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Abstract 18 

 19 

Cancer stem cells pose significant obstacles to curative treatment contributing to tumor 20 

relapse and poor prognosis. They share many signaling pathways with normal stem cells that 21 

control cell proliferation, self-renewal and cell fate determination. One of these pathways 22 

known as Wnt is frequently implicated in carcinogenesis where Wnt hyperactivation is seen in 23 

cancer stem cells. Yet, the role of conserved genomic alterations in Wnt genes driving tumor 24 

progression across multiple cancer types remains to be elucidated. In an integrated pan-cancer 25 

study involving 21 cancers and 18,484 patients, we identified a core Wnt signature of 16 genes 26 

that showed high frequency of somatic amplifications linked to increased transcript 27 

expression. The signature successfully predicted overall survival rates in six cancer cohorts 28 

(n=3,050): bladder (P=0.011), colon (P=0.013), head and neck (P=0.026), pan-kidney 29 

(P<0.0001), clear cell renal cell (P<0.0001) and stomach (P=0.032). Receiver operating 30 

characteristic analyses revealed that the performance of the 16-Wnt-gene signature was 31 

superior to tumor staging benchmarks in all six cohorts and multivariate Cox regression 32 

analyses confirmed that the signature was an independent predictor of overall survival. In 33 

bladder and renal cancer, high risk patients as predicted by the Wnt signature had more 34 

hypoxic tumors and a combined model uniting tumor hypoxia and Wnt hyperactivation 35 

resulted in further increased death risks. Patients with hyperactive Wnt signaling had 36 

molecular features associated with stemness and epithelial-to-mesenchymal transition. Our 37 

study confirmed that genomic amplification underpinning pan-cancer Wnt hyperactivation and 38 

transcriptional changes associated with molecular footprints of cancer stem cells lead to 39 

increased death risks.  40 
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Introduction 43 

 44 

There is a requirement for tumor cells to self-renew and proliferate in order to perpetuate 45 

tumorigenesis. It is perhaps not surprising that tumor-initiating cells or cancer stem cells share 46 

similar signal transduction processes with normal stem cells1,2. The ability for self-renewal and 47 

differentiation in both stem cells and cancer stem cells have converged on a common pathway 48 

known as Wnt signaling3,4. Wnt proteins are highly conserved across the animal kingdom, 49 

functioning as developmentally important molecules controlling cell fate specification, cell 50 

polarity and homeostatic self-renewal processes in embryonic and adult stem cells5. Wnts are 51 

a group of glycoproteins serving as ligands for the frizzled receptor to initiate signaling 52 

cascades in both canonical and non-canonical pathways6. Beyond embryogenesis, Wnt 53 

proteins control cell fate determination in adults where they regulate homeostatic self-54 

renewal of intestinal crypts and growth plates7–9.  55 

 56 

Wnt signaling is the product of an evolutionary adaptation to growth control in multicellular 57 

organisms, and it has now become clear that aberrations in this pathway contributes to 58 

deranged cell growth associated with many disease pathologies including cancer10. Loss-of-59 

function mutations in genes that inhibit the Wnt pathway lead to ligand-independent 60 

constitutive activation of Wnt signaling in hepatocellular carcinoma11, colorectal cancer12, 61 

gastric cancer13 and acute myeloid leukemia14. Thus, inhibition of Wnt signaling would hold 62 

great promise as therapeutic targets15. A small molecule inhibitor ICG-001 functions to inhibit 63 

the degradation of the Wnt repressor Axin and treatment of colon cancer cell lines with this 64 

inhibitor resulted in increased apoptosis16. Antibodies against Wnts and frizzled receptors have 65 

also demonstrated antitumor effects17,18.  66 



 67 

Much of the previous research on Wnt genes and cancer have focused on somatic mutations 68 

and transcriptional dysregulation of Wnt pathway members. Activating mutations of β-catenin 69 

have been implicated in adrenocortical tumorigenesis19 and multiple gastrointestinal 70 

cancers20. Downregulation of a Wnt antagonist DKK1, a downstream target of β-catenin, is also 71 

observed in colorectal cancer21. However, there is limited understanding on the role of somatic 72 

copy number alterations in Wnt pathway genes as well as their downstream targets on driving 73 

tumor progression and patient prognosis. Studies examining the transcriptional dysregulation 74 

of Wnt pathway genes offered limited insights into whether differences in transcript 75 

abundance were caused by genomic amplifications or losses.  76 

 77 

Given the complexity of Wnt signaling in cancer, it is important to investigate genomic 78 

alterations alongside transcriptional regulation of all genes associated with Wnt signaling in a 79 

comparative approach. We hypothesize that pan-cancer transcriptional aberrations in Wnt 80 

signaling is caused by genomic amplifications of a group of genes known as Wnt drivers and 81 

that transcriptional profiles of driver genes are important predictors of patient outcome. We 82 

conducted a pan-cancer analysis on 147 Wnt signaling genes, which involved positive and 83 

negative regulators of the pathway alongside their downstream targets. We analyzed 18,484 84 

matched genomic and transcriptomic profiles representing 21 cancer types to determine 85 

whether 1) somatic copy number amplifications are drivers of hyperactive Wnt signaling, 2) 86 

Wnt driver genes harbor clinically relevant prognostic information and 3) crosstalk exists 87 

between Wnt driver genes, tumor hypoxia and signaling pathways associated with stem cell 88 

function. We demonstrate that overexpression of Wnt driver genes resulted in significantly 89 

poorer survival outcomes in six cancer types involving 3,050 patients. Hyperactivation of Wnt 90 



signaling is linked to loss of cell adhesion and molecular features of stemness. Overall, our 91 

findings would facilitate the development of improved therapies through the inhibition of Wnt 92 

driver genes in a stratified manner.   93 



Materials and Methods 94 

 95 

A total of 147 genes associated with active and inactive Wnt signaling were retrieved from 96 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) database listed in Table S1. 97 

 98 

Study cohorts 99 

Genomic and transcriptomic profiles of 21 cancers were generated by The Cancer Genome 100 

Atlas (TCGA) initiative22 (n=18,484) (Table S2). For transcriptomic profiles, we retrieved 101 

Illumina HiSeq rnaseqv2 Level 3 RSEM normalized data from the Broad Institute GDAC Firehose 102 

website. For somatic copy number alterations analyses, we retrieved GISTIC datasets23 using 103 

the RTCGAToolbox package to access Firehose Level 4 copy number variation data. Level 4 104 

clinical data were retrieved using RTCGAToolbox for survival analyses.  105 

 106 

Somatic copy number alterations analyses 107 

GISTIC gene-level table provided discrete amplification and deletion indicators for all tumor 108 

samples. Amplified genes were denoted as positive numbers: ‘1’ represents amplification 109 

above the threshold or low-level gain (1 extra copy) while ‘2’ represents high-level 110 

amplification (2 or more extra copies). Deletions were denoted as negative values: ‘-1’ 111 

represents heterozygous deletion while ‘-2’ represents homozygous deletion.  112 

 113 

Determining the 16-gene scores and hypoxia scores 114 

16-Wnt-gene scores for each patient were determined from the mean log2 expression values 115 

of 16 genes: WNT2, WNT3, WNT3A, WNT10B, FZD2, FZD6, FZD10, DVL3, WISP1, TBL1XR1, 116 

RUVBL1, MYC, CCND1, CAMK2B, RAC3 and PRKCG. Hypoxia scores were computed from the 117 



mean log2 expression values of 52 hypoxia signature genes24. The hypoxia signature genes 118 

were: ESRP1, CORO1C, SLC2A1, UTP11, CDKN3, TUBA1B, ENO1, NDRG1, PGAM1, CHCHD2, 119 

SLC25A32, SHCBP1, KIF20A, PGK1, BNIP3, ANLN, ACOT7, TUBB6, MAP7D1, YKT6, PSRC1, GPI, 120 

PGAM4, GAPDH, MRPL13, SEC61G, VEGFA, MIF, TPI1, MAD2L2, HK2, AK4, CA9, SLC16A1, 121 

KIF4A, PSMA7, LDHA, MRPS17, PNP, TUBA1C, HILPDA, LRRC42, TUBA1A, MRGBP, MRPL15, 122 

CTSV, ADM, DDIT4, PFKP, P4HA1, MCTS1 and ANKRD37. For analyses in Figures 5 and 7, 123 

patients were separated into four groups using median 16-gene scores and median hypoxia 124 

scores or median EZH2 expression values as thresholds. Nonparametric Spearman’s rank-order 125 

correlation tests were employed to investigate the relationship between 16-gene scores and 126 

hypoxia scores or EZH2 expression values.  127 

 128 

Differential expression analyses  129 

To compare Wnt gene expression between tumor and non-tumor samples, gene expression 130 

profiles for both sample types were separated into two files based on TCGA barcode 131 

information. RSEM expression values were converted to log2(x + 1) scale. To compare changes 132 

in gene expression between high- and low-score groups, patients were median dichotomized 133 

based on their 16-gene scores in each cancer type. Differential expression analyses were 134 

performed using the R limma package employing the linear model and Bayes method. P value 135 

adjustments were conducted using the Benjamini-Hochberg false discovery rate method.  136 

 137 

Biological enrichment and transcription factor analyses 138 

To ascertain which biological pathways and signaling processes were significantly enriched as 139 

a result of Wnt hyperactivation, differentially expressed genes obtained from comparing high- 140 

and low-score patients were mapped against the KEGG and Gene ontology (GO) databases 141 



using GeneCodis25. Differentially expressed genes were also mapped against the Reactome 142 

database26. The Enrichr tool was used to determine whether differentially expressed genes 143 

were enriched with binding targets of stem cell-associated transcription factors27,28. Genes 144 

were mapped against the ChEA and ENCODE databases using Enrichr.   145 

 146 

Survival analysis 147 

The R survminer and survival packages were used for Kaplan-Meier and Cox proportional 148 

hazards regression analyses to determine if the expression levels of the 16 signature genes 149 

were significantly associated with overall survival. The ability of the 16-gene signature to 150 

predict overall survival when used in combination with hypoxia scores or EZH2 expression 151 

levels was also examined. Univariate Cox regression analyses were performed on each of the 152 

individual 16 genes in 20 cancer types (where survival information is available) to determine 153 

the contribution of each gene in predicting overall survival. Univariate analyses were also 154 

performed on the gene set as a signature (by taking the mean expression scores of the 16 155 

genes) to determine its ability in predicting overall survival. Multivariate Cox regression 156 

analyses were employed to demonstrate the independence of the signature to tumor staging 157 

parameters. Hazard ratios (HR) and confidence intervals were determined from Cox models 158 

where HR greater than one (P<0.05) indicated that a covariate was positively associated with 159 

even probability (increased hazard) and negatively linked to survival length. The non-significant 160 

relationship between scaled Schoenfeld residuals and time supported the proportional hazards 161 

assumption; this was tested using the R survival package. Kaplan-Meier analyses were 162 

employed to confirm results obtained from Cox regression. Patients were first median-163 

separated into low- and high-score groups based on the expression of the 16 genes (detailed 164 

above) for Kaplan-Meier analyses. Statistical difference between high- and low-score patient 165 



groups was evaluated using the log-rank test. Receiver operating characteristic analyses were 166 

performed using the R survcomp package to assess the predictive performance (sensitivity and 167 

specificity) of the signature in relation to tumor stage. Area under the ROC curves (AUCs) were 168 

calculated using survcomp. AUC values can fall between 1 (perfect marker) and 0.5 169 

(uninformative marker). 170 

 171 

All plots were generated using ggplot2 and pheatmap packages implemented in R29. The 172 

InteractiVenn tool30 was employed to generate the Venn diagram in Figure S2.   173 



Results 174 

 175 

Pan-cancer genomic alterations of Wnt signaling lead to dysregulated transcriptional response 176 

in tumors  177 

 178 

A list of 147 genes involved in the Wnt signal transduction pathway was retrieved from the 179 

KEGG database (Table S1). They include genes in both canonical and non-canonical Wnt 180 

pathways along with their downstream targets. A literature search was conducted to manually 181 

curate these genes into two categories: 1) genes associated with active Wnt signaling (90 182 

genes) and 2) genes associated with repressed Wnt signaling (50 genes) (Fig. 1A). To 183 

systematically evaluate the extent of Wnt dysregulation across cancers, we analyzed genomic 184 

and transcriptomic datasets from 18,484 patients representing 21 cancer types22. To 185 

determine whether genomic alterations were present in the 147 genes, we evaluated the 186 

frequency of somatic copy number alterations across all 21 cancers.  187 

 188 

Focusing on genomic amplifications that occurred in at least 20% of samples in each cancer 189 

type and amplification events that were present in at least one-third of cancer types (> 8 190 

cancers), we observed that 61 genes were recurrently amplified (Fig. 1B). Of these 61 genes, 191 

41 genes were associated with active Wnt signaling while 20 genes were linked to repressed 192 

Wnt signaling (Fig. 1A). Some of the most amplified genes found in at least 95% of cancer types 193 

included genes from both canonical (FZD1, FZD9, WNT16, WNT2, SFRP4, CSNK2A1 and RAC1) 194 

and non-canonical Wnt pathways (PLCB1, PLCB4, CAMK2B and NFATC2) (Fig. 1B).  195 

 196 



When comparing the frequency of Wnt gene amplifications between cancers, interesting 197 

associations were observed. Cancers that affect organ systems working together to perform a 198 

common function, i.e. gastrointestinal tract, exhibited similar patterns of genomic 199 

amplifications where most of the 61 genes were amplified in at least 20% of tumors. 200 

Hierarchical clustering on amplification frequencies using Euclidean distance metric revealed 201 

that gastrointestinal cancers of the colon (COAD), stomach (STAD), bile duct (CHOL) and liver 202 

(LIHC) were clustered together, implying that there was a significant degree of conservation in 203 

genetic aberration of Wnt signaling in these cancers (Fig. 1B). In contrast, cancers of the brain 204 

and central nervous system (GBMLGG and GBM) had the least number of amplified genes; 11 205 

and 12 genes respectively (Fig. 1B).  206 

 207 

We reason that somatic amplification events that were linked with transcriptional 208 

overexpression could represent candidate Wnt drivers, given that positive correlation between 209 

RNA and DNA levels would imply a gain of function. We performed differential expression 210 

analyses on the 90 genes involved in active Wnt signaling (Table S1) using tumor and non-211 

tumor samples from each cancer type (Table S2). We observed that 28 genes were 212 

overexpressed (fold change > 1.5) in at least 8 or more cancers. Of the 28 genes, we identified 213 

16 genes that were also recurrently amplified (Fig. 1A, B). These 16 genes were prioritized as 214 

core Wnt driver candidates representative of multiple tumors: WNT2, WNT3, WNT3A, 215 

WNT10B, FZD2, FZD6, FZD10, DVL3, WISP1, TBL1XR1, RUVBL1, MYC, CCND1, CAMK2B, RAC3 216 

and PRKCG (Fig. 1B).  217 

 218 

 219 

 220 



Pan-cancer prognostic relevance of the newly identified core Wnt drivers  221 

 222 

We rationalize that the gain of function of the core Wnt drivers could influence patient 223 

outcome. Univariate Cox proportional hazards regression analyses were performed on the 224 

transcriptional profiles of each of the 16 Wnt drivers on 20 cancers where survival information 225 

is available. A vast majority of the core Wnt driver genes were significantly associated with 226 

poor prognosis (hazard ratio [HR] above 1, P<0.05) (Fig. S1). Interestingly, there were variations 227 

in the number of prognostic genes between cancers. Esophageal cancer (ESCA) had no 228 

prognostic genes and only two genes were prognostic in sarcoma (SARC) and 229 

cholangiocarcinoma (CHOL). In contrast, clear cell renal cell carcinoma (KIRC) and the pan-230 

kidney cohort (KIPAN) involving chromophobe renal cell, papillary renal cell and clear cell renal 231 

cell carcinoma had 13 and 10 prognostic genes respectively (Fig. S1). To determine whether 232 

core Wnt driver genes harbored prognostic information as a gene set, we calculated expression 233 

scores for each patient in each cancer type by taking the mean expression of the 16 Wnt 234 

drivers. Patients were subsequently median-dichotomized into low- and high-score groups for 235 

survival analyses. Remarkably, when the core Wnt drivers were considered as a gene signature, 236 

we observed that patients with high scores had significantly poorer survival rates in six cancer 237 

cohorts (n=3,050): bladder (P=0.011), colon (P=0.013), head and neck (P=0.026), pan-kidney 238 

(P<0.0001), clear cell renal cell (P<0.0001) and stomach (P=0.032) (Fig. 2).  239 

 240 

To determine whether the 16-Wnt-gene signature harbored independent prognostic value 241 

over current tumor, node and metastasis (TNM) staging system, the signature was evaluated 242 

on patients grouped according to tumor stage; early (stages 1 and/or 2), intermediate (stages 243 

2 and/or 3) and late (stages 3 and/or 4). Patients were first separated by tumor stage followed 244 



by median-stratification based on their 16-gene scores into low- and high-score groups within 245 

each stage category. Regardless of tumor stage, the signature retained its predictive value 246 

where high-score patients consistently had higher risk of death: bladder (P<0.0001), colon 247 

(P<0.0001), head and neck (P=0.027), pan-kidney (P<0.0001), clear cell renal cell (P<0.0001) 248 

and stomach (P=0.034) (Fig. 3A). Moreover, we observed that the expression of Wnt driver 249 

genes increased with tumor stage (Fig. 3B). Taken together, this suggests that another level of 250 

patient stratification beyond that of TNM staging is afforded by the 16-gene signature, 251 

especially for patients with early stage cancer where tumors are more heterogeneous.  252 

 253 

Multivariate Cox regression analyses were performed to further confirm that the 16-Wnt-gene 254 

signature was independent of TNM staging. Indeed, in all six cancer types, the signature 255 

remained prognostic when controlling for TNM stage (Table S3). High-score patients had 256 

significantly higher risk of death even when TNM stage was taken into account: bladder 257 

(HR=1.409, P=0.015), colon (HR=1.561, P=0.018), head and neck (HR=1.378, P=0.036), pan-258 

kidney (HR=1.738, P<0.0001), clear cell renal cell (HR=2.146, P<0.0001) and stomach 259 

(HR=1.457, P=0.035) (Table S3).  260 

 261 

We next employed the receiver operating characteristic (ROC) method to assess the predictive 262 

performance (specificity and sensitivity) of the 16-gene signature in determining 5-year overall 263 

survival rates. As revealed by the area under the ROC curves (AUCs), we observed that the 264 

signature yielded modestly higher AUCs compared to those of TNM staging in all six cohorts: 265 

bladder (AUC=0.707 vs. AUC=0.626), colon (AUC=0.673 vs. AUC=0.652), head and neck 266 

(AUC=0.624 vs. AUC=0.606), pan-kidney (AUC=0.779 vs. AUC=0.717), clear cell renal cell 267 

(AUC=0.740 vs. AUC=0.717) and stomach (AUC=0.754 vs. AUC=0.561) (Fig. 4). Importantly, 268 



when the signature was used as a combined model with TNM staging, we observed a further 269 

increase in AUC suggesting that the signature offered incremental predictive value: bladder 270 

(AUC=0.713), colon (AUC=0.723), head and neck (AUC=0.663), pan-kidney (AUC=0.833), clear 271 

cell renal cell (AUC=0.818) and stomach (AUC=0.757) (Fig. 4).  272 

 273 

 274 

Association of Wnt drivers with tumor hypoxia 275 

 276 

Poor vascularization in solid tumors results in tumor hypoxia that is frequently associated with 277 

very poor prognosis due to reduced effectiveness of chemotherapy and radiotherapy31. 278 

Furthermore, the stabilization of the hypoxia inducible factor (HIF) in hypoxic tumor 279 

microenvironments can promote metastasis and cancer progression leading to poor 280 

prognosis32–34. An emerging view on cancer stem cells postulates that hypoxic regions could 281 

serve as stem cell niches to provide an oxidative DNA damage-buffered zone for cancer stem 282 

cells35,36. Moreover, crosstalk between HIFs and stem cell signal transduction pathways (Wnt, 283 

Notch and Oct4) have been reported37,38. For instance, HIF-1α can interact with β-catenin to 284 

promote stem cell adaptation in hypoxic conditions39.  285 

 286 

Multiple evidence suggests that Wnt signaling may be influenced by the extent of hypoxia 287 

within the tumor microenvironment. We reason that hypoxia could further enhance Wnt 288 

signaling to allow cancer stem cells to persist, which together contribute to even poorer 289 

survival outcomes in patients. Integrating hypoxia information with the 16-Wnt-gene signature 290 

would enable the evaluation of the crosstalk between both pathways and its clinical relevance. 291 

We predict that patients with more hypoxic tumors would have higher expression of Wnt 292 



driver genes, which may imply that these patients have higher proportions of tumor-initiating 293 

cells with hyperactive Wnt signaling. To assess tumor hypoxia levels, we utilized a 294 

computationally derived hypoxia gene signature comprising of 52 genes24. Hypoxia scores 295 

were calculated for each patient as the average expression of the 52 genes. Interestingly, 296 

significant positive correlations were observed between the 16-Wnt-gene scores and hypoxia 297 

scores in bladder (rho=0.365, P<0.0001) and clear cell renal cell cancers (rho=0.305, P<0.0001), 298 

suggesting that in these two cancers, hypoxic tumors had higher expression of core Wnt drivers 299 

(Fig. 5A).  300 

 301 

To determine the clinical relevance of this positive association, we separated patients into four 302 

groups: 1) high scores for both 16-gene and hypoxia, 2) high 16-gene score and low hypoxia 303 

score, 3) low 16-gene score and high hypoxia score and 4) low scores for both 16-gene and 304 

hypoxia (Fig. 5A). Kaplan-Meier analyses were performed on the four patient groups and we 305 

observed that the combined relation of Wnt hyperactivation and hypoxia was significantly 306 

associated with overall survival in both cancers: bladder (P=0.009) and clear cell renal cell 307 

(P<0.0001) (Fig. 5B). Notably, patients with high hypoxia and high 16-gene scores had 308 

significantly higher mortality rates compared to those with low hypoxia and low 16-gene 309 

scores: bladder (HR=1.897, P=0.0096) and clear cell renal cell (HR=2.946, P<0.0001) (Fig. 5C). 310 

Overall, our results suggest that the joint effect of elevated hypoxia and Wnt signaling is linked 311 

to more aggressive disease states.    312 

 313 

Wnt hyperactivation is responsible for epithelial-to-mesenchymal transition properties 314 

through decreased cell adhesion 315 

 316 



Given the poor survival outcomes in patients with high 16-gene scores, we wanted to assess 317 

the biological consequences of hyperactive Wnt signaling. Patients were median-stratified into 318 

two categories, high- and low-score, for differential expression analyses. For each cancer, the 319 

number of differentially expressed genes (-1 > log2 fold-change > 1, P<0.05) were 1,543 320 

(bladder), 1,164 (colon), 984 (head and neck), 659 (pan-kidney), 943 (clear cell renal cell) and 321 

328 (stomach) (Table S4) (Fig. S2). Gene ontology (GO) enrichment analyses revealed 322 

enrichment of biological processes consistent with those of cancer stem cells: cell proliferation, 323 

cell differentiation, embryo development and cell morphogenesis (Fig. 6A). Moreover, despite 324 

their diverse tissue origins, high-score patients from all six cancers exhibited remarkably similar 325 

biological alterations (Fig. 6A) (Table S4). For example, high-score patients appear to show a 326 

phenotype associated with loss of cell adhesion properties. Genes involved in regulating cell 327 

adhesion were downregulated and the ‘cell adhesion’ GO term was among the most enriched 328 

ontologies across all six cancers (Fig. 6A). As a further confirmation, differentially expressed 329 

genes were mapped to the KEGG database and enrichments of ontology related to cell 330 

adhesion molecules were similarly observed (Fig. 6B). A third database known as Reactome26 331 

was used in functional enrichment analyses. Comparing results from both KEGG and Reactome 332 

analyses revealed enrichments of additional processes related to oncogenesis and Wnt 333 

signaling; e.g. altered metabolism, PPAR signaling, MAPK signaling, TGF-β signaling, Hedgehog 334 

signaling, calcium signaling, collagen synthesis and degradation, focal adhesion and chemokine 335 

signaling (Fig. 6B, C). Within the tumor microenvironment, collagen can modulate extracellular 336 

matrix conformation that could paradoxically promote tumor progression40,41. Indeed, we 337 

observed the enrichment of numerous collagen-related Reactome pathways: assembly of 338 

collagen fibrils, collagen biosynthesis, collagen formation, collagen chain trimerization and 339 

collagen degradation (Fig. 6C). Overall, our results suggest that elevated mortality risks in high-340 



score patients could potentially be due to loss of cell adhesion and aggravated disease states 341 

exacerbated by Wnt hyperactivation.  342 

 343 

To determine the extent of the loss of adhesive properties in tumor cells expressing high levels 344 

of Wnt driver genes, we examined the expression profiles of 32 genes from the major cadherin 345 

superfamily. Major cadherins are a group of highly conserved proteins that encode at least five 346 

cadherin repeats, which include type I and II classical cadherins (CDH1, CDH2, CDH3, CDH4, 347 

CDH5, CDH6, CDH7, CDH8, CDH9, CDH10, CDH11, CDH12, CDH13, CDH15, CDH18, CDH19, 348 

CDH20, CDH22, CDH24 and CDH26), 7D cadherins (CDH16 and CDH17), desmosomal cadherins 349 

(DSC1, DSC2, DSC3, DSG1, DSG2, DSG3 and DSG4) and CELSR cadherins (CELSR1, CELSR2 and 350 

CELSR3)42. Spearman’s correlation analyses between major cadherins and each of the 351 

individual Wnt driver genes revealed that the 16 genes exhibited a global pattern of negative 352 

correlation with major cadherins across all six cancer types (Fig. 6E). Taken together, these 353 

results provide further support to the notion on loss of cadherin-mediated cell adhesion in 354 

tumor cells with hyperactive Wnt signaling, which may act in concert to promote neoplastic 355 

progression.  356 

 357 

 358 

A role for EZH2 histone methyltransferase in cancer stem cells 359 

 360 

When analyzing transcription factor (TF) binding to differentially expressed genes described in 361 

the previous section, we observed that these genes were enriched for targets of several 362 

notable TFs such as EZH2, SUZ12, Nanog, Sox2 and Smad4 (Fig. 6D). Sox2 and Nanog are well-363 

known stem cell markers43 while EZH2 and SUZ12 are part of the polycomb repressive complex 364 



2 responsible for epigenetic regulation during embryonic development44,45 (Fig. 6D). The 365 

enrichment of target genes of these TFs supports the hypothesis that Wnt hyperactivation is 366 

associated with cancer stem cell properties. Aberrations in EZH2 and SUZ12 have been linked 367 

to cancer progression46–50 and overexpression of EZH2 is associated with poor prognosis51. 368 

Direct crosstalk between EZH2 function and Wnt signaling has been reported where EZH2 was 369 

shown to inhibit Wnt pathway antagonists to activate Wnt/β-catenin signaling leading to 370 

increased cellular proliferation52. Moreover, EZH2 inhibits E-cadherin expression via lncRNA 371 

H19 to promote bladder cancer metastasis53. To further confirm that the 16 Wnt drivers 372 

represent potential markers of cancer stem cells, we performed correlation analyses between 373 

16-Wnt-gene scores and nine well studied cancer stem cell markers:  CD13354,55, NESTIN56,57, 374 

CD20058,59, CD4460,61, CD10562,63, CD2464,65, CD9066,67, CD7368,69 and CD2970,71. Cancer stem cell 375 

markers are often cancer type specific. Hence, we would not expect all 9 markers to be 376 

positively correlated with the Wnt driver gene scores in every cancer type. Our analyses 377 

revealed that a vast majority of these markers were significantly positively correlated with 16-378 

Wnt-gene scores. For example, in head and neck, with the exception of CD24, all CSC markers 379 

were significant. (Fig. S3). The number of significant positive correlations for the remaining 380 

cancer cohorts were as follow: bladder (seven genes), colon (five genes), clear cell renal cell 381 

(four genes) and stomach (four genes) and pan-kidney (two genes) (Fig. S3). 382 

 383 

Since EZH2 binding targets were enriched among differentially expressed genes (confirmed by 384 

both ChEA and ENCODE databases) and given the role of EZH2 in cell adhesion and Wnt 385 

signaling, we reason that EZH2 would be overexpressed in tumors with hyperactive Wnt 386 

signaling. Indeed, significant positive correlations were observed between 16-Wnt-gene scores 387 

and EZH2 expression in renal cancers: pan-kidney (rho=0.203, P<0.0001) and clear cell renal 388 



cell (rho=0.233, P<0.0001) (Fig. 7A). Patients were further grouped by their 16-gene scores and 389 

EZH2 expression profiles into four categories: 1) high 16-gene score and high EZH2 expression, 390 

2) high 16-gene score and low EZH2 expression, 3) low 16-gene score and high EZH2 expression 391 

and 4) low 16-gene score and low EZH2 expression (Fig. 7A). Interestingly, patients with high 392 

16-gene score that concurrently had high EZH2 expression had the poorest survival outcomes 393 

compared to the others: pan-kidney (P<0.0001) and clear cell renal cell (P<0.0001) (Fig. 7B). 394 

This suggests that Wnt hyperactivation and EZH2 overexpression could synergize to drive 395 

tumor progression resulting in significantly higher death risks: pan-kidney (HR=3.444, 396 

P<0.0001) and clear cell renal cell (HR=3.633, P<0.0001) (Fig. 7C).   397 



Discussion and Conclusion 398 

 399 

We performed a comprehensive pan-cancer analysis of 147 Wnt pathway genes in 18,484 400 

patients from 21 different cancer types to unravel the intricacies of Wnt regulation of cancer 401 

phenotypes. Taking into account genomic, transcriptomic and clinical data, we demonstrated 402 

that overexpression of Wnt genes is underpinned by somatically acquired gene amplifications 403 

(Fig. 1). We found that differential Wnt activation contributed to significant heterogeneity in 404 

disease progression and survival outcomes. Focusing on 16 core Wnt drivers that were 405 

recurrently amplified and overexpressed, our results confirmed that Wnt hyperactivation 406 

drove malignant progression that is conserved across diverse cancer types (Fig. 2, 3, 4). Our 407 

newly developed 16-Wnt-gene signature could predict patients with more aggressive disease 408 

states who may benefit from treatment with small molecule inhibitors of Wnt16,72,73. 409 

 410 

Copy number amplification and concomitant overexpression of WNT driver genes in bladder, 411 

colon, head and neck, renal and stomach cancers were significantly associated with stem cell-412 

like molecular features (Fig. 6). The transcriptional profiles of 16 Wnt drivers were negatively 413 

correlated with the expression of a vast majority of major cadherin genes involved cell 414 

adhesion; a process that may drive epithelial-to-mesenchymal transition (EMT)74(Fig. 6E). This 415 

is consistent with the role of Wnts as inducers of EMT75. Patients with high expression of Wnt 416 

driver genes exhibited enriched biological processes involving cytokine, TGF-β and Hedgehog 417 

signaling (Fig. 6); these components are also implicated in regulating EMT induction75. TGF-β 418 

activation orchestrates signaling events activating downstream effectors such as Smad 419 

proteins that play essential roles in cellular differentiation76. Indeed, we observed that 420 

dysregulated genes in tumors with hyperactive Wnt signaling were enriched for Smad4 targets 421 



(Fig. 6D). Smads can bind to Zeb proteins to repress E-cadherin expression during the onset of 422 

EMT77,78. The downregulation of major cadherins in tumors expressing high levels of Wnt 423 

drivers (Fig. 6E) could thus be a combined result of aberrant Wnt and TGF-β signaling.  424 

 425 

Patients with Wnt hyperactivation exhibited additional molecular features of undifferentiated 426 

cancer stem cells. We observed enrichments of stem cell-related TFs such as Nanog, Sox2 and 427 

polycomb proteins (SUZ12 and EZH2) as upstream targets of Wnt-associated dysregulated 428 

genes; this pattern was consistent across the different cancer types (Fig. 6D). Patients with 429 

Wnt hyperactivation phenotypes could have poorly differentiated tumors reminiscent of 430 

cancer stem cells given their preferential misexpression of genes normally associated with 431 

embryonic stem cell function (Fig. 7). The distinction between cancer stem cells and normal 432 

stem cells is of paramount interest. Molecular footprints of stemness identified from analyzing 433 

the transcriptional changes between high- and low-16-WNT-gene-score patients could provide 434 

additional evidence of cancer stem cell identity in these tumors that is linked to poor overall 435 

prognosis.  436 

 437 

Our results also demonstrated that Wnt signaling is positively correlated with tumor hypoxia 438 

in bladder and clear cell renal cell cancers. Patients with more hypoxic tumors had higher 16-439 

Wnt-gene scores, suggesting that tumor hypoxia may contribute to the activation of Wnt 440 

genes. These patients could benefit from the use of hypoxia-modifying drugs such as carbogen 441 

and nicotinamide shown to be effective in bladder cancer79 to reduce tumor hypoxia, which 442 

may consequently dampen Wnt signaling. Crosstalk between Wnt signaling and hypoxia has 443 

been demonstrated in multiple cancers. β-catenin expression is induced by hypoxia in liver 444 

cancer, which contributes to increased EMT, invasion and metastasis80. Overexpression of HIF-445 



1α promoted invasive potential of prostate cancer cells through β-catenin induction, while the 446 

silencing of β-catenin in HIF-1α expressing cells resulted in increased and reduced epithelial 447 

marker and mesenchymal marker expression respectively81. Hypoxia-induced EMT is further 448 

enhanced by the addition of recombinant Wnt3a or is repressed by inhibiting β-catenin82. 449 

Indeed, our results confirmed that increased expression of Wnt driver genes was associated 450 

with a global downregulation of major cadherin genes consistent across six cancer types, which 451 

may occur through hypoxia-mediated processes (Fig. 6E). We observed that in clear cell renal 452 

cell carcinoma, patients with more hypoxic tumors who also had higher Wnt signature scores 453 

concomitant with a 2.9-fold higher risk of death (Fig. 5C). Interestingly, renal cancers have a 454 

high incidence of VHL mutations83. VHL is a protein involved in proteasomal degradation of 455 

HIF-1α84. VHL antagonizes the Wnt pathway through β-catenin inhibition in renal tumors85, 456 

meaning that VHL mutations would derepress Wnt signaling and create a pseudohypoxic 457 

environment to further promote the expression of Wnt pathway genes. Our results will open 458 

up new research avenues for investigating the role of the 16 Wnt drivers and potential 459 

crosstalk with VHL-mediated HIF signaling in renal cancer.  460 

 461 

In summary, we identified Wnt pathway genes that were recurrently amplified and 462 

overexpressed across 21 diverse cancer types. A core set of 16 genes known as Wnt drivers 463 

were preferentially expressed in high-grade tumors linking to poor overall survival. This 464 

signature is a prognostic indicator in six cancer types involving 3,050 patients and is 465 

independent and superior to tumor staging parameters, providing additional resolution for 466 

patient stratification within similarly staged tumors. We demonstrated clinically relevant 467 

relationships between the 16-gene signature, cancer stem cells, cell adhesion, tumor hypoxia 468 

and EZH2 expression. Hence, aggressive tumor behavior and survival outcomes are, in part, 469 



driven by Wnt hyperactivation. Furthermore, we reported evidence for crosstalk between Wnt 470 

signaling and other embryonic stem cell pathways (TGF-β signaling, Nanog, Sox2 and polycomb 471 

repressive complex 2) confirming that these pathways do not operate in isolation and that 472 

interactions between them could add to the complexity of neoplastic progression. Prospective 473 

validation in clinical trials and additional functional studies on individual Wnt drivers are 474 

needed before they can be harnessed for therapeutic intervention.   475 
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  694 



Figure legends 695 

 696 

Figure 1. Pan-cancer core drivers of Wnt signaling. (A) Schematic diagram depicting the study 697 

design and the identification of core Wnt driver genes subsequently representing the 16-gene 698 

signature. A total of 147 Wnt signaling genes representing both canonical and non-canonical 699 

pathways alongside their downstream targets were obtained from the KEGG database. Genes 700 

were grouped into two categories depending on whether they were associated with active or 701 

inactive Wnt signaling. Somatic copy number variations in all 147 genes were determined in 702 

21 cancer types. A total of 61 genes were recurrently amplified in at least 20% of tumors in 703 

each cancer type. They included 41 genes associated with active Wnt signaling. Of the 41 704 

genes, 16 genes (core Wnt drivers) were upregulated in tumor compared to non-tumor 705 

samples in at least 8 cancer types. Cox proportional hazards regression and Kaplan-Meier 706 

analyses were performed using the 16-gene signature, which demonstrated its ability to 707 

predict overall survival in at least six cancer types: bladder, colon, head and neck, clear cell 708 

renal cell, papillary renal cell, chromophobe renal cell and stomach cancers (n=3,050). 709 

Associations of the 16-Wnt-gene signature with cancer stem cell features, tumor hypoxia and 710 

cell adhesion were investigated. Potential clinical applications of the signature were proposed. 711 

(B) Somatic amplification and differential expression profiles of 61 Wnt genes. Cumulative bar 712 

chart depicts the number of cancer types with at least 20% of tumors with somatic gains. The 713 

heatmap on the left shows the extent of genomic amplifications for each of the 61 genes 714 

separated into ‘active’ and ‘inactive’ Wnt signaling categories across 21 cancer types. Heatmap 715 

intensities indicate the fraction of the cohort in which a given gene is gained or amplified. The 716 

columns were ordered using hierarchical clustering with Euclidean distance metric to reveal 717 

cancers that have similar somatic amplification profiles. The heatmap on the right 718 



demonstrates differential expression values (log2) between tumor and non-tumor samples for 719 

each of the 61 genes. Genes marked in red represent the 16 Wnt driver genes. These are genes 720 

that were amplified in at least 20% of tumors in at least 8 cancers and genes that were 721 

overexpressed (fold-change > 1.5) in at least 8 cancers. Refer to Table S2 for cancer 722 

abbreviations.  723 

 724 

Figure 2. Survival analyses using the 16-Wnt-gene signature in six cancer cohorts. Kaplan-Meier 725 

analyses of overall survival on patients stratified into high- and low-score groups using the 16-726 

gene signature. P values were determined from the log-rank test. 727 

 728 

Figure 3. The 16-Wnt-gene signature is independent of TNM stage. (A) Kaplan-Meier analyses 729 

were performed on patients categorized according to tumor TNM stages that were further 730 

stratified using the 16-gene signature. P values were determined from the log-rank test. TNM: 731 

tumor, node, metastasis. (B) Expression of Wnt drivers (16-gene scores) increased with tumor 732 

stage. P values were determined from the ANOVA test.  733 

 734 

Figure 4. Predictive performance of the 16-Wnt-gene signature is superior to TNM staging. 735 

Prediction of five-year overall survival was assessed using the receiver operating characteristic 736 

(ROC) analysis to determine specificity and sensitivity of the signature. ROC curves were 737 

generated based on the 16-gene signature, TNM stage and a combination of the signature and 738 

TNM stage. AUC: area under the curve.  TNM: tumor, node, metastasis. 739 

 740 

 741 



Figure 5. Positive associations between the 16-gene signature and tumor hypoxia in bladder 742 

and clear cell renal cell cancers. (A) Scatter plots show significant positive correlation between 743 

16-gene scores and hypoxia scores as determined by Spearman’s rank-order correlation 744 

analyses. Patients were separated and color-coded into four categories based on median 16-745 

gene and hypoxia scores. (B) Kaplan-Meier analyses were performed on the four patient 746 

categories to determine the effects of the combined relationship between hypoxia and the 747 

Wnt signature on overall survival. (C) Univariate Cox proportional hazards analysis of the 748 

relation between the 16-gene signature and hypoxia. CI: confidence interval.    749 

 750 

Figure 6. Wnt hyperactivation is associated with a cancer stem cell-like phenotype. Patients 751 

were median separated into high- and low-score groups using the 16-gene signature for 752 

differential expression analyses. Enrichments of biological processes on differentially 753 

expressed genes were determined by mapping the genes to (A) Gene Ontology, (B) KEGG and 754 

(C) Reactome databases. Significantly enriched pathways or ontologies for all six cancer 755 

cohorts were depicted. (D) Differentially expressed genes were enriched for targets of stem 756 

cell-related transcription factors (Nanog, Sox2, Smad4, EZH2 and SUZ12) as confirmed by 757 

mapping to ENCODE and ChEA databases. Refer to Table S2 for cancer abbreviations. (E) 758 

Significant negative correlations between the expression profiles of individual Wnt driver 759 

genes and 32 major cadherin genes. Heatmaps were generated based on Spearman’s 760 

correlation coefficient values.  761 

 762 

Figure 7. Positive associations between the 16-gene signature and EZH2 expression in renal 763 

cancers. (A) Scatter plots show significant positive correlation between 16-gene scores and 764 

EZH2 expression as determined by Spearman’s rank-order correlation analyses. Patients were 765 



separated and color-coded into four categories based on median 16-gene score and EZH2 766 

expression. (B) Kaplan-Meier analyses were performed on the four patient categories to 767 

determine the effects of the combined relationship between EZH2 expression and the Wnt 768 

signature on overall survival. (C) Univariate Cox proportional hazards analysis of the relation 769 

between the 16-gene signature and EZH2 expression. CI: confidence interval.     770 



Supplementary figures and tables 771 

 772 

Figure S1. Prognosis of each of the 16 signature genes in 20 cancer types as determined using 773 

Cox regression analyses. Both columns (cancer types) and rows (Wnt genes) were ordered 774 

using hierarchical clustering (Euclidean distance metric). Grey boxes represent non-prognostic 775 

genes. Heatmap intensities represent hazard ratios of prognostic genes that were significant 776 

(P<0.05).  777 

 778 

Figure S2. Venn diagram depicts a six-way comparison of the differentially expressed genes 779 

identified from high-score versus low-score patients in all six cancer cohorts. Numbers in 780 

parentheses represent the number of differentially expressed genes (-1 > log2 fold-change > 781 

1, P<0.05) in each cancer.  782 

 783 

Figure S3. Correlations between the Wnt gene signature and nine cancer stem cell markers. 784 

Scatter plots depict the associations between 16-gene scores and cancer stem cell marker 785 

expression levels in six cancer cohorts. P values were determined by Spearman’s rank-order 786 

correlation analyses. Refer to Table S2 for cancer abbreviations.  787 

 788 

Table S1. List of 147 genes associated with Wnt signaling.  789 

 790 

Table S2. Abbreviations and number of tumor and non-tumor samples in TCGA cancers. 791 

 792 

Table S3. Univariate and multivariate Cox proportional hazards analysis of risk factors 793 

associated with overall survival in multiple cancers. 794 



 795 

Table S4. Differentially expressed genes between high- and low 16-Wnt-score patient groups 796 

in six cancers. 797 
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Hazard Ratio (95% CI) P -value

Pan-Kidney

High 16-gene score & high EZH2  vs. low 16-gene score & low EZH2 3.444 (2.430 - 4.882) 3.66E-12

High 16-gene score & low EZH2  vs. low 16-gene score & low EZH2 1.075 (0.683 - 1.693) 0.75
Low 16-gene score & high EZH2  vs. low 16-gene score & low EZH2 1.665 (1.105 - 2.508) 0.014

Clear cell renal cell

High 16-gene score & high EZH2  vs. low 16-gene score & low EZH2 3.633 (2.412 - 5.471) 6.63E-10

High 16-gene score & low EZH2  vs. low 16-gene score & low EZH2 1.564 (0.959 - 2.549) 0.073
Low 16-gene score & high EZH2  vs. low 16-gene score & low EZH2 1.282 (0.776 - 2.115) 0.33


