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A novel signature derived 
from immunoregulatory and hypoxia genes 
predicts prognosis in liver and five other cancers
Wai Hoong Chang, Donall Forde and Alvina G. Lai* 

Abstract 

Background: Despite much progress in cancer research, its incidence and mortality continue to rise. A robust bio-
marker that would predict tumor behavior is highly desirable and could improve patient treatment and prognosis.

Methods: In a retrospective bioinformatics analysis involving patients with liver cancer (n = 839), we developed a 
prognostic signature consisting of 45 genes associated with tumor-infiltrating lymphocytes and cellular responses 
to hypoxia. From this gene set, we were able to identify a second prognostic signature comprised of 8 genes. Its 
performance was further validated in five other cancers: head and neck (n = 520), renal papillary cell (n = 290), lung 
(n = 515), pancreas (n = 178) and endometrial (n = 370).

Results: The 45-gene signature predicted overall survival in three liver cancer cohorts: hazard ratio (HR) = 1.82, 
P = 0.006; HR = 1.84, P = 0.008 and HR = 2.67, P = 0.003. Additionally, the reduced 8-gene signature was sufficient and 
effective in predicting survival in liver and five other cancers: liver (HR = 2.36, P = 0.0003; HR = 2.43, P = 0.0002 and 
HR = 3.45, P = 0.0007), head and neck (HR = 1.64, P = 0.004), renal papillary cell (HR = 2.31, P = 0.04), lung (HR = 1.45, 
P = 0.03), pancreas (HR = 1.96, P = 0.006) and endometrial (HR = 2.33, P = 0.003). Receiver operating characteristic 
analyses demonstrated both signatures superior performance over current tumor staging parameters. Multivariate 
Cox regression analyses revealed that both 45-gene and 8-gene signatures were independent of other clinicopatho-
logical features in these cancers. Combining the gene signatures with somatic mutation profiles increased their 
prognostic ability.

Conclusions: This study, to our knowledge, is the first to identify a gene signature uniting both tumor hypoxia and 
lymphocytic infiltration as a prognostic determinant in six cancer types (n = 2712). The 8-gene signature can be used 
for patient risk stratification by incorporating hypoxia information to aid clinical decision making.
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Background
Hepatocellular carcinoma (HCC) is the sixth most com-
mon cancer and the second leading cause of cancer-
related mortality worldwide [1]. Due to an initially 
asymptomatic disease course, this aggressive cancer once 
diagnosed has especially poor outcomes. The etiological 
risk factors for HCC varies across geographical locations 
[2]. This pattern mirrors the burden of viral hepatitis in 

Asia and Africa. Whereas in the Western world, the risk 
can be attributed more to alcoholic and non-alcoholic 
steatohepatitis. Therapy for HCC, involving either sur-
gery or radiological ablation, is most effective when 
the cancer is detected early. Prompt diagnosis, how-
ever, requires regular liver imaging, usually 6-monthly 
ultrasound scans, which is both resource intensive and 
dependent upon identification of otherwise silent risk 
factors. Once diagnosed, curative liver transplantation 
is based on tumor size and restricted to patients where 
the primary cancer is thought unlikely to recur in the 
new liver. The use of size as the only prognostic criterion 
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precludes therapy in patients with large, indolent cancers 
that have a low probability of recurrence and many cent-
ers are questioning whether additional data on tumor 
biology would add value to the diagnostic pathway.

Gene signatures obtained from tumor that are derived 
from common oncogenic pathways can be used to risk-
stratify patients to provide individualized care. Despite 
genomic instability driving intertumoral heterogeneity, 
solid malignancies do share two common characteristics. 
Solid tumors are often hypoxic due to aberrant vascula-
ture resulting in metabolic shifts towards aerobic glyco-
lysis known as the Warburg effect [3, 4]. Tumor hypoxia 
is associated with metastases and aggressive pheno-
types that influence clinical outcomes [5, 6]. Addition-
ally, within tumor cells one can find lymphocytes termed 
tumor-infiltrating lymphocytes. These can affect patient 
prognosis in multiple cancers [7, 8]. A subset of lympho-
cytic infiltrates known as the  FoxP3+ regulatory T cells 
(Tregs) function to suppress cytotoxic T cells activity to 
maintain tumor tolerance. Increases in Tregs contributes 
to unfavorable prognosis in multiple solid tumors [9]. 
Importantly, infiltrating Tregs within the tumor milieu 
can be affected by hypoxia where the latter facilitates 
Tregs recruitment to promote angiogenesis and maintain 
growth [10]. Another category of T cells known as the 
cytotoxic  CD8+ T cells are required to kill cancer cells. 
But they can be made ineffective by Tregs or be rendered 
dysfunctional when exhausted [8]. Together, accumula-
tion of Tregs and exhausted  CD8+ T cells further exac-
erbate the immunosuppressive functions in solid tumors.

By taking advantage of the intricate link between 
hypoxia and Treg infiltration in solid malignancies, we 
systematically developed two prognostic gene signatures 
for risk stratification. Both signatures can accurately pre-
dict high-risk patients as confirmed by multi-cohort vali-
dations in six cancer types to support their validity and 
immediate clinical application.

Methods
Study cohorts
HCC data sets (n = 839) used in this study were 
GSE14520 (n = 242) from the Liver Cancer Institute, 
LIRI-JP (n = 226) from the International Cancer Genome 
Consortium (ICGC) database and TCGA-LIHC (n = 371) 
from the Cancer Genome Atlas (TCGA) Research Net-
work (Additional file 1) [11]. Full clinical characteristics 
of HCC patients were listed in Additional file 2. Among 
these patients, underlying etiology differed between the 
cohorts with GSE14520 comprising of patients with HBV, 
while LIRI-JP and TCGA-LIHC consisting of patients 
with HBV, HCV and/or non-alcoholic steatohepatitis.

Gene expression data for 24 other cancer types 
(n = 20,241) generated by TCGA Research Network [11] 

were downloaded from Broad Institute GDAC Firehose. 
Illumina HiSeq rnaseqv2 Level 3 RSEM normalized gene 
expression profiles were converted to  log2(x + 1) scale. 
Expression values of genes associated with tumor-infil-
trating T cells were corrected for levels of infiltration 
by dividing expression values of each gene with CD3D 
values.

Differential expression analysis
To determine differentially expressed genes between 
tumor and adjacent normal liver tissues in the GSE14520 
cohort, the Bayes method and linear model were 
employed using the R package limma. P-values were 
adjusted using the false discovery rate controlling pro-
cedure of Benjamini–Hochberg. Genes with  log2 fold 
change of > 1 and adjusted P-values < 0.05 were consid-
ered significant.

Gene signature and risk scores
Expression scores for hypoxia, tumor-infiltrating T cells, 
45-gene signature and 8-gene signature were calculated 
for each patient in all the cohorts by taking the average 
 log2 expression values. Nonparametric Mann–Whitney–
Wilcoxon test was used to compare the distribution of 
hypoxia scores in tumor and adjacent non-tumor sam-
ples. Risk scores for each patient were determined by tak-
ing the sum of Cox regression coefficient for each of the 
signature genes multiplied with its corresponding expres-
sion value. Nonparametric Spearman’s rank correlation 
was employed to assess the relationship of gene scores 
and risk scores with tumor hypoxia (hypoxia score).

Survival analyses
We employed the Cox proportional hazards model to 
investigate the association between patient survival dura-
tion and one or more risk factors, e.g. 45-gene or 8-gene 
score, tumor stage and other clinical variables. Univari-
ate analysis was performed to determine the influence 
of individual risk factors on overall survival. As multiple 
covariates can potentially influence patient prognosis, 
multivariate analyses were performed by including risk 
factors that were significantly associated with overall sur-
vival identified in univariate analysis (P < 0.05). Hazard 
ratios (HR) were determined from Cox models with HR 
greater than one indicating that a covariate was positively 
associated with event probability (increased hazard) and 
negatively associated with survival length. Cox regres-
sion analyses were performed using the R survival and 
survminer packages. Proportional hazards assumption 
was supported by a non-significant relationship between 
scaled Schoenfeld residuals and time using the R survival 
package. In addition, Kaplan–Meier and log-rank tests 
were used in univariate analyses of the gene signatures in 
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relation to patient survival and were performed using the 
survival and survminer packages. Patients were median-
dichotomized into low and high-risk groups based on 
mean expression scores of signature genes and Kaplan–
Meier estimates of survival probability over time were 
generated. Difference between high and low-risk groups 
were tested using the log-rank test.

Time-dependent receiver operating characteristic 
(ROC) curve analysis was used to assess the predictive 
performance of both 45-gene and 8-gene signatures in 
comparison with standard tumor staging parameters. 
The R survcomp package was employed to compute 
time-dependent ROC curves. ROC curves depicted 
true positive rates (sensitivity) versus false positive rates 
(1-specificity). The area under the curve (AUC) is a meas-
ure of how well the gene signatures can predict patient 
survival where AUC ranges from 0.5 (for an uninforma-
tive marker) to 1 (for a perfect predictive marker).

Visualization of sample distance in the reduced 
2‑dimensional space
To determine whether the gene signatures (45-gene or 
8-gene signature) can distinguish tumor and non-tumor 
samples, multidimensional scaling (MDS) analyses 
were performed using the R vegan package to visualize 
samples’ distance in the reduced 2-dimensional space. 
Euclidean genetic distances between each sample were 
investigated by MDS ordination. Permutational multivar-
iate analysis of variance (PERMANOVA) was employed 
to test for differences between tumor and non-tumor 
samples.

Biological enrichment and protein interaction network 
analyses
Analysis of biological pathway enrichment on the 
45-gene set was conducted using GeneCodis [12] against 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
and Gene Ontology (GO) databases. The Enrichr [13] 
tool was used to identify transcription factors from the 
ChEA database that are potential regulators of the 45 
genes. Functional protein association network of the 45 
genes was determined using the STRING [14] database.

Somatic mutation identification
Level 3 mutation datasets were downloaded from GDAC. 
Kaplan–Meier analysis and log-rank tests were employed 
to determine the association of somatic mutations in 
combination with the 45-gene or 8-gene signatures, on 
overall survival.

All graphs were generated using the ggplot2 pack-
age in R. Heatmap was generated using the R pheatmap 
package.

Results
Hypoxia is associated with immunosuppression 
through enhanced expression of Tregs and exhausted 
 CD8+ T cells genes
Since both hypoxia and high density of infiltrating Tregs 
are linked to poor clinical outcomes, we hypothesized 
that these features could be employed to predict prog-
nosis in patients with hepatocellular carcinoma (HCC). 
Hypoxia inducible factors (HIFs) are transcription fac-
tors (TFs) that play key roles in regulating cellular 
responses to hypoxia [15]. The alpha subunits (HIF-1α 
and -2α) heterodimerize with the beta subunit (HIF-1β) 
to orchestrate physiological responses in hypoxia [16]. To 
develop our gene signature uniting hypoxia and tumor-
infiltrating T-cells, we utilized three gene sets: (1) pan-
cancer hypoxia genes (52 genes) [6]; (2) HCC-infiltrating 
Tregs (401 genes) and (3) HCC-infiltrating exhausted 
 CD8+ T cells (82 genes) [8] (Fig. 1). We utilized a HepG2 
hepatoma HIF chromatin immunoprecipitation sequenc-
ing (ChIP-seq) dataset, GSE120885 [17], to determine 
which of these genes were bound by HIFs (Fig. 1).

To determine the extent of hypoxia in cancers, we 
interrogated in  vivo mRNA expression patterns of the 
52 hypoxia genes [6] in 25 cancer types including HCC 
(n = 20,662) retrieved from The Cancer Genome Atlas 
(TCGA) [11] (Additional file  1). Hypoxia scores for 
each tumor and non-tumor samples were determined 
by obtaining the mean expression values  (log2) of the 52 
hypoxia genes [6]. We observed that tumor samples were 
significantly more hypoxic than non-tumor samples in 
20 out of 25 cancers, which included HCC (Additional 
file 3A). Multidimensional scaling analyses revealed that 
the 52 genes can distinguish tumor from non-tumor 
samples in these cancers, hence hypoxic transcriptional 
states can be used as a proxy for identifying cancerous 
cells (Additional file 3B).

We predict that patients with more hypoxic tumors 
would have higher expression of tumor-infiltrating T 
cell genes since hypoxia could promote the maintenance 
of immunological escape via the suppressive function 
of Tregs [10]. The HCC-infiltrating T cell gene set unit-
ing both Tregs and exhausted  CD8+ T cells consisted 
of 438 genes collectively, with 45 genes found to be in 
common between the two cell types (Fig.  1). Infiltrat-
ing T cell expression scores for each patient were calcu-
lated as mean expression values  (log2) of the 438 genes 
(Fig.  1). Patient hypoxia scores significantly correlated 
with tumor-infiltrating T cell scores in three independ-
ent HCC cohorts (n = 839; Additional file 2): GSE14520 
(ρ = 0.564, P < 0.0001); TCGA-LIHC (ρ = 0.390, 
P < 0.0001) and LIRI-JP (ρ = 0.633, P < 0.0001) (Additional 
file  3C), suggesting that highly hypoxic tumors have 
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Fig. 1 Schematic diagram of the study design and development of gene signatures. A liver cancer cohort (GSE14520) was used to define the first 
45-gene signature. Briefly, 79 tumor-infiltrating T-cell genes were identified as HIF targets using a HIF-1α/2α ChIP-seq dataset. Of these 79 genes, 
26 genes were > 1.5-fold upregulated in GSE14520. Independently, 23 hypoxia genes were identified as HIF targets. Uniting the 23 hypoxia-HIF 
genes and 26 T-cell-HIF genes resulted in 45 unique genes representing the first gene signature. Cox regression analyses of individual 45 genes in 
each of the three liver cancer cohorts (GSE14520, TCGA-LIHC and LIRI-JP) revealed a common prognostic set consisting of 8 genes that represent 
the second signature. This 8-gene signature is further validated in liver and five other cancers using Kaplan–Meier, Cox regression and receiver 
operating characteristic analyses
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transcriptional profiles associated with immunosuppres-
sive functions.

Since HIFs are the key TFs that regulate numerous 
important aspects of oncogenesis [18], we hypothesize 
that identifying genes that are directly bound by HIFs 
may have more profound implications on prognosis. 
Using the HIF ChIP-seq dataset, we observed that 79 of 
the 438 tumor-infiltrating T cell genes were direct HIF 
targets (Fig.  1). Notably, Spearman’s correlation coef-
ficients between the 79 genes and hypoxia score were 
significantly higher: GSE14520 (ρ = 0.669, P < 0.0001), 
TCGA-LIHC (ρ = 0.469, P < 0.0001) and LIRI-JP 
(ρ = 0.694, P < 0.0001) (Additional file  3D), suggesting a 
role for HIFs in regulating tumor lymphocytic infiltration 
in HCC.

Levels of T cell infiltration were corrected by dividing 
the expression of each of the 79 genes with CD3D expres-
sion. Of the 79 genes, 26 were upregulated more than 
1.5-fold in the training cohort, GSE14520 (Additional 
file  3E). On the other hand, ChIP-seq analysis revealed 
that 23 of the 52 hypoxia genes mentioned earlier were 
direct HIF targets (Fig.  1). The final gene set was com-
prised of 45 genes that encompass 26 tumor-infiltrating 
lymphocyte genes and 23 hypoxia genes, with 4 genes 
being in common (Fig. 1; Additional file 4).

The 45‑gene signature is strongly associated with poor 
overall survival in HCC
We next assessed the ability of the 45-gene signature 
(HCC45) to predict overall survival (OS) in three inde-
pendent HCC cohorts (n = 839). The signature can suc-
cessfully discriminate between tumor and non-tumor 
samples in these cohorts (Additional file  5A). Tumor 
samples were notably less tightly clustered implying sig-
nificant intertumoral heterogeneity (Additional file  5A). 
We next determined HCC45 scores, calculated for each 
patient as the mean expression of the 45 genes. Patients 
were ranked according to their HCC45 scores and 
divided into high- or low-risk groups using the median 
cutoff. The OS rates were significantly reduced in high-
risk patient groups with log-rank P values of 0.012, 0.0042 
and 0.0043 in the GSE14520, TCGA-LIHC and LIRI-
JP cohorts respectively (Fig.  2a). Disease-free survival 
rates were also significantly lower in high-risk patients 
(P = 0.026) (Additional file 5B).

To test the independence of HCC45 over current 
staging systems, we performed subgroup analysis by 
applying the signature to patients within each tumor, 
node, metastasis (TNM) stages. The signature success-
fully identified high-risk patients, particularly among 
early-stage (1 and/or 2) patients (Fig.  2b). To evaluate 
the predictive performance of HCC45 on 5-year OS, we 
performed the receiver operating characteristic (ROC) 

analysis in comparison with tumor staging parameters. 
The area under the curves (AUC) for HCC45 were 0.759 
(GSE14520), 0.804 (TCGA-LIHC) and 0.883 (LIRI-
JP) (Fig. 2c). All HCC45 AUCs were higher than that of 
TNM staging (Fig.  2c). Moreover, combining HCC45 
with TNM staging considerably improved its predictive 
ability: AUC = 0.800 (GSE14520), 0.830 (TCGA-LIHC) 
and 0.890 (LIRI-JP) (Fig. 2c).

We assessed two common mutations in HCC, TP53 
and CTNNB1. Mutation in the tumor suppressor TP53 
is associated with poor prognosis [19, 20]. Results on 
β‐catenin CTNNB1 mutations have been mixed; some 
demonstrating poor outcomes [21, 22], while others dem-
onstrating favorable prognosis [23]. Both TP53 (P < 0.001) 
and CTNNB1 (P = 0.025) mutations were associated with 
poor prognosis (Table 1). Mortality in patients with high 
HCC45 scores and TP53 mutation were ~ 45% higher 
than in patients with low HCC45 scores harboring wild-
type TP53 at 2  years (Fig.  2d). Likewise, joint relation 
of HCC45 and CTNNB1 predicted a ~ 35% increase in 
mortality at 4 years between the lowest and highest risk 
groups (Fig. 2d).

We next examined the relation of HCC45 to other 
clinical parameters and observed that it remained 
highly prognostic after adjustment for tumor size, cir-
rhosis, fibrosis, TNM stages, Barcelona Clinic Liver 
Cancer stages, vascular invasion, TP53/CTNNB1 muta-
tion status and/or alpha-fetoprotein levels in a multi-
variate Cox regression analysis: GSE14520 hazard ratio 
[HR] (HR = 1.89, P = 0.0052), TCGA-LIHC (HR = 1.61, 
P = 0.033) and LIRI-JP (HR = 2.20, P = 0.024) (Table  1). 
Both cirrhosis and HCC45 harbor complementary prog-
nostic information contributing to elevated HR to 4.59 
(95% CI 1.11–19.03, P = 0.036) (Table 1).

Gene Ontology analysis of HCC45 revealed enrichment 
of biological pathways linked to hypoxia, metabolism, 
inflammation and cancer (Additional file  6). Moreover, 
HCC45 was enriched for targets of several well-known 
cancer-related transcription factors such as MYC and 
RUNX1 (Additional file  6) and were functionally con-
nected as a group (protein–protein interaction network 
enrichment: P < 1e−16) (Additional file 7).

The minimal prognostic 8‑gene signature is sufficient 
and effective in predicting overall survival in HCC
Having identified that HCC45 predicts outcome in HCC, 
we evaluated the performance of each gene as a prog-
nostic factor (Fig.  1). Of the 45 genes, univariate Cox 
regression analysis revealed that 14, 19 and 28 genes 
were significantly associated with unfavorable progno-
sis in GSE14520, TCGA-LIHC and LIRI-JP respectively 
(Figs.  1; 3a). Eight genes (HCC8) were found to confer 
prognostic information in all HCC cohorts: CA9, CCL20, 
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CORO1C, CTSC, LDHA, NDRG1, PTP4A3 and TUBA1B 
(Fig. 3a; Additional file 8). Expression of HCC8 not only 
distinguished tumor from non-tumor sample (Additional 
file 9) but also increased according to tumor progression 
(Additional file  10). As expected, the signature success-
fully identified high-risk patients in full HCC cohorts, 
GSE14520 (P = 0.0001), TCGA-LIHC (P = 0.00016) and 
LIRI-JP (P = 0.0003) cohorts, and in patients stratified 
by tumor stage (Fig. 3b). The 5-year disease-free survival 
rates were also lower in high-risk patients as determined 
by the 8-gene signature (Additional file 11). Furthermore, 
as measured by Wald Chi square statistics and log-rank 
tests, HCC8 is superior in predicting death than HCC45 
(Figs. 2a; 3b; Table 1).

Multivariate models of HCC8 revealed that this 
reduced gene set sufficiently served as an independent 
prognostic risk factor: GSE14520 (HR = 1.72, P = 0.02), 
TCGA-LIHC (HR = 2.23, P = 0.0009) and LIRI-JP 
(HR = 2.58, P = 0.012) (Table  1). Predictive value for 
5-year OS increased when the HCC8 signature was 
used in combination with TNM staging: GSE14520 
AUC = 0.67 versus 0.73 and TCGA-LIHC AUC = 0.73 
versus 0.76 (Fig. 3c). When TP53 or CTNNB1 mutation 
status and HCC8 were jointly used, patients with high 
HCC8 levels and mutant TP53 (P < 0.0001) or CTNNB1 
(P < 0.0001) had the lowest chances of survival (Fig. 3d).

We calculated risk scores for each patient by taking the 
sum of Cox regression coefficient for each of the 8 genes 
multiplied with its corresponding expression value [24]. 
Risk scores significantly correlated with hypoxia scores in 
all 3 cohorts, indicating that patients with more hypoxic 
tumors have higher risk for death as predicted by HCC8 
(Additional file  12), overall suggesting that it was suffi-
cient and effective in predicting death.
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Fig. 2 Patient stratification using the 45-gene signature in HCC 
cohorts. a Kaplan–Meier plots of overall survival in HCC patients 
across three cohorts stratified into low- and high-risk groups using the 
45-gene signature. P-values were calculated from the log-rank test. b 
Kaplan–Meier plots show independence of the signature over current 
staging systems in HCC cohorts. Patients were sub-grouped according 
to TNM stages and further stratified using the 45-gene signature. The 
signature successfully identified high-risk patients in different TNM 
stages. P-values were calculated from the log-rank test. c Analysis of 
specificity and sensitivity of the signature in HCC cohorts with receiver 
operating characteristic (ROC). Plots depict comparison of ROC curves 
of signature and clinical tumor staging parameters. The signature 
demonstrates an incremental value over current staging systems. AUC: 
area under the curve. TNM tumor, node, metastasis staging. d Kaplan–
Meier plots depicting combined relation of TP53 or CTNNB1 mutation 
status with the signature on overall survival in HCC
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Table 1 Univariate and multivariate Cox proportional hazard regression analysis of risk factors associated with overall 
survival

GSE14520 Hazard Ratio (95% CI) P‑value

Univariate

45-gene signature (high vs. low risk) 1.823 (1.18–2.816) 0.00683

8-gene signature (high vs. low risk) 2.36 (1.49–3.74) 0.00026

Tumour size (> 5 cm vs. < 5 cm) 2.159 (1.406–3.316) 0.00044

Cirrhosis (yes vs. no) 4.665 (1.147–18.97) 0.0314

TNM staging (II and III vs. I) 2.26 (1.706–2.994) 1.30E−08

BCLC staging (B and C vs. A and 0) 2.181 (1.722–2.762) 9.86E−11

AFP (> 300 ng/mL vs. < 300 ng/mL) 1.606 (1.049–2.46) 0.0293

Multivariate (45-gene signature)

45-gene signature (high vs. low risk) 1.8864 (1.2088–2.944) 0.00519

Tumour size (> 5 cm vs. < 5 cm) 0.9487 (0.5605–1.606) 0.8445

Cirrhosis (yes vs. no) 4.5927 (1.1084–19.031) 0.03557

TNM staging (II and III vs. I) 1.4359 (1.2752–2.114) 0.04684

BCLC staging (B and C vs. A and 0) 1.7808 (1.2521–2.533) 0.00132

AFP (> 300 ng/mL vs. < 300 ng/mL) 1.4159 (0.9102–2.203) 0.12295

Multivariate (8-gene signature)

8-gene signature (high vs. low risk) 1.715 (1.054–2.791) 0.0198

Tumour size (> 5 cm vs. < 5 cm) 1.1834 (0.4822–1.481) 0.556

Cirrhosis 2.820 (0.6811–11.673) 0.1527

TNM staging (II and III vs. I) 1.540 (1.178–2.383) 0.0422

BCLC staging (B and C vs. A and 0) 1.675 (1.178–2.383) 0.00408

AFP (> 300 ng/mL vs. < 300 ng/mL) 1.164 (0.7304–1.855) 0.52297

TCGA‑LIHC Hazard Ratio (95% CI) P‑value

Univariate

45-gene signature (high vs. low risk) 1.839 (1.164–2.904) 0.008

8-gene signature (high vs. low risk) 2.423 (1.51–3.89) 0.00025

TNM staging (II and III vs. I) 2.000 (1.533–2.608) 3.14E−07

TP53 mutation (Yes vs. No) 2.484 (1.485–4.155) 5.30E−04

CTNNB1 mutation (Yes vs. No) 1.894 (1.084–3.311) 0.025

Multivariate (45-gene signature)

45-gene signature (high vs. low risk) 1.606 (1.014–2.542) 0.03329

TNM staging (II and III vs. I) 1.879 (1.434–2.461) 4.65E−06

TP53 mutation (Yes vs. No) 2.150 (1.271–3.635) 0.0043

CTNNB1 mutation (Yes vs. No) 1.553 (0.884–2.726) 0.13

Multivariate (8-gene signature)

8-gene signature (high vs. low risk) 2.229 (1.388–3.580) 0.000914

TNM staging (II and III vs. I) 1.865 (1.428–2.434) 4.63E−06

TP53 mutation (Yes vs. No) 1.939 (1.158–3.246) 0.012

CTNNB1 mutation (Yes vs. No) 1.917 (1.085–3.385) 0.025

LIRI‑JP Hazard Ratio (95% CI) P‑value

Univariate

45-gene signature (high vs. low risk) 2.671 (1.361–5.240) 0.00328

8-gene signature (high vs. low risk) 3.45 (1.69–7.04) 0.00067

Fibrosis (yes vs. no) 1.024 (0.8155–1.286) 0.838

Tumour size (> 3 cm vs. < 3 cm) 2.415 (1.263–4.615) 0.00764

Portal vein invasion (yes vs. no) 2.281 (1.712–3.039) 2.00E−08

Hepatic vein invasion (yes vs. no) 1.822 (1.112–2.985) 0.0173
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Prognosis of the 8‑gene signature in 5 other cancers
Hypoxic tumors recruit  CD4+ Tregs to suppress effector 
T cell function and promote tumor tolerance [10]. We 
hypothesized that HCC8 could predict outcome in other 
solid malignancies in addition to HCC. HCC8 could 
indeed discriminate between tumor and non-tumor 
samples in five other cancer types (Additional file  13). 
Remarkably, our prognostic 8-gene signature derived 
from HCC was a significant adverse prognostic factor for 
OS in these five cancer types: head and neck (HR = 1.64, 
P = 0.004), renal papillary cell (HR = 2.31, P = 0.047), lung 
(HR = 1.45, P = 0.03), pancreas (HR = 1.96, P = 0.006) 
and endometrium (HR = 2.33, P = 0.003) (Fig.  4a; Addi-
tional file  14). Multivariate analysis adjusting for tumor 
stage revealed that the HCC8 signature retained inde-
pendent prognostic relevance in these cancers: head and 
neck (HR = 1.66, P = 0.003), lung (HR = 1.45, P = 0.029), 
pancreas (HR = 1.91, P = 0.009) and endometrium 
(HR = 1.99, P = 0.016) (Additional file  14). Importantly, 
while TNM staging was not a reliable predictor of OS in 
pancreatic cancer on its own, our 8-gene signature suc-
cessfully predicted high-risk patients when accounting 
for tumor stage (P = 0.009) (Additional file 14).

The predictive value of the 8-gene signature out-
performed the TNM staging system: head and neck 
(AUC = 0.610 versus 0.606), renal papillary cell 
(AUC = 0.701 versus 0.640) and pancreas (AUC = 0.694 
versus 0.593) (Fig.  4b). When used in conjunction with 
staging information, additive effects on the predictive 

performance of HCC8 were observed: head and neck 
(AUC = 0.661), renal papillary cell (AUC = 0.768), lung 
(AUC = 0.671) and pancreas (AUC = 0.701) (Fig.  4b). 
Importantly, risk scores derived from HCC8 showed 
strong positive trends with tumor hypoxia, suggest-
ing that high risk patients had more aggressive tumors: 
head and neck (ρ = 0.729, P < 0.0001), renal papillary cell 
(ρ = 0.766, P < 0.0001), lung (ρ = 0.856, P < 0.0001), pan-
creas (ρ = 0.844, P < 0.0001) and endometrium (ρ = 0.374, 
P < 0.0001) (Additional file 15).

TP53, KRAS and CDKN2A mutations are commonly 
observed in lung cancer [25]. CDKN2A (P = 0.03), but not 
TP53 (P = 0.2) or KRAS (P = 0.4), was significantly associ-
ated with poor prognosis (Additional file 14). When used 
in combination with our HCC8 signature, patients with 
high HCC8 score and mutant CDKN2A had ~ 30% higher 
chances for death at 2 years than patients with low HCC8 
and wild-type CDKN2A (Additional file 16).

Discussion
We developed a novel gene signature that predicts over-
all survival in six cancers. This represents a significant 
step forward in the prognostic pathway since pan-can-
cer genetic signatures are limited at best. Capitalizing 
two biological phenomena of solid tumors, hypoxia and 
immune cells infiltration, our signature can be applied 
across multiple cancers, suggesting that a high degree of 
commonality exists in host immune response within a 
hypoxic tumor microenvironment. Signature genes may 

Significant covariates are in italics

Table 1 (continued)

LIRI‑JP Hazard Ratio (95% CI) P‑value

Bile duct invasion (yes vs. no) 1.392 (0.987–1.963) 0.059

TNM staging (II and III vs. I) 2.267 (1.556–3.304) 2.03E−05

Multivariate (45-gene signature)

45-gene signature (high vs. low risk) 2.201 (1.112–4.357) 0.0236

Tumour size (> 3 cm vs. < 3 cm) 1.471 (0.746–2.898) 0.265

TNM staging (II and III vs. I) 2.009 (1.348–2.995) 0.000617

Multivariate (45-gene signature)

45-gene signature (high vs. low risk) 2.286 (1.139–4.587) 0.02

Portal vein invasion (yes vs. no) 2.314 (1.635–3.275) 2.19E−06

Hepatic vein invasion (yes vs. no) 0.843 (0.462–1.539) 0.579

Multivariate (8-gene signature)

8-gene signature (high vs. low risk) 2.578 (1.228–5.412) 0.0123

Tumour size (> 3 cm vs. < 3 cm) 1.386 (0.698–2.752) 0.3513

TNM staging (II and III vs. I) 1.878 (1.268–2.781) 0.00167

Multivariate (8-gene signature)

8-gene signature (high vs. low risk) 2.419 (1.141–5.129) 0.0213

Portal vein invasion (yes vs. no) 2.057 (1.449–2.920) 5.40E−05

Hepatic vein invasion (yes vs. no) 0.914 (0.508–1.646) 0.765
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Fig. 3 Minimal prognostic 8-gene signature in HCC. a Forest plots depict Cox proportional hazards analysis on 45 signature genes in three HCC 
cohorts. Hazard ratios (HR) were denoted as dark blue circles and light blue bars represent 95% confidence interval. Eight genes are consistently 
prognostic across all three cohorts, thereby constituting the minimal prognostic signature. Significant Wald test P values were indicated in red. 
Signature genes were highlighted in red. b The 8-gene signature successfully identified high-risk patients in different TNM stages. Kaplan–Meier 
plots of overall survival in HCC patients across three cohorts stratified by 8-gene signature into low and high-risk groups. Patients were stratified by 
the signature as a full cohort, or sub-grouped according to TNM stages. P-values were calculated from the log-rank test. Plots show independence 
of signature over current staging systems. c Analysis of specificity and sensitivity of the signature in HCC cohorts with ROC. Plots depict comparison 
of ROC curves of signature and clinical tumor staging parameters. AUC: area under the curve. TNM tumor, node, metastasis staging. d Kaplan–Meier 
plots depicting combined relation of TP53 or CTNNB1 mutation status with the 8-gene signature on overall survival in HCC
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provide insights into biological features of individual 
tumors as they are implicated in oncogenic processes, 
i.e. pH regulation, invasion, cell proliferation, adhesion 
and migration, glycolysis and inflammation [26–30]. 
Combining the RNA gene signature with DNA somatic 
mutations simultaneously improved its prognostic capa-
bilities, indicating that signature analysis at two macro-
molecular levels offers the opportunity for multiple levels 
of drug targeting. High-risk patients, as predicted by our 
signature, that concurrently have TP53 mutations sug-
gests a role for hypoxia in promoting genomic instability 
and aberrant DNA damage repair.

Canonical tumor staging parameters are useful, but 
they do not offer additional resolution for discriminating 
patients with similarly-staged malignant grades. Espe-
cially for patients with stage 1 cancer, the signature allows 
the incorporation of hypoxia information to identify 
patients that are more at risk of progressing to advanced 
stages and developing lethal metastasis. Additionally, we 
were able to differentiate tumor from non-tumor samples 
using the signature, suggesting that it offers additional 
information on how transformed cells differ from normal 
cells. It is interesting to speculate that the signature could 
be used in diagnostics since non-transformed cells would 

have a distinct expression profile and a deviation from 
this profile could indicate the onset of oncogenesis.

Tumor hypoxia has wide-ranging effects causing meta-
bolic alteration, angiogenesis, metastasis and immune 
suppression [31]. Significant crosstalk exists between 
hypoxia and antitumor immune functions where tumor 
hypoxia contributes to attenuated antitumor responses 
[10]. We observed a significant positive correlation 
between Treg and hypoxia gene expressions, supporting 
the notion that immunosuppression is higher in patients 
with more hypoxic tumors (Additional file 3C, D). Can-
cerous cells are protected through immunosuppressive 
functions enhanced by tumor hypoxia and together, they 
contribute to chemotherapy resistance [32]. Hence, to 
improve patient response to treatment, there is an urgent 
need to incorporate hypoxic tumor assessments in clinic 
for an effective patient-centric strategy. Through person-
alized therapy, patients with more hypoxic tumors would 
benefit from neoadjuvant treatment using hypoxia-mod-
ifying drugs to improve response to immunotherapy and 
chemotherapy [18].

Elevation of Tregs and exhausted  CD8+ T cells in 
tumors offers another opportunity for therapeutic 
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intervention. Exhausted  CD8+ T cells are overrepre-
sented among tumor-infiltrating  CD8+ T cells [8]. These 
cells have reduced levels of cytotoxic markers and high 
expression of the PDCD1 exhaustion marker [8]. Hence, 
patients with high signature scores may likely have 
increased Treg and exhausted  CD8+ T cell densities. 
These patients could benefit from therapy with the PD1 
antibody as anti-PD1 treatment can rejuvenate exhausted 
 CD8+ T cells [33]. When used in combination with first-
line treatments, this may dramatically improve patient 
prognosis.

Conclusion
Although prospective validation in clinical trials is 
warranted, we consider our results as supporting the 
implications of tumor’s hypoxic and immunologic micro-
environment in influencing patients’ prognosis and 
potentially their response to treatment. Multi-cohort 
validations incorporating large sample size (n = 2712) 
confirmed that the 8-gene signature is robust, clinically 
actionable and has potential to radically change how we 
determine prognosis and guide therapy.

Additional files

Additional file 1. Abbreviations and number of tumor and non-tumor 
samples in TCGA cancers.

Additional file 2. Clinical characteristics of HCC patients.

Additional file 3. Genes associated with tumor hypoxia and T-cell infiltra-
tion. (A) Box plot depicts hypoxia score between tumor (T) and non-
tumor (N) samples across 25 cancer datasets obtained from TCGA. Hypoxia 
scores were estimated by obtaining the mean expression (log2) of 52 
hypoxia genes reported by Buffa et al. (2010). Cancer types were sorted 
on the basis of smallest to largest median hypoxia score in tumor samples. 
Distribution of hypoxia scores for T and NT samples for each cancer was 
compared using the Mann-Whitney-Wilcoxon test. Asterisks represent sig-
nificant P values: * < 0.01, ** < 0.001 and *** < 0.0001. TCGA abbreviations 
were used to represent cancer types; refer to Additional file 1. (B) Ordina-
tion plots of multidimensional scaling analysis of the 52 hypoxia signature 
genes using Euclidean distances revealed significant separation of tumor 
(T) and non-tumor (NT) samples represented in a 2-dimensional space. 
Axes represent the first and second dimension. The distinction of T and 
NT was confirmed by permutational multivariate analysis of variance (PER-
MANOVA) tests. Analysis was performed using the metaMDS and adonis 
function of the R vegan package. (C and D) Significant positive correlation 
between HCC-infiltrating gene expression and tumor hypoxia. Expression 
of both (C) 438 gene set (HCC infiltrating T cells) and (D) 79 gene set (HIF-
target genes associated with HCC infiltrating T-cells) positively correlated 
with tumor hypoxia as determined from the Buffa hypoxia gene signature. 
(E) Heatmap depicts differential expression values of 26 HCC-upregulated 
genes in 233 tumor and non-tumor paired samples from the training 
cohort. Of the 79 HIF-target genes associated with HCC infiltrating T-cells, 
26 are at least 1.5-fold significantly upregulated.

Additional file 4. The 45-gene signature associated with tumor hypoxia 
and T-cell infiltration.

Additional file 5. Multidimensional scaling analysis of the 45-gene 
signature and disease-free survival analysis. (A) Ordination plots of 

multidimensional scaling analysis of the signature in HCC cohorts using 
Euclidean distances revealed significant separation of tumor (T) and non-
tumor (NT) samples represented in a 2-dimensional space. Axes represent 
the first and second dimension. The distinction of T and NT was confirmed 
by PERMANOVA tests. (B) Kaplan-Meier plot of disease-free survival in 
HCC patients from the GSE14520 cohort stratified into low- and high-risk 
groups using the 45-gene signature. Disease-free survival is defined as the 
time from surgery to recurrence, death from any cause or distant metasta-
sis. P-values are calculated from the log-rank test.

Additional file 6. Biological functions associated with the 45-gene 
signature revealed enrichments of pathways associated with hypoxia, 
metabolism and cancer. (A) Transcription factors and histone modifiers 
that are potential regulators of the 45 genes. (B) Enrichment of GO bio-
logical processes. (C) Enrichment of KEGG ontologies.

Additional file 7. Protein-protein interaction (PPI) networks associated 
with the 45-gene signature. As determined by STRING (version 10.5), PPI 
enrichment was significant (P < 1e-16) indicating that the proteins are 
biologically connected as a group.

Additional file 8. The minimal prognostic 8-gene signature.

Additional file 9. Ordination plots of multidimensional scaling analysis 
of the 8-gene signature in HCC cohorts using Euclidean distances 
revealed significant separation of tumor (T) and non-tumor (NT) samples 
represented in a 2-dimensional space. Axes represent the first and second 
dimension. The distinction of T and NT was confirmed by PERMANOVA 
tests.

Additional file 10. Expression distribution of genes from the 8-gene 
signature according to tumor staging in three HCC cohorts. Expression of 
genes increased with tumor staging in HCC patients.

Additional file 11. Kaplan-Meier plot of disease-free survival in HCC 
patients from the GSE14520 cohort stratified into low- and high-risk 
groups using the 8-gene signature. Disease-free survival is defined as the 
time from surgery to recurrence, death from any cause or distant metasta-
sis. P-values are calculated from the log-rank test.

Additional file 12. Correlation of risk scores, as determined using the 
8-gene signature, and hypoxia scores in HCC patients. Significant posi-
tive correlation between patient survival risk scores (refer to “Methods”) 
derived from the 8-gene signature and tumor hypoxia in HCC cohorts.

Additional file 13. Ordination plots of multidimensional scaling analysis 
of the 8-gene signature in cancers using Euclidean distances revealed sig-
nificant separation of tumor (T) and non-tumor (NT) samples represented 
in a 2-dimensional space. Axes represent the first and second dimension. 
The distinction of T and NT was confirmed by PERMANOVA tests.

Additional file 14. Univariate and multivariate Cox proportional hazards 
analysis of risk factors associated with overall survival in five non-HCC 
cancers. Significant covariates are highlighted in bold.

Additional file 15. Correlation of risk scores, as determined using the 
8-gene signature, and hypoxia scores in other cancers. Significant posi-
tive correlation between patient survival risk scores (refer to “Methods”) 
derived from the 8-gene signature and tumor hypoxia in cancers.

Additional file 16. Kaplan-Meier plot depicting combined relation of 
CDKN2A mutation status with the 8-gene signature on overall survival in 
lung cancer.
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