signaling have remained inconclusive. Genes 435 

associated with NHEJ were reported to be downregulated under hypoxia in prostate cancer 436 

cell lines[56], while hypoxia drove the upregulation of NHEJ-associated genes, PRKDC and 437 

XRCC6, in hepatoma cell lines[57]. The authors proposed an interaction between PRKDC and 438 

the hypoxia-responsive transcriptional activator, HIF-1α, hence suggesting that tumor hypoxia 439 

may lead to increase in NHEJ. Tumor cells within their 3D space are subjected to differential 440 

levels of oxygen over time and chronic exposures to these fluctuating conditions could result 441 

in very different biological outcomes. In vitro studies retain a significant caveat as many hypoxia 442 

assays are carried out short term using constant, predefined oxygen tensions. Although further 443 

work is needed to ascertain the clinical relevance of these findings, our results demonstrate 444 

that the integration of hypoxia assessment in molecular stratification using the 10-gene 445 

signature revealed a subset of high-risk individuals accounting for approximately 31% to 38% 446 



in each cohort (Fig. 5B). Whether hypoxia could directly promote DNA damage repair in vivo 447 

remains an open question.  448 

 449 

We reasoned that the expression patterns of DNA repair genes would positively correlate with 450 

genes involved in cell cycle progression since lesions could be repaired more effectively to 451 

prevent cell cycle arrest (Fig. 6A). Enhanced DNA repair ability may also confer tumor cells with 452 

a growth advantage. Consistent with this hypothesis, differential expression analyses between 453 

patients with high versus low 10-gene scores revealed an enrichment of ontologies involved in 454 

growth stimulation as a consequence of increased DNA repair gene expression (Fig. 6B). 455 

Enrichment of biological pathways involved in cell cycle, mitosis, cell division and DNA 456 

replication implied that the shorter life expectancy in patients with high 10-gene scores could 457 

in part be explained by an overproliferation phenotype commonly present in more aggressive 458 

tumors.  459 

 460 

In summary, we developed a prognostic signature involving DNA repair genes and confirmed 461 

its utility as a powerful predictive marker for six cancer types. Although not currently afforded 462 

by this work due to its retrospective nature, it will be useful to determine if the signature can 463 

predict response to radiotherapy and chemotherapy in future research. While prospective 464 

validation is warranted, we would expect, based on our encouraging retrospective data, that 465 

the signature can guide decision making and treatment pathways. The confirmation of this 466 

hypothesis by a clinical trial using the 10-gene signature to select patients that would benefit 467 

from treatment with adjuvant DNA repair inhibitors could have a substantial impact on 468 

treatment outcomes.   469 
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Figure legends 656 

 657 

Figure 1. Schematic representation of the study design and development of the 10-gene 658 

signature. DNA repair genes from six major pathways were manually curated to generate a 659 

non-redundant list containing 138 genes. Cox proportional hazards regression was employed 660 

to determine the significance of each gene in predicting overall survival in 16 cancer types. 661 

Spearman’s correlation analyses revealed that five cancer types exhibited a high degree of 662 

correlation in terms of their prognostic genes. Ten genes were found to be prognostic in all 663 

five cancers; these genes subsequently formed the 10-gene signature. The ability of the 664 

signature in predicting survival outcomes was tested using Kaplan-Meier, Cox regression and 665 

receiver operating characteristic methods. The signature could predict high-risk patients in six 666 

cancer types (n=2,257). Associations of the signature with tumor hypoxia, cell cycle 667 

deregulation and TP53 mutation were investigated. Potential clinical applications of the 668 

signature were proposed. 669 

 670 

Figure 2. Patient stratification using the 10-gene signature in six cancer types. Kaplan-Meier 671 

analyses of overall survival on patients stratified into high- and low-score groups using the 10-672 

gene signature. P values were determined from the log-rank test.  673 

 674 

Figure 3. Independence of the 10-gene signature over TNM staging. Kaplan-Meier analyses 675 

were performed on patients categorized according to tumor TNM stages that were further 676 

stratified using the 10-gene signature. The signature successfully identified patients at higher 677 

risk of death in all TNM stages. P values were determined from the log-rank test. TNM: tumor, 678 

node, metastasis. 679 



 680 

Figure 4. Predictive performance of the 10-gene signature. Receiver operating characteristic 681 

(ROC) was employed to determine the specificity and sensitivity of the signature in predicting 682 

5-year overall survival in all six cancer types. ROC curves generated based on the 10-gene 683 

signature, TNM staging and a combination of 10-gene signature and TNM staging were 684 

depicted. AUC: area under the curve.  AUC values for TNM staging employing TCGA datasets 685 

were in accordance with our previously published work[19,58–60]. TNM: tumor, node, 686 

metastasis.  687 

 688 

Figure 5. Association between the 10-gene signature and tumor hypoxia. (A) Scatter plots 689 

depict significant positive correlations between 10-gene scores and hypoxia scores in all six 690 

cancers. Patients were color-coded and separated into four categories based on their 10-gene 691 

and hypoxia scores. (B) Kaplan-Meier analyses were performed on the four patient categories 692 

to assess the effects of the combined relationship of hypoxia and the signature on overall 693 

survival.  694 

 695 

Figure 6. Elevated DNA repair gene expression is associated with an overproliferation 696 

phenotype. (A) Significant positive correlations between individual signature gene expression 697 

and genes involved in cell cycle progression, while negative correlations were observed with 698 

genes involved in cell cycle arrest. Heatmaps were generated using the R pheatmap package. 699 

Cell cycle genes were depicted on the y-axis and the 10 signature genes on the x-axis. (B) 700 

Patients were median-stratified into low- and high-score groups using the 10-gene signature 701 

for differential expression analyses. Enrichment of GO and KEGG pathways associated with 702 

differentially expressed genes were depicted for all six cancers. (C) Investigation of the 703 



relationship between a gene involved in cell cycle checkpoint regulation, TP53, and the 704 

signature.  Patients were categorized into four groups based on their TP53 mutation status and 705 

10-gene scores for Kaplan-Meier analyses. P values were determined from the log-rank test. 706 

Positions of individual mutation types were indicated and color-coded in the mutation diagram 707 

generated using cBioPortal[61,62].  708 

 709 

Table 1. Univariate and multivariate Cox proportional hazards analyses of the 10-gene 710 

signature and additional clinical risk factors associated with overall survival in six cancers.  711 

Univariate values for TNM staging employing TCGA datasets were in accordance with our 712 

previously published work[19,58–60]. 713 

 714 

Table 2. Univariate Cox proportional hazards analysis of the relation between the 10-gene 715 

signature and hypoxia score.   716 

 717 

Table 3. Univariate Cox proportional hazards analysis of the relation between the 10-gene 718 

signature and TP53 mutation status.    719 



Supplementary information 720 

 721 

Figure S1. Correlation analyses of 138 prognostic DNA repair genes. Spearman’s correlation 722 

coefficients were determined from pairwise comparisons prognostic genes from 16 cancer 723 

types. Five cancers were highly correlated as shown in the blue area of the heatmap. Numbers 724 

represent correlation coefficient values. Refer to Table S2 for cancer abbreviations.  725 

 726 

Figure S2. Expression distribution of the ten signature genes in tumor and non-tumor samples. 727 

Boxplots overlaying violin plots were used to illustrate tumor and non-tumor distribution in six 728 

cancers: (A) clear cell renal cell, (B) papillary renal cell, (C) liver, (D) lung, (E) pancreas and (F) 729 

endometrium. Nonparametric Mann-Whitney-Wilcoxon tests were employed to determine 730 

whether there were significant differences in expression distributions. Asterisks represent 731 

significant P values: * < 0.05, *** < 0.0001.  732 

 733 

Figure S3. Venn diagram depicts a six-way comparison of the differentially expressed genes (-734 

1 > log2 fold-change > 1, P<0.05) identified from high-score versus low-score patients in all six 735 

cancers. Numbers in parentheses represent the number of differentially expressed genes in 736 

each cancer. The Venn intersection of all cancers indicated that 87 genes were common.  737 

 738 

Table S1. List of 138 DNA repair genes and associated pathways.  739 

 740 

Table S2. Description of TCGA cancer cohorts. 741 

 742 

Table S3. Univariate Cox proportional hazards analysis of the 138 genes in 16 cancers.  743 



 744 

Table S4. Differentially expressed genes between high- and low-score patient groups in six 745 

cancers. 746 

 747 

Table S5. List of 87 differentially expressed genes that are common in all six cancers.  748 

 749 

Table S6. Enrichr transcription factor protein-protein interaction analysis of the 87 750 

differentially expressed genes.  751 

 752 

Table S7. TP53 mutation analysis in liver, pancreatic, endometrial and lung cancers.  753 
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