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ABSTRACT

When inputs are rotated, most 3D convolutional neural net-
works (CNNs) will have their performance much dropped,
especially for those models with voxelized input of 3D ob-
jects. The newly proposed Spherical CNNS, with the con-
cept of the rotation-equivariant spherical correlation, aims to
achieve rotation invariance. Inspired by this, we propose a
new rotation-invariant deep network to recognize rotated 3D
objects. Specifically, we adopt the spherical representation
and the spherical correlation S2 layer of Spherical CNNs,
for their capacity of representing 3D objects and rotation
equivariance. In the meantime, we improve the computa-
tional efficiency and expressiveness of Spherical CNNs, by
replacing its time-consuming and depth-limited SO(3) layer
with a PointNet-style network architecture. Hence our pro-
posed network can maintain the equivariance as the network
grows deeper while substantially reducing its runtime, lead-
ing to a much better efficiency and expressiveness of rotation-
invariant representation. Experimental results show that our
network performs better than or comparable to the state-of-
the-art methods in the ModelNet40 classification challenge.

Index Terms— Deep learning, Object recognition, Rota-
tion invariant, 3D representation

1. INTRODUCTION

Expressive descriptors of 3D objects are important to many
valuable practical problems in computer vision and graphics,
such as scene understanding and surface reconstruction. With
the rise of commodity depth sensors and the rapid improve-
ments in 3D modeling tools, we can now readily capture and
model a huge amount of 3D data. The increasing availability
of 3D data makes it possible to learn expressive descriptors
of 3D objects by using deep networks such as convolutional
neural networks (CNNs).

There are many types of 3D data available, such as vol-
umetric data, views of 3D objects, and point clouds. For
some specific types of 3D data, recently many inspiring deep
network-based methods have been proposed. For instances,
methods in [1–5] address the volumetric data; multi-view
CNNs [6, 7] are popular for their direct use of 2D CNNs

(a) Spherical CNNs (b) Our network

Fig. 1. The t-SNE embedding features [10] of models in Mod-
elNet40 based on their features generated by (a) Spherical
CNNs and (b) our network. We can observe that our network
is more expressive: the intra-class features are more compact
and the inter-class distances are larger.

pre-trained by large 2D image datasets; also, some meth-
ods [8, 9] work on the point clouds directly. These methods
usually perform well on aligned 3D objects. However, when it
comes to rotated data, their performance drops substantially.
Most CNNs are known sensitive to rotation, sometimes would
make the outputs of a 3D object with different orientations
look unrelated.

This paper aims to learn rotation-invariant representations
of 3D rotated objects, by proposing a new network archi-
tecture to better handle rotations. Our work is inspired by,
and aims to improve, the attractive work (Spherical CNNs)
in [11] of the spherical correlation, which is equivariant to
rotations. More specifically, in [11], there are two types of
correlation, the spherical correlation and the rotation group
correlation, implemented in the so-called S2 layer and the
higher SO(3) layer, respectively. However, there remain two
issues with Spherical CNNs: One is that its SO(3) layer is
time-consuming and depth-limited, and the other is that, more
undesirable, its feature descriptor of 3D objects is suboptimal
in terms of expressiveness (see Fig. 1(a)), as the equivariance
cannot be held as the number of SO(3) layers increases.

Hence we propose a new network by preserving the
strength of Spherical CNNs while replace its SO(3) layers
with another more expressive network architecture. Specif-
ically, we adopt the spherical representation and the S2 layer
of Spherical CNNs, for their capacity of representing 3D ob-



jects and rotation equivariance. In the meantime, we improve
the computational efficiency and expressiveness of Spherical
CNNs (see Fig. 1(b)), by replacing its SO(3) layer with a net-
work architecture of PointNet-style [8,9]. PointNet and Point-
Net++ in [8, 9] have proved able to express well aligned 3D
objects, and can be deeper and more expressive than Spherical
CNNs.

Our network performs like a multi-view network for a
large number of views of 3D objects, and thus intuitively can
be more expressive and invariant to rotations than the multi-
view CNNs of [6, 7]. To show that the descriptors learned
by our network are nearly invariant to the arbitrary rotations
of the input, as well as to compare our network with other
methods, we conduct experiments on the ModelNet40 shape
classification challenge. Our network performs better than or
on a par with the state of the art.

To summarize, the contribution of this paper is that we
propose a novel rotation-invariant deep network for 3D object
classification. Our network can improve the state-of-the-art
Spherical CNNs, through preserving its strength in equivari-
ance to rotations and enhance its efficiency and expressive-
ness by incorporating the strength of PointNets.

The rest of the paper is organized as follows: We start with
a review of related work in Section 2, then present details of
the proposed network architecture in Section 3. Last, we per-
form and analyze experiments on the ModelNet40 classifica-
tion challenge in Section 4 and draw conclusions and suggest
future work in Section 5.

2. RELATED WORK

Due to the successes of CNNs on 2D images, researchers try
to use CNNs to address 3D images. Recently, many inspir-
ing and novel CNN-based approaches have been proposed.
These methods can be roughly categorized into three groups,
according to the types of their inputs: volumetric data, 2D
views of 3D objects, or directly 3D point clouds.

An early work developed on the basis of volumetric data is
the 3D ShapeNets [1]. 3D ShapeNets directly extends the 2D
convolution to 3D, which needs to transform the point cloud
to a uniform voxel grid. However, the volumetric representa-
tion is in low resolution, which makes the computation expen-
sive to achieve better, higher-resolution performance. Many
other voxel-based methods [2–5] attempted to overcome the
voxel grid resolution issue to improve performance.

Two-dimensional view-based approaches utilize the 2D
convolution to solve 3D problems. These methods tried to
benefit from the success of 2D CNNs on 2D images. For
2D images, large image datasets such as ImageNet [12] are
available, which allow CNNs to learn features that are general
for different tasks. Hence these methods can pre-train their
networks by using those large datasets, and many of them
actually perform better than the voxel-based methods. For
example, in multi-view CNN (MVCNN) [6], multi-view im-

ages of a 3D shape are captured with different virtual cameras
from fixed view points. Each view are fed into weight-shared
CNNs and a view pooling layer is applied. However, to get a
better performance, MVCNN needs to render more views of
a 3D object, which inevitably incurs more computation. For
a comprehensive comparison between the voxel-based CNNs
and muti-view CNNs for 3D object classification, see Qi et
al. [13]. Another work based on 2D images [14] learned rep-
resentations from the depth map of a 3D shape.

However, the above-mentioned voxel-based and 2D view-
based approaches generally fail to address the rotation of 3D
objects. Therefore, our work aims to develop a method to ex-
tract the rotation-invariant representations of 3D objects and
perform better.

Unlike the above-mentioned methods which convert the
point cloud to a voxel grid or project a 3D object into differ-
ent views, some researches directly process unordered point
sets. These methods can achieve better performance in ob-
ject classification, compared with those methods which ad-
dress volumetric data. A typical method in this category is
PointNet [8] and PointNet++ [9]. PointNet [8] is designed
for deep learning on raw 3D point sets. This network can ad-
dress the invariance to permutations and transformations of
the input points. It is then extended to PointNet++ [9], which
improves the PointNet by handling the variations in point den-
sity. PointNet and PointNet++ can achieve good performance
on the aligned version of the ModelNet40 benchmark. How-
ever, these methods suffer a sharp drop in performance when
arbitrary rotations are present, because the input is not aligned
to a canonical space. To tackle this issue, we may consider ap-
plying a PointNet-style architecture, but using a different rep-
resentation of data as input such that no alignment is needed
to be done in advance.

CNNs work well on translation but not on rotation, hence
some new methods are proposed to process rotations. Group
equivariant convolutional networks (G-CNNs) was proposed
in [15], which proved the equivariance of group-convolutions
and preservation of rotational equivariance, and achieved
good performance on the CIFAR10 dataset and a rotated
MNIST dataset. Inspired by G-CNNs, Worral et al. [16]
learned interpretable transformations with encoder-decoder
networks. Their latest work CubeNet [17] used a 3D ro-
tation equivariant CNN for voxel representations. They in-
troduced a group convolutional network with linear equivari-
ance to translations and right angle rotations in three dimen-
sions. Their work achieved the state-of-the-art performance
on the ModelNet10 classification challenge. Recently, Cohen
et al. [11] proposed an attractive novel network, called Spher-
ical CNNs, which is to address spherical signals. They pro-
posed a concept of the rotation-equivariant spherical correla-
tion. They used the fast Fourier transform (FFT) to compute
the spherical correlation efficiently.



3. PROPOSED NETWORK

The diagram of the proposed network is shown in Fig. 2; we
present each of its constituents in detail in following sections.

3.1. Spherical Representation

To exploit the rotation equivariance that the spherical corre-
lation [11] brings, we utilize the S2 layer of Spherical CNNs
as our first layer. The S2 layer needs spherical images as
input, so we first transform 3D images into spherical repre-
sentations. To achieve this, we project the 3D images onto
an enclosing unit sphere in the way that [11] does. The ray
is cast from the surface towards the origin, and the value of
the signal is decided by the first intersection of the ray with
the model; Fig. 3 illustrates the transform. We collect 6 chan-
nels and set bandwidth to 64. For more details, please refer
to [11].

3.2. Equivariant Layer

Many researches attempted to exploit the equivariance of con-
volutional networks [15]. The equivariance can be simply de-
fined as

Φ ◦ LR = TR ◦ Φ, (1)

where TR and LR are two operators not necessarily the same,
and a layer Φ is said to be equivariant if some operator TR

satisfies the above equation.
CNNs are equivariant to translation, but fail in address ro-

tation. Group equivariant convolutional networks [15] tried
to deal with this problem, and CubeNet [17] used group
convolution to address the equivariance on volumetric data.
However, CubeNet is discretized and implemented with Z4-
convolution, which represents only 4 rotations. So CubeNet
is less expressive. The Spherical CNNs [11] considers more
rotations. It defines the spherical correlation and the rota-
tion group correlation. We choose the spherical correlation
layer (the so-called S2 layer) as our equivariant layer, and the
spherical correlation between two functions f and ψ is de-
fined as

[ψ ∗ f ] (R) =

∫
S2

K∑
k=1

ψk

(
R−1x

)
fk (x) dx, (2)

where f and ψ are functions defined on sphere; R denotes
the rotation; and K is the number of channels of functions
and S2 is the unit sphere, which can be defined as the set of
points x ∈ R3 and parameterized by the spherical coordinates
α ∈ [0, 2π] and β ∈ [0, π].

With the reason that the output of spherical correlation is
a signal on SO(3), [11] also proposed the SO(3) group cor-
relation in the higher layers after the S2 layer. As mentioned
in [11], the equivariance error grows with the resolution and
the number layers for the discretized version. This limits the

depth and the expressiveness of the network. In addition,
when using the SO(3) group correlation, the runtime increases
greatly as the network becomes deeper; this again limits the
depth of the network. Therefore, we propose to replace the
SO(3) layers with PointNet-style feature extractor layers to
be described in section 3.3, which can lead to a deeper, more
expressive, and more efficient network with only 1/4 of the
original runtime.

The output of the equivariant S2 layer is then indexed by
rotation on SO(3) and fed into a PointNet-style part for feature
extraction.

3.3. Feature Extractor Layers

The output feature map of the S2 layer is fed into the feature
extractor layers, for which we choose to develop a PointNet-
style network.

As discussed before, the PointNet directly uses point
clouds as input, and add two joint alignment networks to align
all input sets and features to a canonical space before feature
extraction. They believe that these joint alignment networks
can make the learned representation invariant to certain ge-
ometric transformations. These networks work well on the
point clouds rotated around the vertical axis, but when point
clouds are rotated randomly in every direction, their perfor-
mances drop.

We investigate further the joint alignment networks, and
find that the joint alignment networks mainly project the point
cloud to a canonical space to increase the association of points
globally, which is beneficial even though we are using the fea-
ture maps indexed by rotations. Therefore, we adopt a joint
alignment net to link between two MLP networks (see Fig. 2).
This joint net itself contains a shared MLP(64,128,1024) for
each rotation, a max pooling layer, and a fully connected
MLP(512,256); batchnorm is used for all of its layers with
ReLU except for its last layer. In addition, we add a regular-
ization term to the softmax training loss, to ensure the feature
alignment matrix close to be orthogonal:

Lreg = ‖I −AAT ‖2F , (3)

where A denotes the feature alignment matrix.

4. EXPERIMENTAL RESULTS

4.1. Data, Data Augmentation and Training Settings

We evaluate our model one the ModelNet40 benchmark for
3D shape classification [1]. The ModelNet40 dataset contains
12311 CAD models from 40 man-made object categories,
which are split into 9843 for training and 2468 for testing.

We augment the training and testing models in the dataset
by rotating the point clouds randomly in every direction.

During training, we use the stochastic gradient descent
optimizer with an initial learning rate of 0.01 for 300 epochs.
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Fig. 2. Diagram of the proposed network. Firstly, we transform 3D images into spherical images (Section 3.1). Then we feed
the spherical images into the S2 layer (Section 3.2), the output of which then enters into two MLP networks aggregated through
a feature joint alignment net (Section 3.3), in which n is the number of rotations. Finally after max pooling, another MLP of
three fully connected layers are to produce the output.

Fig. 3. Generation of spherical images: The ray is cast from
the surface of the unit sphere towards the origin. The value of
the signal is decided by the first intersection with the model.

We set the momentum to 0.9 and the batchsize to 64. The
learning rate is divided by 10 for every 100 epochs. Batch-
norm is used for all layers with ReLU except for the last layer.
Dropout layers with probability of 0.5 are used in the fully
connected layers. The weight of the regularization term in the
softmax training loss is set to 0.01.

We implement our training on Geforce GTX1080 Ti, and
the forward-pass and backward-pass take around 0.2 seconds,
while the Spherical CNN with the SO(3) layers takes about
0.8 seconds.

4.2. 3D Objects Classification

We choose some state-of-the-art methods for the evalua-
tion and comparison of our proposed method. These com-
peting methods are PointNet [8], PointNet++ [9], Spheri-
cal CNNs [11], Voxnet [2], RotationNet 20X [7], Esteves et
al. [18], MVCNN 12X [6] and MVCNN 80X [6]. They are
tested by using the default settings of their published code.
For Spherical CNNs, it consists of an initial S2 conv-BN-
ReLU block followed by two SO(3) conv-BN-ReLU blocks.

For all methods, the training and test 3D objects are aug-
mented in the way mentioned above.

Table 1 lists the classification accuracy of these methods
on the ModelNet40 benchmark dataset.

Table 1. Classification accuracy per instance for the Mod-
elNet40 benchmark. The results of VoxNet, RotationNet,
MVCNN 12X, MVCNN 80X and Esteves et al. are taken
from [18]. Top two results are highlighted in bold.

Method Accuracy
VoxNet [2] 0.745

RotationNet 20X [7] 0.802
MVCNN 12X [6] 0.776
MVCNN 80X [6] 0.861

PointNet [8] 0.841
PointNet++ [9] 0.852

Spherical CNNs [11] 0.843
Esteves et al. [18] 0.869

Ours 0.867

From Table 1, we can observe the followings.
Firstly, our method performs better than most of the com-

pared methods, and is very comparable to the best performer
(Esteves et al. [18]). Nevertheless, we note that our network
is twice faster than the method of Esteves et al.

Secondly, the method VoxNet based on volumetric
data [2] performs the worst.

Thirdly, the multi-view methods RotationNet 20X [7] and
MVCNN 12X [6] perform better than VoxNet, and they may
get an even better performance by increasing the number of
views (MVCNN 80X), because different views could be re-
garded as a rotation group, which means more views would
represent more rotations. Our proposed network could be re-



Fig. 4. Top row: five arbitrary rotations of the 3D objects. Five lower rows: descriptors corresponding to the five rotations in
the top row. The descriptors learned by our network are nearly invariant to these rotations.

garded as a kind of muti-views network with a large number
of views, so our network is more expressive than RotationNet
and MVCNN, as the results indicate.

Finally, as discussed before, our method is actually a hy-
brid of PointNet [8] and Spherical CNNs [11] by combin-
ing their strengths, therefore we expect our method to out-
performs the PointNet and the Spherical CNNs, which is in-
deed the case as shown in the table. The PointNet attempts to
align the point set, but still uses CNNs to generate the feature
transform. Because of the weakness of CNNs for rotations,
it cannot work well for rotated objects (e.g. no better than
MVCNN 80X here). The Spherical CNNs are equivariant to
rotation, but its higher SO(3) layers are limited by the band-
width. Without the ability to build a deeper architecture, it
could not generate highly expressive representations.

In addition, for illustrative purposed, Fig. 4 shows some
arbitrary rotations and their corresponding representations
generated by our proposed network. It can be clearly ob-
served that our representations are nearly invariant to those
input rotations.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel rotation-invariant
neural network architecture for 3D object classification, by
exploiting the best of two recent and attractive networks,
Spherical CNNs and PointNet. On the one hand, we adopt
the spherical representation and the spherical correlation S2

layer of Spherical CNNs, for their capacity of representing

3D objects and rotation equivariance. On the other hand, we
improve the computational efficiency and expressiveness of
Spherical CNNs, by replacing its time-consuming and depth-
limited SO(3) layer with a PointNet-style network architec-
ture. Hence our proposed network can maintain the rota-
tion equivariance as the network grows deeper while run fast.
Experimental results have shown that our proposed network
can perform better than or comparable to the state-of-the-art
methods.

In the future, because transforming 3D images to spheri-
cal images remains time-consuming in our implementation, it
would be our future work to improve on this.
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