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Fast neural Electrical Impedance Tomography (EIT) is a method able to image 

electrical activity in nerves by measuring impedance changes (dZ) which occur as ion 

channels open. While it can image fast activity in large peripheral nerves, for imaging 

inside smaller nerves, the signal-to-noise-ratio must be maximized which requires 

optimization of EIT parameters. If optimized, fast neural EIT could be of benefit in the 

new field of electrical stimulation of autonomic nerves (“Electroceuticals”) that could 

allow cross-sectional imaging of the fascicles and precise neuromodulation of internal 

organs supplied by them to treat associated medical conditions.  

The purpose of this thesis work was to develop an accurate model of nerve fibres 

that could validate experimental data, predict optimal parameters for imaging with EIT 

and explain the nature of the observed signals. In chapter 2, relevant literature on EIT, 

membrane biophysics and existing models of nerve fibres is reviewed. Accurate 3D 

FEM models of unmyelinated fibres bi-directionally coupled with external space, 

including Hodgkin-Huxley giant axon of the squid (single and multiple) and 

mammalian C nociceptor are developed in chapter 3. The models explain available 

experimental data and optimize fast neural EIT in unmyelinated nerves. In chapter 4, 

an accurate FEM model of a myelinated fibre coupled with extracellular space is 

developed and utilized for the same purposes. Dispersion in unmyelinated fibres is 

studied in chapter 5 by development of the accurate FEM models of 50-fibre HH and 

C nociceptor nerves, followed by extension to the statistical models of realistic nerves 

with thousands of fibres. The models provide the maximum distances over which EIT 

may be used for imaging fascicular activity for each kind of nerve and showed that dZ 

could be seen further then compound action potential if it is biphasic. 
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The work completed in this thesis covered implementation of bi-directionally 

coupled models of nerve fibres with the main goal of optimisation of fast neural EIT. 

This technique, when optimised, has a potential to non-invasively image compound 

activity in nerves that is beneficial for the new field of electroceuticals aimed at 

selective stimulation of the fascicles and subsequent neuromodulation of the internal 

organs supplied by them. If successful, it will allow treatment of various illnesses that 

do not usually respond to conventional therapy. The main nerve of interest to date is 

the vagus nerve which is the main autonomic nerve in the body supplying many vital 

internal organs. Through stimulation of the specific vagal fascicles, the illnesses to be 

potentially treated include diabetes, which may be addressed by neuromodulation of 

the pancreas leading to an insulin release; epilepsy, by suppressing the seizures, or 

rheumatoid arthritis, by inhibiting expression of inflammatory cytokines through the 

cholinergic anti-inflammatory pathway. 

In addition, a novel methodology developed in this work can help to build accurate 

models of any types of nerves. Their applications may include optimisation of various 

medical techniques for further clinical usage or studying underlying causes of a broad 

spectrum of nerve related disorders. Biophysical explanation of the measured data can 

also be of a significant value for understanding the physiology of the nerve subjected 

to small currents and underlying the impedance measurement experiments. Discussed 

benefits can be brought about via setting up collaboration with researchers from 

different disciplines. All the findings were submitted to or published in peer-reviewed 

journals so that they can be used immediately.
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1.1 Overview 

The work described in this thesis is a part of an electroceuticals project  that aims 

at treating illnesses by selective stimulation of neural fascicles innervating specific 

internal organs (Famm et al., 2013; Waltz, 2016). For example, stimulation of the 

vagus nerve supplying all major organs in the body was previously shown to have anti-

inflammatory action (Bonaz et al., 2016) as well as to positively affect treatment of 

heart failure (Gold et al., 2016), epilepsy (Ben-Menachem, 2002) and rheumatoid 

arthritis (Koopman et al., 2016). However, selectivity of stimulation is essential for 

improvement of treatment efficiency and avoidance of unexpected side effects arising 

from modulation of non-targeted organs. 

In order to selectively stimulate the neural fascicles, it is essential to know their 

precise location within the nerve. Furthermore, it is impossible to organise closed-loop 

neuromodulation without functional activity measurement of the fascicle of interest.   

Electrical impedance tomography (EIT) is a method that could provide both 

capabilities. EIT is based on the reconstruction of images of electrical impedance 

changes (dZ) of an object by injecting direct or alternating currents (DC or AC) and 

recording voltages measured with electrodes placed on the object’s surface. With EIT 

it is possible to image slow dZ occurring due to blood flow changes or cell swelling 

during epilepsy, stroke, spreading depression or evoked activity. These physiological 

events cause resistance changes of the order of 10% occurring over seconds (Holder, 

2004a). Additionally, EIT is capable of imaging fast dZ during neuronal depolarization 
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occurring over milliseconds (Holder, 1992; Gilad et al., 2009; Hannan et al., 2018; 

Faulkner et al., 2018a; Aristovich et al., 2018) that is referred to as fast neural EIT. 

Fast neural EIT has been successful in imaging depolarization in the cerebral cortex 

of the rat during evoked potentials (Aristovich et al., 2016; Hannan et al., 2018; 

Faulkner et al., 2018a) as well as in visualising independently stimulated tibial and 

peroneal branches of rat sciatic nerve in its cross-section (Aristovich et al., 2018). The 

principle of its operation is based on imaging the apparent dZ which occur when ion 

channels open during tissue excitation. When this happens, the applied EIT current 

starts passing through the open ion channels leading to a decrease in the recorded 

voltages proportional to the impedance. As a membrane can be classically represented 

as a parallel capacitance and a resistance, the dZ is expected to be inversely 

proportional to the frequency of the applied current, reaching maximum values at DC. 

A previously developed passive electrical model of the nerve fibres has shown this 

relation (Liston et al., 2012). In contrast, recent experiments carried out in UCL EIT 

laboratory showed that the dependence of dZ on current frequency may be different. 

For example, it was shown that dZ in rat sciatic nerve could only be measured at above 

4 kHz AC with the highest signal-to-noise ratio (SNR) observed at 6 kHz (Aristovich 

et al., 2018). Other experiments also demonstrated an impedance increase at several 

AC frequencies that was not predicted with the passive model (Vongerichten, 2015). 

Therefore, the developed passive model was inadequate for accurate representation of 

the experimental data, so the new model with active voltage-gated ion channels is 

required which would better explain observed phenomena.  

The impedance changes measured in fast neural EIT have amplitudes of the order 

of 0.1% even in the case of activation of the whole mainly myelinated nerve following 

its electrical stimulation (Aristovich et al., 2018) and they are even smaller in 

unmyelinated nerves. Therefore, the signal-to-noise ratio (SNR) of the measured dZ 

signals during spontaneous physiological neuronal activity is expected to be extremely 

low that makes it impossible to obtain reliable images of such activity. To improve 

SNR and enable imaging, EIT parameters require optimization. These parameters 

include amplitude and frequency of the injected current, size and location of the 

electrodes and specifications of signal processing utilised to obtain dZ signals from the 

recorded voltages. With the determined optimal parameters, maximal possible dZ 
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could be recorded and the best possible images of the cross-section of the nerve could 

be obtained. 

The approach generally used for optimisation is in silico modelling. A realistic and 

validated model of the nerve would predict the ideal parameters for imaging nerve 

fibres at the fascicular level with EIT, help to validate and interpret recent experimental 

data obtained in the laboratory as well as explain the biophysical nature of the observed 

dZ.  

At present, there is no model that broadly represents all the properties and 

parameters of nerve fibres in 3D space. The existing models have certain limitations: 

some do not have realistic ion channels representing complex features of action 

potentials (AP) in mammalian nerve fibres (Hodgkin & Huxley, 1952; Frankenhaeuser 

& Huxley, 1964), while others lack the functionality of simultaneous coupling with 

external space in both directions (McIntyre et al., 2002; Howells et al., 2012; 

Tigerholm et al., 2014; Sundt et al., 2015). The models developed in this thesis cover 

all of the relevant processes, including simulation of the accurate spatial structure of 

the unmyelinated and myelinated fibres possessing experimentally validated ion 

channels, as well as modelling of multiple interacting fibres. At the same time, they 

allow for the stimulation of fibres via external electrodes and simultaneous recording 

of the extracellular electric field being generated by the fibres, known as bi-directional 

coupling. Using this approach, accurate electrical behaviour of nerve fibres in three-

dimensional space has been simulated and optimal parameters for imaging with fast 

neural EIT have been determined. 

1.2 Purpose 

The main purpose of the study presented in this thesis is to optimize fast neural EIT 

in peripheral nerves. For this, a complete active model of the nervous tissue bi-

directionally coupled with external space has to be developed. Such a model should 

correctly predict interaction between the applied current and the tissue as well as 

include both unmyelinated and myelinated fibres.  

General points to be addressed include the following: 
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1. Development of a 3D FEM model of a single and multiple unmyelinated nerve 

fibres to: 

a. Determine the optimal parameters for obtaining the largest dZ signal; 

b. Verify the recently obtained experimental data; 

c. Identify biophysical origin of the measured dZ; 

d. Examine how dZ varies with the number and properties of modelled fibres; 

2. Development of an accurate FEM model of a mammalian myelinated nerve fibre 

for the same purposes; 

3. Design of the accurate and statistical nerve models to study how dispersion 

affects the dZ in various scenarios for various nerves. 

1.3 Statement of Originality 

The work presented in this thesis is all my own and has not been previously 

submitted for a degree in a University. Nevertheless, as the fields of biophysics and 

Electrical Impedance Tomography are very interdisciplinary, I was always able to 

discuss and receive all necessary assistance from my supervisor and my colleagues.  

My supervisor Prof David Holder helped me a lot regarding the strategy of the 

project, experimental design, structuring of the thesis and its presentation. The main 

work presented in this thesis would not be possible without the help of my colleague 

Dr. Kirill Aristovich, who provided invaluable assistance during every aspect of the 

projects including setting up the models, their implementation and optimisation as well 

as throughout analysis of the data generated with them.  

I have received helpful assistance from my second supervisor Prof. Kenneth Harris 

regarding the project outline and strategy. Prof. Hugh Bostock, who works at the 

Institute of Neurology, helped me to find relevant literature which made the process 

of familiarizing with different existing models much easier. My colleagues Dr Kirill 

Aristovich and Dr Martin Smith helped with reviewing English and scientific issues in 

the published and submitted papers as well as the final version of the thesis. 
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2.1 Electrical Impedance Tomography (EIT) 

2.1.1 Bioimpedance 

During the application of a current or voltage to a biological tissue, the electrical 

properties of the tissue itself can be described by its impedance, Z (Holder, 2004b). 

The tissue can be modelled as a parallel resistance and a capacitance (RC circuit), so 

the lipid cell membrane is represented by the capacitance and extracellular and 

intracellular spaces as the resistances conducting current through ion diffusion (Figure 

2.1a).  

 

 
 

(a) (b) 

Figure 2.1 (a) Electrical circuit of an excitable cell; (b) Cole-Cole plot of the circuit: dependence of 

complex impedance on frequency.  

Ri and Re are intracellular and extracellular resistances, Cm is the membrane capacitance.  
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The impedance of the tissue in this case is: 

 

 
𝑍(𝜔) =

𝑅𝑒𝑅𝑖 + 𝑅𝑒 𝑗𝜔𝐶𝑚⁄

𝑅𝑒 + 𝑅𝑖 + 1 𝑗𝜔𝐶𝑚⁄
 (2.1) 

 

where 𝑅𝑖 and 𝑅𝑒 are intracellular and extracellular resistances in [𝑂ℎ𝑚], 𝐶𝑚 is the 

membrane capacitance in [𝐹], 𝜔 is angular AC frequency, [𝑟𝑎𝑑/𝑠]. 

The important property of the tissue impedance is that it changes with frequency 

due to the frequency dependence of the capacitive reactance. At low frequencies 

current does not penetrate the cell membrane and flows only through the extracellular 

space: 

 

 lim
𝜔→0
𝑍(𝜔) = 𝑅𝑒 (2.2) 

 

With the increase of the frequency, the current starts flowing into the intracellular 

space and the imaginary component of the impedance starts to increase. The real and 

imaginary components of the impedance can be represented as: 

 

 

𝑅𝑒(𝑍) =
𝑅𝑒𝑅𝑖(𝑅𝑒 + 𝑅𝑖) +

𝑅𝑒
(𝜔𝐶𝑚)2

(𝑅𝑒 + 𝑅𝑖)2 +
1

(𝜔𝐶𝑚)2

 (2.3) 
 

 

 
𝐼𝑚(𝑍) = −

𝑅𝑒
2 𝜔𝐶𝑚⁄

(𝑅𝑒 + 𝑅𝑖)2 +
1

(𝜔𝐶𝑚)2

 (2.4) 
 

 

The ratio between the real and imaginary parts of the impedance defines the phase 

angle θ between the current and the voltage: 

 

 
𝑡𝑎𝑛(𝜃) =

𝐼𝑚(𝑍)

𝑅𝑒(𝑍)
 (2.5) 
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At very high frequencies the capacitance remains uncharged and the impedance 

becomes resistive again, but has lower magnitude: 

 

 
lim
𝜔→ 
𝑍(𝜔) =

𝑅𝑒𝑅𝑖
𝑅𝑒 + 𝑅𝑖

 (2.6) 
 

 

The discussed dependence of impedance on frequency can be demonstrated in the 

Cole-Cole plot which was previously used by Cole and Cole to study properties of 

dielectrics (Cole & Cole, 1941)  (Figure 2.1, b).  

2.1.2 General principles of EIT 

Electrical impedance tomography (EIT) is a technique which allows images of 

apparent electrical impedance changes (dZ) to be reconstructed from voltages 

measured with surface electrodes. The main principle of EIT is the injection of 

alternating current through a pair of electrodes and recording the voltages at the 

remaining ones. Several hundred measurements can be made by switching between 

injection electrode pairs (Holder, 2004a; Bayford, 2006). Then, with the use of 

numerical methods such as finite element method (FEM) and inverse problem 

techniques, tomographic images of the internal electrical impedance of the tissue can 

be reconstructed. 

Impedance of neural tissue imaged with EIT can be subdivided into two categories: 

slow, occurring over seconds, and fast – over milliseconds.  

Slow dZ may occur either due to cell swelling during ischemia or energy supply 

failure, when the water moves from extracellular space to cells; or because of blood 

flow, volume or temperature changes during different kinds of physiological activity. 

In all these cases, dZ are a few percent over several seconds (Holder, 2004a). EIT is 

able to image slow dZ in thorax occurring during cardiac cycle and pulmonary 

perfusion (Eyuboglu et al., 1987), in stomach during gastric emptying (Smallwood et 

al., 1994) as well as to clinically monitor lung function during ventilation (Frerichs, 

2000).  
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Fast dZ occur during neuronal depolarization by a fraction of a percent with 

milliseconds durations. The first measurements of the dZ during fast neural activity 

were made by Cole and Curtis on Nitella and the giant axon of the squid (Cole & 

Curtis, 1939): they showed that the impedance of the axon significantly decreases 

during excitation and this decrease is associated with ionic properties of the membrane. 

At the same time, the capacitance and phase angle remain almost unchanged. Imaging 

of fast dZ was successfully performed in various recent studies (Aristovich et al., 2016, 

2018; Hannan et al., 2018; Faulkner et al., 2018a) but the technique is still being 

developed and improved.  

Impedance measurements are based on the Ohm’s law:  

 

 
𝑍 =
𝑉

𝐼
=
|𝑉|𝑒𝑗(𝑤𝑡+𝜑𝑉)

|𝐼|𝑒𝑗(𝑤𝑡+𝜑𝐼)
= |𝑍|𝑒𝑗(𝜑𝑉−𝜑𝐼) (2.7) 

 

 

where I is the current injected using a current source, V is the voltage produced on the 

surface of the tissue, and Z is the sought for impedance. Z, V and I are complex values 

with the amplitudes |V|, |I| and |Z| and phases 𝜑𝑉, 𝜑𝐼 and 𝜑𝑍 = 𝜑𝑉 − 𝜑𝐼. In real 

applications, 𝜑𝑉 ≈ 𝜑𝐼 (Cole & Curtis, 1939), so absolute values of Z are usually 

measured and reconstructed (Aristovich et al., 2016, 2018). 

2.1.3  Methods for imaging neural activity 

Visualisation of neural activity always attracts considerable interest. Knowledge of 

the nature and location of the activity permits to gain insight into how the brain or 

nerves process information associated with various cognitive or physiological events. 

This, in turn, can be a vital step in better understanding their operation and 

mechanisms, and can be helpful in treating associated illnesses. 

Methods able to image neural activity can be subdivided into two groups known as 

penetrating, where electrodes are injected into the tissue and non-penetrating where 

they are placed on its surface or at a small distance from it. Penetrating methods mainly 

include the use of microelectrode arrays (MEAs) for direct recording of the membrane 
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currents from a population of cells. For instance, Utah or Michigan arrays can be used 

for accurate visualisation of the neural activity but they are highly invasive that 

increases the risk of affecting normal physiology and causing damage to the tissue 

(Maynard et al., 1997; Yoshida Kozai et al., 2012). Non-penetrating methods consist 

of inverse source localization of the recorded electromagnetic fields (like EEG or 

MEG), voltage-sensitive optogenetics, positron emission tomography (PET) and 

functional magnetic resonance tomography (fMRI). 

Neural activity can be visualised via inverse modelling of the recorded electrical or 

magnetic fields. While high temporal resolutions can be obtained (<1 ms), the spatial 

resolution is worse than in the majority of other techniques (Baillet et al., 2001). For 

example, inverse modelling of electrical activity recorded from the surface of the 

sciatic nerve of the rat has recently been shown to have significantly worse spatial 

accuracy than EIT for imaging fascicles inside this nerve (Aristovich et al., 2018). 

Also, the inverse problem does not have a unique solution and therefore requires 

introducing simplifying assumptions that decreases the probability of successful 

imaging (Hämäläinen et al., 1993; Baillet et al., 2001).  

PET can image metabolic activity of the tissue by applying biologically active 

molecule containing radioactive positron-emitting tracer. Temporal and spatial 

resolutions of PET are poor (seconds, >8 mm) (Ollinger & Fessler, 1997) which is 

unsuitable for imaging small entities, such as nerves.  

fMRI is a relatively modern non-invasive technique allowing to image inside the 

brain and possibly in the nerve. However, because it does not image the neural activity 

itself but the associated changes in blood flow, it has poor time resolution measured in 

seconds (Ogawa et al., 1998). 

Voltage sensitive optical imaging allows monitoring activity of neural tissue with 

the use of optical sensors that change its fluorescence properties. The concept of the 

technique is in application of light to the tissue covered with sensors and subsequent 

recording of the resultant level of light emission. Optical sensors, also known as 

voltage sensitive dyes, work by binding to the cell membrane – they react to the change 

in membrane potential or in the concentration of calcium ions (Hillman, 2007). Images 

can be obtained using confocal or higher resolution two- or three-photon microscopy 

techniques.  
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In a confocal microscopy a laser beam is directed into the tissue and a signal from 

the depth level being in focus is recorded; out of focus signals are rejected using a 

spatial filter. Although confocal microscopy allows imaging inside the tissue, it uses 

visible range excitation wavelengths where absorption and tissue scattering (photon 

absorption and reemission in random directions) increase. A laser beam cannot focus 

at depths exceeding 200-300 µm resulting in infeasibility of imaging deeper than that 

(Hillman, 2007; Ntziachristos, 2010). Two-photon microscopy is based on the 

principle where two low-energy near-infrared photons are nearly simultaneously 

absorbed by a tissue causing excitation of fluorophore at visible wavelength. 

Compared to confocal microscopy, scattering and absorption are less for higher near-

infrared wavelengths allowing it to image deeper into the tissue (up to 600 µm) and 

get very high spatial resolution (<1 µm) (Ntziachristos, 2010). Similar principle is used 

in three-photon microscopy, which is able to exceed the depth limit of two photon 

microscopy to 1 mm (Horton et al., 2013; Ouzounov et al., 2017). However, these 

techniques demand high flux of photons for excitation that is achievable only with 

very expensive high energy femtosecond lasers (Hillman, 2007; Horton et al., 2013). 

The discussed optical methods also require higher exposure resulting in additional time 

needed to capture a single image that can significantly decrease temporal resolution. 

Also, these techniques have very small fields of view (<1 mm2) (Ntziachristos, 2010) 

and therefore insufficient imaging volumes (<1 mm3) that will not allow visualisation 

of large scale structures as entire brain or nerves. 

2.1.4 Fast neural EIT 

Fast neural EIT is a novel technique which allows imaging impedance changes in 

neural tissue arising from the opening of ion channels during its depolarization. This 

technique is advantageous compared to the other methods discussed above: it is cheap, 

it has better spatiotemporal resolution (Hannan et al., 2018; Faulkner et al., 2018a; 

Aristovich et al., 2018), it has a unique solution (Harrach, 2019) and it is non-invasive 

which is desirable for medical applications – surface electrodes currently used in EIT 

cause no damage or fibrosis to the tissue (Hannan et al., 2019). 
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Figure 2.2 Images of fascicle activity in the sciatic nerve of the rat obtained by (Aristovich et al., 

2018).  

Histology (left), corresponding images produced using fast neural EIT and inverse source analysis 

using the recorded compound APs (right).  

 

Fast neural EIT has been shown to be successful in imaging fast neural activity of 

somatosensory cerebral cortex of the rat during evoked potentials with the use of 30 

electrode surface epicortical arrays. The temporal and spatial resolutions of the imaged 

changes were up to 2 ms and 200 µm respectively (Aristovich et al., 2016). Imaging 

evoked potentials at up to 2.5 mm below the surface of the rat cortex (Faulkner et al., 

2018a) as well as ictal epileptiform discharges in the cortex (Hannan et al., 2018) were 

also shown to be feasible with similar resolution. 

Fast neural EIT was also capable to localize functional activity in peripheral nerves. 

Recently, imaging of electrically-evoked activity in a cross-section of a rat sciatic 

nerve during compound action potential propagation was accomplished with a 

temporal resolution of 0.3 ms and spatial resolution of < 100 µm (Figure 2.2) 

(Aristovich et al., 2018). In this study, peroneal and tibial fascicles of the main branch 
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of the sciatic nerve were visualized following the electrical stimulation of the posterior 

peroneal and tibial nerves. For this, a flexible cylindrical microelectrode cuff with 16-

32 electrodes was used for application of alternating currents and recording of 

voltages. In another recent study (Chapman et al., 2019) and using the similar 

approach, images of the recurrent laryngeal nerve (RLN) of the sheep at a fascicular 

level were obtained. For this, following electrical stimulation of RLN, a 28-contact 

microelectrode cuff was used for AC injection (9 kHz) longitudinally along the nerve 

and simultaneous activity was recorded in the cervical vagus nerve. 

However, producing images in autonomic nerves is more challenging due to a lower 

signal-to-noise ratio (SNR) originating from two main reasons. First, autonomic 

nerves mainly consist of small unmyelinated fibres (C fibres) (Prechtl & Powley, 1987; 

Soltanpour & Santer, 1996; Shimizu et al., 2011) producing lower dZ; second, 

conduction velocities of C fibres are significantly slower and variable (Coleridge & 

Coleridge, 1984) that causes dispersion of action potentials along the nerve so that 

compound AP and the corresponding dZ may not be visible beyond a few centimetres 

from the point of stimulation (Boone, 1995; Aristovich et al., 2018). If imaging inside 

autonomic nerves is accomplished, EIT may be applied to the new area of bioelectronic 

medicines, or electroceuticals (Famm et al., 2013; Waltz, 2016), which aims to treat 

diseases by selective electrical stimulation of fascicles inside these nerves resulting in 

modulation of associated internal organs. To accomplish successful imaging, the 

optimal EIT parameters to obtain the largest possible dZ must be found that can be 

achieved using computational modelling. 

The classic explanation of the mechanism and physiological basis of fast neural EIT 

is based on a simple model of a neural membrane which is represented as a parallel 

connected resistance formed by ion channels and a capacitance produced by a lipid 

bilayer (Figure 2.3a). When a neuron depolarizes, the ion channels that were 

previously closed - open, and the resistance decreases. AC current starts flowing 

through them causing a decrease in the bulk resistance of the tissue over milliseconds. 

Hence, qualitatively, the resistance of the depolarized neural tissue is expected to 

decrease while the extra ion channels remain open. Currents of higher frequencies can 

flow inside the neural tissue through capacitance in any state of ion channels, so the 

decrease of the impedance for higher frequencies will be lower with the highest value 
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achieved at DC. Previous modelling of the nerve based on the passive cable model 

where resistance could assume two states (Figure 2.3a) predicted this impedance-

frequency dependence (Liston et al., 2012). 

 

  

(a) (b) 

Figure 2.3 Representation of the membrane as (a) a simple RC circuit model where Rm can assume 

two (opened and closed) states and (b) an active model with voltage dependent resistances – ion 

channels.  

Re and Ri designate extracellular and intracellular longitudinal resistances, Cm is the capacitance of 

the lipid bilayer, batteries represent the electrochemical gradients of ions 1, 2, …, n. 

 

In contrast, the recently undertaken experiments have shown that the dependence 

of apparent impedance decrease on EIT current frequency is different from a simple 

decrease with frequency. These measurements differed from this model in one of the 

following ways: 1) the dZ did not monotonically decrease with AC frequency across 

the whole frequency range (Faulkner et al., 2018b); 2) the dZ did not decrease to ~0 at 

frequencies higher than 1 kHz but was sustained at about -0.1% (Faulkner et al., 

2018b); 3) an increase in the dZ was measured (Vongerichten, 2015) or 4) the dZ could 

not be measured at frequencies lower than 4 kHz (Aristovich et al., 2018).  

The reason for this difference is that the value of the resistance of the real membrane 

depends on the voltage across it (Hodgkin & Huxley, 1952). In other words, ion 

channels are voltage-gated, so that they can interact with the alternating current 

injected during EIT (Figure 2.3b). Thus, unlike the simple model where ion channels 

assume discrete open and closed states, the active membrane has a highly nonlinear 

resistance-voltage dependence that is influenced by applied currents of various 

RmCm

Re

Ri

Re

R2Cm R1 Rn…

Ri
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frequencies. This leads to the need for a new accurate models of nerve fibres the 

development of which was the main purpose of this project.  

2.2 Excitable cell membrane 

The cell membrane (or plasma membrane) is the outer layer of the cell that contains 

a lipid bilayer and embedded proteins serving as diffusion barriers and referred to as 

ion channels. The main functions of the membrane are to protect the cell from the 

surrounding medium and to control the transport of ions through it into and out of the 

cell.  

2.2.1 Ion channels in nerve fibres  

Membranes in all biological cells have pores called ion channels. Ion channels play 

a fundamental role in the life of the cell and control diversity of the mechanisms 

occurring inside it. Typical ion channels consist of proteins embedded into the lipid 

bilayer of the membrane (Figure 2.4). These proteins have a small central pore 

selectively permeable for ions, which can change the state to opened or closed in 

reaction to various stimuli. The property of ion channels by means of which ions can 

move from inside to outside of the cell and vice versa is called gating. This is critical 

for establishing resting potentials and excitation of the membrane, as well as for 

regulation of the cell volume. To permit only the specific types of ions into or out of 

the cell, ion channels have selectivity filters and voltage sensors, so that they are 

permeable only for ions with specific charge or binding structure (Schmidt & Thews, 

1989; Hille, 2001).  

Movement of different substances through ion channels occurs because of the 

existence of concentrations and electrical gradients at the different sides of the 

membrane. For example, the concentration of the potassium ions outside of the cell is 

much lower than inside leading to outward K current through potassium channels. This 

makes the largest impact in establishing resting potential of the membrane.  
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Figure 2.4 Schematic representation of ion channels embedded into the membrane. Sodium and 

potassium channels as well as the Na/K ATPase are presented. 

 

Alternatively, when the membrane is depolarized, equilibrium of concentration and 

electrical gradients is violated. This leads to the closing of potassium ion channels and 

the opening of sodium ones, allowing sodium ions to be transported inside the cell 

(Hille, 2001). This is the basic mechanism of generation of action potential.  

This section will describe several different types of ion channels found in 

mammalian nerves. Some channels are omitted from consideration because they either 

only play a background role in regulating excitation in the axonal part of neurons, like 

calcium channels (Meves & Vogel, 1973; Baker et al., 1975; Hille, 2001) or are not 

frequently found there, like chloride channels (Hille, 2001).  

 Sodium (Na) channels 

Sodium (Na) channels carry sodium ions and are responsible for generating the 

rapid regenerative upstroke of action potential in axons. They have the ability to 

quickly open and close leading to the membrane depolarization and subsequent 

inactivation. Apart from opened and closed states, these channels also have a state 

known as inactivated (Hille, 2001): it follows opening of the channels during 

depolarization and prevents these channels to be quickly activated again before 

repolarization or hyperpolarization of the neuron. Na channels are present in 

myelinated and unmyelinated axons, neuron cell bodies, vertebrate skeletal and cardiac 

muscles, endocrine glands; they are very similar in function and much less diverse than 

potassium channels (Finn & LoPresti, 2002).  

There are two types of Na channels: voltage-gated and ligand-gated. Voltage-gated 

ion channels react to the change in the membrane potential while ligand-gated channels 
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Intracellular space
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open in response to certain chemical substances close to it by binding with them. The 

voltage-gated channels are of the utmost interest as they are much more widespread 

and play a critical role in propagation of action potentials (Hille, 2001) to be simulated 

in this thesis.  

As ion channels are proteins, they differ in the sequences of amino acids they are 

formed of. These acids are produced from nucleotide sequences and are defined by 

certain genetic codes. The family of sodium voltage-gated channels forms a 

homologous gene superfamily consisting of 9 genes evolved from the same ancestral 

structure. Thus, the standard nomenclature of the Na voltage-gated channels (Nav1.1 

to Nfav1.9) is based on the genes from which corresponding proteins are formed 

(Goldin et al., 2000).  

Despite functional similarity of sodium channels, differences between them also 

exist. There are tetrodotoxin-sensitive (Nav1.1, Nav1.2, Nav1.3 and Nav1.7) and 

tetrodotoxin-resistant (Nav1.1, Nav1.5, Nav1.8 and Nav1.9) sodium channels which are 

expressed in different tissues and possess various kinetic properties (Campbell, 1992; 

Goldin et al., 2000). For example, Nav1.1, Nav1.2, Nav1.3 and Nav1.6 are mostly 

present in neurons of the central nervous system, Nav1.4 and Nav1.5 – in the skeletal 

muscle and the heart (Goldin et al., 2000). Nav1.7, Nav1.8 and Nav1.9 have been found 

in axons of peripheral nerves (Toledo-Aral et al., 1997; Djouhri et al., 2003; Sheets et 

al., 2007). 

Nav1.7 channels participate in generation of action potentials: they rapidly activate 

at the start of the depolarization phase but deactivate before the AP reaches its peak 

value (Sheets et al., 2007). In contrast, Nav1.8 current activates and inactivates much 

more slowly, appears during all stages of the action potential and plays the dominant 

role in its generation (Blair & Bean, 2002). Nav1.9 is a conceptually different channel 

as it only weakly participates in action potential generation but flows persistently and 

has slow inactivation. It comprises about 5% of the transient sodium current and has 

functional significance in setting subthreshold excitability and resting potential (Kiss, 

2008; Maingret et al., 2008).  
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Potassium (K) channels 

The main function of potassium (K) channels, permeable to K+ ions, is to stabilize 

membrane potential: they repolarise the membrane in the end of an action potential, 

have the largest impact in setting the resting potential, set the minimal interval between 

repetitive action potentials and have many other functions. A huge variety of K 

channels are expressed in the majority of excitable cells (Hille, 2001).  

The most widespread K channels are voltage-gated K channels (Kv) controlled by 

the change in the membrane potential. The broadest class of Kv channels are delayed 

rectifier potassium channels (KDR), which activate with a delay after the preceding 

depolarization caused by influx of sodium current. 

There are two types of delayed rectifiers – slow and fast. Slow ones are primarily 

located in cardiac cells and close to synapses. Fast delayed rectifiers are activated 

during the action potential and responsible for recovering the membrane potential to 

its resting values in its end. Various fast KDR channels can be found in practically all 

excitable cells with the exception of nodes of Ranvier in mammalian myelinated fibres 

(Hille, 2001). Instead, K+ ions flow through voltage independent leakage channels to 

repolarize the membrane. The nomenclature of voltage-gated K channels is similar to 

that of voltage-gated Na channels and based on the genes of the corresponding proteins 

(Kvx.y). 

The M-type or muscarinic K channels (KM) are expressed where neurons are 

regulated by neurotransmitters, such as acetylcholine and present mostly in the heart 

and sympathetic neurons (Brown & Adams, 1980). Any agonist for these receptors 

turns off the KM current making neuron more responsive to synaptic stimuli so that it 

can fire bursts of spikes. Thus, the main function of KM channels opened at rest is to 

slow down neuronal activity allowing neurons to fire single action potentials instead 

of bursts of repetitive spikes. For instance, KM current helps to slow down the heart 

rate (Kunkel & Peralta, 1995).  

A-type potassium channels (KA), or transient outward K channels, are situated 

primarily near neuronal cell bodies and sensory terminals and can be found, for 

instance, in nodose ganglion and dorsal motor nucleus of the vagus (Cooper, 1989; 

Karschin et al., 1998; McAlexander & Undem, 2000). KA channels are rapidly 
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activated when a cell is starting to depolarize after the period of hyperpolarization and 

then quickly deactivated. Activation of KA currents prevents fast depolarization of the 

fibre after closing the delayed rectifier K channels and opening Na channels. Thus, 

current through these channels slows down the frequency of repetitive firing of action 

potentials and helps to regulate interspike intervals (Hille, 2001).  

KNa
 channels, or sodium activated potassium channels, are potassium channels 

activated by increasing amounts of intracellular ions of Na+. These channels are known 

to be present in small dorsal root ganglion (DRG) neurons, in the nodal region of 

myelinated axons and elsewhere in neurons where sodium ions accumulation is 

possible. Such accumulation usually occurs due to long repetitive firing of the neuron. 

KNa channels do not actively contribute to formation of the AP but are responsible for 

stabilization of the resting potential (Bischoff et al., 1998). 

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels  

HCN, or h- channels are a class of ion channels activated by hyperpolarization of 

the membrane and are present in the majority of neuronal cells in the peripheral and 

central nervous system as well as in the heart and smooth muscle (Lüthi & 

McCormick, 1998). These channels produce inward current through the membrane (Ih 

current or h-current) when it is hyperpolarized. They are permeable to both K+ and Na+ 

ions; permeability to Na+ ions is much higher at lower levels of hyperpolarization. 

During further depolarization, when the transmembrane potential reaches potassium 

reversal potential, permeability to K+ increases (Grafe et al., 1997; Kouranova et al., 

2008).   

The main function of h-current is to participate in establishing repetitive firing and 

pace making, as activation of this current leads to slow depolarization of the cell 

(DiFrancesco et al., 1986; Lüthi & McCormick, 1998) which helps the membrane to 

fire with higher frequency. As some HCN channels are activated at rest, h-current 

plays an important role in determination of the value of the resting potential, increasing 

it by several millivolts. Also, these channels may form a significant part of the overall 

membrane conductance in a subthreshold state and therefore participate in regulation 

of neuronal responsiveness (Lüthi & McCormick, 1998).  
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Na+/K+-ATPase  

Na+/K+-ATPase (Na-K pump) is an enzyme constantly pumping 3 ions of sodium 

out and 2 ions of potassium into the cell against their concentration gradients using the 

energy released from the hydrolysis of ATP. With every ATP molecule spent, the 

pump transports one positive charge out of the cell which, in total, leads to a decrease 

in resting potential by about 10 mV. Thus, one of the main functions of the pump is to 

help to maintain resting membrane potential (Hille, 2001). Another vital activity of 

Na+/K+-ATPase is to regulate cell volume by maintaining right concentrations of the 

ions inside and outside of the cell. Failure of the pump leads to flowing of ions inside 

the cell and its swelling. 

Also, the energy stored in the gradient of Na+ ions provided by the work of Na+/K+-

ATPase is used by transport proteins to carry different substances like glucose or 

amino acids through the membrane. Such transport is vital for neurons and fully 

depends on the gradient of sodium ions and proper work of Na-K pump. The Na-K 

pump can be found in every cell of a living organism (Schmidt & Thews, 1989). 

 Leakage channels 

Leakage ion channels are not voltage-gated, so their permeability is constant, and 

ions can flow through them upon the electrochemical gradient. These channels are 

present in the membrane of most neuronal cells and there is usually a prevalence of K+ 

and Cl- leakage channels that helps to establish resting potential (Hille, 2001).   

2.2.2 Membrane potential 

The difference between the internal and external electrical potential of the cell is 

called the membrane potential. The membrane potential is derived from the 

concentration and electric gradients of ions across the membrane inside and outside of 

the cell. According to the principles of diffusion, ions tend to move from the areas with 

higher concentration to the areas with lower concentration. Also, because ions are 

electrically charged, they are influenced by the electrical force trying to balance the 
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overall charge on the sides of the membrane. The ion flux through the membrane under 

the influence of these forces can be written as a Nernst-Planck equation (Johnston & 

Wu, 1995): 

 

 
𝐽𝑖𝑜𝑛 = 𝐽𝑑𝑖𝑓𝑓 + 𝐽𝑒𝑙 = −𝐷

𝜕[𝐶]

𝜕𝑥
+ 𝜎𝑒𝑙𝐸 = −(

𝜇𝑘𝑇

𝑞

𝜕[𝐶]

𝜕𝑥
+ 𝜇𝑧[𝐶]

𝜕𝑉

𝜕𝑥
) (2.8) 

 

 

where 𝐽𝑖𝑜𝑛 is the ionic flux though the membrane,  𝐽𝑑𝑖𝑓𝑓  and  𝐽𝑒𝑙   are fluxes due to 

diffusion and electrical forces, all in [
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑐𝑚2𝑠
] ; D is the diffusion coefficient, [

𝑐𝑚2

𝑠
]; 

𝜎𝑒𝑙 is electrical conductivity in [
𝑆

𝑐𝑚
] = [

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑉 𝑠 𝑐𝑚
]; [𝐶] is concentration in [

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑐𝑚3
]; 

E is electric field in [
𝑉

𝑐𝑚
]; µ is mobility in [

𝑐𝑚2

𝑉𝑠
]; z is ion valence; k is Boltzmann’s 

constant (1.38 ∗ 10−23 [
𝐽

𝐾
]); 𝑇 is temperature in [𝐾] and 𝑞 is electric charge of the 

molecule in [𝐶].  

When the membrane is at rest, the ionic flux through the membrane is zero and that 

is how Nernst equation for equilibrium potential is derived: 

 

 
𝐸𝑒𝑞 =

𝑅𝑇

𝑧𝐹
ln
[𝐶]-𝑜𝑢𝑡
[𝐶]-𝑖𝑛

 (2.9) 
 

 

The value of the membrane potential in resting conditions is known as the resting 

potential. When the neuron is at rest, the membrane is highly permeable for potassium. 

For this reason, potassium ions flow out of the cell where their concentration is low, 

they carry positive charge that is therefore balanced by the negative charge appearing 

on the inner surface of the membrane. Therefore, the resting potential of the cell is 

always negative and close to the potassium reversal potential, approximately -70 mV 

(Johnston & Wu, 1995). Nevertheless, the value of the resting potential more or less 

depends on all the ions present inside and outside the cell and can be calculated with 

Goldman-Hodgkin-Katz voltage equation: 
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𝐸𝑟 =
𝑅𝑇

𝐹
ln
𝑃𝐾[𝐾

+]-𝑜𝑢𝑡 + 𝑃𝑁𝑎[𝑁𝑎
+]-𝑜𝑢𝑡 + 𝑃𝐶𝑙[𝐶𝑙

−]-𝑜𝑢𝑡 +⋯

𝑃𝐾[𝐾+]-𝑖𝑛 + 𝑃𝑁𝑎[𝑁𝑎
+]-𝑖𝑛 + 𝑃𝐶𝑙[𝐶𝑙

−]-𝑖𝑛 +⋯
 (2.10) 

 

 

where 𝑃 is the permeability of the particular ion in [
𝑚

𝑠
], [𝐼+] is the concentration of 

the ion inside and outside of the cell in [
𝑚𝑜𝑙

𝑐𝑚3
], 𝑇 is the temperature in [𝐾], 𝑅 and 𝐹 are 

the gas and Faraday’s constants. 

Maintaining the resting potential at negative values plays a vital role in normal 

excitation and sensitivity of the cells to synaptic inputs. Membrane potential depends 

not only on the quantity of the ions present in the cell and its surroundings but also on 

the work of the active Na+/K+-ATPase, that continuously pumps three ions of sodium 

out of the cell in exchange for two ions of potassium into the cell maintaining low 

intracellular concentration of Na+ ions and high of K+ ions and decreasing the resting 

potential by several millivolts.  

2.2.3  Action potential 

Neural cells, or neurons, can transmit information via electrical signals propagating 

along them. The action potential (AP) is the excitation wave moving along the 

excitable cell as the change in its membrane potential (Figure 2.5). When the AP 

occurs, the potential difference between internal and external surfaces of the cell 

reverses. APs are the basis of neural communication. They can propagate along axons 

to the axon terminals where they can be transmitted to other neurons through synaptic 

clefts. 

The physiological basis of the AP can be explained by the activity of voltage-gated 

ion channels on the membrane, where sodium and potassium channels play a pivotal 

role. For the AP to happen, the membrane should be depolarized to the values above 

so-called threshold potential which varies among cells but usually equals about -30 

mV (Hille, 2001). In this case the resistance of the sodium channels drops, and the 

inflow of the corresponding current rapidly increases. It causes the membrane potential 

to rise up to positive values. Then, after sodium channels close, potassium channels 
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start to open so that potassium ions flow out of the cell to reverse the potential back to 

the resting value, which is referred to as hyperpolarization. As the additional potassium 

ion channels are opened compared to the resting state, and as they cannot close 

immediately, afterhyperpolarization (AHP) phenomenon usually occurs after this 

stage. The time period during which membrane potential is lower than resting potential 

is called the refractory period (Figure 2.5). After occurrence of the AP the membrane 

needs time to recover to be able to fire again. This refractory period appears because 

after opening sodium channels become inactivated and can’t immediately return to 

their resting closed state (Schmidt & Thews, 1989). 

 

 

Figure 2.5 Action potential of the giant axon of the squid simulated by (Hodgkin & Huxley, 1952).  

Y axis represents the displacement of the membrane potential from the resting potential, V = Vr – Vm.  

 

AP is subject to an all-or-none principle which means that its amplitude does not 

depend on the amount of the current which produced it if the voltage change reached 

the threshold. If it does not happen, the sodium current inflow is much smaller than 

resting potassium current, so the membrane potential returns to the resting value 

without generating an AP.  

An AP initiated locally can spread or propagate along the axon. The ionic currents 

flowing inside and outside the axon can also flow along it thus depolarizing adjacent 

sections of the membrane. If this depolarization is enough for the membrane to reach 

the threshold, this may cause APs at these regions to spread further both ways along 

the axon (Figure 2.6). 

 

Refractory period

Threshold

AHP
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Figure 2.6 Mechanism of action potential propagation in unmyelinated axon.  

Arrows depict the direction of ionic currents. The AP originates from the rapid influx of sodium ions 

into the membrane and subsequent slower outflux of potassium ions out of the membrane.  

 

The conduction velocity (CV) of the AP is different for different types of fibres. In 

unmyelinated axons, where propagation occurs as explained above, APs spread with a 

speed of meters per second increasing with the square root of the diameter of the axon 

(Gasser, 1950). It may be qualitatively explained by the decrease of longitudinal 

resistance of the axon in respect to membrane resistance when the diameter of the axon 

is increased. This is because the membrane surface area is proportional to the diameter 

of the axon while its cross-sectional area is proportional to the square of the diameter. 

Consequently, longitudinal currents in the larger axons will spread at longer distances 

and that will increase the conduction velocity (Schmidt & Thews, 1989).  

Unlike unmyelinated axons, APs in myelinated fibres conduct quickly and 

efficiently with the speeds of up to 100 m/s (Rushton, 1951). This is because the 

myelin sheath surrounding the axon is an insulator and increases the resistance of the 

membrane manifold. Therefore, current cannot cross the membrane under the myelin 

and can spread under it for long distances. The delays only occur at the nodes of 

Ranvier, very short sections on the myelinated fibre not covered with myelin, where 

the current has to depolarize the membrane and induce excitation. This is the nature of 

AP propagation in myelinated fibres known as saltatory conduction (Figure 2.7)  

(Schmidt & Thews, 1989). 

Similarly to the unmyelinated fibres, CV in the myelinated fibres increases with 

their diameter but this relationship is close to linear (Rushton, 1951). 

 

Membrane
Propagation
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Figure 2.7 Mechanism of saltatory conduction in myelinated fibre.  

Myelin sheath acts as an insulator so that ionic currents depicted by arrows can enter the axon only 

at the nodes of Ranvier. 

2.2.4 Methods of recording membrane activity 

Membrane activity and corresponding APs can be recorded in two main ways: intra- 

or extracellularly.  

Intracellular recordings usually involve a microelectrode inserted into the axon with 

respect to an isopotential extracellular reference electrode (ground). One of the oldest 

and most frequently applied intracellular measurement techniques is the voltage clamp 

that was originally used by Hodgkin and Huxley in 1952 to study mechanisms of 

membrane excitation and develop their famous model of the squid giant axon 

(Hodgkin et al., 1952; Hodgkin & Huxley, 1952). This method allows recording ionic 

currents through the membrane while holding the membrane voltage at a constant level 

using negative feedback. It is implemented by applying current through an injecting 

electrode while measuring transmembrane voltage through a recording electrode (in 

respect to ground) (Figure 2.8).  Long silver wire electrodes are inserted into the axon 

during recording which makes it iso- or equipotential along its length or, in other 

words, space-clamped (Johnston & Wu, 1995). With this procedure, current through 

the membrane capacitance (Figure 2.3) is eliminated which allows recording ionic 

current exclusively. This can be seen in the equation for the total membrane current 

derived from the circuit in Figure 2.3 (full description is provided in Section 2.3): 

 

 
𝐼𝑚 = 𝐼𝑖𝑜𝑛 + 𝐼𝐶 = 𝐼𝑖𝑜𝑛 + 𝐶𝑚

𝜕𝑉𝑚
𝜕𝑡
= 𝐼𝑖𝑜𝑛 𝑖𝑓 𝑉𝑚 = 𝑐𝑜𝑛𝑠𝑡 (2.11) 
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where  𝐼𝑚  is the total membrane current per unit length [
µ𝐴

𝑐𝑚
];  𝐼𝑖𝑜𝑛 is the ionic current 

[
µ𝐴

𝑐𝑚
]; 𝐼𝐶  is the capacitive current [

µ𝐴

𝑐𝑚
];  𝐶𝑚 is the membrane capacitance [

µ𝐹

𝑐𝑚
] and  𝑉𝑚 

is the transmembrane voltage in [𝑚𝑉]. 

 

 

Figure 2.8 Scheme of two-electrode voltage clamp technique.  

One electrode is used to record membrane potential and the other is for current injection. Long 

electrodes are utilised to space-clamp the axon (make it isopotential along the length); the negative 

feedback system is used to maintain the command voltage Vcomm and measure the injected current.  

 

The alternative way of intracellular recording very similar to voltage clamp is the 

current clamp technique where ionic currents through the membrane are held constant 

via negative feedback and changes in voltages are recorded (Johnston & Wu, 1995). 

APs recorded intracellularly are referred to as intracellular action potentials or simply 

action potentials (Figure 2.5).  

The improvement of voltage clamp technique known as patch clamp is used to 

measure currents of very small areas on the membrane - even single ion channels. For 

this, the tip of a 3-5 µm diameter glass pipette filled with electrolyte solution is used 

to electrically isolate a small patch of membrane and reduce a background noise 

(Figure 2.9). The recording is performed by an electrode inserted into the pipette and 

connected to an amplifier relative to the reference electrode located in the extracellular 

medium (Neher & Sakmann, 1976). This technique offers a possibility of measuring 

very small ionic currents of single ion channels which allows thorough investigation 

of the physiological nature of processes occurring in neural tissues as well as inclusion 

of the correct ion channels into the biophysical models providing accurate 

representation of these processes (Llano, 1988; Sheets et al., 2007; Sundt et al., 2015). 

-

+
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Figure 2.9 Scheme of a patch clamp technique.  

A glass micropipette filled with an electrolyte solution serves for electrical sealing of the membrane. 

The ionic currents of a single isolated ion channels can be recorded by an electrode inserted into the 

pipette using a current to voltage converter with the feedback resistor Rf (transimpedance amplifier). 

Command voltage Vcomm is maintained across the membrane using the voltage clamp technique.  

 

Intracellular recording allows precise measurement of membrane electrical activity; 

however, the technique is complicated and there is a risk of damaging the cell while 

inserting the electrode. In contrast, the extracellular recording technique involves 

measurements with the electrode on the surface of the cell with respect to extracellular 

medium as a ground: extracellular APs (EAPs) are measured without penetration of 

the cell. Because voltage on the surface rather than across the membrane is now 

recorded, the magnitude of the EAP is much lower than the intracellular one. The shape 

of the EAP is also different and usually has a bi- or triphasic waveform due to the 

recording procedure depending on a position of the ground electrode and a size of the 

external bath (Pine, 1980; Gold et al., 2006; Ghitani et al., 2017). In the case of a large 

bath with the ground located at its border (Figure 2.10a), the EAP shape is tripolar. 

The reason is that at the point where the AP is initiated, there is a current sink into the 

axon, so current has to flow out further along the axon, including the place where the 

recording electrode is positioned. Therefore, positive change in the potential is 

recorded at this point. During the propagation, AP reaches the recording electrode and 

current starts to flow inside the axon there, so the negative voltage change can be 

recorded. Then, after the AP passes the electrode, there is an outflow of the current 

and positive change is recorded again (Figure 2.10a) (Johnston & Wu, 1995). Bipolar 

EAP waveform originated from the small size of the surrounding bath (insulation) and 

the position of the ground electrode at one of its ends. In this case, the external current 

-

+
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is able to flow only in one direction towards the ground leading to disappearance of 

one of the EAP poles (Figure 2.10b). 

 

  

(a) (b) 

Figure 2.10 Extracellular action potentials (EAPs) of the giant axon of the squid simulated with 

COMSOL Multiphysics using the HH model (Hodgkin & Huxley, 1952).  

(a) Recoding was carried out in the large bath with respect to the ground electrode located at its 

border; (b) Recoding was done in the insulated cylinder of a small diameter relative to the ground 

electrode located at the end of a long fibre, as in the Chapters 3 and 4.  

 

It is usually assumed that EAPs do not contain useful information and were mainly 

used to find out if the neuron has been excited or to distinguish between different 

classes of neurons (Mountcastle et al., 1969; Csicsvari et al., 1999). However, 

accurately recorded or modelled EAPs were shown to have highly variable waveforms 

depending on composition of ionic currents and location of the electrodes (Henze et 

al., 2000; Gold et al., 2006).  

Finally, the aggregate AP of the whole nerve consisting of many fibres recorded 

with extracellular electrodes placed on its surface is known as a compound action 

potential (CAP) (Figure 2.11). Because a nerve usually consists of fibres of various 

diameters, individual EAPs’ velocities are different, leading to the increase in the 

duration and decrease in the amplitude compared to individual EAPs (Freeman, 1972; 

Olney et al., 1987). The size and duration of CAPs usually depend on the strength of 

the applied stimulus: larger stimulus excites more fibres in the nerve until all the fibres 

are recruited.  
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Figure 2.11 Compound action potentials (CAPs) recorded from the sciatic nerve of the rat. The figure 

is adapted from (Aristovich et al., 2018).  

2.2.5 Dispersion in nerves 

Due to variability in sizes of fibres in nerves and proportionality of conduction 

velocity to the fibre diameter (Waxman, 1980), propagation velocities of individual 

fibres vary. As a result, the amplitude of the CAP being an aggregate sum of all 

individual APs decreases along the nerve following its initiation; this is commonly 

defined as temporal dispersion (Freeman, 1972; Dorfman, 1984; Olney et al., 1987; 

Taylor, 1993; Schulte-Mattler et al., 2001) (Figure 2.12). 

Dispersion has mainly been studied in peripheral nerves consisting of mainly large 

myelinated fibres because they produce signals of higher magnitudes and possess 

lower stimulation thresholds (Hallin & Torebjörk, 1973; Torebjo¨rk & Hallin, 1974). 

For example, there was a 36% reduction in the CAP when stimulating the human ulnar 

nerve at above-elbow and wrist regions and recording at the fifth digit (Olney et al., 

1987). In (Taylor, 1993) and (Schulte-Mattler et al., 2001), large human peripheral 

nerves including median, ulnar, common peroneal and tibial were stimulated and 

compound motor APs were recorded a few tens of cm away from the stimulus. These 

studies showed only a small amplitude and area decay which were in the range of 5-

45% per meter of nerve length. In contrast, the effect of dispersion is much greater in 

small diameter unmyelinated nerves. In the olfactory nerve of the cat (Freeman, 1972) 

which comprises mainly small unmyelinated fibres 0.1 – 0.5 μm in diameter, CAPs 

could not be recorded further than 2.5 mm from the stimulation site. In vagal C fibres 
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in the mouse, there was a > 50% decrease at 4 mm from the point of activation (Chang 

et al., 2015). 

 

Figure 2.12 Schematic representation of dispersion of the CAP formed from three single EAPs of 

the giant squid axon (Hodgkin & Huxley, 1952) with slightly different conduction velocities 

simulated in COMSOL Multiphysics (Figure 2.10b).  

In each fibre, the AP propagates with constant velocity vi, vi+Δv or vi+2Δv. The compound AP equals 

to the sum of EAPs of these single fibres; its amplitude decreases with distance x from stimulation. 

2.3 Nerve fibre modelling 

There are many neuronal models which have been developed since 1950s; most of 

them utilise a cable principle to simulate an AP propagation.  

2.3.1 Neuronal cable model 

The basic method for mathematical description of excitation and its conduction in 

the nerve tissue is the cable model (Cole & Curtis, 1938; Hodgkin & Rushton, 1946). 

In the passive cable model, the membrane is represented as a constant resistance and 
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a capacitance connected in parallel (Figure 2.3a). The capacitance comes from the thin 

lipid bilayer which is able to store charge. The resistance representing ion channels is 

voltage-independent, and it takes on two fixed values when they are opened and 

closed. It means that when ion channels change their state, there is an instantaneous 

drastic change in resistance, and this does not fully correspond to the realistic 

experimental behaviour of nerve fibres (Hodgkin & Huxley, 1952; Scriven, 1981; 

Cross & Robertson, 2016). In contrast, more accurate active cable model includes 

resistances which depend on the voltages across the membrane so that their state is 

actively changing during membrane activity (Figure 2.3b). 

In the cable model, the longitudinal resistances are connected in series inside and 

outside of the fibre (Figure 2.3) allowing to simulate propagation of excitation along 

it. This principle can be used for simulation of AP conduction in both passive and 

active models with constant or voltage-dependent membrane resistance (Figure 2.3a 

and b).  

The equation for description of the membrane current in the passive cable model 

can be derived by application of Ohm’s and Kirchhoff’s laws to the circuit in Figure 

2.3a: 

 

 1

𝑅𝑖𝑛𝑡 + 𝑅𝑒𝑥𝑡

𝑑2𝑉𝑚
𝑑𝑥2
= 𝐶
𝑑𝑉𝑚
𝑑𝑡
+
𝑉𝑚
𝑅𝑚

 (2.12) 
 

 

where 𝑅𝑖𝑛𝑡 and 𝑅𝑒𝑥𝑡 are the axial intracellular and extracellular resistances, [𝛺 𝑚⁄ ]; 

𝑅𝑚 is the membrane resistance, [𝛺 ∙ 𝑚]; 𝑉𝑚 and 𝐶 are membrane potential, [𝑉] and 

capacitance, [𝐹 𝑚⁄ ]. 

The cable model has two assumptions. First, the potential difference across the axon 

should be negligible compared to the one along it. This assumption is valid for long 

axons with small diameters located far enough from the stimulation electrodes, at the 

distance of at least five diameters of the fibre (Schnabel & Struijk, 2001). The second 

assumption demands conductivity to be uniform along the axon. It means that the ratio 

of the cytoplasm resistivity to cross sectional area must not change, or in other words, 

the diameter of the axon should be constant (Finn & LoPresti, 2002). 
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The passive cable model has been developed and utilised by many researchers for 

various applications (Hodgkin & Rushton, 1946; Durand, 1984; Basser, 1993) as well 

as our group at UCL for optimisation of EIT (Liston et al., 2012). However, the latter 

model has not shown itself to be reliable in validation of the recent experimental data 

regarding the relationship of dZ with external parameters (Aristovich et al., 2015, 

2018). This led us to consideration of models with active properties. 

2.3.2 Models of unmyelinated nerve fibres 

Two main types of formalisms may be used to model active nervous tissue: 

Hodgkin-Huxley and Markovian (Strassberg & DeFelice, 1993; Clancy & Rudy, 

1999). The Markovian formalism implies probabilistic behaviour of ion channels in 

the membrane, where each channel occupies certain state and the transition between 

states is described by a system of differential equations. This approach is good for 

modelling the behaviour of single ion channels but too computationally heavy to 

simulate the macroscopic properties of the whole fibre and particularly multiple fibres. 

For this purpose, there is a different type of formalism, called Hodgkin-Huxley 

formalism, which treats ion channels as populations controlled by gating variables. 

There are many models created using the Hodgkin-Huxley formalism, all based on the 

Hodgkin-Huxley model of the giant axon of the squid (HH model) (Hodgkin & 

Huxley, 1952).  

Hodgkin-Huxley (HH) model 

The HH model contains active ion channels and simulates the electrical behaviour 

of the axon of giant squid – very large unmyelinated axon with the diameter of 1 mm. 

The size of the axon gave the authors experimental advantage to insert two electrodes 

into the intracellular space. It made possible to use the voltage clamp (Figure 2.8) for 

obtaining the experimental data which they analysed to develop the final model.  
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Figure 2.13 Element of the membrane circuit in the HH model of the giant axon of the squid.  

Re and Ri designate extracellular and intracellular longitudinal resistances, Cm is the capacitance of 

the lipid bilayer, batteries represent the ionic electrochemical gradients which can be described by 

the Nernst equation (2.9). 

 

The HH model represents the membrane as the electrical network which includes 

parallel-connected capacitance of lipid bilayer and the resistance of ion channels. 

Unlike the passive model, the resistance in HH model is variable and depends on the 

voltage across the membrane (Figure 2.13).  

The model is described by a system of differential equations where the coefficients 

were selected so that the response of the membrane to electrical stimulation was as 

close to experimental as possible. The currents through ion channels are controlled by 

gating variables possessing values from 0 to 1; states of ion channels can continuously 

vary depending on the values of these variables. Propagation of APs can be described 

with the use of cable theory, the same as in the passive model (Figure 2.3, eq. (2.12)).  

The system of Hodgkin-Huxley equations extended by the inclusion of propagation 

term is presented below. The first equation describing the flow of electric current 

through the membrane and along the axon was derived from Ohm’s and Kirchhoff’s 

laws, the same as equation (2.12). In (2.13), the intracellular and membrane resistances 

as well as the membrane capacitance are replaced by specific resistivities (or 

conductivities) and specific capacitance so that they are independent from the axon 

geometry. 
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 𝑟𝑎𝑥
 𝜌𝑖

𝑑2𝑉𝑚
𝑑𝑥2
= 𝑐𝑚
𝑑𝑉𝑚
𝑑𝑡
+ 𝐼𝑖𝑜𝑛(𝑉𝑚) ; 

 𝐼𝑖𝑜𝑛(𝑉𝑚) = 𝑔̅𝐾𝑛
4(𝑉𝑚 − 𝑉𝐾) + 𝑔̅𝑁𝑎𝑚

3ℎ(𝑉𝑚 − 𝑉𝑁𝑎)

+ 𝑔𝐿𝑒𝑎𝑘(𝑉𝑚 − 𝑉𝐿); 

𝑑𝑛

𝑑𝑡
= 𝑘 ∙ (𝛼𝑛(1 − 𝑛) − 𝛽𝑛𝑛); 

𝑑𝑚

𝑑𝑡
= 𝑘 ∙ (𝛼𝑚(1 −𝑚) − 𝛽𝑚𝑚); 

𝑑ℎ

𝑑𝑡
= 𝑘 ∙ (𝛼ℎ(1 − ℎ) − 𝛽ℎℎ). 

(2.13) 
 

 

In the system, 𝑉𝑚 and 𝑐𝑚 are membrane potential, [𝑚𝑉] and specific capacitance, 

[𝜇𝐹 𝑐𝑚2⁄ ]; 𝑟𝑎𝑥 is the radius of the axon, [𝑐𝑚]; 𝜌𝑖 is the resistivity of the axoplasm, 

[𝑘𝛺 · 𝑐𝑚]; ∑𝐼𝑖𝑜𝑛(𝑉𝑚) is the sum of ionic currents through the membrane; 𝑔̅𝐾, 𝑔̅𝑁𝑎 and 

𝑔̅𝐿𝑒𝑎𝑘 denote maximal conductances of potassium, sodium and leakage channels 

respectively, [𝑚𝑆  𝑐𝑚2⁄ ]; 𝑉𝐾, 𝑉𝐾 and 𝑉𝐿are reversal potentials of corresponding ions, 

in [𝑚𝑉], calculated with the Nernst equation (eq. (2.9)). 𝑛,𝑚 and ℎ are gating variables 

controlling the fraction of ion channels in opened or closed state.  Gating variables are 

governed by first-order kinetics with coefficients 𝛼𝑥 = 𝛼𝑥(𝑉) and 𝛽𝑥 = 𝛽𝑥(𝑉) 

experimentally obtained by Hodgkin and Huxley (Hodgkin & Huxley, 1952); they 

were: 

 𝛼𝑚 = 0.1(35 + 𝑉𝑚) (1 − 𝑒
−0.1(35+𝑉𝑚))⁄  

𝛽𝑚 = 4𝑒
−(60+𝑉𝑚) 18⁄  

𝛼𝑛 = 0.01(50 + 𝑉𝑚) (1 − 𝑒
−0.1(50+𝑉𝑚))⁄   

𝛽𝑛 = 0.1 5𝑒
−(60+𝑉𝑚) 80⁄  

𝛼ℎ = 0.07𝑒
−(60+𝑉𝑚) 20⁄  

𝛽ℎ = 1 (1 + 𝑒
−0.1(30+𝑉𝑚))⁄  

(2.14) 
 

 

Coefficient k explains temperature dependence of the model: 

 

 
𝑘 = 𝑄10

𝑇−𝑇0
10  (2.15) 

 

 



Chapter 2. Literature review 

54 

 

where Q10 was set to 3 and T0 = 6.3ºC (Hodgkin & Huxley, 1952; Fitzhugh, 1966). 

With the HH model, all the basic properties of the membrane temporal behaviour 

can be simulated. The model is fairly accurate, comparatively simple and quick to 

compute, therefore, the model itself and its modifications are still being extensively 

used in the current scientific research (Tigerholm et al., 2014; Sundt et al., 2015; Hope 

et al., 2018; Sadleir et al., 2019). 

Complex active models of unmyelinated fibres 

Since the basic Hodgkin-Huxley model is insufficient to describe all the details 

accompanying excitation in mammalian nerve fibres, new models of unmyelinated 

axons have been developed. Their complexity increased by the addition of more ion 

channels and tweaking the parameters so that they better correlate with the 

experimental data. These models steadily improved the accuracy of simulation of the 

APs’ shape, excitability thresholds’ temporal behaviour and its different complex 

features like activity dependent slowing (Thalhammer et al., 1994) and recovery cycles 

(Kiernan et al., 1996). For example, Scriven simulated repetitive firing phenomena by 

modelling the Na-K pump, finite intra-axonal and periaxonal volumes and calcium ion 

channels (Scriven, 1981); Herzog and colleagues first included TTX resistant sodium 

channels (now called Nav1.9) in a model of DRG neurons (Herzog et al., 2001); 

Tigerholm together with his group were able to model activity-dependent slowing and 

recovery cycles for C-nociceptors (Tigerholm et al., 2014); Cross and Robertson 

studied ionic mechanisms accompanying high-frequency firing of the descending 

contralateral movement detector axons (Cross & Robertson, 2016). Numerous other 

neural models have been developed in recent years, including for myelinated fibres 

(Jihwan Woo et al., 2009; Howells et al., 2012) and for groups of fibres (Qiao & 

Yoshida, 2013; Yin et al., 2013; Pelot et al., 2017). 

2.3.3 Models of myelinated fibres 

In the first active models of myelinated fibres, the HH equations (2.13)–(2.15) were 

applied at the nodes and the myelin sheath was simulated as a perfect insulator 
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(Fitzhugh, 1962) or as a constant resistor (Goldman & Albus, 1968). To better replicate 

experimental data, and since the ion channels utilized in the HH model could predict 

only basic behaviour of the membrane, new models started to appear  possessing more 

complex ion channels and finer excitability properties (McNeal, 1976; Warman et al., 

1992) as well as with the addition of active ion channels in internodal segments 

(Bostock et al., 1991; Stephanova & Bostock, 1995; Howells et al., 2012). 

 

 

Figure 2.14 Simplified schematic representation of the myelinated fibre.  

The scheme is based on the electron microscopy study (Berthold & Rydmark, 1983) in the myelinated 

spinal root fibre of the cat. Internodal sections are designated by myelin attachment (MYSA), fluted 

(FLUT) and stereotyped internodal (STIN) sections discussed in the text. 

 

In addition to ion channels, the spatial structure of the nerve fibre was also revealed 

to play an important role in the accurate simulation of its excitability properties and 

shape of nodal and internodal transmembrane potentials.  

The longitudinal structure of the modelled myelinated fibres has been developing 

from a simple classic cable (McNeal, 1976) to the novel paradigm where signals 

propagated along two parallel cables including axolemma and periaxonal space 

(Figure 2.14, Figure 2.15). Such a structure allowed simultaneous simulation of the 

transmembrane and transmyelin potentials for accurate description of the signals 

originating in the fibre.  

The double-cable structure is based on the accurate myelinated fibre morphology 

obtained using electron microscopy of the paranode-node-paranode region of the 

spinal root fibre of the cat (Berthold & Rydmark, 1983) (Figure 2.14). This study 

demonstrated existence of a thin interspace (<5 nm) located between the axon and the 

MYSA FLUT STIN FLUT MYSA

InternodeNode

Axon
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myelin sheath forming an additional current pathway along the fibre. As a result, the 

excitation is able to conduct in parallel along the axoplasm and the periaxonal space. 

 

Figure 2.15 Circuit diagram of the double cable model of the myelinated fibre.  

The fibre is represented as two parallel cables of the axon (Ri) and the periaxonal space (Rpax) between 

the axon and the myelin sheath; an external space (Re) may be presented as a third cable. 

Internodal section is depicted as a union of myelin attachment (MYSA), fluted (FLUT) and 

stereotyped internodal (STIN) sections; their description is given in Figure 2.14 and in the text. Nodal 

and internodal membranes as well as myelin are represented by parallel capacitance and resistance(s); 

equations describing the diagram can be derived from Ohm’s and Kirchhoff’s laws (eq. (2.16) - 

(2.18)).  

 

The same study (Berthold & Rydmark, 1983) described finer morphological 

properties of the myelinated fibre (Figure 2.14): in addition to the short (~1 µm) node 

of Ranvier, the internodal section can be extended into three subsections including 

myelin sheath attachment (MYSA), fluted (FLUT) and stereotyped internodal (STIN) 

segments. MYSA is the short (3-4 µm) section describing the attachment of the myelin 

sheath to the axon. In this section, the width of the periaxonal space is smaller thus 

increasing its resistance forming a so-called paranodal seal between the axon and the 

myelin. FLUT is the fluted region (70 µm) which is usually combined with the adjacent 

main internodal STIN section (~ 1400 µm).  

The double-cable structure was first utilised for modelling by Blight (Blight, 1985) 

and has subsequently been used in various studies (Halter & Clark, 1991; Stephanova 

& Bostock, 1995; McIntyre et al., 2002; Dimitrov, 2009; Hope et al., 2018). 

Description of the double-cable circuit (Figure 2.15) may be given by application 

of Ohm’s and Kirchhoff’s laws (Stephanova & Bostock, 1996). At the node: 
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 1

𝑅𝑖

𝜕2𝑉𝑎𝑥
𝜕𝑥2
= 𝐶𝑛
𝑑𝑉𝑎𝑥
𝑑𝑡
+  𝐼𝑖𝑜𝑛(𝑉𝑎𝑥)

𝑛𝑜𝑑𝑒

 (2.16) 
 

 

where  ∑ 𝐼𝑖𝑜𝑛(𝑉𝑎𝑥)𝑛𝑜𝑑𝑒  designate all ionic currents at the nodal membrane, [A]; 𝑅𝑖 

is the axial intracellular resistance, [𝛺 𝑚⁄ ]; 𝑉𝑎𝑥 and 𝐶𝑛 are transaxonal membrane 

potential, [𝑉] and capacitance of the axonal membrane, [𝐹 𝑚⁄ ]. 

At the internodal axolemma (MYSA, FLUT and STIN combined): 

 

 1

𝑅𝑖
(
𝜕2𝑉𝑎𝑥
𝜕𝑥2
+
𝜕2𝑉𝑚
𝜕𝑥2
) = 𝐶𝑎𝑥

𝑑𝑉𝑎𝑥
𝑑𝑡
+ 𝐼𝑖𝑜𝑛(𝑉𝑎𝑥)

𝐼𝑛𝑡

 (2.17) 
 

 

In the equation, ∑ 𝐼𝑖𝑜𝑛(𝑉𝑎𝑥)𝐼𝑛𝑡  designate all ionic currents at the internodal 

membrane, [A]; 𝑅𝑖 is the axial intracellular resistance, [𝛺 𝑚⁄ ]; 𝑉𝑎𝑥 and 𝑉𝑚 are 

transaxonal and transmyelin membrane potentials, [𝑉]; 𝐶𝑎𝑥 is the axonal membrane 

capacitance, [𝐹 𝑚⁄ ]. 

At the periaxonal space, the circuit equation becomes: 

 

 1

𝑅𝑖
(
𝜕2𝑉𝑎𝑥
𝜕𝑥2
+
𝜕2𝑉𝑚
𝜕𝑥2
) +
1

𝑅𝑝𝑎𝑥

𝜕2𝑉𝑚
𝜕𝑥2
= 𝐶𝑚
𝑑𝑉𝑚
𝑑𝑡
+
𝑉𝑚
𝑅𝑚

 (2.18) 
 

 

where 𝑅𝑖 and 𝑅𝑝𝑎𝑥 are the axial resistances of intracellular and periaxonal space, 

[𝛺 𝑚⁄ ]; 𝑅𝑚 is the myelin resistance, [𝛺 ∙ 𝑚]; 𝑉𝑎𝑥 and 𝑉𝑚 are transaxonal and 

trynsmyelin membrane potentials, [𝑉]; 𝐶𝑚 is the capacitance of the myelin sheath, 

[𝐹 𝑚⁄ ]. 

In the new models, incorporation of the discussed fine structural features, such as 

paranodal seal, conducting periaxonal space and multi-layered myelin sheath, were 

shown to be essential in replication of various excitation properties of the fibre such 

as the depolarizing afterpotentials or the realistic spatial distribution of AP during 

conduction (Stephanova & Bostock, 1995; Stephanova, 2001; McIntyre et al., 2002). 
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2.3.4 Coupling of the models with extracellular space 

Communication between two models via transmission of their output values from 

one model to another is referred to as coupling. Coupling of the nerve fibre model with 

extracellular space can be implemented in one direction (unidirectional coupling) or 

in two directions (bidirectional coupling) (Figure 2.16). First, for stimulation of the 

fibre with external electrodes, the electrical field computed in the extracellular space 

must be passed to the model of the fibre. Second, to externally record extracellular 

APs, the membrane currents from the model of the fibre must be passed into the 

external space.  

Unidirectional coupling was implemented in various studies described below, 

however, there are no models to date allowing continuous simultaneous coupling in 

both directions. 

 

Figure 2.16 Principle of bi-directional coupling the membrane with the extracellular space. 

Membrane currents Im are passed from the fibre into the external space simultaneously with passing 

the externally applied currents Iext into the fibre. 

1. Simulation of extracellular action potentials 

For simulation of AP propagation along the axon in the extracellular space (or 

EAPs), the electrical field distribution formed as a result of passing the membrane 

currents from the fibre into this space must be computed. The physics behind it is 

governed by Maxwell’s equations: 

 

 ∇ ∙ 𝑬 =
𝜌

𝜀0
 

∇ ∙ 𝑩 = 0 

(2.19) 
 

Fibres
Extracellular 

space
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∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡
 

∇ × 𝑩 = 𝜇0𝑱 + 𝜇0𝜀0
𝜕𝑬

𝜕𝑡
 

 

In the equations, 𝑬 and 𝑩 are the electric and magnetic fields, [𝑉 𝑚⁄ ] 𝑎𝑛𝑑 [𝑇]; 𝑱 is 

the current density [𝐴 𝑚2⁄ ], 𝜌 is the charge density, [𝐶 𝑚3⁄ ]; 𝜀0 and 𝜇0 are the electric 

and magnetic constants. 

Taking the divergence of the last equation in (2.19) (Ampere’s law) and combining 

with the first equation (Gauss’s law) leads to the continuity equation: 

 

 
∇ ∙ 𝑱 +

𝜕𝜌

𝜕𝑡
= 0 (2.20) 

 

 

In the absence of electric sources and sinks 𝜕𝜌 𝜕𝑡⁄ = 0, and therefore ∇ ∙ 𝑱 =  . 

Together with Ohm’s law 𝑱 = (𝜎 + 𝒋𝜔𝜖)𝑬, where 𝜎 and 𝜖 are the conductivity [𝑆 𝑚⁄ ] 

and permittivity [𝐹 𝑚⁄ ] of the medium, 𝜔 is the angular frequency, it becomes: 

 

 ∇ ∙ ((𝜎 + 𝒋𝜔𝜖)𝑬) =   (2.21) 
 

 

Consideration of low-frequency currents only, which is usually the case in EIT at 

up to 1 MHz (Lionheart et al., 2004; Soni et al., 2006), leads to 𝜕𝑩 𝜕𝑡⁄ = 0 and the 

third equation in (2.19) (Faraday’s law) becomes ∇ × 𝑬 =  . Therefore, electric field 

is conservative and can be represented as a gradient of the electric potential 𝑬 = −∇V.  

The analysis of the quasi-static approximation of Maxwell’s equations applied for 

signals generated by excitable cells (Plonsey & Heppner, 1967) as well as for neural 

stimulation at frequencies up to 100 kHz (Bossetti et al., 2008) has shown that the 

capacitive effects introduced by the term 𝒋𝜔𝜖 do not significantly affect the output of 

the simulations. Therefore, this term can be neglected and the equation (2.21) thus 

transforms to the Laplace’s equation in the volume V: 
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 −∇ ∙ (𝜎∇𝑉) = 0  (2.22) 
 

 

Joined with the equations describing ionic currents, like HH (2.13) or more complex 

ones (McIntyre et al., 2002; Tigerholm et al., 2014; Sundt et al., 2015), the Laplace’s 

equation allows simulation of the AP propagation in both intracellular and extracellular 

spaces. For this, the membrane current applied to the boundary of the fibre Γ can be 

written as: 

 

 
𝐼𝑚|𝛤 = 𝜎𝑒𝛻𝑉𝑒 ⋅ 𝒏 = 𝐶𝑚

𝑑𝑉𝑚
𝑑𝑡
+ 𝐼𝑖𝑜𝑛(𝑉𝑚) , on Γ𝑚 (2.23) 

 

 

where 𝜎𝑒 and 𝑉𝑒 are conductivity, [
𝑆

𝑚
] and electric potential, [𝑚𝑉] of the 

extracellular space, Γ is the axonal boundary and n is the outward unit normal vector 

to it; the expression on the right designates the sum of the capacitive and ionic 

membrane currents of the nerve fibre, as in (2.12) or (2.13). 

The discussed general approach has previously been widely used for simulation of 

APs in the extracellular space (Holt & Koch, 1999; Martinek et al., 2008; Wang et al., 

2018; Pelot et al., 2019).  

Equations (2.22) and (2.23) can be solved numerically using discretization methods 

such as finite difference method (FDM), finite volume method (FVM) and finite 

element method (FEM). FDM approximates the differential equations as differences 

using regular grids, so the solution can be very efficient; however, this method has 

difficulties dealing with complex geometries (Smith, 1985). FVM and FEM are more 

general methods allowing to discretize the geometry into unstructured parts so that 

equations representing the system are reformulated and solved in each of these parts. 

FVM is a conservative method which utilises the equality of fluxes in the neighbouring 

elements and uses piecewise constant functions to approximate the solution (Eymard 

et al., 2000). FEM is a more powerful method which can use continuous approximating 

functions of any order and may be applied for simulation of majority of physical 

phenomena (Pepper, 2017).   
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Simplification of external field calculation for the case of isotropic extracellular 

medium has recently been introduced; it is called line source approximation (LSA) 

(Holt & Koch, 1999; Gold et al., 2006; Lubba et al., 2019). The idea is representation 

of the nerve fibre as a set of point sources and computation of the electric potential as 

the sum of the potentials of from all the points, instead of explicitly solving Laplace’s 

equation (2.22). LSA has shown itself accurate in EAPs simulation at distances larger 

than radius of the fibre (Holt, 1998); however, it requires the fibre to be separated from 

other sources in the medium which cannot be fulfilled in EIT where alternating 

currents interacting with the fibre are applied by means of external electrodes. 

2. External stimulation of nerve fibres 

Stimulation of nervous tissue with external electrodes has previously been 

implemented in various modelling studies (McNeal, 1976; Rattay, 1989; Greenberg et 

al., 1999; Raspopovic et al., 2011). The general approach utilised for this purpose was 

inclusion of an activating function (Rattay, 1999) into the equations for membrane 

currents (2.12) or (2.13). For a long homogeneous fibre with a constant diameter, the 

activating function can be written as: 

 

 
𝑓(𝑥, 𝑡) =

1

𝐶𝑚 ∙ 𝑅𝑖

𝑑2𝑉𝑒(𝑥, 𝑡)

𝑑𝑥2
 (2.24) 

 

 

where 𝑉𝑒 is the extracellular potential in [𝑚𝑉], Cm as the membrane capacitance in 

[𝐹 𝑚⁄ ], 𝑅𝑖 is the axial intracellular resistance, [𝛺 𝑚⁄ ], which for the homogeneous 

fibre with constant radius rax can be transferred into specific capacitance cm [𝐹 𝑚2]⁄  

and resistivity 𝜌𝑖 [𝛺 ∙ 𝑚] used in (2.13) as 𝑐𝑚 = 𝐶𝑚/ 𝜋𝑟𝑎𝑥 and 𝜌𝑖 = 𝜋𝑟𝑎𝑥
2 ∙ 𝑅𝑖. 

With inclusion of the activating function into the equation describing the temporal 

behaviour of the membrane in the HH model (2.13), it can be rewritten as: 

 

 𝑟𝑎𝑥
 𝜌𝑖
(
𝑑2𝑉𝑚(𝑥, 𝑡)

𝑑𝑥2
+
𝑑2𝑉𝑒(𝑥, 𝑡)

𝑑𝑥2
) = 𝑐𝑚

𝑑𝑉𝑚
𝑑𝑡
+ 𝐼𝑖𝑜𝑛(𝑉𝑚) (2.25) 
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The activating function can be easily derived by applying Ohm’s and Kirchhoff’s 

laws to the HH circuit (Figure 2.13) taking extracellular potential Re into consideration. 

The same can be done for any nerve fibre circuit of this type (Figure 2.3, Figure 2.15). 

For the general case of any fibre, the activating function can be written as: 

 

 
𝑓(𝑥, 𝑡) =

1

𝐶𝑚
[
𝑉𝑒,𝑛−1 − 𝑉𝑒,𝑛
𝑅𝑛−1/ + 𝑅𝑛/ 

+
𝑉𝑒,𝑛+1 − 𝑉𝑒,𝑛
𝑅𝑛+1/ + 𝑅𝑛/ 

] (2.26) 
 

 

where 𝑉𝑒,𝑛 and 𝑅𝑛 are the extracellular potential and axial intracellular resistance at 

the compartment n of the fibre.  

The concept of activating function can be applied for modelling stimulation any 

nerve fibre whose membrane currents are governed by the HH-type equations, such as 

(2.12), (2.13) or (2.16) – (2.18). 
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3.1 Introduction 

3.1.1 Overview 

Fast neural EIT has been successful in imaging electrically evoked fascicular 

activity of the largest myelinated fibres in rat sciatic nerve (Aristovich et al., 2018) 

and recurrent laryngeal nerve of the sheep (Chapman et al., 2019). In order to extend 

fast neural EIT to work in small autonomic nerves containing mostly unmyelinated, 

slow-conducting fibres with a smaller impedance response, EIT parameters require 

optimisation. These parameters include optimal strength and frequency of injected 

current as well as electrodes position and geometry. Also, thorough validation of 

experimental recordings has to be performed in order to understand consequences of 

the underlying interaction between applied current and dynamic conduction of action 

potentials. This was not possible with the previously developed passive model (Liston 

et al., 2012) which was not fully supported by experimental data (Aristovich et al., 

2015, 2018; Vongerichten, 2015; Faulkner et al., 2018b). 

Currently, there is no model able to accurately and simultaneously simulate both 

intracellular and extracellular electric fields in 3D for interacting active fibres. Ideally, 

the model would contain thousands of closely packed active unmyelinated and 

myelinated interacting fibres with varied sizes, propagation velocities and ion channel 
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properties. This chapter addresses the gap by developing the first building block of 

such a complete model via introducing models of single and multiple unmyelinated 

fibres with their accurately simulated external and internal electric fields. Various 

parameters affecting these models were studied including electrodes position, injected 

current and fibre complexity. The resulting models enable the experimental data 

previously obtained for an unmyelinated crab leg nerve (Holder, 1992; Boone, 1995; 

Gilad et al., 2009; Oh et al., 2011) to be interpreted and give preliminary values for 

optimal parameters of EIT in unmyelinated nerves.  

3.1.2 Purpose 

The overall purpose of the work presented in this chapter was to develop models of 

single and multiple unmyelinated nerve fibres and evaluate how impedance changes 

across them during the action potential. This was evaluated in models of one, two, four 

and eight interacting squid giant axons with Hodgkin-Huxley ion channels and a single 

C fibre with mammalian nociceptor ion channels. Specific questions to be addressed 

were:  

1. How does the impedance change (dZ) vary with experimental parameters? 

These include 

a. AC amplitude and frequency; 

b. size and position of the electrodes; 

c. number of fibres and interaction between them; 

d. model complexity; 

2. Does this agree with the previous studies? 

a. Does the model confirm experimental recordings (Holder, 1992; 

Boone, 1995; Gilad et al., 2009; Oh et al., 2011; Aristovich et al., 

2015)? 

b. Does it offer any explanation? 

c. Does it differ from the previous modelling (Liston et al., 2012)? 

3. Which model options are recommended for further modelling studies? 
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3.1.3 Experimental design 

The work was divided into the following steps: 

1) A 3D FEM Hodgkin-Huxley model of the giant axon of the squid was 

developed in three-dimensional space. An action potential (AP) was induced at 

the distal end of the axon and its propagation was simulated intra- and 

extracellularly. An electric current was applied through two external ring 

electrodes and the axonal activity was measured by the identical electrode with 

respect to ground (Figure 3.1). The model was transformed into the equivalent 

2D axisymmetric one to accelerate computations. The effects of varying 

experimental parameters on dZ were studied. This model became the basis for 

all further simulations.  

2) Additional axons were added such that their extracellular APs (EAPs) 

influenced each other. The effects of increasing number of fibres and their 

interactions was studied with 2, 4 and 8-axonal nerves. 

3) A full accurate 3D model of a mammalian C fibre (and corresponding 2D 

axisymmetric model) containing ten experimentally validated ion channels and 

variable concentrations of the ions inside and outside of the membrane was 

developed based on (Tigerholm et al., 2014). Simulations were performed 

using the same parameters as the HH model. To study how dZ is affected by 

the complexity of ion channels and spatial structure of the model, the C fibre 

model was compared with a spatially modified HH model whose dimensions, 

fibre diameter and axoplasm resistivity were reduced to match the C fibre, 

while temporal properties matched those of the classic HH model.  

4) The impedance changes simulated in the developed models were compared 

with the experimental data previously obtained in unmyelinated crab nerves. 
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3.2 Methods 

3.2.1 General modelling principles  

A model comprising a simultaneous simulation of electrical fields generated by 

nerve fibres and external sources in intra- and extracellular spaces was constructed 

using the finite element method (FEM) approach in COMSOL Multiphysics software 

(COMSOL Inc, USA). The finite element method implies the decomposition of the 

model geometry into separate parts so that element equations approximating the 

original ones are locally solved in each of the parts. These equations are then 

assembled into the global domain and solved there using initial conditions 

(Zienkiewicz et al., 1977). With the use of FEM, COMSOL allows automation of the 

solution of partial differential equations (PDEs) describing neural tissue in temporal 

and spatial dimensions. In addition to FEM, other methods allowing spatial 

discretization for solving PDEs exist – these are finite difference and finite volume 

methods (FDM and FVM). Although these methods provide faster solution, they either 

cannot be applied to non-regular geometries (FDM) (Smith, 1985) or lack flexibility 

of using high-order continuous approximating functions (FVM) (Section 2.3.4) 

(Eymard et al., 2000). 

A simplification of the experimental design in the crab leg nerve with the 4-

electrode impedance measurement paradigm was simulated (Aristovich et al., 2015). 

In this experiment, an excised crab nerve was placed on a linear electrode array, action 

potentials were stimulated by 2 electrodes at the proximal end of the nerve, electric 

current was injected in the middle and voltages were measured with the electrode 

located before the injecting ones in respect to the one at the distal end of the nerve.  

The geometry of the model consisted of extracellular space represented by a 3D 

cylinder with the electrical conductivity of an extracellular medium equalling 10 

mS/cm (Figure 3.1a) (Elia & Lamberti, 2013). Axons were represented as 1D lines, so 

that the membrane and intracellular space were not treated separately. In the model, 

the full transfer impedance of the system “fibre + external space” (Z) was continuously 
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measured; this impedance changed during AP propagation (dZ). By injecting current 

and measuring external voltage the dZ modulating this voltage could be measured. 

Equations representing Z and dZ in terms of injected current and measured voltage are 

given in (2.7) of section 2.1.2 and extended below:  

 

 
𝑍 =
|𝑉|𝑒𝑗(𝜔𝑡+𝜑𝑉)

|𝐼|𝑒𝑗(𝜔𝑡+𝜑𝐼)
= |𝑍|𝑒𝑗(𝜑𝑉−𝜑𝐼) ≈ |𝑍| (3.1) 

 

 

In the equation, Z, V and I are complex values representing electrical impedance of 

the system, measured voltage and injected current, |Z|, |V| and |I| are their amplitudes; 

φV and φI are voltage and current phases, where the phase shift Δφ = φV - φI ≈ 0 as the 

membrane does not significantly change the phase of the externally measured current 

(Cole & Curtis, 1939). However, the small phase shift may affect the measurements at 

high frequencies (Results, Figure 3.12). 

Impedance change dZ is equal to the relative change of the impedance Z(t0) when 

AP passes under the electrodes with respect to the baseline impedance of the system 

Z=Z(t). Using (3.1), the complex dZ and absolute |dZ| can be expressed in terms of the 

measured voltages V=V(t) and V(t0): 

 

 
𝑑𝑍 =
𝑍(𝑡) − 𝑍(𝑡0)

𝑍(𝑡)
 

=
|𝑉(𝑡)|𝑒𝑗𝛥𝜑 − |𝑉(𝑡0)|𝑒

𝑗𝛥𝜑0

|𝑉(𝑡)|𝑒𝑗𝛥𝜑
≈
|𝑉(𝑡)| − |𝑉(𝑡0)|

|𝑉(𝑡)|
= |𝑑𝑍| 

(3.2) 
 

 

Application of alternating current was simulated via two ring extracellular 

electrodes situated on the boundary of the cylinder (Figure 3.1): 

 

 𝐼𝑖𝑛𝑗 = ±𝐼𝑎𝑚𝑝 ⋅ 𝑠𝑖𝑛(  𝜋𝑓𝑡 + 𝜑) (3.3) 
 

where Iamp is an amplitude of the applied alternating current, it was expressed in the 

current density terms – [𝜇𝐴/𝑐𝑚2], f in [𝑘𝐻𝑧] and φ are its frequency and phase, time 

is in [𝑚𝑠].  
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Figure 3.1 Geometrical structure of the developed unmyelinated fibre models and their FEM meshes. 

(a) The 3D geometry of the models and corresponding 3D FEM mesh. AP was induced from the end 

of the axon(s); DC or AC was applied through two external electrodes (blue); the electric field was 

recorded by an external electrode (green) placed before the injecting ones (with respect to ground). 

Coordinates along the fibre are represented by x with corresponding indices, for example 𝑥𝑅
11 

designates the position of the beginning of the recording electrode and 𝑥𝐼
22  – the end of the second 

injecting electrode. Detailed models’ geometric dimensions are given in the text (Table 3.2);  

(b) Equivalent 2D axisymmetric model with a single fibre and corresponding triangular FEM mesh; 

(c) Side view on the 1-, 2-, 4- and 8-axonal HH models. In the 8-axonal model, axons were uniformly 

distributed inside the cylinder. 

 

In the model, APs were initiated at the end of the axons by bipolar stimulation. The 

compound activity was recorded by a recording electrode situated before the equally 

sized injecting electrodes with respect to ground (Figure 3.1). The model was grounded 
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at the distal end only to prevent the current from propagating along the fibre in the 

direction opposite to the AP and subsequently causing artefacts in dZ measurements 

(Aristovich et al., 2015). The coupled feedback approach was utilized in the developed 

model so that the current injected through the external electrodes affected the fibres 

and the fibres’ activity affected the external electric field recorded by the external 

electrode.  

In the model, resistance of the external medium was constant (0.1 kΩ·cm) while the 

impedance of the fibre was variable and depended on the transmembrane voltage. A 

volume conduction Laplace’s equation (2.22), equation defining activity of the axon 

subjected to external stimulation (2.25) and the equation describing their coupling with 

each other (2.23) were solved for each time step simultaneously with respect to 

membrane and external potentials Vm and Ve. 

In mathematical terms, the resulting equations to be solved in the models were as 

follows (Figure 3.1):  

 

 −𝛻 ∙ (𝜎𝛻𝑉𝑒(𝑥, 𝑦, 𝑧, 𝑡)) = 0 (3.4) 
 

 𝑟𝑎𝑥
 𝜌𝑖
(
𝑑2𝑉𝑚(𝑥, 𝑡)

𝑑𝑥2
+
𝑑2𝑉𝑒(𝑥, 𝑦𝑎𝑥 , 𝑧𝑎𝑥 , 𝑡)

𝑑𝑥2
) = 𝐶𝑚

𝑑𝑉𝑚(𝑥, 𝑡)

𝑑𝑡
+ 𝐼𝑖𝑜𝑛(𝑉𝑚(𝑥, 𝑡))  (3.5) 

 

 

The first equation describes the volume conduction in the external space (2.22) and 

the second is for the fibre (2.25); yax and zax are y and z coordinates of the axon in the 

model (Figure 3.1). The composition of ionic currents depends on the model and will 

be explained further. Boundary conditions (BCs) on 1D axons in 3D space were (y = 

yax, z = zax; Figure 3.1a): 

 

𝑥 ∈ (0, 𝑥𝑒𝑛𝑑):  

−𝛻(𝜎𝑒𝛻𝑉𝑒(𝑥, 𝑦𝑎𝑥 , 𝑧𝑎𝑥 , 𝑡)) ∙ 𝑆𝑛 =  𝜋𝑟𝑎𝑥 ∙ (𝐶𝑚
𝑑𝑉𝑚(𝑥, 𝑡)

𝑑𝑡
+ 𝐼𝑖𝑜𝑛(𝑉𝑚(𝑥, 𝑡))) 

(3.6) 
 

 

where rax is the radius of the axon, Sn is the unit surface area. All other variables are 

described in the previous sections of the thesis (eq. (2.23), (3.3)). 
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On the external cylinder (𝑦0
2 + 𝑧0

2 = 𝑅2, Figure 3.1a), BCs were: 

 

 𝑥 ∈ (0, 𝑥𝐼11): 𝜎𝑒𝛻𝑉𝑒(𝑥, 𝑦0, 𝑧0, 𝑡) ⋅ 𝒏 = 0 

𝑥 ∈ [𝑥𝐼11 , 𝑥𝐼12] ∶ 𝜎𝑒𝛻𝑉𝑒(𝑥, 𝑦0, 𝑧0, 𝑡) ⋅ 𝒏 = +𝐼𝑎𝑚𝑝 ⋅ 𝑠𝑖𝑛(  𝜋𝑓𝑡 + 𝜑) 

𝑥 ∈ (𝑥𝐼12 , 𝑥𝐼21): 𝜎𝑒𝛻𝑉𝑒(𝑥, 𝑦0, 𝑧0, 𝑡) ⋅ 𝒏 = 0 

𝑥 ∈ [𝑥𝐼21 , 𝑥𝐼22] ∶ 𝜎𝑒𝛻𝑉𝑒(𝑥, 𝑦0, 𝑧0, 𝑡) ⋅ 𝒏 = −𝐼𝑎𝑚𝑝 ⋅ 𝑠𝑖𝑛(  𝜋𝑓𝑡 + 𝜑) 

𝑥 ∈ (𝑥𝐼22 , 𝑥𝑒𝑛𝑑): 𝜎𝑒𝛻𝑉𝑒(𝑥, 𝑦0, 𝑧0, 𝑡) ⋅ 𝒏 = 0 

𝑥 = 0, 𝑦, 𝑧 ∈ (0, 𝑅): 𝜎𝑒𝛻𝑉𝑒(0, 𝑦, 𝑧, 𝑡) ⋅ 𝒏 = 0 

𝑥 = 𝑥𝑒𝑛𝑑, 𝑦, 𝑧 ∈ (0, 𝑅): 𝑉𝑒(𝑥𝑒𝑛𝑑, 𝑦, 𝑧, 𝑡) = 0 

(3.7) 
 

 

In the above equations, n is the inward unit normal vector to the surface of the outer 

cylinder, R is the radius of this cylinder. The initial conditions for the fibres depended 

on the model and are discussed further; the general condition in all developed models 

was 𝑉𝑒(𝑡 = 0) = 0.  

A 3D tetrahedral mesh was constructed, and the fibres were divided at equal 

intervals so that they formed a continuous mesh within the volume. The length of these 

intervals and the size of the mesh elements close to the fibre depend on the model and 

must be much smaller for the C fibre than for the HH model. This is because the C 

fibre diameter is 103 times smaller, leading to the smaller space constant and associated 

AP characteristics. The number of elements also grows with additional fibres because 

many small elements appear between the adjacent fibres.  

In all models, time stepping was implemented using the backward differentiation 

formula (BDF) with adaptive step size and variable order from 1 to 5. This method is 

implicit and known for its stability in the solution of stiff equations (Hindmarsh et al., 

2005). The corresponding systems of linear equations at each time step were solved in 

the spatial domain using a parallel sparse direct solver (PARDISO). PARDISO is used 

to solve systems of equations in the general form and allows efficient parallelization 

of the solution by the usage of multithreading (Schenk & Gärtner, 2004). Since 

PARDISO is the direct solver, convergence was tested by checking the approximate 

deviation of the obtained numerical solution from the exact solution. For this, the 

numerical solution was put back into the original equations at each time step so that 
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the relative difference between the resulting value and the obtained solution was found. 

If this relative difference, known as the residual, exceeded the specified tolerance – 

the time step was decreased. The relative tolerance depended on the model: it was set 

to 0.01 for the HH model and 0.001 for the C fibre model.  

 

 

Figure 3.2 Schematic representation of the feedback coupling models’ operation for a single fibre. 

Additional 3D geometry was to simulate electric field of the “pure” EAP with no injected current 

(V1); at each time step, their difference with the main field (V, with injected current) was applied to 

the active fibre (V-V1, red line) and resultant membrane current was coupled to the main 3D geometry 

(blue dashed line). 

 

Using the same approach and the signal processing routine (3.2.5 Signal 

processing) as in the experiment (Aristovich et al., 2015) together with the voltages 

obtained by solving the above equations, changes in the impedance Z of the system 

“fibre + external space” (dZ) were measured. As the main interest was in the electrical 

properties and corresponding impedance changes of the system as a whole, separate 

consideration of the membrane and the volume inside the fibre was omitted. 

For an accurate simulation of the fibre and external volume conductor affecting 

each other, 1D and 3D problems corresponding to them had to be solved twice. 

Otherwise, the extracellular action potential modelled by coupling the transmembrane 

current from the fibre to the external space (2.23) would be coupled back into the fibre 

(2.25). That would mean that the fibre would be doubly affected by its own electric 
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field that is already implicitly included in the cable theory underlying AP propagation. 

Thus, the main 1D/3D pair (Figure 3.2, top) served for simulation of the fibre, current 

injection into it and external activity recording. The additional 1D/3D pair (Figure 3.2, 

bottom) did the same simulations but without injected current. The simulated external 

electric field in the adjoint 3D geometry (EAP with no current) was being subtracted 

from the compound activity in the first 3D geometry to be applied to the fibre at each 

simulation step (V-V1 on Figure 3.2).  

To accelerate computations of the single-fibre models without reducing their 

complexity, 3D models were transformed into the 2D ones with axial symmetry 

(Figure 3.1b). For this, spatial coordinates (x, y, z) were exchanged for the cylindrical 

ones (r, z), the same was performed for the del operators. As a result, equation (3.4) 

was transformed into: 

 

 −𝜎 ∙ ∇𝑟𝑧
2 𝑉𝑒(𝑟, 𝑧, 𝑡) = 0 (3.8) 

 

where Laplace operator has the form 𝛻𝑟𝑧
2 =
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕

𝜕𝑟
) +

𝜕2

𝜕𝑧2
.   

The BCs at the boundary of the external cylinder remained the same as in the 3D 

case (3.7), with the coordinates x, y exchanged for r and x exchanged for z: 

 

 𝑧 ∈ (0, 𝑧𝐼11): 𝜎𝑒𝛻𝑉𝑒(𝑅, 𝑧, 𝑡) ⋅ 𝒏 = 0 

𝑧 ∈ [𝑧𝐼11 , 𝑧𝐼12] ∶ 𝜎𝑒𝛻𝑉𝑒(𝑅, 𝑧, 𝑡) ⋅ 𝒏 = +𝐼𝑎𝑚𝑝 ⋅ 𝑠𝑖𝑛(  𝜋𝑓𝑡 + 𝜑) 

𝑧 ∈ (𝑧𝐼12 , 𝑧𝐼21): 𝜎𝑒𝛻𝑉𝑒(𝑅, 𝑧, 𝑡) ⋅ 𝒏 = 0 

𝑧 ∈ [𝑧𝐼21 , 𝑧𝐼22] ∶ 𝜎𝑒𝛻𝑉𝑒(𝑅, 𝑧, 𝑡) ⋅ 𝒏 = −𝐼𝑎𝑚𝑝 ⋅ 𝑠𝑖𝑛(  𝜋𝑓𝑡 + 𝜑) 

𝑧 ∈ (𝑧𝐼22 , 𝑧𝑒𝑛𝑑): 𝜎𝑒𝛻𝑉𝑒(𝑅, 𝑧, 𝑡) ⋅ 𝒏 = 0 

𝑧 = 0, 𝑟 ∈ (𝑟𝑎𝑥, 𝑅): 𝜎𝑒𝛻𝑉𝑒(𝑟, 0, 𝑡) ⋅ 𝒏 = 0 

𝑧 = 𝑧𝑒𝑛𝑑, 𝑟 ∈ (𝑟𝑎𝑥 , 𝑅): 𝑉𝑒(𝑟, 𝑧𝑒𝑛𝑑, 𝑡) = 0 

(3.9) 
 

 

The BCs for the fibres (3.6) were reorganized into: 
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 𝑧 ∈ (0, 𝑧𝑒𝑛𝑑): 

𝜎𝑒𝛻𝑉𝑒(𝑟𝑎𝑥 , 𝑧, 𝑡) ⋅ 𝒏 = 𝐶𝑚
𝑑𝑉𝑚(𝑧, 𝑡)

𝑑𝑡
+ 𝐼𝑖𝑜𝑛(𝑉𝑚(𝑧, 𝑡)) , on 𝛤𝑚 

(3.10) 
 

 

where Γm is the boundary of the axon (Figure 3.1b), rax is the radius of the axon, n 

is the outward unit normal vector. The numerical schemes for solving the reduced 

models remained the same as for the original 3D models. 

Unlike in the 3D model with 1-dimensional fibre, in the 2D model the fibre was 

represented as a cylinder which did not significantly affect the precision of simulations 

at the distances exceeding fibre diameter (Results, Figure 3.6). The model had a 

triangular FEM mesh which made the computations up to 10 times faster. The main 

disadvantage of this model is its lack of flexibility: multiple fibres and non-symmetric 

electrodes cannot be simulated. 

3.2.2 FEM model of Hodgkin-Huxley squid giant axon 

The system of four equations (2.13) describing the HH model is presented in section 

2.3.2. Extension of the main circuit equation (first equation in (2.13)) with the 

activating function (2.24) originating from the application of the external field to the 

fibre, is shown below (3.11). The variables’ definitions are provided in the literature 

review following (2.13) and (2.24). 

 

 𝑟𝑎𝑥
 𝜌𝑖
(
𝑑2𝑉𝑚
𝑑𝑥2
+
𝑑2𝑉𝑒
𝑑𝑥2
) = 𝑐𝑚

𝑑𝑉𝑚
𝑑𝑡
+ 

𝑔̅𝐾𝑛
4(𝑉𝑚 − 𝑉𝐾) + 𝑔̅𝑁𝑎𝑚

3ℎ(𝑉𝑚 − 𝑉𝑁𝑎) + 𝑔𝐿𝑒𝑎𝑘(𝑉𝑚 − 𝑉𝐿) 

(3.11) 
 

 

In this model, six equations have been solved in total including the system of four 

equations consisting of (3.11) and gating variables from (2.13), external electric field 

(2.22) and coupling from 1D fibre to the surrounding volume (2.23). All the utilized 

boundary conditions are presented in equation (3.7). The main parameters and initial 

values of the model were chosen as in (Hodgkin & Huxley, 1952) (Table 3.1). 
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Geometrical parameters of the HH model were as follows: the axon was 60 cm long, 

the recording electrode was situated 18.65 cm from the AP initiation point; with the 

injecting electrodes placed 0.1 cm further, separated by a 0.4-cm gap, similarly to 

(Aristovich et al., 2015). All of the electrodes had a cylindrical shape 0.1 cm in width 

and 0.6 cm in diameter (Figure 3.1a, Table 3.2). The extracellular space had a 

cylindrical shape with the same diameter as the electrodes. The diameter of the squid 

giant axon was 0.1 cm, but it was modelled as a 1D line.   

3D FEM mesh of the model consisted of 

approximately 55 thousand tetrahedral 

elements with the axon divided by 600 equal 

intervals. The size of the mesh was chosen 

using mesh convergence analysis (Shapeev & 

Lin, 2009): the number of elements was being 

increased until the solution stayed constant. 

As a result, a minimal number of elements 

required to obtain an accurate solution was 

used. In order to accelerate computations, the 

model was transformed into the 2D one with 

the axial symmetry along the fibre length 

(Figure 3.1b). All the geometrical parameters 

remained the same except for the mesh which 

became triangular (7500 elements in total). 

The numerical approach used for the solution 

of the reduced 2D axisymmetric models was 

the same as for the 3D models presented in the previous section.  

The first step was to study the effect of reducing the model into the 2D 

axisymmetric paradigm. For that, impedance changes simulated with this model at DC 

and 625 Hz were compared with the ones obtained with the 3D model (Figure 3.1a, b). 

Then, direct currents of various amplitudes (1.9 – 188 µA) and of two polarities at 

each amplitude were injected to check the amplitudes at which the impedance change 

was proportional to the applied current as it follows from Ohm’s law. Too small 

currents would not allow dZ measurement due to modelling errors or, in case of 

Table 3.1 

ELECTRICAL PARAMETERS OF THE 

HODGKIN-HUXLEY MODEL 

Parameter Value 

ρi 50 Ω·cm 

Cm 1 µF/cm2 

𝑔̄𝑁𝑎 120 mS/cm2 

𝑔̄𝐾 36 mS/cm2 

𝑔̄𝐿𝑒𝑎𝑘 0.3 mS/cm2 

VNa 55 mV 

VK –72 mV 

VLeak –50 mV 

rax 0.5 mm 

σe 10 mS/cm 

Vm0 –60.15 mV 

m0 0.05 

n0 0.32 

h0 0.6 
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experiments, due to instrumentation noise; too large currents would influence the ion 

channels and modify the nerve physiology so that the dZ recordings become 

unreliable. Thus, the challenge was to find the optimal AC amplitude for the nerve dZ 

recording. The chosen amplitude was used at all studied frequencies. The same 

procedure was performed using 625 Hz AC, with a larger range of currents (1.9 – 754 

µA). 

Direct current and a range of alternating currents at 225 Hz, 625 Hz, 1025 Hz, 2, 4, 

6, 8 and 10 kHz at the previously chosen amplitude were applied through the external 

injecting electrodes. The AP was initiated, and the signal was recorded via the external 

recording electrode with respect to ground. Simulations lasted 40 milliseconds to let 

the action potential, with velocity of ~15 m/s, propagate to the end of the axon. The 

time step used in the simulations equalled 10 µs which was equivalent to the recording 

sampling rate of 100 kHz. The obtained impedance changes were validated by 

injecting the current in different phase-antiphase pairs locked to the AP initiation. This 

procedure allowed elimination of artefacts occurring from the AP and its possible 

coherence with the AC wave. A more detailed explanation on the injection paradigm, 

extraction of dZ from the recorded voltages and on the origin of artefacts is provided 

in the signal processing section 3.2.5.  

 

Table 3.2 

GEOMETRICAL PARAMETERS OF THE HH AND C FIBRE MODELS 

Parameter HH axon C fibre 

Length 60 cm 2 cm 

Fibre diameter 1 mm 1 µm 

Propagation velocity 15 m/s 0.6 m/s 

Diameter of the electrodes / 

surrounding volume, Del 
0.6 cm*; 0.05 – 1 cm 10 µm*; 5 – 100 µm 

Width of the electrodes, Hel 0.1 cm; 0.02 – 0.4 cm 10 µm; 5 – 50 µm 

Distance between recording and 

injecting electrodes, ΔxR 
0.1 cm; 0.02 – 5.1 cm 0.01 cm; 10-3 – 0.1 cm 

Distance between injecting 

electrodes, ΔxI 
0.4 cm; 0.2 – 5.1 cm 2·10-3 cm; 10-3 – 0.1 cm 

* First number in each row is the value used by default; range of values shows a variation of the 

parameter 
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To study the influence of the size and location of the electrodes on the simulations, 

diameters of the electrodes (together with the corresponding surrounding volume) and 

their widths were varied from 0.05 to 1 cm and 0.02 to 0.4 cm respectively. The 

position of the recording electrode with respect to the injecting pair (distance ∆xR), 

was varied from 0.02 to 5.1 cm. The same was done for the relative positions of the 

injecting electrodes ∆xI, from 0.2 to 5.1 cm (Table 3.2).  

To study artefacts introduced by moving the recording electrode, dZ was measured 

and compared at different distances before and after the site of current injection, to 

match the experimental technique (Aristovich et al., 2015).  

To investigate how dZ depends on temperature, DC and AC currents, at 225, 625, 

1025 Hz, 2, 4 kHz, were injected at 6.3 (original temperature), 11 and 21oC. This was 

necessary for a valid comparison of the results of the HH model with the C fibre model 

and crab nerve experiments. 

Finally, the changes in the flow of injected current through the membrane channels 

were studied to gain insight into the source of the observed apparent dZ. These changes 

were recorded and averaged at 18.65-18.75 cm along the fibre, the same location as 

the recording electrode.  

3.2.3 A multiple fibre model with/without interaction  

A model with multiple interacting fibres contained adjacent HH axons forming an 

“artificial nerve”, so that axons interacted via extracellular potentials. The interaction 

between adjacent fibres was included in the model, as the external membrane activity 

of the fibres has previously been shown to affect membrane potentials of adjacent 

fibres (Clark & Plonsey, 1971; Barr & Plonsey, 1992). The effect of interaction was 

expected to be especially strong in the model containing HH axons due to high 

amplitudes of their extracellular APs (≈ 6.5 mV, Figure 3.5).  

The scheme of the N-axon model operation (Figure 3.3) was similar to the one of a 

single fibre depicted in Figure 3.2. It contained one main and N additional 3D 

geometries. The first main 3D geometry served for the EIT current injection as well as 
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for compound nervous activity recording. N additional geometries simulated EAPs of 

each fibre separately without the applied current: their aim was to exclude the 

influence of the fibres’ aggregate external field back on themselves but keep 

interaction between them. Two 1D models were done for each fibre (2·N 1D models 

in total): the first one served for simulation of the fibre with the applied current to be 

then transferred back to the main 3D geometry; the second one was needed to model 

interaction between axons so that each axon influenced all the surrounding axons apart 

from itself. The resultant field in each of the N additional geometries was subtracted 

from the compound activity in the main 3D geometry to be applied to each fibre at 

each simulation step. Eventually, this is an extension of the approach used for the 

single fibre (Figure 3.2). 

 

 

Figure 3.3 Schematic representation of the feedback coupling models’ operation for multiple fibres. 

(a) Multiple interacting fibres. The same paradigm as for a single fibre was used, but there were N 

additional 3D geometries to simulate pure EAPs of N differently located fibres (V1, …, VN); 

(b) Multiple non-interacting fibres. The difference from the model with interaction is that there was 

only one additional 3D geometry with no applied current which included EAPs of all axons simulated 

together (V1). 

 

1D geometries were simulated with the HH equations (2.13), (3.11); current 

injection (3.3) together with volume conduction (2.22) and coupling (2.23) were 

modelled in all 3D geometries. All sub-models were fully coupled and computed 

simultaneously as described in the previous sections.  
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The dimensions of the multi-axon models were the same as the one-axon ones 

(Figure 3.1). The tetrahedral meshes of the 2, 4 and 8 axonal models contained 60, 78 

and 88 thousand elements. To study the effect of interaction on dZ, all the intermediate 

N 3D models at the bottom of Figure 3.3a needed to be exchanged by one 3D model 

containing all the axons but no applied current (Figure 3.3b). The pure compound 

activity simulated in this geometry could then be subtracted from the summary activity 

in the main 3D geometry to be applied to each axon.  

The complexity of the model with interaction increased with the number of fibres 

– an additional 3D and two additional 1D models had to be simulated for each added 

axon. Therefore, the influence of interaction on the impedance needed to be studied as 

it was a major consumer of computational resources. By taking interaction away or, 

by introducing a coefficient representing interaction, the model complexity could be 

dramatically reduced, and the computation time could be significantly decreased. 

In order to measure the effect of the number of axons on the impedance change and 

to study the effect of interaction, the same simulations as for a single HH axon were 

undertaken for 2, 4, and 8 interacting axons (Figure 3.1c) – larger amount of fibres 

demanded considerably longer computation times. 

3.2.4 Model of a mammalian C fibre 

 Because the electrical properties of a giant axon in the HH model differ from those 

small unmyelinated fibres, and because it, therefore, could not predict the behaviour 

of their activity with high accuracy, a new complex model had to be developed. It was 

based on one of the latest experimentally validated models of unmyelinated fibres 

(Tigerholm et al., 2014) where the temporal dynamics of ion channels in mammalian 

C-nociceptor had been simulated. Compared to this model, the one developed in this 

chapter additionally contained the spatial dimension to simulate AP propagation as 

well as coupling with the extracellular space to inject current and record the activity 

externally.  

Compared to the HH axon, the dimensions generally decreased because the 

diameter, magnitude of EAP and propagation velocity of a C fibre were many times 
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smaller (1 µm, 2 mV and ~0.6 m/s; Table 3.2). Therefore, the diameters (and 

corresponding external volume) and lengths of the electrodes were reduced to 10 µm, 

and the length of the axon to 2 cm. The electrodes were situated 0.769 cm from the 

end and the distances between them were: ∆xR = 0.01 cm and ∆xI = 0.002 cm (Figure 

3.1a, Table 3.2). This model was also constructed in a 2D axisymmetric paradigm, as 

was done for a single HH fibre. Its triangular mesh contained about 4800 elements 

with the fibre divided by 1600 intervals.  

The model contained ten time and potential-dependent nonlinear ion channels 

which were shown to be present in C-nociceptors (Tigerholm et al., 2014): Nav1.7, 

Nav1.8, Nav1.9, KDR, KA, KM, KNa, h-channel, Na-K Pump and Leakage. All the 

internal fibre equations and main parameters used for simulations were taken from 

(Tigerholm et al., 2014) (Table 3.3). The external properties were modelled the same 

way as in the HH case (2.22) – (2.23), (3.7).  

The main equation of the model describing AP propagation along the fibre and 

external current injection repeats the of for the HH model (3.11) except for the different 

ionic currents: 

 

 𝑟𝑎𝑥
 𝜌𝑖
(
𝑑2𝑉𝑚
𝑑𝑥2
+
𝑑2𝑉𝑒
𝑑𝑥2
) = 𝐶𝑚

𝑑𝑉𝑚
𝑑𝑡
+ 𝐼𝑖𝑜𝑛(𝑉𝑚) ; 

 𝐼𝑖𝑜𝑛(𝑉𝑚) = 𝐼𝑁𝑎𝑣1.7 + 𝐼𝑁𝑎𝑣1.8 + 𝐼𝑁𝑎𝑣1.9 + 𝐼𝐾𝐷𝑅 + 𝐼𝐾𝐴 + 𝐼𝐾𝑀 + 

+𝐼ℎ + 𝐼𝐾𝑁𝑎 + 𝐼𝑁𝑎/𝐾 𝑝𝑢𝑚𝑝 + 𝐼𝐿𝑒𝑎𝑘 

(3.12) 
 

 

Equations defining the ionic currents are presented below: 

  

 𝐼𝑁𝑎𝑣1.7 =  𝑔̄𝑁𝑎𝑣1.7𝑚17
3ℎ17𝑠17 ⋅ (𝑉𝑚 − 𝐸𝑁𝑎([𝑁𝑎𝑠𝑝], [𝑁𝑎𝑖𝑛])) (3.13) 

 

𝐼𝑁𝑎𝑣1.8 =  𝑔̄𝑁𝑎𝑣1.8𝑚18
3ℎ18𝑠18𝑢18 ⋅ (𝑉𝑚 − 𝐸𝑁𝑎([𝑁𝑎𝑠𝑝], [𝑁𝑎𝑖𝑛])) (3.14) 

 

𝐼𝑁𝑎𝑣1.9 =  𝑔̄𝑁𝑎𝑣1.9𝑚19ℎ19𝑠19 ⋅ (𝑉𝑚 − 𝐸𝑁𝑎([𝑁𝑎𝑠𝑝], [𝑁𝑎𝑖𝑛])) (3.15) 
 

𝐼𝐾𝐷𝑅 =  𝑔̄𝐾𝐷𝑅𝑛𝐾𝐷𝑅
4 ⋅ (𝑉𝑚 − 𝐸𝐾([𝐾𝑠𝑝], [𝐾𝑖𝑛])) (3.16) 
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𝐼𝐾𝐴 =  𝑔̄𝐾𝐴𝑛𝐾𝐴ℎ𝐾𝐴 ⋅ (𝑉𝑚 − 𝐸𝐾([𝐾𝑠𝑝], [𝐾𝑖𝑛])) (3.17) 
 

𝐼𝐾𝑀 =  𝑔̄𝐾𝑀 ⋅ (𝑛𝑠𝑀/4 + 3𝑛𝑓𝑀/4) ⋅ (𝑉𝑚 − 𝐸𝐾([𝐾𝑠𝑝], [𝐾𝑖𝑛])) (3.18) 
 

𝐼ℎ,𝑁𝑎 =  0.5𝑔̄ℎ ⋅ (𝑛𝑠ℎ/ + 𝑛𝑓ℎ/ ) ⋅ (𝑉𝑚 + 𝐸𝑁𝑎([𝑁𝑎𝑠𝑝], [𝑁𝑎𝑖𝑛])) (3.19) 
 

𝐼ℎ,𝐾 =  0.5𝑔̄ℎ ⋅ (𝑛𝑠ℎ/ + 𝑛𝑓ℎ/ ) ⋅ (𝑉𝑚 + 𝐸𝐾([𝐾𝑠𝑝], [𝐾𝑖𝑛])) (3.20) 
 

𝐼𝐾𝑁𝑎 =  𝑔𝐾𝑁𝑎([𝑁𝑎𝑖𝑛]) ⋅ 𝑤𝐾𝑁𝑎 ⋅ (𝑉𝑚 − 𝐸𝐾([𝐾𝑠𝑝], [𝐾𝑖𝑛])) (3.21) 
 

𝐼𝑝𝑢𝑚𝑝 =  𝐼𝐾𝑝𝑢𝑚𝑝 + 𝐼𝑁𝑎𝑝𝑢𝑚𝑝  (3.22) 
 

𝐼𝐾𝑝𝑢𝑚𝑝 =  1.6 /(1 + (6.7/([𝑁𝑎𝑖𝑛] + 8))
3) ∙ 𝑔̄𝑝𝑢𝑚𝑝/(1 + 1/[𝐾𝑠𝑝])

2

+ 1/(1 + (67.6/([𝑁𝑎𝑖𝑛] + 8))
3) 

(3.23) 
 

𝐼𝑁𝑎𝑝𝑢𝑚𝑝 = −
3

 
𝐼𝐾𝑝𝑢𝑚𝑝  

(3.24) 
 

𝐼𝐿𝑒𝑎𝑘 =  𝑔𝐾𝐿𝑒𝑎𝑘(𝐼𝑖𝑜𝑛) ⋅ (𝑉𝑚 − 𝐸𝐾([𝐾𝑠𝑝], [𝐾𝑖𝑛])) + 𝑔𝑁𝑎𝐿𝑒𝑎𝑘(𝐼𝑖𝑜𝑛)

⋅ (𝑉𝑚 − 𝐸𝑁𝑎([𝑁𝑎𝑠𝑝], [𝑁𝑎𝑖𝑛])) 

(3.25) 
 

 

Gating variables for ion channels were computed via the same scheme as for the 

HH model (2.13):  

 

 𝑑𝑚17
𝑑𝑡
= 𝑘𝑁𝑎,𝐾,ℎ(𝛼𝑚17(𝑉𝑚) ⋅ (1 − 𝑚17) − 𝛽𝑚17(𝑉𝑚) ⋅ 𝑚17) 

(3.26) 
 

 

and similarly, for all other gating variables. Functions 𝛼𝑥(𝑉) and 𝛽𝑥(𝑉) nonlinearly 

depend on voltage, their equations can be found in (Tigerholm et al., 2014); kNa, kK and 

kh are temperature coefficients with QNa, QK  and Qh presented in Table 3.3; T0 = 21ºC 

(Sheets et al., 2007; Tigerholm et al., 2014). 

Sodium and potassium ionic concentrations in the axoplasm and periaxonal space 

were modelled as dynamical values differing with the membrane potential and the 

ionic currents (Scriven, 1981): 
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𝑑[𝑁𝑎𝑠𝑝, 𝐾𝑠𝑝]

𝑑𝑡
=

(
−∑𝐼𝑁𝑎,𝐾
𝐹 − 𝐷𝑁𝑎,𝐾([𝑁𝑎𝑠𝑝, 𝐾𝑠𝑝] − [𝑁𝑎0, 𝐾0]))

𝜃
 

(3.27) 
 

 𝑑[𝑁𝑎𝑖𝑛, 𝐾𝑖𝑛]

𝑑𝑡
=
 ∑𝐼𝑁𝑎,𝐾
𝐹𝑅

 (3.28) 
 

 

where θ is the width of periaxonal 

space, [cm], F – Faraday’s constant, 

[µA·ms/mmol], R – radius of the axon, 

[cm], 𝐷𝑁𝑎,𝐾  – permeability to Na or K 

ions respectively, [cm/ms]; [𝑁𝑎𝑠𝑝, 𝐾𝑠𝑝] 

and [𝑁𝑎𝑖𝑛, 𝐾𝑖𝑛] are periaxonal or 

intracellular concentrations of Na and K 

in [mM], [𝑁𝑎0, 𝐾0] – concentrations in 

the extracellular space in [mM]; ∑𝐼𝑁𝑎,𝐾 – 

sum of sodium or potassium currents 

through the membrane, [µA/cm2]. 

Overall, a system of 22 equations has 

been solved to model the C fibre: 17 for 

gating variables (3.26), 4 for 

concentrations (3.27), (3.28) and the 

main equation (3.12); equation (2.23) 

was used to simulate fibre-to-external 

space coupling and (2.22) for 3D volume 

conduction, the same as in the HH model. 

The unknowns were potentials Vm, Ve, 

gating variables m17,18,19, h17,18,19, s17,18,19, 

u18, nKdr, nKa, hKa, nsM, nfM, nsh, nfh, wkNa; 

concentrations of intracellular and 

periaxonal space [Nain], [Nasp], [Kin], [Ksp]. All known parameters are presented in 

Table 3.3. The boundary conditions were the same as in the HH model (3.7). The initial 

conditions were chosen by assuming  𝑑𝑋 𝑑𝑡⁄ = 0, where X is one of the gating 

Table 3.3 

ELECTRICAL PARAMETERS OF THE C 

FIBRE MODEL 

Parameter Value 

ρi 35.4 Ωcm 

Cm 1 µF/cm2 

[Nain]0 11.4 mM 

[Nasp]0 154 mM 

[Naout] 154 mM 

[Kin]0 121.7 mM 

[Ksp]0 5.6 mM 

[Kout] 5.6 mM 

DNa,K 0.2·10-7 cm/ms 

Q10,Na 2.5 

Q10,K 3.3 

Q10,h 3 

θ 29 nm 

dC 1 µm 

T 300 K 

σe 10 mS/cm 

𝑔̄𝑁𝑎𝑣1.7 106.6 mS/cm2 

𝑔̄𝑁𝑎𝑣1.8 242.7124 mS/cm2 

𝑔̄𝑁𝑎𝑣1.9 0.0948 mS/cm2 

𝑔̄𝐾𝐷𝑅  18.0017 mS/cm2 

𝑔̄𝐾𝐴  12.7555 mS/cm2 

𝑔̄𝐾𝑀  6.9733 mS/cm2 

𝑔̄ℎ 2.5377 mS/cm2 

𝑔̄𝐾𝑁𝑎  0.0012 mS/cm2 

𝑔̄𝐾𝑝𝑢𝑚𝑝  0.0048 mS/cm2 

Vm0 -55 mV 
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variables in (3.26) or concentrations in (3.27), and solving the corresponding equation 

in respect to this variable. 

The same simulations were carried out as for the HH axon, except the model 

variables were decreased. The range of measuring currents was 0.03 to 63 nA; distance 

from the recording electrode to the site of injection (∆xR) and distance between the 

injecting electrodes (∆xI) were varied from 10-3 to 0.1 cm; diameter and width of the 

electrodes were varied from 5·10-4 to 1·10-2 and 5·10-3 cm respectively (Table 3.2). 

Impedance changes at different recording positions were studied. Temperatures at 

which simulations were run included 37 (original temperature), 30 and 21ºC for 

comparison with the HH axon.  

To compare the effect of complex ion channels and spatial structure of the fibre on 

the impedance response, a simpler model able to represent the activity of small 

unmyelinated fibre, and with reduced computational demands, was developed: it had 

HH ion channels, but the diameter of the fibre was reduced, changing the AP shape 

and propagation velocity. If the impedance response of this model matches the C fibre 

model, it will reduce complexity of the further modelling studies that may include the 

development of the full model containing numerous axons. 

The geometric dimensions of the model were the same as in the C fibre model 

(Table 3.2); the diameter of the axon and the axoplasm resistivity were decreased to 

correspond to the C fibre (1 μm and 0.0354 kOhm·cm). For this model, the frequency 

sweep was carried out with the same parameters as for the C fibre and the processed 

data was compared to both previous models.  

The COMSOL model files for both the HH and C fibre models are provided in the 

EIT-lab GitHub repository at https://github.com/EIT-team/Unmyelinated-Model. 

3.2.5 Signal processing 

Signal processing to extract apparent impedance changes (dZ) of the system “fibre 

+ external volume” during AP propagation was identical for all the constructed models 

(Figure 3.4).  

https://github.com/EIT-team/Unmyelinated-Model
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Figure 3.4 Extraction of the dZ during AP propagation for the developed models of unmyelinated 

fibres.  

(a) DC. Signals simulated with the reversed polarity of the current were subtracted. The resultant 

impedance change was normalized to obtain the percentage value; 

(b) AC. Signals simulated with the AC in phase and in antiphase with respect to AP initiation are 

subtracted. Impedance change is computed via band-pass filtering, demodulation and normalization 

of the resultant signal. 

 

For the case of AC injection (Figure 3.4b), to obtain a single measurement, two 

simulations with AC applied in phase and in antiphase locked to the time of AP 

initiation were undertaken. At all simulated frequencies (225, 625, 1025 Hz, 2, 4, 6, 8, 

10 kHz) in-phase recordings included phases: 0, π/4, π/2; and antiphases -π, -3π/4, -

π/2 respectively; additional simulations with AC phases 7π/8, 5π/8, 19π/20 and -π/8, -

3π/8, -π/20 were done at 225 and 625 Hz for HH fibre and at 225, 625 and 1025 Hz 

for C fibre. This was necessary as these frequencies were lower or equal to the 

characteristic frequency of the dZ of the corresponding fibre, which increased errors 

in subsequent demodulation. In the DC case (Figure 3.4a), two simulations with the 

switched positive and negative electrodes were carried out for the same purpose. Based 

on this, standard deviations of the dZ at the range of frequencies were also calculated. 
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For the chosen amplitude of the current, [5 frequencies · (3 phases + 3 antiphases)] + 

[2 frequencies (225,625) · (3 phases + 3 antiphases)] + [1 frequency (DC) · 2 states] = 

44 simulations were carried out. 

At all frequencies, the resultant signals from simulations in phase and in antiphase 

were subtracted leading to cancellation of the AP and doubling of the dZ. Then, for 

AC currents, long (500 ms) sine waves of the same amplitude and frequency were 

artificially added on both sides of the signal to remove ringing artefacts in the 

subsequent filtered and demodulated signal. To completely eliminate the EAP, band-

pass filtering around the carrier frequency was carried out using a 1st order Butterworth 

filter in forward and backward directions with a 400 Hz bandwidth for frequencies 

starting from 625 Hz and 200 Hz for 225 Hz. Finally, due to the fact that the membrane 

does not change the phase angle of the applied current (Cole & Curtis, 1939), the 

absolute value of the sought-for dZ could be found by demodulation using the modulus 

of the Hilbert transform (3.1). Then, it was normalized with respect to the baseline so 

that a percentage dZ plot could be obtained. For the DC case, signals with the current 

in the reversed polarity were subtracted and the resultant signal was normalized. 

 

3.3 Results 

3.3.1 FEM model of Hodgkin-Huxley squid giant axon 

In the model, the AP amplitude, duration, spatial length and conduction velocity 

(110 mV, 17 ms, 26 cm, 15 m/s) corresponded to those recorded experimentally and 

modelled by Hodgkin and Huxley (Hodgkin & Huxley, 1952). The amplitude of the 

simulated extracellular AP was approximately 7 mV (Figure 3.5a).  
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Figure 3.5 Action potentials simulated with the developed unmyelinated fibres models.  

(a) HH model; (b) C fibre model. For both models, the first two columns show intracellular (AP) and 

extracellular action potentials (EAP) in time; columns 3 and 4 – along the fibre length. 

 

 

Figure 3.6 Comparison of dZ computed with 3D (blue lines) and 2D axisymmetric (red lines) models 

of (a) a single HH axon and (b) a C fibre at DC (top) and 625 Hz (bottom).  

Time markers during simulation: AP excitation – 2 ms from the start (both fibres); AP passes under 

the recording electrode – 14.5 ms (HH axon) and 12 ms (C fibre), AP reaches the end of the fibres in 

40 ms (HH axon) and in 26 ms (C fibre). 

 

(a)

(b)

(a) (b)
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In a 2D axisymmetric model, the dZ closely matched those of the 3D model (Figure 

3.6a, dZ at DC and 625 Hz are shown as an example). The 2D axisymmetric model 

was then therefore used for all further single fibre simulations. 

 

 

Figure 3.7 Modelled dZ at various current amplitudes for (a) HH fibre, DC; (b) HH fibre, 625 Hz; 

(c) C fibre, DC. 

Titles highlighted in red show the current outside the safe range. Red and blue lines designate dZ 

recorded with current at different polarities. Distortions at the starts of the dZ curves are edge effects 

caused by switching the current on and its effect on the membrane. AP time markers are the same as 

in Figure 3.6. 

 

The modelled dZ were linear with the applied DC currents from 1.9 up to 7.5 µA. 

Currents in this range did not induce membrane excitation and the dZ values in 

percentage terms were equal for all currents (Figure 3.7a). At higher currents, the dZ 

became nonlinear and started to depend on polarity. The upper limit increased at higher 

frequencies: for example, at 625 Hz dZ was still linear with the current at 377 µA 

(Figure 3.7b). Thus, currents below 7.5 µA were “safe” at all frequencies so that they 

did not activate the membrane and the measured impedance changes were linear with 

them; 7.5 µA was therefore chosen for use in all simulations with HH axons.  

(a) (b) (c)

HH, DC HH, 625 Hz C fibre, DC
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Figure 3.8 Dependence of the simulated dZ on frequency for the HH and C fibre models. 

(a) Examples of dZ at DC, 625 Hz, 4 and 10 kHz. Negative impedance changes are highlighted by 

blues circles, positive ones – by red circles; (b) Absolute dZ vs. frequency for HH axon, I = 7.5 µA; 

(c) Absolute dZ vs. frequency for C fibre, I = 6.3 nA. Blue lines designate impedance decrease 

(negative change), red – impedance increase (positive change). Error bars are standard deviations 

calculated for the dZ simulated at different phases of the current (AC) and at different polarities (DC). 

Time markers are in the caption of Figure 3.6. 

 

For the initial geometry of the model (Figure 3.1, ΔxR = 0.1 cm, ΔxI = 0.4 cm), the 

simulated negative apparent impedance changes fell with frequency from -3.36±0.04% 

at DC to -0.7±0.6% at 225 Hz, -0.8±0.2% at 625 Hz to -0.30±0.04% at 1025 Hz and 

were around zero above 2 kHz (Figure 3.8a). The errors were larger at low frequencies 

because they were close to the characteristic frequency of dZ (~200 Hz, Figure 3.7a, 

b) resulting in errors in demodulation of corresponding sine waves (Figure 3.4). 

Significant dZ increases were observed at DC – 0.14±0.04%, and at high frequencies, 

where they were relatively constant at 2, 4 and 6 kHz: 0.06±0.04%, 0.07±0.02%, 
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0.06±0.01%, and decreased to 0.05±0.01% and 0.03±0.01% at 8 and 10 kHz (Figure 

3.8a).  

 

Figure 3.9 Absolute HH and C fibre dZ versus size and position of electrodes.  

(a) HH model and (b) C fibre model dependence on distance between the recording and injection 

electrodes (ΔxR) and between injecting electrodes (ΔxI). dZ vs ΔxR is depicted with blue lines, dZ vs 

ΔxI – with red lines. Negative dZ are shown by solid lines, positive – by dashed lines.  

(c) Dependence of dZ on width (Hel) and diameter (Del) of the electrodes. HH model is on the top 

two graphs, C fibre – bottom graphs. Solid lines designate negative dZ, dashed lines – positive dZ; 

(d) Scheme of the dimensions used in the study. 

 

When increasing distances between the recording and injecting electrodes (ΔxR) and 

between the injecting electrodes (ΔxI), a dZ decrease was observed which was steeper 
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(b)
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with ΔxR (Figure 3.9a). There was also a decrease at very small distances determined 

by limitations of the model: the size of the mesh elements became larger than these 

distances. The maximum values of dZ were simulated at ΔxR = 0.1 cm and ΔxI = 0.35 

cm. The impedance increase was constant along the range of these values. The 

negative and positive dZ decreased significantly with increasing radii of the electrodes 

and was approximately independent of their length (Figure 3.9c). 

 

 

Figure 3.10 dZ in the HH and C fibre models simulated at DC with different positions of the 

recording electrode: 2, 0.6 and 0.1 cm before and after the site of injection.  

The dZ shape recorded prior the site of injection stays the same with magnitude falling with distance 

(left side). Artefacts appear after the site of injection, in accordance with (Aristovich et al., 2015) 

(right side). Colours represent different DC polarity. 

 

The shape and negative polarity of the dZ recorded before the site of injection was 

the same irrespective of the distance from it and the polarity of the current (Figure 

3.10). In contrast, the dZ measured with the electrodes placed after the injection site 

were affected by artefacts, in accordance with experiments (Aristovich et al., 2015). 
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Figure 3.11 Temperature dependence of the negative and positive dZ in the HH model (a) and the C 

fibre model (b).  

For the HH model, dZ were simulated at 6.3 (original temperature), 11 and 21ºC; for the C fibre: at 

37 (original temperature), 30 and 21ºC. EAPs recorded at the same temperatures are embedded into 

the graphs. 

 

As temperature increased, durations and amplitudes of APs decreased, and 

propagation velocities increased; however, the general behaviour of the dZ with 

frequency did not significantly differ across temperatures (Figure 3.11a). The only 

feature found to depend on temperature was a steepness of decrease in the negative dZ 

with frequency. For instance, dZ decrease was zero above 625 Hz at 21ºC, while at the 

original temperature, it approached zero only at 2 kHz (Figure 3.11a). 
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HH EAPs
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Figure 3.12 dZ, the associated change in the flow of the injected EIT current through the membrane 

and the change in its phase during depolarization.  

(a) dZ simulated at DC, 625 Hz and 4 kHz; (b) Flow of the injected EIT current through ion channels 

(blue lines), capacitance (red lines) and full current flow (black lines) at DC, 625 Hz and 4 kHz for 

HH axon and C fibre; (c) Change in the phase of the injected AC current measured internally (i.e. 

current which has gone through the membrane, full lines) and externally (by the recording electrode, 

dashed lines) at 625 Hz (blue) and 4 kHz (red) for HH axon and C fibre. 

 

Absolute changes in the EIT current flow through all the pathways of the membrane 

were found during AP propagation at DC, at 625 Hz and at 4 kHz (Figure 3.12b). At 

625 Hz, before depolarization had reached the location of current injection (< 12 ms), 

there was a steady baseline current flow through capacitance (~2.2 μA/cm2) and small 

flows through Na, K and leakage ion channels (~0.3 μA/cm2 in total). During AP, there 

was a switch in the membrane path through which AC flowed: C-current fell 

significantly (to ~0.4 μA/cm2) which was accompanied by increases in flows through 

ion channels to ~3 μA/cm2. Total AC flow through the membrane also increased during 
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AP from 2.4 to 3.5 μA/cm2, equalling 45 % increase. This total increase in the current 

flow through the membrane explains the observed negative impedance change. 

At DC, there was no flow through capacitance at rest, consequently, there was a 

larger relative increase in the full current flow determining larger dZ (0.2 to 1.8 

μA/cm2, or 800 %) (Figure 3.12b). At 4 kHz the behaviour of the currents flow was 

similar to 625 Hz. However, there was a small decrease in the total AC flow through 

the membrane (6.7 to 6.3 μA/cm2, or 6%, Figure 3.12b), which was due to a phase 

change of the current flowing through the membrane during depolarization (Figure 

3.12c). Because of this phase change, the absolute value of the total current change 

was not equal to the sum of the absolute values of changes of separate currents; 

therefore, a decrease in the current flow and an increase in the impedance could be 

seen (Figure 3.8, Figure 3.12). The phase change of the external signal recorded by the 

recording electrode was negligible (Figure 3.12c) due to high baseline voltage (in 

accordance with the experimental study (Cole & Curtis, 1939)); it did not allow to 

account for it in the dZ signal processing (Figure 3.4). 

3.3.2 Multi-axon model. Effect of size and interaction 

For increased axon numbers up to 8, the relationship between the number of axons 

and impedance change was close to linear, so that the ratio of dZ with N axons to dZ 

with 1 axon was close to N (Figure 3.13). Also, the dZ response did not differ after 

turning off interaction between axons: one-way ANOVA test was accomplished which 

revealed no significant differences across multi-axonal models with and without 

interaction at all frequencies. 
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Figure 3.13 Negative (a) and positive (b) dZ for 1-, 2-, 4- and 8-axonal HH models with and without 

interaction.  

Colours represent a model with a different number of axons. Models simulated with the interaction 

between axons are designated by full lines, without interaction – by dashed lines. 

3.3.3 Model of a mammalian C fibre  

Compared to the AP of HH axons, the AP of a C fibre was shorter in duration and 

of a more complex shape, representing various properties of excitation such as 

depolarizing afterpotentials and hyperpolarizing afterpotentials (Figure 3.5b). 

As for the HH axon, the difference in dZ of 3D and 2D axisymmetric models was 

indistinguishable (Figure 3.6b). 

The linear dependence of the C fibre dZ on the measuring currents from 0.6 to 6.3 

nA (0.4 to 4 mA/cm2) could be seen so that the percentage dZ change stayed the same 

at these currents (Figure 3.7c). At 62.8 nA dZ became nonlinear and dependent on the 

(a)

(b)
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polarity. Thus, 6.3 nA was shown to be the maximum current giving correct dZ values; 

it was therefore confirmed to be within the safe range and suitable for all further 

modelling. 

The impedance response of a C fibre differed from the HH axon. The impedance 

changes were: -1.34 ± 0.02%, -0.45 ± 0.45%, -0.34 ± 0.21 %, -0.29 ± 0.09%, -0.13 ± 

0.03% at DC, 225, 625, 1025 and 2000 Hz respectively; it was zero at higher 

frequencies (Figure 3.8b). The positive impedance changes comparable to those of the 

HH fibre were also recorded. They were significantly different from zero at DC, 4, 6, 

8 and 10 kHz, with the values of 0.17±0.02%, 0.05±0.03% at DC and 4 kHz and 

0.07±0.01% at 6, 8 and 10 kHz (Figure 3.8b). 

Apparent positive dZ appeared for the same reasons as for the squid giant axon, 

where the phase of the current flowing through the membrane changes during an AP. 

This makes the absolute value of the sum of these currents different from the sum of 

their absolute values, causing an artefactual reproducible decrease in the total current 

flow and corresponding increase in the dZ (Figure 3.12). 

Large standard errors at low frequencies demonstrated high sensitivity of dZ to the 

phase of the applied current. The reason was that the characteristic frequency of the C 

fibre’s dZ (~ 500 Hz, higher than of HH axon, Figure 3.7c) was close to these 

frequencies affecting the precision of demodulation in signal processing (Figure 3.4). 

The negative dZ decreased with increasing ΔxR and ΔxI, and the positive change 

stayed approximately constant, the same way as in HH fibre (Figure 3.9b). High 

positive dZ was seen at very close distances to the site of injection (ΔxR < 0.01 cm), 

which could be due to edge effects of the current distribution. The recorded impedance 

change decreased with increasing electrodes diameter and did not change with their 

width (Figure 3.9c). Equivalently to the HH case, the dZ artefacts appear only if the 

recording takes place after the site of current injection, in agreement with (Aristovich 

et al., 2015) (Figure 3.10). 

Frequency responses of the dZ at different temperatures did not significantly differ 

(Figure 3.11b), the same as for the HH model. For this model, steepness of the dZ-

frequency curve was found to be independent of temperature. 
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Figure 3.14 dZ of a spatially modified HH axon with the geometrical dimensions as in the C fibre 

model and ion channels of the HH model.  

For comparison, negative dZ of the initial HH and C fibre models are depicted by grey lines (also 

presented with standard deviations in Figure 3.8). 

 

 The impedance response of the model of a spatially modified HH axon which had 

the same geometric dimensions as the C fibre model (including the size of the 

electrodes and the volume conductor, see section 3.2.4), was significantly different 

from the C fibre model and became closer to the HH model of the squid giant axon 

(Figure 3.14). The negative dZ fell about 8-fold from DC to 1 kHz, its values were: -

2.28 ± 0.03%, -0.6 ± 0.6%, -0.57 ± 0.59%, -0.30 ± 0.08%, -0.17 ± 0.05% at DC, 225, 

625, 1025 and 2000 Hz respectively and zero at other frequencies. Significant 

impedance increases equalling 0.08 ± 0.04% and 0.13 ± 0.05% were also observed at 

4 and 6 kHz. 

3.3.4 Comparison with experimental data 

The values of the negative dZ obtained in the crab nerve experiments (4–6ºC) at 

125-1025 Hz  (Oh et al., 2011; Aristovich et al., 2015) together with those at DC 

(Holder, 1992; Boone, 1995; Gilad et al., 2009) have the same general frequency 

dependence as the ones simulated in this chapter with all models. For example, in (Oh 
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et al., 2011) authors obtained 0.25 to 0.06% negative changes at 125 to 825 Hz 

recorded on 15 nerves; in (Aristovich et al., 2015) negative dZ were from 0.05 to 

0.02% at 225 to 1025 Hz respectively on 12 crab walking leg nerves. At DC, dZ 

equalling from 0.2 – 1 % were obtained (Holder, 1992; Boone, 1995; Gilad et al., 

2009). No studies are available to confirm positive changes at high frequencies, – they 

are to be carried out in future.  

The dependence of dZ on the distance between electrodes (ΔxR, ΔxI) predicted by 

the models developed here agreed with the experimental values for ΔxI (Boone, 1995; 

Gilad et al., 2009; Oh et al., 2011) but differed from the ones for ΔxR (Holder, 1992; 

Gilad et al., 2009). In the latter studies, authors claimed that ΔxR should be not less 

than 2 space constants so that the applied current does not modify it. However, 

simulations in the current study showed the inverse – as long as the current is small 

enough, the AP is not modified by it even at the small distances from the site of 

injection (Figure 3.10). 

3.4 Discussion  

3.4.1 Summary of results 

1) For both the HH and C fibre models, a negative apparent dZ was maximal at DC 

and steadily decreased at higher frequencies (Figure 3.8); this was supported by 

the available experimental data (Holder, 1992; Boone, 1995; Gilad et al., 2009; Oh 

et al., 2011; Aristovich et al., 2015). The rate of the decrease was lower in the C 

fibre model which could be explained by its smaller size and complex ion channels 

kinetics. In addition, in both models, this rate was lower than the one predicted by 

the previously developed Liston’s passive model where no change is expected at 

above 1 kHz (Liston et al., 2012). Small positive dZ were also observed at high 

frequencies and DC (Figure 3.8). 
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2) The dZ expressed in percent did not depend on the amplitude of applied current in 

the safe range, the upper bound of which equalled 7.5 µA for HH axon and 6.3 nA 

for a C fibre.  

3) In a 3D model with multiple interacting axons, the dZ increase was near-linear 

with the number of fibres at all frequencies. The interaction between fibres did not 

significantly affect the dZ (Figure 3.13). 

4) dZ generally decreased with increasing distances between the recording and 

injecting electrodes (ΔxR) and between injecting electrodes (ΔxI,). It corresponded 

to the experimental values for ΔxI (Boone, 1995; Gilad et al., 2009; Oh et al., 2011) 

but differed from the ones for ΔxR (Holder, 1992; Gilad et al., 2009) where it was 

claimed that it had to be higher than two space constants of the nerve not to modify 

the AP. However, modelling showed that AP is not modified at much closer 

distances if the recording electrode lies before the site of current injection (Figure 

3.10). The dZ decreased significantly with increasing electrodes diameter and 

almost did not change with increasing electrodes width (Figure 3.9). 

5) The absolute dZ magnitude did not significantly differ with temperature in both 

HH and C fibre models; steepness of decrease of the negative dZ with frequency 

increased with temperature for the HH model (Figure 3.11).  

6) The dZ measured during membrane excitation was found to originate from an 

increase in total current through the membrane which, in turn, was caused by an 

increase in current flow through sodium and subsequent increase through 

potassium ion channels. A small impedance increase at DC could be explained by 

the inactivation phase of sodium channels as well as by redistribution of the applied 

current under the recording electrode; at AC, it was due to a phase change during 

AP at high frequencies (Figure 3.12c).  

7) Simulations confirmed previous experimental findings: the highest negative 

impedance change was observed at DC and decreased with frequency in both HH 

and C fibre models. The models also confirmed that to measure maximal dZ, the 

injecting electrodes should be as close as possible. However, contrary to the 
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previous studies, findings suggest reduction of the distance between the recording 

and injecting electrodes: if the current is low enough, it will neither modify the AP 

nor cause an artefact (Figure 3.10). 

3.4.2 Answers to the stated questions 

1. How does the impedance change vary with experimental parameters?  

a) AC amplitude and frequency; 

The maximum current level for the HH axon at which dZ were linear with it was 

7.5 µA at DC (Figure 3.7a); although slightly higher currents did not induce AP, the 

impedance response became nonlinear and started to depend on the direction of the 

current, which is not suitable for experimental measurements. The safe range 

significantly widened with frequency (Figure 3.7b). For a C fibre, the safe limit of the 

current not affecting the fibre was much smaller – 6.3 nA (Figure 3.7c). Such a small 

current could be explained by very small electrodes needed to maintain a high current 

density.  

The HH axon model with the initial electrode position (Figure 3.1) showed that the 

maximum dZ decrease was observed at DC and decreased with frequency, so that it 

was about 10 times smaller at 1025 Hz and approached zero at 4 kHz and above (Figure 

3.8). Small significant impedance increases were also observed at DC and higher than 

4 kHz. The complex mammalian C fibre model also showed a similar dZ behaviour 

with the negative dZ decreasing with frequency; however, the steepness of this 

decrease was slower – about 2 times from DC to 1025 Hz compared to the 10 times 

for HH model and 8 times for spatially modified HH model (Figure 3.8, Figure 3.14). 

Positive dZ with the same frequency dependence were also observed.  

b) size and position of the electrodes; 

Location of the electrodes was found to play a critical role in the dZ determination. 

For both HH and C fibre models, negative dZ decreased with increasing ΔxR and ΔxI 

(Figure 3.9a, b). Positive dZ were approximately constant across frequencies except 
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for the C fibre one becoming artefactual at very small ΔxR. For both models, the dZ 

decreased with increasing electrodes diameter and stayed constant with increasing 

their width (Figure 3.9c). 

c) number of fibres and interaction between them 

The HH model with up to 8 axons demonstrated that the number of fibres had no 

effect on the dependence of dZ on frequency and influenced only the magnitude of the 

dZ. The dZ was shown to be approximately equal to a single-axon dZ multiplied by a 

number of axons (Figure 3.13). 

With one-way ANOVA test, the interaction between fibres was shown not to be 

critical for evaluating the absolute dZ in the HH model. It did not affect the general 

trend of the impedance dependence on frequency and its effect did not rise with the 

number of fibres (Figure 3.13). For a C fibre model, the magnitude of its EAP on the 

surface is 3 times smaller than the one of the HH axon (Figure 3.5) meaning that the 

effect on the adjacent fibres will also be considerably smaller even if they are closely 

packed. Thus, the interaction is expected to have no significance for dZ simulation in 

this model.  

d) Model complexity 

The complexity of the model significantly affected magnitudes of simulated dZ but 

did not influence its overall behaviour with frequency. The slope of the dZ decrease of 

the complex fibre was smaller compared to the HH axon as well as the modified HH 

axon with the size reduced to the C fibre’s one. Therefore, it can be inferred that the 

kinetics of complex ion channels play a vital role in dZ determination. In addition, 

when the two models were simulated at the same temperature (21ºC), the slopes 

remained at similar levels.  
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2. Does this agree with previous studies? 

a) Does the model confirm the experimental recordings? 

The described behaviour of the impedance decrease with frequency is in agreement 

with the obtained experimental data for the unmyelinated crab nerve (Holder, 1992; 

Boone, 1995; Gilad et al., 2009; Oh et al., 2011; Aristovich et al., 2015).  

Absolute values obtained for the whole thousands-of-fibres crab nerve were not 

many times higher than the ones modelled here due to several reasons. First, fibres in 

the real nerve do not fire simultaneously which causes dispersion weakening the 

compound action potential formed by APs of separate fibres; that consequently 

decreases the amplitude of the impedance change. Also, to obtain visible impedance 

changes of a single fibre, the modelled electrodes were 1) extremely small (1.6·10-4 

mm2 surface for a C fibre) to inject low current with a high current density; 2) located 

very close to the fibre (5·10-3 mm) to increase the amplitude of the recorded EAP. It 

strongly increased the obtained absolute dZ compared to the experimental ones where 

the surface of the smallest used electrodes was up to 0.5 mm2 (Aristovich et al., 2015). 

Finally, real nerves have plenty of connective tissue with conductivity lower than 

extracellular fluid modelled in this study.  

However, the model reached its original purpose which was to validate general dZ 

behaviour with EIT parameters, find the optimal parameters to obtain the largest 

response and to investigate into a biophysical explanation of impedance changes. Also, 

because the dependence of the negative dZ on frequency did not change with the 

number of fibres, predictions on frequency obtained for a single fibre can be used for 

a real nerve experiments which is a significant result of the current work. 

b) Does it offer a biophysical explanation? 

The analysis of the membrane currents in both models has shown that the nature of 

the externally recorded apparent impedance change could be presented as a 

superposition of two effects: change in the current amplitude flowing through different 

membrane channels and change of its phase accompanying excitation.  

The significant apparent positive impedance changes were simulated at DC and at 

high frequencies. Those at DC appear straight after the negative change and may have 
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been due to the inactivation phase of the sodium ion channels which causes a small 

decrease in the full current flow in respect to the resting state following depolarization 

(Figure 3.12b); this effect becomes negligible at AC. These changes show the real 

increase in the membrane impedance because the resistance of the sodium channels 

during the phase of inactivation decreases compared to the resting state. Redistribution 

of the current flowing under the external electrode induced by the ion channels’ 

activity might also affect the impedance measurements and cause an increase in the 

apparent dZ and decrease in the full current flowing through the membrane (Figure 

3.12b), according to the equation (3.2) where the current was assumed to be constant. 

The apparent positive dZ at high frequencies were found to be associated with the 

change in the phase of the injected current flowing through the membrane (Figure 

3.12). AC phase alters during AP at all frequencies, but due to the same time of 

occurrence with the negative change and because the negative change is much larger 

at low frequencies, significant positive dZ related to a phase change can be observed 

only at high frequencies where negative changes are absent. These changes do not 

reflect the rise of real membrane impedance consisting of the active (resistive) and 

reactive (capacitive) components; conversely, they show an artefactual dZ increase 

appearing due to the summation of sine waves in divergent phases corresponding to 

the flow of AC current through ion channels and capacitance.  

Although the impedance increase is artefactual, it is reproducible and constant 

across high frequencies, which could allow it to be used for EIT nerve imaging. Using 

high-frequency currents will allow accurate extraction of impedance changes even 

with high characteristic frequencies.  

c) Does it differ from the previous modelling? 

The active models developed in this chapter generally support findings obtained 

with the passive model created for the same purpose (Liston et al., 2012). However, 

comparison of the active models demonstrated that the rate of the dZ decrease with 

frequency may be different depending on the ion channels present in the membrane, 

which can be of high importance in choosing the optimal AC frequency for imaging 

the particular nerve with fast neural EIT. Also, the active models predict the existence 
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of positive dZ at DC and high frequencies which are due to be experimentally 

validated. 

3. Which model options are recommended for further modelling studies? 

The models predicted similar general dependence of dZ on frequency, which was 

supported by experimental data (Figure 3.8). In addition, apparent positive impedance 

changes at higher frequencies (Figure 3.8), dependence of dZ on dimensions of the 

models (Figure 3.9) and the biophysical nature of the observed dZ (Figure 3.12) were 

also consistent across the models. However, there were differences in the temporal and 

spatial properties of the APs (Figure 3.5), the slope of the decrease of dZ with 

frequency (Figure 3.8) and the maximum injected current not causing artefacts (Figure 

3.7). Therefore, as distinctions exist, and because the mammalian C fibre model was 

experimentally validated, it must be currently preferred over the HH model for any 

future developments of a full model of the autonomic nerve. The paradigm used to 

build the multiple-fibre HH model (Figure 3.13) could also be used. 

3.4.3 Technical issues 

The main technical problem faced during simulations was the lack of computational 

resources due to the highly nonlinear nature of the equations to be solved 

simultaneously on a large FEM mesh. For example, the complex C fibre model took 

about a day to compute at a single AC frequency on a 16-core workstation. Simulations 

of HH models with multiple fibres in three-dimensional space were also very slow: the 

8-axonal model took approximately 2 days to be computed. This time is expected to 

rise dramatically with the number of fibres and with added complex ion channels. To 

develop a full model, thousands of such interacting fibres are needed making the brute 

force approach to be inadequate.  

There are two possible ways to overcome this limitation. The first is to simplify the 

model so that complex ion channels’ dynamics and spatial structure of each separate 

fibre is not taken into account. This could for example be achieved by the development 

of a bidomain model (Altman & Plonsey, 1988; Sadleir, 2010; Yin et al., 2013) where 
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groups of fibres are treated as a uniformly distributed medium so that the membrane, 

extracellular and intracellular spaces occupy the same volume and are described by the 

same set of equations.  However, the lumped bidomain approach has several 

shortcomings which are vital for accurate simulation of the activity of the whole nerve. 

First, it does not take into account the discrete fibre geometry which becomes 

important when fibres possess different properties or fire non-synchronously (Clark & 

Plonsey, 1971); second, during external stimulation, fibres lying close to the nerve 

periphery must reach the threshold faster than the deeper ones, which is not fulfilled 

in the lumped model  (Altman & Plonsey, 1990); finally, the fibres are usually not 

uniformly distributed in the nerve as bidomain model implies. 

The second approach for acceleration is the search for technical solutions to run the 

precise model with separate fibres more rapidly. These solutions may include the use 

of GPU or more efficient parallelizing involving the division of the model into several 

parts. 

3.5 Conclusion 

In this chapter, full 3D FEM models of single and multiple interacting nerve fibres 

were developed. The activity of the fibres was modelled using either the HH model of 

squid giant axon or the mammalian C fibre model. With these models, impedance 

changes during AP propagation were simulated under various external conditions. The 

simulated negative dZ were in agreement with available experimental data; positive 

dZ were obtained at higher frequencies. The model allows for an optimized method of 

EIT for unmyelinated nerves by predicting the necessary parameters of the injected 

current and the optimal size and position of the electrodes. By studying membrane 

currents during EIT current injection, the model provided a biophysical explanation of 

the simulated impedance changes which is of high importance for understanding the 

nature of observed experimental results. 
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4.1 Introduction 

4.1.1 Overview 

The previous chapter covered the implementation of the novel approach for 

modelling unmyelinated fibres bi-directionally coupled with external space. The 

models allowed simulation of impedance changes during neuronal activity and were 

successfully applied for prediction of the optimal parameters of fast neural EIT 

providing the largest possible dZ in unmyelinated fibres. The current chapter extends 

the developed approach to model a mammalian myelinated fibre in order to optimise 

EIT for this fibre type as well as to interpret the previously obtained experimental data 

and to better understand the physiological origin of the observed dZ.  

The existing models of myelinated fibres are discussed in section 2.3.3. Although 

some of the models are very spatially accurate (Halter & Clark, 1991; McIntyre et al., 

2002) or possess ion channels simulating realistic mammalian nodal and internodal 

APs (Bostock et al., 1991; Howells et al., 2012), none of them allows full coupling of 

the fibre’s internal activity with external space in both directions as well as estimation 

of dZ during neuronal activity. The model created in this chapter includes 

experimentally validated ion channels, simulates realistic behaviour of the human 

thickly myelinated fibre (Howells et al., 2012) and enables continuous measurement 

of its impedance during AP propagation. 

Chapter 4  

FEM model of a myelinated fibre 
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4.1.2 Purpose 

The general purpose of the study described in this chapter was to create an accurate 

FEM model of a myelinated fibre coupled with extracellular space and predict the dZ 

during AP propagation under various stimulation paradigms. Specific questions to be 

answered here were:  

1. How does the impedance change depend on the following experimental 

parameters: 

a. Amplitude and frequency of the injected current; 

b. Signal processing specifications;  

c. size and position of the electrodes. 

2. Does this agree with the previous studies? 

a. Does the model validate recent experimental recordings? 

b. Does it offer an explanation on the origin of the dZ? 

c. Does it provide results different from the recent model of unmyelinated 

fibres presented in Chapter 3 and the passive model (Liston et al., 

2012)? 

3. What recommendations can be given for optimization of imaging myelinated 

fibres using fast neural EIT? 

The results will improve the understanding of the measured impedance changes and 

lead to optimization the parameters of EIT for imaging in myelinated nerves, which 

will facilitate the development of a full nerve model with myelinated and unmyelinated 

fibres. 

4.1.3 Experimental design 

The work was divided into the following steps.  

1) An accurate one-dimensional FEM double-cable model of a mammalian 

sensory fibre was developed. It contained ten ion channels based on the 

experimentally validated space-clamped model (Howells et al., 2012): four at 
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the node and six at the internode. Realistic morphology of the fibre (Berthold 

& Rydmark, 1983) was implemented similarly to the one used in (McIntyre et 

al., 2002). To match the experimental data, several geometrical (Table 4.1) and 

electrical (Table 4.2) parameters were modified in the new FEM model. With 

these changes, the conduction velocity of the fibre and the shape of membrane 

potential at the nodes and internodes in resting state and during excitation, 

matched the experimentally validated space-clamped model (Howells et al., 

2012). 

2) The completed 1D model was incorporated into a 3D-equivalent 2D 

axisymmetric paradigm to form a full coupled model of the fibre with the 

external space, similarly to the fully coupled C fibre model developed in 

Chapter 3. An AP was induced at the distal end of the fibre and its propagation 

was simulated intra- and extra-cellularly. Two external ring electrodes were 

used to apply an electrical current and an additional equal electrode was to 

record the axonal activity with respect to ground (Figure 4.1). The effects of 

varying experimental parameters on measured dZ were studied and the optimal 

parameters were established. 

3) The dZ simulated in the developed model were compared with the available 

experimental data on myelinated nerves. 

4.2 Methods 

4.2.1 Double cable FEM model of a mammalian 

myelinated fibre 

The simulated myelinated fibre consisted of three types of sections: nodes, 

paranodes and internodes. This structure partly replicated the one observed by 

Berthold and Rydmark (Berthold & Rydmark, 1983), where authors described nodal 

(N), myelin sheath attachment (MYSA), fluted (FLUT) and stereotyped internodal 
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(STIN) segments. Compared to this full structure, the FLUT segment of the fibre 

modelled in this study was combined with the STIN. It is in accordance with 

(Stephanova & Bostock, 1995) where the FLUT region was also omitted and with the 

MRG model (McIntyre et al., 2002) where FLUT region’s properties were exactly the 

same as of the STIN internodal section. 

The approach used for development of the model was the finite element method 

(FEM) which has not been used for simulation of myelinated fibres before. Previously 

developed compartmental models (Stephanova & Bostock, 1995; McIntyre et al., 

2002) utilized various forms of the finite-difference approach (FDM): the fibre was 

also divided into smaller parts, but these parts were modelled as passive resistors so 

that the necessary equations were solved only in the points connecting them; such an 

approach is used in NEURON software (Hines & Carnevale, 1997). However, if the 

purpose is to obtain a solution continuously along the fibre as well as to couple it with 

an external space in 3D (or, equivalently, 2D axisymmetric) in both directions, the 

FEM approach is desirable which utilizes nonlinear shape functions approximating the 

solution of the 2-nd order PDEs at any point in space (Zienkiewicz et al., 1977). In 

addition, usage of FEM involves discretization of the spatial domain into unstructured 

parts thus allowing to solve models with variously shaped geometries. The model was 

built in COMSOL Multiphysics software in conjunction with Matlab, which allowed 

automatic solving of any partial differential equations using FEM. 

A double-cable paradigm was used to simulate the spatial structure of the fibre 

(Figure 2.15). In this paradigm, the axoplasm and the periaxonal space between the 

axon and myelin sheath were modelled as two parallel cables, which allowed 

simulation of rapid propagation of APs in the internodes without representing them as 

perfect insulators. A double-cable model was previously used to accurately simulate 

temporal and spatial distribution of APs in mammalian nerve fibres as well as its 

various properties such as realistic AP shape, conduction velocity, behaviour in the 

nodes and internodes (Halter & Clark, 1991; Stephanova & Bostock, 1995; McIntyre 

et al., 2002). The geometrical parameters of the modelled fibre were taken from an 

electron microscopy study (Berthold & Rydmark, 1983); they were similar to the ones 

used in the MRG model (McIntyre et al., 2002). However, several changes had to be 
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made due to the transition from the previously used compartmental model to FEM 

(Table 4.1). 

 

Table 4.1 

GEOMETRICAL PARAMETERS OF THE MYELINATED FIBRE MODEL 

Segment Parameter Value 

Node 

Length 1 µm 

Diameter 5.5 µm 

Mesh 2 el. 

MYSA 

Length 3 µm 

Diameter 12.7 µm 

Mesh 2 el., l2 = 2ln
* 

Periaxonal space width 0.02 nm 

N of myelin lamellae 150 

Myelin thickness 2·1.65 µm 

STIN 

Length 1 µm 

Diameter 12.7 µm 

Mesh 10 el., symmetric, exponential** 

Periaxonal space width 0.2 nm 

N of myelin lamellae 150 

Myelin thickness 2·1.65 µm 

Fibre 

Length 15 cm 

Full diameter with myelin 16 µm 

Propagation velocity 65 m/s 

* Size of the element adjacent to the node is 2 times smaller  

** Exponential decrease towards the ends of the region, size of the largest central element is 100x 

size the smallest end elements 

  

 Electrical parameters from the realistic space-clamped model of the human sensory 

fibre (Howells et al., 2012) were modified for the nodal and internodal APs as well as 

conduction velocity (CV) of the resultant FEM model to correspond to this space-

clamped model and experimental results (Table 4.2). Nodal channels were represented 

by combined transient and persistent sodium (Na) needed for nerve excitation and 

regulation of subthreshold excitability; fast and slow potassium (Ksn, Kfn), Leakage 

(Lkn) and pump (Pn) mainly responsible for membrane potential stabilization.  At the 

internode there were slow and fast potassium (Ksi, Kfi), hyperpolarization-activated h-

channel, leakage (Lki) and pump (Pi) whose main functions were to stabilize resting 
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ionic fluxes as well as to regulate repetitive firing and pace-making (Christian & Togo, 

1995; Lüthi & McCormick, 1998; McAlexander & Undem, 2000; Kiss, 2008).  

The equations used for simulation of various segments of the fibre were directly 

derived from the double-cable circuit presented in Figure 2.15 using Ohm’s and 

Kirchhoff’s laws. They are discussed in the section 2.3.3 in terms of geometry 

dependent electrical parameters (2.16)–(2.18). Switching to geometry independent 

specific resistivities and capacitances, these equations transform as follows. At the 

nodes: 

 

 𝑟𝑛
 𝜌𝑖
(
𝜕2𝑉𝑎𝑥
𝜕𝑥2
+
𝜕2𝑉𝑚
𝜕𝑥2
) = 𝑐𝑛

𝑑𝑉𝑎𝑥
𝑑𝑡
+  𝐼𝑖𝑜𝑛(𝑉𝑎𝑥)

𝑛𝑜𝑑𝑒

; 

 𝐼𝑖𝑜𝑛(𝑉𝑎𝑥)

𝑛𝑜𝑑𝑒

= 𝐼𝑁𝑎 + 𝐼𝐾𝑠𝑛 + 𝐼𝐾𝑓𝑛 + 𝐼𝐿𝑘𝑛 + 𝐼𝑃𝑛 

(4.1) 
 

 𝑉𝑚 = 0 (4.2) 

 

where Vax and Vm are transmembrane and transmyelin potentials, [mV]; cn is specific 

nodal capacitance, [μF/cm2]; rn is the radius of the axon at the node, [cm]; ρi is the 

resistivity of the axoplasm, [kΩ·cm]; Iion(Vax) – ionic currents at the nodal area 

[μA/cm2], which are represented by ion channels from (Howells et al., 2012). Due to 

absence of myelin sheath at the node, the transmyelin potential there equals zero. 

At the internodal axolemma and across the myelin: 

 

 𝑟𝑎𝑥
 𝜌𝑖
(
𝜕2𝑉𝑎𝑥
𝜕𝑥2
+
𝜕2𝑉𝑚
𝜕𝑥2
) = 𝑐𝑎𝑥

𝑑𝑉𝑎𝑥
𝑑𝑡
+  𝐼𝑖𝑜𝑛(𝑉𝑎𝑥)

𝑀𝑌𝑆𝐴/𝑆𝑇𝐼𝑁

; 

 𝐼𝑖𝑜𝑛(𝑉𝑎𝑥)

𝑀𝑌𝑆𝐴/𝑆𝑇𝐼𝑁

= 𝐼𝐾𝑠𝑖 + 𝐼𝐾𝑓𝑖 + 𝐼ℎ + 𝐼𝐿𝑘𝑖 + 𝐼𝑃𝑖  

(4.3) 
 

 1

𝜌𝑖

𝑆𝑎𝑥
𝐿𝑚
(
𝜕2𝑉𝑎𝑥
𝜕𝑥2
+
𝜕2𝑉𝑚
𝜕𝑥2
) +
1

𝜌𝑝𝑎𝑥

𝑆𝑝𝑎𝑥

𝐿𝑚

𝜕2𝑉𝑚
𝜕𝑥2
= 𝑐𝑚
𝑑𝑉𝑚
𝑑𝑡
+
𝑉𝑚
𝜌𝑚

 (4.4) 

 

In the equations, cax and cm are specific capacitances of the axon and myelin sheath, 

[μF/cm2]; ρpax is the resistivity of the periaxonal space, [kΩ·cm]; rax is the radius of the 
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axon, [cm]; 𝑆𝑎𝑥 = 𝜋𝑟𝑎𝑥
2  and 𝑆𝑝𝑎𝑥 = 𝜋(𝑟𝑎𝑥 + ℎ)

2 − 𝜋𝑟𝑎𝑥
3  are the cross-sectional areas 

of the axon and peri-axonal space at MYSA and STIN segments in [cm2], where h is 

the width of the periaxonal space at these regions [cm]; Lm is the full circumference 

length of the myelin sheath, [cm], its calculation can be found below;  ρi is the 

resistivity of the axoplasm, [kOhm·cm]; ρm is the resistivity of the myelin, [kOhm·cm2]; 

Iion(Vax) – internodal ionic currents, [μA/cm2]  (Howells et al., 2012). 

Full circumferential length of the myelin sheath was found as the sum of the 

monotonically rising N = 150 circles of myelin lamellae (Table 4.1): 

 

 

𝐿𝑚 =  ⋅  𝜋 𝑟𝑖

150

𝑖=1

=  𝜋 ⋅ 150(𝑟𝑎𝑥 + 𝑟𝑓𝑢𝑙𝑙 + ℎ), 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 

 𝑟𝑖

150

𝑖=1

= (
(𝑟𝑎𝑥 + ℎ) + (𝑟𝑎𝑥 + ℎ + ℎ𝑚)+. . .
+(𝑟𝑎𝑥 + ℎ + (150 − 1) ⋅ ℎ𝑚)

)

= 150 ((𝑟𝑎𝑥 + ℎ) +
149

 
ℎ𝑚) 

(4.5) 
 

 

where factor 2 was added as the fibre contained 2 membranes per lamella. The radii 

of the circles rose from r1 = rax+h to r150 = dfull/2 = 8 µm; hm is a distance between 

lamellae: ℎ𝑚 = (𝑟150 − 𝑟1)/150 (Table 4.1); h is a width of the periaxonal space 

(Table 4.1). 

Ionic currents at the nodes were as follows (Howells et al., 2012): 

 

 

𝐼𝑁𝑎 =  

𝑃𝑁𝑎
𝑉𝐹2

𝑅𝑇 (𝑚
3ℎ + 𝑃𝑁𝑎𝑃𝑚𝑝

3)(
𝑆𝑁𝑎 ([𝑁𝑎]0 − [𝑁𝑎]𝑖𝑒

𝑉𝐹
𝑅𝑇) +

+(1 − 𝑆𝑁𝑎) ([𝐾]0 − [𝐾]𝑖𝑒
𝑉𝐹
𝑅𝑇)
)

1 − 𝑒
𝑉𝐹
𝑅𝑇

 

𝐼𝐾𝑠𝑛 = 𝑔̄𝐾𝑠𝑛𝑠(𝑉 − 𝑉𝐾𝑠) 

𝐼𝐾𝑓𝑛 = 𝑔̄𝐾𝑓𝑛𝑛
4 (𝑉 − 𝑉𝐾𝑓) 

𝐼𝐿𝑘𝑛 = 𝑔̄𝐿𝑘𝑛(𝑉 − 𝑉𝑟𝑒𝑠𝑡,𝑛) 

(4.6) 
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At the internodes: 

 

 𝐼𝐾𝑠𝑖 = 𝑔̄𝐾𝑠𝑖𝑠𝑖(𝑉 − 𝑉𝐾𝑠) 

𝐼𝐾𝑓𝑖 = 𝑔̄𝐾𝑓𝑖𝑛𝑖
4 (𝑉 − 𝑉𝐾𝑓) 

𝐼ℎ = 𝑔̄ℎ𝑞(𝑉 − 𝑉ℎ) 

𝐼𝐿𝑘𝑖 = 𝑔̄𝐿𝑘𝑖(𝑉 − 𝑉𝑟𝑒𝑠𝑡,𝑖) 

(4.7) 

 

Reversal potentials were calculated as: 

 

 

𝑉𝑥 =
𝑙𝑛 (
[𝐾]0 + 𝑆𝑥[𝑁𝑎]0 − 𝑆𝑥[𝐾]0
[𝐾]𝑖 + 𝑆𝑥[𝑁𝑎]𝑖 − 𝑆𝑥[𝐾]𝑖

)

𝐹/𝑅𝑇
, 𝑥 = 𝑁𝑎,𝐾𝑠, 𝐾𝑓 , ℎ (4.8) 

 

In the equations, F – Faraday’s constant, [µA·ms/mM], 𝑃𝑁𝑎  – permeability of Na 

channels, [cm3/ms]; 𝑃𝑁𝑎𝑃  – percent of persistent Na channels;  [𝑁𝑎]0,𝑖 and [𝐾]0,𝑖 are 

sodium and potassium concentrations outside and inside the axon, [mM]; R – gas 

constant, [pJ/mM·K]; T – temperature, [K]; 𝑆𝑥– selectivity of Na, K, h channels; 

𝑔̄𝐾𝑠𝑛,𝑖 , 𝑔̄𝐾𝑓𝑛,𝑖 , 𝑔̄𝐿𝑘𝑛,𝑖 , 𝑔̄ℎ – maximal conductances of potassium slow and fast channels, 

leakage and h-channel at the node and internode,  [1/(kΩ·cm2)]; 𝑉𝐾𝑠 , 𝑉𝐾𝑓 , 𝑉ℎ–reversal 

potentials of corresponding ion channels explained by (4.8), [mV]; Vrest, n/i – nodal and 

internodal resting potentials, [mV]; m, mp, h, s, n, si, ni, q – gating variables explained 

by corresponding gating equations of the form (4.9) and similarly, for all other gating 

variables.  

 

 𝑑𝑚

𝑑𝑡
= 𝛼𝑚(𝑉𝑎𝑥) ⋅ (1 − 𝑚) − 𝛽𝑚(𝑉𝑎𝑥) ⋅ 𝑚 (4.9) 

 

Coefficients 𝛼𝑥 = 𝛼𝑥(𝑉𝑎𝑥) and 𝛽𝑥 = 𝛽𝑥(𝑉𝑎𝑥) can be found in (Howells et al., 

2012). Initial values were found by solving (4.9) for m (and other gating variables) 

when 𝑑𝑚/𝑑𝑡 = 0 which designates stabilization of a gating variable in time. All the 
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electrical parameters of the modelled fibre included in the equations above are 

presented in the Table 4.2. 

To accurately simulate the activity 

of the myelinated fibre using the FEM, 

the mesh must be carefully chosen 

across the segments of the fibre. So, 

the element size close to the segments’ 

edges should have been sufficiently 

small so that the approximating FEM 

shape functions could accurately 

simulate transitions of the variables 

between these segments.  

The sizes of the elements were 

chosen based on the convergence 

analysis study (Shapeev & Lin, 2009). 

As a result of this approach, the largest 

element size was determined so that if 

it is further decreased, the solution 

would remain constant. The nodal 

segment consisted of 2 equal 

elements, MYSA segments – of 2 

elements with the element adjacent to 

the node being 2 times smaller than 

another one, STIN – of 10 elements 

symmetrically distributed around the 

centre of the segment so that element 

size exponentially decreased towards 

the edges, with the smallest elements 

being 100 times smaller than the 

largest element in the centre (Figure 

4.1b, Table 4.1). As a result, the 

Table 4.2 

ELECTRICAL PARAMETERS OF THE 

MYELINATED FIBRE MODEL 

Parameter Value 

Cn 1 µF/cm2 

Cax 1 µF/cm2 

Cm 1.9 pF/cm2 

ρi 70 Ω·cm 

ρpax 70 Ω·cm 

ρm 2.8 MΩ·cm2 

[K]0 4.5 mM 

[K]i 155 mM 

[Na]0 144.2 mM 

[Na]i 9 mM 

Vh -54.85 mV 

VKs,f -94.5 mV 

VNa 45.6 mV 

Vrest,n -80.3 mV 

Vrest,i -81.3 mV 

T 310 K 

PNa 2.27·10-5 cm3/ms 

PNaP 1.07 

SNa 0.9 

SK 0 

Sh 0.097 

𝑔̄𝐾𝑠𝑛  109.47 mS/cm2 

𝑔̄𝐾𝑓𝑛  87.58 mS/cm2 

𝑔̄𝐿𝑘𝑛 9.78 mS/cm2 

𝐼𝑃𝑛 -170.64 µA/cm2 

𝑔̄𝐾𝑠𝑖 5.81·10-3 mS/cm2 

𝑔̄𝐾𝑓𝑖 0.69 mS/cm2 

𝑔̄ℎ 1.37·10-2 mS/cm2 

𝑔̄𝐿𝑘𝑖 1.22·10-2 mS/cm2 

𝐼𝑃𝑖 -0.018 µA/cm2 

Sax 1.27·10-6 cm2 

Spax, stin 7.98·10-11 cm2 

Spax, mysa 7.98·10-12 cm2 

Lm 1.35 cm 
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smallest element in the STIN which was adjacent to MYSA was approximately 2 times 

larger than the large element in MYSA. 

For validation of the developed FEM model, the experimentally validated space-

clamped model (Howells et al., 2012) was reconstructed in MATLAB so that the 

simulated APs at the node and internode could be matched to the new FEM model via 

adjustment of its electrical and longitudinal parameters. Also, the conduction velocity 

(65 m/s) was matched with the experimental datasets that report myelinated sensory 

fibres of similar size where it was shown to be 50-90 m/s  (Boyd & Kalu, 1979; 

Waxman, 1980; Harper & Lawson, 1985; Castelfranco & Hartline, 2016).  

To compare the excitability of the model to previously modelled (McIntyre et al., 

2002; Howells et al., 2012) and experimental values (Yang et al., 2000), the threshold 

tracking technique called threshold electrotonus was used. The fibre was subjected to 

100 ms duration subthreshold depolarizing conditioning stimuli with the amplitude 

equalling 40% of threshold (defined by 1 ms pulse stimulation); 1 ms test intracellular 

stimuli were applied to the node each 5 ms in steps ~2% of threshold to trace the 

threshold during and after the long conditioning pulses. 

Since the behaviour of the model depended on multiple electrical and geometrical 

parameters, sensitivity of the model to these parameters must have been investigated. 

As a result, variance-based sensitivity analysis was performed (Homma & Saltelli, 

1996). It was accomplished by variation of the main model parameters by +/- 20% and 

calculation of the corresponding variance in the measured nodal and internodal APs 

(Figure 4.3a, b) at each time point, as in (Tigerholm et al., 2014). The varied 

parameters included conductances and capacitances of the axonal membrane and 

myelin sheath as well as main electrical and geometrical parameters (Table 4.4). To 

quantify the effect of each parameter on the different phases of the recorded 

transmembrane potentials during rest and excitation, the total cumulative impact of 

each parameter into formation of nodal and internodal recordings was found over the 

whole period of 250 ms simulations. 
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4.2.2 FEM model coupled with external space  

Extracellular space was added to the 1D model to simultaneously simulate AP 

propagation, injection of the current and recording of the resultant electric field using 

external electrodes.  

The most commonly used approach for simulation of an active fibre and a 

surrounding space together includes two or three consecutive steps: first, the electric 

field is simulated using FEM; second, the resultant interpolated voltages are applied 

to the fibre; third, if necessary, the electric field originating from the fibre is recorded 

via external electrodes (Schiefer et al., 2008; Wang et al., 2018; Lubba et al., 2019; 

Pelot et al., 2019). This approach was not suitable for our purpose due to complex 

interaction of injected current with nonlinear ion channels: double-sided coupling was 

necessary so that the external space can affect the fibre while the fibre can affect the 

external space. 

The model utilizing this coupling-feedback system approach was developed for the 

unmyelinated fibre in the previous chapter where its detailed description is presented; 

the same approach was applied to the myelinated model in the current chapter. As in 

the case of the study in Chapter 3, a 4-electrode impedance measurement paradigm 

was simulated, which reproduced the setup implemented in a series of experiments of 

recording impedance changes in unmyelinated crab leg nerves using a linear electrode 

array (Holder, 1992; Gilad et al., 2009; Oh et al., 2011; Aristovich et al., 2015). The 

setup of the model also closely replicated the ones used for in vivo imaging of 

myelinated fibres inside rat sciatic nerve (Aristovich et al., 2018) and sheep’s recurrent 

laryngeal nerve (Chapman et al., 2019). As in the latter study, AC in the model was 

applied through two ring external electrodes placed longitudinally along the nerve. 

Identically to both experiments, APs were induced at the end of the axon by bipolar 

stimulation and voltages were measured by the electrode placed before the injecting 

ones with respect to ground (Figure 4.1). 
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Figure 4.1 Geometrical structure and FEM mesh of the developed myelinated fibre model. 

(a) The 2D axisymmetric geometry of the model. The fibre is depicted by a blue line with black nodal 

and MYSA regions, the axis of symmetry is shown by the red dash-dotted line. The AP was induced 

from the end of the fibre; DC or AC were applied through two external electrodes (blue) placed 5.6 

cm and 6.2 cm from the axon’s end; the electric field was recorded by an external electrode (green) 

placed before the injecting ones, 5 cm from the proximal end of the fibre (Table 4.3). A magnified 

image of the fibre in the region around the node is shown on the left; its correspondence to the 2D 

axisymmetric model is depicted by the blue dashed lines; 

(b) Triangular FEM mesh of the model combined with the nonregular mesh of the fibre. Elements’ 

sizes are provided in the section 4.2.1 and Table 4.1. 

 

The external space was modelled as a cylinder (rectangle in 2D axisymmetric 

space) (Figure 4.1a) with the constant electrical conductivity of an extracellular 
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medium equalling 10 mS/cm  (Elia & Lamberti, 2013). External ring-shaped electrodes 

of 0.1 cm width and 0.6 cm diameter located on the boundary of the cylinder were 

used for current injection and activity recording; the recording electrode was placed 5 

cm from the AP initiation point; the injecting ones were at 5.6 and 6.2 cm (Figure 

4.1a).  2-D axisymmetric paradigm, which for unmyelinated fibre was shown to 

provide the same results as the corresponding 3D model (Chapter 3), was used to 

accelerate computations. The fibre was 1-dimensional, which included intracellular, 

extracellular and periaxonal spaces as well as myelin. The model was grounded at the 

distal end only so that the current cannot propagate along the fibre in the backward 

direction which causes artefacts in dZ measurements (Aristovich et al., 2015).  

The equations for simulation of the external space were similar to the model 

developed in Chapter 3. However, their complexity increased due to non-uniformity 

of the fibre, which required different constants depending on the segment simulated.  

First, volume conduction in the extracellular space was simulated with the 

Laplace’s equation (2.22). Then, the main fibre equations (4.1), (4.3) and (4.4) were 

transformed by addition of external stimulation for each compartment represented by 

the activating function (2.24); these equations can also be obtained by applying 

Kirchhoff’s laws to the double-cable circuit in Figure 2.15. 

 

 𝑟𝑛
 𝜌𝑖
(
𝜕2𝑉𝑎𝑥
𝜕𝑥2
+
𝜕2𝑉𝑚
𝜕𝑥2
+
𝜕2𝑉𝑒
𝜕𝑥2
) = 𝐶𝑛

𝑑𝑉𝑎𝑥
𝑑𝑡
+  𝐼𝑖𝑜𝑛(𝑉𝑎𝑥)

𝑛𝑜𝑑𝑒

; 

𝑟𝑎𝑥
 𝜌𝑖
(
𝜕2𝑉𝑎𝑥
𝜕𝑥2
+
𝜕2𝑉𝑚
𝜕𝑥2
+
𝜕2𝑉𝑒
𝜕𝑥2
) = 𝐶𝑎𝑥

𝑑𝑉𝑎𝑥
𝑑𝑡
+  𝐼𝑖𝑜𝑛(𝑉𝑎𝑥)

𝑀𝑌𝑆𝐴/𝑆𝑇𝐼𝑁

; 

1

𝜌𝑖

𝑆𝑎𝑥
𝐿𝑚
(
𝜕2𝑉𝑎𝑥
𝜕𝑥2
+
𝜕2𝑉𝑚
𝜕𝑥2
+
𝜕2𝑉𝑒
𝜕𝑥2
) +
1

𝜌𝑝𝑎𝑥

𝑆𝑝𝑎𝑥

𝐿𝑚
(
𝜕2𝑉𝑚
𝜕𝑥2
+
𝜕2𝑉𝑒
𝜕𝑥2
) = 

= 𝐶𝑚
𝑑𝑉𝑚
𝑑𝑡
+
𝑉𝑚
𝜌𝑚

 

(4.10) 

 

The constant sinusoidal current was applied to the external injecting electrodes 

(3.3). The boundary conditions were the same as for the unmyelinated fibre described 

in Chapter 3 in (3.9)–(3.10), the initial condition for external space was the same as 

for the unmyelinated models (Chapter 3): Ve = 0; the initial conditions for the fibre 
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were obtained by setting 𝑑𝑋/𝑑𝑡 = 0 for a gating variable X, as explained under 

equation (4.9). The flux of the transmembrane current from the nodal or myelin 

segments (MYSA and STIN) was modelled the same way as through homogeneous 

unmyelinated fibre (3.10): 

 

 
𝐼𝑛|𝛤 = 𝜎𝑒𝛻𝑉𝑒 ⋅ 𝒏 = 𝐶𝑛

𝑑𝑉𝑎𝑥
𝑑𝑡
+  𝐼𝑖𝑜𝑛(𝑉𝑎𝑥)

𝑛𝑜𝑑𝑒

, on Γ𝑛𝑜𝑑𝑒 

𝐼𝑚|𝛤 = 𝜎𝑒𝛻𝑉𝑒 ⋅ 𝒏 = 𝐶𝑚
𝑑𝑉𝑚
𝑑𝑡
+
𝑉𝑚
𝜌𝑚
, on Γ𝑚𝑦𝑒𝑙𝑖𝑛 

(4.11) 

 

The scheme of operation of the developed coupled model repeated the one in 

Chapter 3 (Figure 3.2) and included two simultaneous simulations – with and without 

the injected current. Simulation of electric field generated by the fibre when no current 

was injected (Ve
0) was done via additional 1D and 2D-axisymmetric geometries; their 

difference with the electric field simulated with the injected current (Ve) was applied 

to the nerve fibre (Ve-Ve
0) at each time step. Finally, the resultant transmembrane 

current was coupled from the fibre to the main geometry. 

A triangular mesh, containing 41,000 elements, was constructed in the 

axisymmetric model so that the fibre formed a continuous mesh within the volume. 

This means that the lengths of the sides of the triangles adjacent to the fibre were equal 

to the sizes of the mesh elements in the fibre (Figure 4.2b, Table 4.1).  

In the developed models, equations representing the fibre (4.1)–(4.9) together with 

the ones simulating external space and its coupling with the fibre (2.22), (4.10), (4.11) 

were solved simultaneously for each time step with respect to Vax, Vm and Ve. For this, 

an adaptive backward differentiation formula (BDF) was utilized in conjunction with 

a parallel sparse direct solver (PARDISO) to solve linear equations in the spatial 

domain (Schenk & Gärtner, 2004). Convergence was tested by tracing deviation of the 

relative norm of the residual against the specified tolerance, the same way as for the 

unmyelinated fibre model discussed in Chapter 3. The tolerance for the myelinated 

fibre model developed in this Chapter was set to 0.0001. 

Using the voltages recorded during the simulations, changes in the impedance of 

the system (dZ) were calculated. Details on the simulations setup and signal processing 
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are given in the next section. The COMSOL model files for the complete myelinated 

fibre model are provided in the EIT-lab GitHub repository at https://github.com/EIT-

team/Myelinated-fibre-model. 

4.2.3 Simulation setup and signal processing  

Application of electric current and recording of external voltage was continuously 

performed in all simulations. Each simulation lasted 100 milliseconds and the AP was 

initiated at t = 50 ms to let the transmembrane and transmyelin potentials stabilize 

(Figure 4.3).  The recording sampling rate was 20 kHz when DC and low-frequency 

AC (225, 625, 1025, 2000 Hz) were applied; it was 100 kHz at all other AC 

frequencies. 

The first step was to study how the impedance of the system changes depending on 

the amplitude and frequency of the applied currents. For that, the maximum amplitudes 

of DC and 6 kHz AC current were found at which proportionality was maintained, as 

expected from the Ohm’s law. This revealed the optimal amplitude, which was used 

in all subsequent simulations; higher currents would modify physiology of the nerve 

causing artefacts in dZ measurements while too small currents may become 

comparable to the noise brought by modelling errors or instrumentation (Holder, 

2004a). Thus, simulations were performed at 1.3 – 50.2 µA at DC and similarly at 6 

kHz in the range of 1.3 – 1256 µA. 

Using the chosen amplitude, DC and AC at a range of frequencies (225 Hz, 625 Hz, 

1025 Hz, 2, 4, 6, 8, 10, 12 and 15 kHz) were sequentially applied through the injecting 

electrodes and the voltages were recorded via the recording electrode with respect to 

ground (Figure 4.1). The dZ was measured in terms of the recorded voltage, the same 

as in the model of the unmyelinated fibre (3.1), (3.2). 

Signal processing for extraction of impedance changes from the recorded voltages 

was accomplished for two scenarios (Figure 4.2). In the first case, it included the 

following (Figure 4.2a). When AC was applied, the two sequential simulations in 

phase (0, π/4, π/2, 7π/8, 5π/8, 19π/20) and in antiphase (-π, -3π/4, -π/2, -π/8, -3π/8, -

π/20) locked to the time of AP initiation were carried out at each frequency. This was 

https://github.com/EIT-team/Myelinated-fibre-model
https://github.com/EIT-team/Myelinated-fibre-model
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done for validation of the obtained dZ and removal of the artefacts appearing due to 

coherence of AC with the AP. The resultant signals were 1) subtracted, which led to 

cancellation of the AP and doubling of the dZ; 2) band-pass filtered around the carrier 

frequency with the 1st order Butterworth filter in forward and inverse directions, to 

eliminate the AP artefacts left after subtraction; 3) demodulated, using the absolute of 

Hilbert transform and 4) normalized in respect to baseline, to obtain normalised dZ in 

percent. In the simpler DC case, the signals simulated with the reversed polarity of the 

current were subtracted and normalised.  

dZ measurements in the case when AC was applied, were also performed when 

subtraction (step 1) of the signal processing was omitted (Figure 4.2b, case 2). In this 

case, phase and antiphase recordings were not subtracted, and the original signal 

containing extracellular AP was band-pass filtered and demodulated. This was done in 

order to check the feasibility of real-time imaging in experimental conditions: in the 

case 2 only one recording was necessary to obtain a dZ while subtraction demanded 

in- and anti-phase measurements to be performed. 

In contrast to the previous modelling (Chapter 3) and experimental studies 

(Aristovich et al., 2018; Chapman et al., 2019) where constant bandwidths were used 

across all injected AC frequencies, they were varied in this study to find the optimal 

one at each frequency. Since the durations of simulated APs were short (< 1 ms) 

(Figure 4.3) and in order to have sufficient time resolution of the obtained dZ signal – 

high bandwidths were better to be used during the band-pass filtering step of signal 

processing.   

In fact, dZ measured at DC possesses the full natural frequency band, which reflects 

the real apparent dZ; it could be reached at a given AC frequency if time resolution is 

sufficient and a full dZ bandwidth is taken into account when processing the signal at 

this frequency. On the other hand, it is not always possible to choose bandwidths 

covering the characteristic frequency of the real dZ (0-8 kHz, Figure 4.7). The first 

reason for this is that the carrier frequency has to be high in order to support this high 

bandwidth. Second, if recordings with in- and anti-phase currents were not subtracted 

and the frequency of the carrier is sufficient, necessary bandwidth would start to 

overlap with the characteristic frequency band of the AP (0–3 kHz, Figure 4.7), which 

brings artefacts into measurements (Figure 4.9a). Finally, as the membrane consists of 
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parallel resistances and capacitance, the dZ will decrease with the frequency of the 

measuring current. All of these factors contribute to the measured dZ, so that optimal 

values of AC carrier frequency and bandwidth must be found. 

 

 

Figure 4.2 Signal processing to extract the dZ in the created myelinated fibre model. 

It was performed for two cases: (a) with and (b) without subtraction of signals simulated with the in-

phase and anti-phase injected AC (presented at the top of the figure). After this step, the signal was 

band-pass filtered (top and bottom parts of the resultant sine wave are in the middle of the figure), 

demodulated and normalized (at the bottom of the figure). The 2nd case without subtraction was 

implemented to test the level of reduction in the dZ amplitude if the second anti-phase recording was 

not performed so that the feasibility of real-time imaging could be studied. 

 

At each frequency starting from and higher than 625 Hz, dZ was obtained at a range 

of bandwidths from 500 Hz up to (f – 500) Hz with 100 Hz steps, where f is the 

frequency of the applied AC. This was repeated for each phase-antiphase pair and the 

optimal bandwidth was determined as the one that maximizes the value Δ = (dZ – 3 

standard deviations of dZ). Three standard deviations of dZ (obtained by measuring at 

different phases of injected AC) were chosen because: 1) the magnitude of the obtained 

dZ increases with bandwidth due to presence of the high frequency components in it; 
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2) the standard deviation of dZ also increases because the artefact is phase dependent 

and the AP frequency band (0–3 kHz, as seen from the power spectral density of the 

modelled AP in Figure 4.7) starts to overlap with the chosen bandwidth. The above 

procedure was repeated in situations when subtraction of in-phase and anti-phase 

signals (step 1 of the signal processing) was omitted (Figure 4.2b), which resulted in 

the errors becoming much larger: even very small overlap in the bandwidth and the 

AP frequency band brings huge errors to measurements. Therefore, this overlap should 

be minimized by decreasing the utilized bandwidths that then leads a reduction in the 

recorded dZ. 

Further, the 

locations and sizes of 

the electrodes were 

varied to study their 

effect on the recorded 

dZ, as has previously 

been done for the 

unmyelinated model in 

Chapter 3. The varied 

parameters included 

the electrodes (and surrounding volume) diameter  Del, electrodes width Hel, distance 

between recording and injecting electrodes (ΔxR) and distance between injecting 

electrodes (ΔxI) (Table 4.3). Variation was done at DC and 6 kHz with the optimal 

bandwidth found during the study (Figure 4.8).  

Finally, to understand the origin of the measured dZ, membrane conductances, the 

flow of applied currents through the membrane and the extracellular space were 

studied. The gradient field of the current was plotted at DC so that its direction could 

be seen in any point of the external space. It was done in two time points – when 

negative and positive dZ reached maximum (50.7 and 51.5 ms, Figure 4.6a, Figure 

4.9a). Conductances and membrane currents were measured along 2 cm of the fibre 

under the electrodes at 4.8 – 6.8 cm from the point of AP initiation. 

Table 4.3 

GEOMETRICAL PARAMETERS OF THE COUPLED MODEL 

Parameter Value 

Diameter of the electrodes / 

surrounding volume, Del 
0.2 cm*; 0.2 – 2 cm 

Width of the electrodes, Hel 0.02 cm; 0.01 – 0.1 cm 

Distance between recording 

and injecting electrodes, ΔxR 
0.6 cm; 0.1 – 5 cm 

Distance between injecting 

electrodes, ΔxI 
0.6 cm; 0.1 – 5 cm 

* First number in each row is the value used by default; range of 

values shows a variation of the parameter (see Figure 4.10). 
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4.3 Results 

4.3.1 Double cable FEM model of a mammalian 

myelinated fibre 

The developed one-dimensional FEM model was validated against the existing 

experimentally validated space-clamped model (Howells et al., 2012) so that the shape 

and amplitude of APs at the node and internode in these models matched each other 

(Figure 4.3). Conduction velocity in the model equalled to 65 m/s which is in the 

experimental range for the myelinated fibre of similar properties (Boyd & Kalu, 1979; 

Waxman, 1980; Harper & Lawson, 1985; Castelfranco & Hartline, 2016). The 

duration of the AP at the node was equal to approximately 1 ms, while depolarization 

at the internode lasted around 20 ms; the amplitudes at the node and internode were 

~110 mV and 5 mV respectively (Figure 4.3). APs at various segments of the fibre 

were similar to the results obtained in the previous modelling studies (Stephanova & 

Bostock, 1995; McIntyre et al., 2002; Lubba et al., 2019). Also, nodal and extracellular 

APs (Figure 4.3a, d) were in agreement with the experiments (Bostock et al., 1991; 

David et al., 1995); no experimental data is available for transmyelin potentials and 

internodal values of transaxonal potentials. The spatial length of the AP was ~12 cm 

(Figure 4.3e) which was similar to the values obtained in  (Stephanova & Bostock, 

1995; Stephanova, 2001). 

The model’s threshold electrotonus was similar to the ones obtained in recent 

modelling and experimental studies (Yang et al., 2000; McIntyre et al., 2002; Howells 

et al., 2012). It included transient threshold changes following the start (40 to 49% 

threshold reduction at 50-70 ms) and the end of the stimulus (-1 to -10% reduction at 

150-170 ms) (Figure 4.4). 
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Figure 4.3 Action potentials in time (a)-(d) and along the length (e) simulated with the developed 

model and compared to the validated space clamped model.  

250 ms long simulations are presented to show variations in resting potential preceding and following 

the AP. Magnified plots of 6 ms durations are embedded into (a), (c), (d) to better reveal the shapes 

of the depicted signals. 

(a) Transmembrane potentials measured at the centre of the nodal region simulated with the 

developed FEM model (red lines) in comparison with the validated space-clamped model (Howells 

et al., 2012) (blue lines).  

(b) Transaxonal potential measured at the centre of internodal region (red) compared with the 

validated model (blue);  

(c) Transaxonal (blue) and transmyelin (red) potentials at the MYSA (dashed lines) and STIN (solid 

lines) regions;  

(d) AP recorded with the external electrode in respect to ground, EAP (t);  

(e) Transaxonal potential along the fibre length, Vax (x). 

(e)

(a)

(b)

(c)

(d)
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Figure 4.4 Excitability of the fibre measured with threshold electrotonus. 

It was simulated in two steps: 1) a long 100-ms conditioning stimulus with the 40% of threshold 

amplitude was applied; 2) threshold for AP initiation was found by application of 1-ms long stimuli 

to the node every 5 ms during and after the conditioning stimulus. The graph is not smooth because 

short 1-ms threshold determining stimuli were applied in steps of approx. 2% of threshold (~25 pA). 

 

The sensitivity analysis showed that the 

modelled nodal and internodal APs were 

most sensitive to permeability of the 

sodium channels PNa, slow nodal and fast 

internodal potassium conductances 𝑔̄𝐾𝑠𝑛 

and 𝑔̄𝐾𝑓𝑖, nodal pump 𝐼𝑃𝑛, axoplasm and 

myelin resistivities ρi and ρm, and diameter 

of the axon dax (Table 4.4, Figure 4.5). 

Conversely, the APs were insensitive to 

internodal leakage conductance 𝑔̄𝐿𝑘𝑖, 

resistivity and width of periaxonal space 

ρpax, h and hmysa as well as the diameter of 

the node dn with the contribution to the 

variance in nodal or internodal APs less 

than 0.01%.  

All the phases of the recordings 

including rest, depolarization and 

hyperpolarization were found to be 

Table 4.4 

SENSITIVITY ANALYSIS 

Parameter 
Nodal AP, 

% 

Internodal 

AP, % 

Cn 1.98 0.02 

Cax 0.19 2.92 

Cm 1.39 0.01 

ρi 17.06 0.32 

ρpax 0.06 < 0.01 

ρm 21.49 1.51 

h 0.01 < 0.01 

hmysa 0.02 < 0.01 

dn < 0.01 < 0.01 

dax 38.23 2.66 

dm 0.02 < 0.01 

PNa 15.73 19.05 

𝑔̄𝐾𝑠𝑛  1.62 17.41 

𝑔̄𝐾𝑓𝑛  0.15 0.63 

𝑔̄𝐿𝑘𝑛 0.03 0.03 

𝐼𝑃𝑛 1.03 12.89 

𝑔̄𝐾𝑠𝑖 0.01 0.08 

𝑔̄𝐾𝑓𝑖  0.89 38.96 

𝑔̄ℎ 0.05 1.98 

𝑔̄𝐿𝑘𝑖 < 0.01 0.06 

𝐼𝑃𝑖 0.04 1.48 
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influenced by multiple parameters (Figure 4.5). At the same time, the diameter of the 

axon dax had the major contribution to the variance during short stages of the AP 

(Figure 4.5, right). This was because dax was explicitly and implicitly (through Sax, Spax 

and Lm) present in the main model equations (4.1)–(4.5) and thus significantly affected 

the simulated signals. Specifically, variation in dax (together with ρi and ρm) strongly 

influenced the conduction velocity which led to a time-shift of the AP signals recorded 

at the same point on the fibre and therefore to an increase in the computed variance. 

The accomplished first order sensitivity analysis did not take into account 

interactions between different variables – by variation of two or more parameters 

simultaneously, the effect may be different from the sum of the effects of consecutive 

variations of these parameters. To study the effect of interaction on the variance, a total 

effect sensitivity analysis (Homma & Saltelli, 1996) would need to be carried out in 

the future. 

 

Figure 4.5 First order sensitivity analysis in respect to the main parameters of the model.  

The shaded areas are normalized variances of the nodal (top) and internodal (bottom) APs at each 

time point corresponding to the parameters varied by +/- 20%. The list of the varied parameters 

together with the corresponding colours is presented on the right of the graph and in the Table 4.4. 

Whole simulations (0-250 ms, as in Figure 4.3a, b) are presented on the left, and the magnified AP 

part (50-55 ms) – on the right. 
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4.3.2 Full model of a myelinated fibre coupled with 

external space 

1. Optimal current amplitude 

The simulated dZ were linear with the injected direct currents from 1.3 – 12.6 µA: 

the shape and percentage dZ stayed the same in this range (Figure 4.6a). dZ became 

nonlinear at higher currents which change the normal behaviour of the membrane; for 

example, it can be seen at 50.2 µA (Figure 4.6a). The upper safe range limit increased 

at higher frequencies: for example, at 6 kHz dZ linearity remained up to 125 µA 

(Figure 4.6b). Thus, the membrane was not affected by currents of up to 12.6 µA at all 

frequencies, therefore this amplitude was chosen for all further simulations. 

 

Figure 4.6 dZ of the modelled myelinated fibre at different current amplitudes measured at (a) DC; 

(b) 6 kHz. 

Currents at which dZ become nonlinear are shown with titles highlighted in red. Time markers during 

simulation: AP excitation – 50 ms from the start; AP passes under the recording electrode – 50.8 ms; 

AP reaches the end of the fibres in 2.3 ms after initiation. 

 

(a) (b)



Chapter 4. FEM model of a myelinated fibre  

127 

 

2. Optimal current bandwidth and frequency 

The power spectral density of dZ included the significant band of up to 7-8 kHz 

(Figure 4.7). Therefore, the filtering bandwidth used during signal processing for 

subsequent demodulation (section 4.2.3) could not be significantly less than 2 kHz that 

restricted the lower limit of the carrier frequencies.  

 

 

Figure 4.7 Power spectral density (PSD) estimate of the simulated EAP (Figure 4.3d) and dZ at DC 

(Figure 4.9a).  

PSD of dZ simulated at DC demonstrates the frequency band of a natural dZ; it could be reached at 

AC if a perfect carrier frequency and bandwidth are chosen (see text).   

 

When signal processing involved the subtraction of in-phase and anti-phase 

recordings, the optimal bandwidths to obtain the largest signal were found to increase 

with the carrier frequency from around 500 Hz at 4 kHz AC to 4.5 kHz at 6 kHz AC, 

7.5 kHz at 8 kHz AC, 8.1 kHz at 10 kHz AC, 9 kHz at 12 kHz AC and 10.6 kHz at 15 

kHz AC (Figure 4.8, Table 4.5). 

When no AP subtraction has been performed, significant dZ could only be recorded 

above 6 kHz (Figure 4.8, Figure 4.9). The optimal bandwidth increased from 0.9 kHz 

at 6 kHz AC to 1.1 kHz at 8 kHz AC, 2.1 kHz at 10 kHz AC and 3.9 kHz at 12 kHz 

AC; but it decreased to 1.8 kHz at 15 kHz AC (Figure 4.8, Table 4.5). 
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Figure 4.8 Optimal bandwidths providing the highest reliable dZ signal for each injected AC 

frequency.  

It was calculated when the value (dZ – 3 standard deviations) reached a maximum. The case when 

phase-antiphase subtraction was performed as a 1st step of signal processing is shown in red, the 

alternative case is depicted in blue. Dashed lines show that no reliable impedance changes could be 

obtained at < 4 kHz for the subtraction case or < 6 kHz for the case when no subtraction was 

accomplished. 

 

For the initially chosen geometrical parameters (Table 4.3), significant negative dZs 

simulated at optimal bandwidths when subtraction was performed were (·10-2): -

45±4% at DC, -0.7±0.3%, -9.6±1.5%, -11.4±0.9%, -8.0±0.9%, -6.3±0.4%, -5.4±0.6% 

at 4, 6, 8, 10, 12 and 15 kHz (Table 4.5). Significant dZ increases were also observed 

(·10-2): 6±4% at DC and 4.2±1.5%, 4.5±0.9%, 1.8±0.9%, 1.3±0.4%, 1.3±0.6% at 6, 8, 

10, 12 and 15 kHz (Figure 4.9b). When subtraction was not performed, significant dZ 

decreases were (·10-2): -1.9±0.9%, -1.9±0.4%, -3.1±0.6%, -4.4±0.6%, -2.3±0.4% at 6, 

8, 10, 12 and 15 kHz; dZ increases were observed to be significantly different from 

zero at 10, 12 and 15 kHz with the values of 0.8±0.6%, 1.4±0.6%, 0.6±0.4% ·10-2 

respectively (Figure 4.9c, Table 4.5). The analysis without subtraction was not 

available at DC as this requires different polarities of current. 
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Figure 4.9 Dependence of the dZ of myelinated fibre on frequency of the applied current. 

(a) Examples of dZ at DC, 6, 10 and 12 kHz for the subtraction and single shot cases of signal 

processing (Figure 4.2). It was not possible to measure dZ at DC without AP subtraction. Lines of 

different colours represent dZ recorded at different phases or different polarity (for DC) of the 

injected current. Examples of negative dZ are highlighted by blues circles, positive ones – by red 

circles; the artefacts arising from APs in a single shot case are highlighted by black circles; 

(b) Absolute dZ vs. frequency at optimal bandwidths (Figure 4.8) for the case when in- and anti-

phase AP were subtracted during signal processing;  

(c) Absolute dZ vs. frequency at optimal bandwidths when no subtraction was performed.  

Blue lines designate impedance decrease (negative change), red – impedance increase (positive 

change). Error bars are standard deviations calculated for the dZ simulated at different phases of the 

current (AC) and at different polarities (DC). Instability in (c) below 4 kHz is observed as it is 

impossible to demodulate dZ from the carrier frequency significantly lower than the characteristic 

frequency band of the dZ itself (Figure 4.7). 
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3. Influence of the size and position of the electrodes 

At both DC and 6 kHz, when distances between injecting (ΔxI) and the recording 

and injecting electrodes (ΔxR) were increased, the positive and negative dZ decreased 

(Figure 4.10a, b). 

 

 

Figure 4.10 Dependence of absolute dZ onsize and position of electrodes in the developed model of 

the myelinated fibre. dZs were obtained with subtraction of APs (Figure 4.2, case 1). 

(a), (b) Dependence of dZ on distance between the recording and injection electrodes (ΔxR) and 

between injecting electrodes (ΔxI) at (a) DC and (b) 6 kHz with bandwidth = 4.6 kHz (optimal for 6 

kHz AC, Figure 4.8). dZ vs ΔxR is depicted with blue lines, ΔxI – with red lines. Negative dZ are 

shown by full lines, positive – by dashed lines.  

(c) Dependence of dZ on width (Hel) and diameter (Del) of the electrodes. Top two graphs are for DC, 

bottom graphs – for 6 kHz AC. Negative dZs are shown by solid lines, positive – by dashed lines. 

 

At DC, the maximum negative dZ of -0.47% and -0.5% was simulated at ΔxR = 0.1 

cm and ΔxI = 0.1 cm; the maximum positive dZ was about 0.1% at ΔxI or ΔxR = 0.1 

(a)

(b) (c)
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cm. At 6 kHz, the negative maximum values were -0.1% at 0.1 cm ΔxI or ΔxR, the 

positive ones were 0.07% and 0.1% at the same electrodes’ locations. The absolute dZ 

values significantly decreased with increasing diameters (Del) of the electrodes up to 

2.0 cm but stayed close to constant when increasing their widths (Hel) up to 0.1 cm 

(Figure 4.10c). 

4. Biophysical origin of the recorded dZ 

During the propagation of AP, the overall membrane conductance increased 

significantly (Figure 4.11a): the main contribution was made at the node where it 

increased from 0.025 to 0.57 S/cm2 (~23 times). The total increase was approximately 

the same: compared to the nodal values, the contribution of the internodal axolemma 

and myelin was negligible. This conductance increase could explain the dZ decrease 

which was being measured externally and occurred at the same time (seen in Figure 

4.6 and Figure 4.9a). The total change in conductance induced by the injected EIT 

direct current (Figure 4.11b) was approximately -2.1 mS/cm2, which was less than 

0.5% of the overall change in conductance during an AP. It can therefore be inferred 

that the injected current did not significantly interfere with the membrane and affect 

the dZ measurements. 

As the largest conductance change during AP was at the nodal regions (Figure 

4.11a), the flow of the nodal currents (Figure 4.11c), as well as the injected EIT current 

through nodes (Figure 4.11d) were studied. The main contributors to the nodal currents 

were the ionic currents whose absolute values rose from ~0 to 18 mA/cm2 (Figure 

4.11c). The flow of the applied DC through nodes (Figure 4.11d) increased 

synchronously with dZ decrease (Figure 4.6, Figure 4.9a); it was followed by a 

decrease in the flow in respect to baseline seen during dZ increase (Figure 4.11d). 

Thus, less current passed through the nodal membrane during an impedance increase 

when compared to the resting state. 
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Figure 4.11 Membrane conductances, flow of the ionic currents and distribution of the externally 

applied current in the simulations performed with the developed myelinated fibre model. 

(a) Conductance of the fibre during an AP when DC was applied. Nodal values are depicted by the 

blue line, internodal (MYSA + STIN) – by red, myelin – by yellow and total values – by black thick 

lines; 

(b) Change in conductance induced by the applied DC, ΔgM = gDC-g0; colour legend is the same as in 

(a); 

(c) Membrane current flow at the node measured at DC. Blue line denotes the sum of ionic currents, 

red line – capacitive current, black line – total current; 

(d) Change in membrane current flow induced by the applied DC through the node, ΔIN = IDC-I0; 

colour legend is the same as in (c); 

(e) Distribution of the current flow (j = -σ∇V) at the time when the negative component of dZ was 

maximal (50.7 ms, Figure 4.6a, Figure 4.9a). Arrows designate the direction of the flux at each point 

of the extracellular volume (Figure 4.1). The gradient current field is normalized; 

(f) Distribution of the current flow (j = -σ∇V) at the time when the positive component of dZ is 

maximal (51.5 ms, Figure 4.6a, Figure 4.9a). 

 

The gradient field of the current constructed at the time when the dZ decrease and 

increase reached maximum (50.7 and 51.5 ms from the start of simulation, as seen in 
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Figure 4.9a) showed that the direction of the current flow at the position where 

recording electrode was located (5 cm), was different during the dZ decrease and 

during its increase (Figure 4.11e, f). Voltage measured by the recording electrode (with 

respect to ground) was modulated by the impedance only providing the current was 

constant (V=Z/I, eq. (3.1)–(3.2)); however, the current redistributed in the external 

space during different phases of AP propagation (Figure 4.11e, f) thus affecting the 

dZ.  

Table 4.5 

MAIN MYELINATED MODEL SIMULATION RESULTS 

Signal 

processing 

Carrier 

frequency 

Optimal 

bandwidth 

dZ* decrease 

(mean ± s.d.) 

dZ* increase 

(mean ± s.d.) 

In- / anti-phase 

subtraction 

DC - -0.45±0.04% 0.06±0.04% 

4 kHz 500 Hz -(0.7±0.3)·10-2% - 

6 kHz 4.5 kHz -(9.6±1.5)·10-2% (4.2±1.5)·10-2% 

8 kHz 7.5 kHz -(11.4±0.9)·10-2% (4.5±0.9)·10-2% 

10 kHz 8.1 kHz -(8.0±0.9)·10-2% (1.8±0.9)·10-2% 

12 kHz 9 kHz -(6.3±0.4)·10-2% (1.3±0.4)·10-2% 

15 kHz 10.6 kHz -(5.4±0.6)·10-2% (1.3±0.6)·10-2% 

No subtraction 

(“single shot”) 

DC - - - 

4 kHz - - - 

6 kHz 0.9 kHz -(1.9±0.9)·10-2% - 

8 kHz 1.1 kHz -(1.9±0.4)·10-2% - 

10 kHz 2.1 kHz -(3.1±0.6)·10-2% (0.8±0.6)·10-2% 

12 kHz 3.9 kHz -(4.4±0.6)·10-2% (1.4±0.6)·10-2% 

15 kHz 1.8 kHz -(2.3±0.4)·10-2% (0.6±0.4)·10-2% 

*Only dZ significantly different from zero are shown 

 

The injected EIT current flow through the nodes (Figure 4.11d) matched estimates 

from the gradient field (Figure 4.11e, f): the direction of current flow changed at the 

area where the recording electrode was located (green on Figure 4.11e and f) and it 

was accompanied by a decrease in the current flow through this area. Thus, the positive 

dZ was not a natural increase in membrane impedance but was observed due to 

redistribution of the applied current flow resulting from the membrane activity. 
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4.3.3 Comparison with experimental data 

The negative dZs simulated using high-frequency AC currents were in a good 

agreement with data recorded from the sciatic nerve of the rat (Figure 4.9b, c) 

(Aristovich et al., 2018). In that work, dZ SNR was studied at 6, 8, 10, 11 and 15 kHz; 

also, the phase of the applied AC current was randomized, so it could be compared to 

the case when in phase and anti-phase recordings were subtracted (Figure 4.9a). The 

maximum SNR = 8 was found to be at 6 kHz, it decreased to 2.2 at 8 kHz, but increased 

again to 4 at 10 kHz, 7.1 at 11 kHz and 5.4 at 15 kHz. Taking into consideration the 

root-mean-square experimental noise which was constant at 6, 11 and 15 kHz 

(0.5±0.01 µV) and at 8 and 10 kHz (2.5±0.1 µV) (Aristovich et al., 2018), it is seen 

that the pure signal was the largest at 10 kHz. In spite of general agreement, the 

differences between the experimental and simulated results can be explained by: 1) the 

whole nerve was used instead of a single fibre which changes the compound AP 

latency due to dispersion in nerve and 2) in the experimental results, a bandwidth of 3 

kHz was used for all frequencies, which this current study has revealed is not the 

optimal parameter setting to use (Figure 4.8). Additionally, positive changes have not 

been recorded experimentally in myelinated nerves likely because of their small 

magnitudes which makes it difficult to obtain adequate SNR due to the noise and 

dispersion absent in single-fibre simulations (Schulte-Mattler et al., 2001; Aristovich 

et al., 2018). 

A number of studies of dZ measurements in unmyelinated nerves of the crab exist, 

testing dZ at DC (Holder, 1992; Boone, 1995; Gilad et al., 2009) and at up to 1025 Hz 

AC (Oh et al., 2011; Aristovich et al., 2015) which are supported by the simulations 

in unmyelinated fibres (Chapter 3). In those experimental studies, the impedance 

changes were the largest at DC and decreased with AC frequency, which partly agrees 

with the simulations (Figure 4.9) – while the dZ was the largest at DC, it was 

impossible to measure it at AC frequencies lower than 4 kHz because of the high 

characteristic frequency of the AP of the modelled myelinated fibre (Figure 4.7). The 

dZ did not decrease with frequency from 4 to 15 kHz as the optimal bandwidths for 
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each frequency were used instead of constant bandwidth utilized in all the studies listed 

above.  

The distances between electrodes have been experimentally studied in 

unmyelinated nerves only; they agree with the simulated results for the distance 

between injecting electrodes (ΔxI) (Boone, 1995; Gilad et al., 2009; Oh et al., 2011)  

but differ from the ones for the distance between recording and injecting electrodes 

(ΔxR) (Holder, 1992; Gilad et al., 2009) (Figure 4.10). The dZ dependence on the size 

and locations of the electrodes obtained in the study presented in this chapter is in a 

full agreement with the ones simulated with the C fibre model described in Chapter 3 

(Figure 3.9). 

The threshold electrotonus of the developed model (Figure 4.4) closely corresponds 

to the one obtained in the caudal nerve of the rat (Yang et al., 2000) as well as the 

recent validated models of myelinated fibres (McIntyre et al., 2002; Howells et al., 

2012). 

4.4 Discussion 

4.4.1 Summary of results 

1) The developed one-dimensional FEM model of a myelinated fibre was validated 

against an experimentally validated space-clamped model (Howells et al., 2012) 

and agreed with experimental data on AP shape at the node and internode as well 

as on propagation velocity and threshold electrotonus (Boyd & Kalu, 1979; 

Waxman, 1980; Harper & Lawson, 1985; Yang et al., 2000; Castelfranco & 

Hartline, 2016). 

2) The simulated dZ did not depend on the amplitude of the applied current below 

12.6 µA at all frequencies. 

3) The dZ simulated with the developed bi-directionally coupled FEM model were 

maximal at DC and were different for the two implemented cases of signal 
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processing, with and without subtraction (Figure 4.2). In both cases, dZ could not 

be simulated at frequencies lower than 4 kHz due to the high characteristic 

frequency of the AP and dZ (Figure 4.7). When subtraction of in- and antiphase 

signals was performed, optimal bandwidths for obtaining the largest dZ were 

increasing with frequency from 500 Hz at 4 kHz AC to 10.6 kHz at 15 kHz AC 

(Figure 4.8); magnitudes of dZ decrease reached maximum value equalling -0.11% 

at 8 kHz (Figure 4.9b). In case when the signal was band-pass filtered without 

preliminary subtraction, the optimal bandwidth increased from 0.9 to 3.9 kHz at 6 

to 12 kHz AC and decreased to 1.8 kHz at 15 kHz AC (Figure 4.8); the maximum 

dZ decrease was -0.04% at 12 kHz in this case (Figure 4.9b). Small dZ increases 

resembling the same behaviour with frequency were also recorded (Figure 4.9). 

These simulations partly agreed with recent experimental results (Holder, 1992; 

Boone, 1995; Gilad et al., 2009; Oh et al., 2011; Aristovich et al., 2018) as well 

as with the results obtained for unmyelinated C fibre in Chapter 3. 

4) The simulated dZ decreased with the distance between the injecting electrodes 

(ΔxI,) and between recording and injecting electrodes (ΔxR) (Figure 4.10a, b). For 

ΔxI,, it was in accordance with experiments carried out on unmyelinated fibres 

(Boone, 1995; Gilad et al., 2009; Oh et al., 2011), but the dependence was 

different for ΔxR. The dZ decreased significantly with diameters of the used 

electrodes and stayed constant with their widths (Figure 4.10c). These results 

agreed with the unmyelinated fibres model (Chapter 3).  

5) The origin of the negative dZ recorded during neural activity was the significant 

increase in the membrane conductance associated with this activity (Figure 4.11a). 

The impedance increase following the decrease at all frequencies (Figure 4.6, 

Figure 4.9a) appeared due to redistribution of the injected current at the area of 

recording (Figure 4.11e, f). In this case, the recorded voltage reflected not only 

the change in impedance but also a change in the direction of the current flow 

induced by the membrane activity. 
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4.4.2 Answers to the stated questions 

1. How does the impedance change depend on the experimental parameters?  

a) Amplitude and frequency of the injected current; 

The maximum current at which dZ was linear with it was 12.6 µA when DC was 

applied; the limit significantly increased at AC equalling approximately 125 µA at 6 

kHz (Figure 4.6). The linearity of the dZ with the injected current is important for the 

measured voltage to signify impedance change and not depend on the current itself. 

As a result, 12.6 µA was chosen as a safe current which did not affect neuronal 

excitability and was used in all simulations at all frequencies. 

The largest dZ was simulated at DC; at AC, the optimal frequency providing the 

largest dZ depended on the way of signal processing (Figure 4.9). In the case when 

subtraction of in-phase and anti-phase signal was performed (Figure 4.2), the largest 

dZ was observed at 8 kHz, in the other case, the optimal frequency was 12 kHz but the 

dZ was ~3 times smaller. These values were obtained using the optimal bandwidths 

for each frequency (Figure 4.8).  

b) Signal processing specifications  

Two signal processing scenarios was studied: 1) when two signals with the current 

in-phase and in antiphase were recorded and then subtracted before band-pass filtering 

and demodulation; 2) “single-shot” measurement, when the raw recorded signal was 

band-pass filtered around the carrier frequency and demodulated (Figure 4.2). The first 

scenario resulted in higher dZ because the AP was subtracted and therefore the 

artefacts associated with it were minimized (Figure 4.9). For this case, the optimal 

parameters were 8 kHz AC with 7.5 kHz bandwidth (Figure 4.8, Figure 4.9): there was 

minimal AP artefact and the large bandwidth allowed to extract full frequency band of 

the dZ (Figure 4.7). The second case when subtraction was not performed was studied 

because it could provide the means for real-time imaging as there was no need to record 

twice, in phase and in antiphase, to obtain a dZ. In this case, the possible bandwidth 

was limited because the AP was present (Figure 4.7) causing artefacts in the 
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measurements. Thus, the optimal parameters were to use 3.9 kHz bandwidth at 12 kHz 

AC (Figure 4.8, Figure 4.9).  

The reason for the increase in the optimal bandwidth with the measuring AC 

frequency is that the dZ has significant frequency components at up to ~8 kHz that are 

resolved with higher temporal resolution and therefore, bandwidth. In the case when 

there was no subtraction, the optimal bandwidth at 15 kHz AC was smaller than the 

one at 12 kHz AC (Figure 4.8) because the natural dZ of the fibre decreased with 

frequency (since the membrane is a parallel resistance and capacitance) while standard 

deviation increased with it. This increase was due to a small high-frequency noise (~19 

kHz) brought by modelling errors; this noise was the same in different simulations and 

was eliminated during phase-antiphase subtraction. Although this noise is absent in 

experiments, the “single shot” model case could provide a general trend showing an 

increase in the optimal bandwidths’ values with the carrier frequency up to 12 kHz 

(Figure 4.8), which is important for optimizing signal processing for fast neural EIT. 

c) Size and position of the electrodes 

With increasing distance between the electrodes, the decrease in dZs was observed 

(Figure 4.10a, b); dZ decreased significantly with increasing electrodes diameter and 

was not affected by their widths (Figure 4.10c). These results were in agreement with 

the ones for unmyelinated fibres presented in Chapter 3. 

2. Does this agree with the previous studies? 

a) Does the model validate recent experimental recordings? 

The modelled frequency dependence of the dZ decrease is in general agreement 

with the experimental data on the sciatic nerve of the rat (Aristovich et al., 2018). 

Although the model was developed for a single fibre, the results were comparable as 

dZs were shown to have a close-to-linear behaviour with the increasing number of 

fibres (Chapter 3).  

Also, as real nerves consist of thousands of fibres, there is an effect of temporal 

dispersion (Schulte-Mattler et al., 2001) – increase in the latency of the compound AP 

which occurs due to variability of fibres’ conduction velocities. This affects the dZ 
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latency in the same way, so theoretically AC frequencies lower than 4 kHz may be 

used for dZ recordings. However, dispersion in myelinated fibres is weak (~30% 

reduction over a meter nerve) (Olney et al., 1987); therefore this effect is not expected 

to strongly influence the results obtained in simulations.   

Impedance changes obtained in the experimental studies on unmyelinated nerves 

(Holder, 1992; Boone, 1995; Gilad et al., 2009; Oh et al., 2011; Aristovich et al., 2015) 

were different from the simulations: significantly lower AC frequencies were needed 

to record reliable dZ whose amplitudes monotonically decreased with frequency. This 

is partly because the characteristic frequency of AP in unmyelinated fibres is 

significantly smaller than in the myelinated ones allowing it to be processed using 

slower carriers. Also, constant bandwidths were used in the experiments that also 

affected the dZ-frequency dependence. 

b) Does it offer an explanation on the origin of the dZ? 

By analysing the flow of the external injected current as well as the membrane 

currents and conductances during negative and positive phases of the dZs (observed at 

50.7 ms and 51.5 ms, Figure 4.6a, Figure 4.9a), the model provided insight on their 

biophysical origin (Figure 4.11). In line with expectations, the dZ decrease was due to 

the opening of ion channels and the significant increase in conductance (Figure 4.11a). 

Conversely, an increase in the dZ was shown to be associated with the change in the 

flow of the injected current around the recording electrode. This change was due to 

dynamics of ion channels’ opening along the fibre during different phases of AP 

inducing the current in the external space near the recording electrode to change the 

direction according to the path of least resistance (Figure 4.11e, f). Therefore, the dZ 

obtained by demodulation of the recorded voltage was inaccurate as it started to 

depend on the changed current. This conclusion was also supported by measuring the 

change in the injected current flow through the nodes: it increased during the negative 

dZ phase but decreased during the positive dZ phase (Figure 4.11d).  

Thus, the recorded apparent dZ increase did not reflect a real increase in impedance 

as it was contaminated by the change in the current. However, this apparent increase 

was reproducible and so may be used in EIT imaging. 
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c) Does it provide results different from the model of unmyelinated fibres 

presented in Chapter 3 and the passive model (Liston et al., 2012)? 

The dZ in the model of unmyelinated fibres (Chapter 3) differed from the ones 

simulated in the current study in two ways. First, the current model showed that dZ 

could not be measured in a myelinated fibre using any AC frequency. As the dZ 

frequency band of a modelled myelinated fibre covered a 1–8 kHz range (Figure 4.7), 

high AC measuring frequencies of >4 kHz were necessary for dZ extraction via 

demodulation (Section 4.2.3). Second, apart from being the largest at DC, the 

simulated dZ did not monotonically decrease with frequency. This was because the 

optimal bandwidths used during band-pass filtering of the recorded signal were 

determined at each carrier frequency (Figure 4.2, Figure 4.8) that allowed finding the 

optimal frequency at which the largest possible dZ could be extracted. On the other 

hand, these models agreed on the dZ dependence on the sizes and locations of the used 

electrodes as well as on the presence of the apparent positive dZ changes. 

The findings simulated with the passive model (Liston et al., 2012) did also not 

match the current one: it included different dependence of the dZ on frequency as well 

as inability of this model to predict finer properties such as the dZ increase.  

3. What recommendations can be given for optimization of imaging 

myelinated fibres using fast neural EIT? 

The main recommendation is to use higher bandwidths for higher carrier 

frequencies, which have not been previously utilised experimentally. However, since 

the natural dZ signal decreases with frequency, an optimal combination of AC 

frequency and bandwidth must be found for each particular nerve. In this study, it was 

8 kHz AC with 7.5 kHz bandwidth when subtraction of in- and antiphase signals was 

performed (Table 4.5, Figure 4.8) and this was in agreement with the existing 

experimental data (Aristovich et al., 2018). Also, the same as for the unmyelinated 

model discussed in Chapter 3, the smallest possible electrodes should be used and the 

distance between them should be minimized. 
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4.4.3 Technical issues 

The main technical problem, as in the case of the unmyelinated fibre model 

(Chapter 3), was high computational requirements and therefore long simulation times. 

Even the use of 2D axisymmetric simplification could not significantly improve the 

computing speed, which was around 1-2 hours for a single simulation; more than a 

hundred of those were necessary to test the model with different parameters and obtain 

necessary statistics. The reason for such low-speed simulations was that the spatial 

structure of the fibre was strongly heterogenous while the FEM approach operates with 

continuous solution approximation along its length. This results in poor convergence 

at the boundary points connecting nodes with internodes due to sharp transition in 

potentials in those points (Figure 4.3e). To address this issue, the non-uniform mesh 

was created, where element size decreased towards the boundary (Table 4.1, Figure 

4.1). Such a mesh included very small elements in the nodal and adjacent regions and 

was repeated in the external domain for coupling (Figure 4.1b) which also significantly 

increased the time of computation. 

Acceleration of the simulations is thus critical. It may, for example, be reached by 

exclusion of active ion channels at the internodes as in MRG model (McIntyre et al., 

2002), or by switching back from FEM to compartmental model that, however, may 

degrade the accuracy of simulations coupled with the external space (Section 4.2.1).  

Due to non-perfect convergence discussed above, the solution of the developed 

model was contaminated with a small ~19 kHz noise which introduced errors in high-

frequency “single-shot” simulations. However, this noise was the same at different 

phases of the injected current and so clearly eliminated in phase-antiphase subtraction 

case. 

4.5 Conclusion 

An accurate FEM model of a myelinated fibre bi-directionally coupled with 

external space was developed using the experimentally validated space-clamped 
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model of a human sensory fibre. The created model allowed simulation of dZ during 

an AP propagation and this facilitated determination of the optimal parameters for 

imaging myelinated fibres with EIT. 

The dZ decrease simulated with the model was in agreement with experimental 

data. The model also predicted a small apparent dZ increase and was able to provide 

an explanation to its biophysical origin. The performed simulations allowed finding 

the optimal bandwidths at each AC frequency for enhancing the efficiency of dZ 

measurements. Also, optimal currents, as well as sizes and locations of the used 

electrodes, were determined.  
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5.1 Introduction 

5.1.1 Overview 

One of the main objectives of fast neural EIT is to image physiological spontaneous 

activity in autonomic nerves. This can be valuable for a new area of bioelectronic 

medicine aimed at neuromodulation of internal organs supplied by these nerves.  

The previous two chapters investigated the optimal EIT parameters for a single or 

a small number of simultaneously firing unmyelinated and myelinated fibres. 

However, main autonomic nerves such as the cervical vagus nerve comprise thousands 

of small fibres. More than two-thirds of those are unmyelinated in mammals (De Neef 

et al., 1982; Asala & Bower, 1986; Prechtl & Powley, 1987; Soltanpour & Santer, 

1996) and humans (Shimizu et al., 2011; Verlinden et al., 2016) and have slow 

conduction velocities (CV) of about ~0.5-2 m/s (Coleridge & Coleridge, 1984). As the 

fibres are not identical, their CV also differ that causes dispersion of APs along the 

nerve during propagation (Chapter 2.2.5). Consequently, it is challenging to record a 

signal of sufficient amplitude when moving away from a point of stimulation, and this 

effect is proportionately greater for unmyelinated fibres than faster conducting fibres. 

For example, in rat sciatic nerve, significant dZ could only be recorded in fast fibres 

with low dispersion more than 5 cm from the onset site (Aristovich et al., 2018). 

Impedance measurements in the walking leg nerve of the crab which are unmyelinated 

Chapter 5  

Effect of dispersion in nerve on 

impedance change 
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(Boone, 1995) also demonstrated high dispersion with the possibility of CAP 

recording only up to 1.6 cm from the stimulus. In addition, only fast fibres were 

possible to be imaged with fast neural EIT in the rat sciatic nerve experiment 

(Aristovich et al., 2018) while the activity of C fibres was not visible.   

In spite of this issue, there is potential for EIT to image unmyelinated fibres at 

greater distances than the CAP. The reason is that extracellular action potentials 

(EAPs) of individual fibres may be expected to disperse sooner than the related 

impedance changes because they are usually biphasic or triphasic (Harper & Lawson, 

1985; Gold et al., 2006; Agudelo-Toro & Neef, 2013; Ghitani et al., 2017) (Figure 

2.10) and so cancel when separated by dispersion. This effect may be expected to be 

much less for dZ which are mainly monophasic (Faulkner et al., 2018b; Aristovich et 

al., 2018); in principle, therefore, dZ should decrease slower than CAP. 

In this chapter, we have explored the possibility of recording dZ further than CAP 

by developing 3D FEM computational models comprising 50 fibres with HH (Hodgkin 

& Huxley, 1952)  or C nociceptor (Tigerholm et al., 2014) ion channels with normally 

distributed sizes and propagation velocities. These models were bi-directionally 

coupled with the external space that allowed injection of electric current via external 

electrodes and simultaneous external recording at various distances down the nerve. 

Simplified statistical models matching the accurate ones were developed to accelerate 

computations and allow dZ simulations of complex nerves with > 10k axons.  

5.1.2 Purpose 

The purpose of the study presented in this chapter was to investigate the dZ 

behaviour in complex compound nerves relative to CAP. A specific interest was to test 

the hypothesis that impedance changes can be recorded further down the nerve from 

the site of its stimulation than the CAP.  

Specific questions addressed were: 

1. Is it possible to record dZ further than CAP? 

2. Are there differences between models in the effect of dispersion on dZ? 
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3. What is the largest distance from the site of stimulation at which dZ can be 

recorded ? 

a. for nerves consisting of Aα, Aβ, Aδ and C fibres; 

b. for realistic nerves such as the right vagus and sciatic nerves of the rat. 

5.1.3 Experimental design  

The study was accomplished by development of 3D fully coupled models of nerve 

comprising 50 active fibres with normally distributed CVs: giant axons of the squid 

(Hodgkin & Huxley, 1952) or mammalian C nociceptors (Tigerholm et al., 2014). 

These models were based on previously developed accurate active models of single 

fibres coupled with external space (Chapter 3). They utilized the finite element method 

(FEM) approach and were built in COMSOL Multiphysics software (COMSOL Inc, 

USA) in conjunction with MATLAB using LiveLink for MATLAB interface. Due to 

the different size of the axons involved, diameters of the nerve models and 

circumferential electrode rings were 2.4 and 0.01 cm for the HH and C fibre models, 

respectively. The width of the electrode rings was adjusted accordingly to 100 and 

5µm (Table 5.1). Although a diameter of 2.4 cm HH nerve exceeds the human or 

mammalian anatomical range, it is computationally efficient and is a useful basis to 

answer the questions about dispersion stated above. 

Realistic EIT experimental conditions were simulated in which a linear electrode 

array was used for dZ measurements (Oh et al., 2011; Aristovich et al., 2015). This 

enabled calculation of APs and dZs by external electrodes along the nerve in order to 

explore if the initial hypothesis was supported. The detailed models were 

complemented with simplified statistical models which allowed dZ of much larger 

nerves with >10k axons to be simulated without extensive computation; these were 

still in good agreement with the 3D FEM models.  Statistical models were based on 

the histological studies which provided morphological properties of fibres and their 

CVs. Measurements with FEM models were accomplished using direct current; 

alternating current was added in the statistical models. The reason was that simulations 

at DC demanded significantly smaller time to compute: 8 hours per single simulation 
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vs 20 hours for the 225 Hz AC case; this time increased with increasing frequency 

because of the appearance of transient effects and their interaction with the active 

membrane. Also, modelling of unmyelinated fibres performed in Chapter 3 showed 

that the dZ reached maximum at DC and no differences in biophysical origin of dZ 

recorded using AC or DC were observed. 

5.2 Methods 

5.2.1 Accurate FEM models 

1. Model setup  

The developed models included 50 one-dimensional active nerve fibres and a 3D 

extracellular space bi-directionally coupled together. The coupling feedback system 

allowed simultaneous recording of intracellular action potentials and extracellular field 

created by the membrane currents and the injected current (Figure 3.3 in Chapter 3). 

The fibres were simulated as cables with active voltage-dependent experimentally 

validated ion channels using either Hodgkin-Huxley model of the giant axon of the 

squid or mammalian C fibre with 10 active ion channels and voltage-dependent ions’ 

concentrations (Tigerholm et al., 2014).  

The interaction between fibres was omitted as it was shown to not significantly 

affect the measurements (Chapter 3). The external space was represented as a cylinder 

with a uniform electrical conductivity equalling 10 mS/cm (Elia & Lamberti, 2013). 

EIT current was injected and the resultant voltage was recorded by means of external 

electrodes (Table 5.1). The mesh of HH and C fibre models comprised 1.6M and 530k 

tetrahedral elements, respectively. 

The main equations and electrical parameters of the models were the same as for 

the single fibre and can be found in Chapter 2 and Chapter 3. In short, the external 

field was simulated with volume conduction Laplace’s equation (2.22); the current was 

injected as a constant flux through the ring electrodes (3.3). Stimulation of the fibres 

was implemented via the inclusion of an activating function into the main equations of 
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the nerve fibres – the HH model (3.11) and the C fibre model (3.12). Membrane 

currents flowing out of the fibres to the external space were represented as a normal 

flux through the boundaries of the modelled axons (2.23).  

 

 

Figure 5.1 Geometrical structure and FEM mesh of the developed 50-fibre FEM models. 

(a) 3D geometry of the 50-fibre models with normally distributed CVs (Table 5.2). The AP was 

induced at the end simultaneously for all the fibres; the current was injected via two external 

electrodes (blue) and the electric field was recorded by an external electrode (green) located before 

the injecting ones with respect to ground. Four sets of electrodes were used to record dZ 

accompanying AP propagation (Table 5.1).  

(b) Example of tetrahedral FEM mesh used in the models; 

(c) Cross-section view of the uniform distribution of the fibres used in the models. 
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Table 5.1 

MAIN PARAMETERS OF THE FEM MODELS WITH 50 FIBRES 

Parameter HH model C fibre 

Fibre diameters 1 mm 1 µm 

Diameter of the electrodes / surrounding 

volume, Del 
2.4 cm 0.01 cm 

Width of the electrodes, Hel 0.1 cm 5 µm 

Length of the nerve 60 cm 2 cm 

Number of electrodes sets 4 4 

Distances of electrodes sets from 

stimulation point 
10, 19, 25, 35 cm 0.4, 0.8, 1, 1.4 cm 

Injected EIT current 30 µA 6.3 nA 

Distance between recording and 

injecting electrodes in each set, ΔxR 
0.2 cm 0.01 cm 

Distance between injecting electrodes in 

each set, ΔxI 
0.5 cm 0.002 cm 

Intracellular resistivity 0.05±0.02 kΩ·cm 0.0354±0.01 kΩ·cm 

Conduction velocity (5.1) 15±2.8 m/s 0.6±0.07 m/s 

Scaling coefficients of single fibre 

signals for simplified models 
16 100 

 

Fibres were uniformly distributed inside the insulated cylinder with the diameter 

depending on the type of fibres (Table 5.1). The size of the cylinder defined the 

diameters of the electrodes as well as the amount of the external space (Figure 5.1). 

Impedance of the electrodes did not affect the measured dZ because a 4-electrode 

measurement paradigm (Schwan & Ferris, 1968) was used for time-difference single 

impedance measurements (Holder, 2004a). 

Dispersion was implemented by normally distributing CV of the fibres by 

randomizing their intracellular resistivities. Their mean values were taken from the 

developed validated models: 0.05 kΩ·cm for the model with HH axons, and 0.0354 

for the one with C fibres (Table 5.1) (Hodgkin & Huxley, 1952; Tigerholm et al., 

2014). Standard deviations (0.02 kΩ·cm for the HH axons and 0.01 kΩ·cm for C 

fibres) were chosen to have a significant visible dispersion along the modelled lengths 

of the nerves (60 cm for HH and 2 cm for C fibre, Table 5.1) and so that it is similar 

to experimental recordings (Gasser, 1950; Boyd & Kalu, 1979) (Table 5.2). 

For each model, four sets of electrodes were placed along the nerve; each set 

consisted of two injecting ones through which the constant small direct current not 
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affecting the membrane was applied: 30 µA (40 µA/cm2) for HH and 6.3 nA (4 

mA/cm2) for C-fibre nerves; the recording electrode was used for measuring the 

resultant external voltage in respect to ground (Figure 5.1). Impedance changes 

recorded at DC have been shown to have the largest values and the same physiological 

nature as the AC ones (Chapter 3), so they provided a good starting point for 

simulations. Electrodes had diameters of 2.4 cm and 0.01 cm and widths of 0.1 cm and 

5 µm for models with HH and C fibres respectively (Table 5.1). This large electrode 

diameter for the HH axons was chosen to accommodate all giant squid axons (d = 1 

mm) inside it and so that the packing density would be similar to the nerve with C 

fibres (Figure 5.1). 

The location of the recording electrode in each set was at 10, 19, 25, 35 cm from 

the activation point for the HH nerve and 0.4, 0.8, 1, 1.4 cm for C fibre nerve; distances 

between recording and injecting electrodes (ΔxR) for HH and C fibre cases were 0.2 

and 0.01 cm; distances between injecting electrodes (ΔxR) were 0.002 and 0.5 cm 

respectively (Table 5.1). The action potentials were initiated simultaneously at the end 

of the nerve.  

The COMSOL model files saved in Matlab format are provided in the EIT-lab 

GitHub repository at https://github.com/EIT-team/Dispersion-modelling. 

2. Signal processing  

Two simulations with and without current injection were done for each location of 

the electrode sets. Each simulation lasted 40 ms for HH and 30 ms for C fibre models. 

Overall, 4 electrodes locations · 2 states = 8 simulations were done for each type of 

the nerve. The process of dZ extraction repeated the one utilized in the single fibre 

models described in Chapter 3 (Figure 3.4a). In case of DC injection which was 

performed in the current study, it included a) subtraction of the signals with and 

without the injected current to eliminate action potentials but preserve impedance 

change and b) subtraction of the mean baseline voltage in order to express the 

impedance change in terms of absolute voltage change in µV. If percentage values 

were needed, normalization of the obtained absolute dZ was done. 

https://github.com/EIT-team/Dispersion-modelling
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dZ were expressed in µV because the constant current was applied and the phase 

shift between the current and the measured voltage is close to zero (Cole & Curtis, 

1939), as seen in the equation (3.1). Thus, changes in voltage traces in Figure 3.4a, 

Figure 5.4 and Figure 5.5 are referred to as dZ as they signify impedance changes and 

can be directly compared with dZ expressed in percent (3.2). 

The negative integral areas under the CAPs and dZ curves recorded by each 

electrode set were calculated to compare the effect of their cancellation due to 

dispersion. Because the absolute values of these areas had different orders of 

magnitude and in order to compare their behaviour, they were normalized in respect 

to the ones at the shortest computed distances (Table 5.1): 10 cm for HH and 0.4 cm 

for C fibre models. 

5.2.2 Simplified statistical models of 50-fibre nerves 

Since 50-fibre fully coupled FEM models were very computationally intensive, a 

simplification was developed in order to obtain necessary statistics for calculation of 

the desired area under the CAP and dZ curves. CAP and dZ signals were obtained at 

the same distances from stimulation point as in the developed FEM model (Table 5.1) 

by summarizing 50 units of AP and dZ signals simulated on a single fibre in Chapter 

3 (Figure 5.4) with each fibre possessing a constant normally distributed CV (Figure 

5.2). Single fibre dZ signals measured at DC and at AC currents (1 kHz for HH and 2 

kHz for C fibre) were used for simulations. To increase the absolute magnitude of 

impedance changes measured at AC, the EIT current used for obtaining them was 10 

times larger than at DC, due to the increase in safe range values (Chapter 3). Because 

dZ is linear with respect to the amplitude of the injected EIT current (Holder, 2004a; 

Gilad et al., 2009), the absolute µV amplitudes of the single fibre signals were linearly 

corrected to the same current level as in the FEM model. Before summation, these 

signals were scaled in amplitude due to the difference in electrode diameters used for 

single fibre and 50-fibre simulations and therefore different distances from the 

electrode to the fibre. The recorded amplitude reduction  due to the increase in distance 

to the fibre was proportional to 1/r2, according to Coulomb’s law, therefore the used 
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single fibre signals were decreased (d50/d1)
2 times where d50 is the diameter of the 

electrodes used in 50-fibre models (2.4 and 0.01 cm, Table 5.1) and d1 are the 

diameters used for single fibre models which equalled 0.6 cm and 10 µm for HH and 

C fibre model respectively (Chapter 3). Thus, the single fibre signals inserted into the 

developed simplified 50-fibre model were decreased 100 times in the case of C fibres 

and 16 times for HH axons (Table 5.1). 

Parameters of the distribution of velocities were chosen so that they correspond to 

the distribution of axoplasm resistivities in the FEM model (Table 5.1). Based on the 

cable structure of nerve fibre, the CV can be expressed as the ratio of the length 

constant of the fibre to its time constant (Johnston & Wu, 1995): 

 

 
 =
𝜆

𝜏
=
√𝑟𝑚 𝑟𝑖⁄

𝑟𝑚𝐶𝑚
=
√0. 5 ⋅ 𝑑𝑎𝑥 ⋅ 𝜌𝑚 𝜌𝑖⁄

𝜌𝑚𝑐𝑚
~
1

√𝜌𝑖
 (5.1) 

 

 

where λ [m] and τ [s] are length and time constants of the nerve, rm [Ω·cm] and ri 

[Ω/cm] – membrane and axial resistances; Cm [F/cm] – membrane capacitance; ρm 

[Ω·cm2], ρi [Ω·cm] and cm [F/cm2] are a membrane and intracellular resistivities and 

specific membrane capacitance; dax [cm] is the diameter of the axon. 

 Thus, CV is inversely proportional to the square root of intracellular resistivity. 

Given that mean values are 15 m/s for HH model and ~0.6 m/s for C fibre model, S.D. 

obtained from (5.1) were 2.8 and 0.07 m/s for these fibre types respectively (Table 

5.1). 

Source code for 50-fibre statistical models is available at https://github.com/EIT-

team/Dispersion-modelling. 

5.2.3 Statistical modelling of dZ in complex nerves 

As it was impossible to implement computationally-heavy accurate 3D FEM 

models for realistic nerves containing thousands of fibres, simplified statistical models 

containing up to 100k different fibre types were developed. The implemented approach 

was based on the inverse proportionality of the recorded impedance changes to the 

https://github.com/EIT-team/Dispersion-modelling
https://github.com/EIT-team/Dispersion-modelling
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cross-sectional area of the measured nerves. This is because the intracellular resistivity 

of fibres is lower than the external one, therefore, when ion channels open, the injected 

current flows to the area with lower resistivity and a small decrease in the dZ of the 

system “nerve + external space” is observed. Approximating the nerve fibre as a 

cylinder with a constant diameter, its resistance can be written as: 

 

 
𝑅𝑖𝑛 =

𝜌𝑖𝑛 ⋅ 𝐿𝑛
𝑆𝑛
~
1

𝑑2
 (5.2) 

 

 

where ρ is the axoplasm resistivity [Ω·cm], Ln [cm], Sn [cm2] and d [cm] are length, 

cross-sectional area and diameter of the nerve. So, the resistance of the nerve is 

inversely proportional to cross-sectional area meaning that the recorded Z has the same 

dependence. 

 

Table 5.2 

PARAMETERS OF THE STATISTICAL MODELS 

Parameter Aα Aβ Aδ C 

Velocity 90±8 m/s 65±9 m/s 20±3 m/s 2d0.5 

Fibre diameter 16.5 µm 12 µm 4 µm 0.8±0.2 µm 

Size of the nerve 
Area = 0.1 mm2 

Diameter = 357 µm 

Number of fibres 300 500 4800 76000 

Area occupied by fibres 60 % 

Single dZ latency 0.5 ms 0.8 ms 1 ms 2 ms 

Scaling coefficients kconn = 26.1; kel = 1270; kΣ ≈ 3.3·104 

 

Simple statistical models were developed to find the maximal distances at which 

impedance changes may be theoretically measured. This was accomplished for four 

types of nerves consisting of a single type of fibres: Aα, Aβ, Aδ and C as well as for 

realistic sciatic and right vagus nerves of the rat (Table 5.2). CAPs were not simulated 

in these models as the main interest was to study how dZ disperses with the distance 

from the onset site. 
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Figure 5.2 Schematic representation of dZ dispersion in the developed model. The same is applicable 

to APs (Figure 2.12).  

The models were implemented in three steps: 1) modification of the dZs of each fibre in accordance 

with their cross-sectional area (5.2) and AP latencies; 2) summarizing the AP or dZ of single fibres 

having constant but different normally distributed CVs; 3) scaling of the resultant signals in 

accordance with the nerve diameter and conductivity of connective tissue (5.5) and adding the 

experimental noise. 

This picture demonstrates on a simple three-fibre example, how the compound dZ (red) is formed 

from the dZ of single fibres (blue) with slightly different CVs. In each fibre, the AP propagates with 

constant velocity vi; the compound dZ is equal to the sum of dZi in all single fibres. It is seen that the 

amplitude of compound dZ decreases with distance. The shape of dZ used this picture was obtained 

from simulations for realistic single C fibre presented in Chapter 3; it was inserted into the developed 

statistical multiple-fibre models with velocity distribution taken from the literature (Table 5.2). 

 

These models were implemented in the same way as the simplified 50-fibre models 

(Section 5.2.2). In the models, the compound dZ at DC and at 2 kHz were computed 

as a sum of modified dZ of all single fibres at different distances from the stimulation 

Aα Aβ AδC
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Σ
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point (Figure 5.2). CVs in each fibre were assumed to be constant and normally 

distributed; the values for normal distributions were taken from the experimental data 

found in the literature discussed in the text (Table 5.2, Table 5.3). Modifications of the 

previously simulated dZ of a single realistic mammalian C fibre depended on the fibre 

type (Figure 5.2): the dZ latency for fast fibres linearly decreased in accordance to the 

latency of their APs (Table 5.2); the dZ amplitude increased proportionally to their 

cross-sectional area (5.2) (Figure 5.2).  Conduction velocity (mean and S.D.) and 

latency data for Aα, Aβ and Aδ fibres was taken from (Boyd & Kalu, 1979) for motor 

and cutaneous nerves of the cat. Data for C fibres was obtained from diameters 

distribution (Gasser, 1950) and experimentally found equation (5.3) (Rushton, 1951) 

presented below: 

 

 
 𝑢𝑛𝑚𝑦𝑒𝑙 =  ⋅ √𝑑𝑓𝑖𝑏𝑟𝑒 (5.3) 

 

 

where vunmyel [m/s] is the conduction velocity of unmyelinated fibre and dfibre [µm] 

is its diameter. 

A number of fibres in each type of nerve was chosen so that they fit into the 0.1 

mm2 rat vagus nerve (Soltanpour & Santer, 1996) given that around 60% of nerve 

cross-sectional area is occupied by fibres (Birren & Wall, 1956) (Table 5.2). The 

numbers were (Figure 5.5): 300, 500, 4800 and 78000 fibres for Aα, Aβ, Aδ and C 

fibres respectively. 

All the parameters for realistic nerves (Table 5.3) were based on morphometric data 

for sciatic (Schmalbruch, 1986) and vagus nerves of the rat (Soltanpour & Santer, 

1996) and the experimentally found CV vs diameter dependencies for unmyelinated C 

fibre (5.3) (Gasser, 1950; Rushton, 1951), as well as myelinated Aβ and small Aδ 

fibres (5.4) (Boyd & Kalu, 1979): 

 

  𝑚𝑦𝑒𝑙 = 4.6 ⋅ 𝑑𝑓𝑖𝑏𝑟𝑒 (5.4) 
 

 

where vmyel [m/s] is the CV of a myelinated fibre and dfibre [µm] is its diameter. 
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Because some of the parameters in the model of a single C fibre (Chapter 3) differed 

from the realistic nerve model, the dZ taken from it had to be scaled before fitting it 

into the models with multiple axons. There were two main differences: first, 

extracellular space in a single fibre model was simulated as a highly conductive saline 

solution, while in reality it consists of more resistive connective tissue; second, the 

diameter of the recording electrode was small (10 µm) so that it could fit only one 

fibre. Thus, the scaling coefficients kconn and kel were introduced to account for these 

discrepancies; the dZ obtained after summation of all single dZ across all fibres (Figure 

5.2) was scaled by dividing it by the product of these coefficients (5.5). The connective 

tissue was assumed to consist of 3% endoneurium, 3% perineurium and 94% 

epineurium with resistivities 1.211, 1.211 and 47.8 kΩ·cm respectively (Choi et al., 

2001). The weighted average of these values equalling 2.6 kΩ·cm was used which was 

around kconn = 26 times smaller than 0.1 kΩ·cm previously used for saline (Chapter 3). 

To account for larger distance from measuring electrode to the fibres, and because the 

electric field is inversely proportional to the squared distance from the object, the 

scaling coefficient was chosen to be equal to kel = (r1/r0)
2 where r1 and r0 are new and 

previous distances to the fibre respectively equalling to electrode radii. In the single 

fibre model discussed in Chapter 3 electrode diameter was 10 µm; the complex nerves 

had diameters equalling 357 µm for the right rat vagus nerve and a single fibre type 

nerves (Table 5.2): the number of fibres in them were chosen to match this diameter.  

The diameter was 700 µm for rat sciatic nerve (Table 5.3) (Schmalbruch, 1986). Thus, 

kel was equal ~1270 and 4900 for these nerves respectively. 

The resultant scaling coefficient was (Table 5.2, Table 5.3): 

 

 
𝑘𝛴 = 𝑘𝑐𝑜𝑛𝑛 ⋅ 𝑘𝑒𝑙 =

𝜌𝑠𝑎𝑙
𝜌𝑐𝑜𝑛𝑛
⋅ (
𝑑𝑛𝑒𝑟𝑣𝑒
𝑑𝑒𝑙,1
)

2

 (5.5) 
 

 

where ρsal and ρconn [kΩ·cm] are resistivities of the saline and connective tissue 

composed of epineurium, endoneurium and perineurium, del,1 and dnerve [µm] are the 

diameters of the electrodes in the single fibre simulations and the simulated nerve 

respectively. For scaling, the final compound dZs found in step 2 of the model (Figure 

5.2) were divided by the resultant coefficient kΣ (Table 5.2).   
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Table 5.3 

PARAMETERS OF THE RIGHT VAGUS AND SCIATIC NERVES OF THE RAT 

Parameter Right vagus nerve Sciatic nerve 

Nerve diameter 357 µm 700 µm 

Fibre composition 
7000 Aδ 

40000 C 

7800 Aβ 

19000 C 

Fibre diameters 
Aδ: 2.68±1.75 µm 

C: 0.76±0.28 µm 

Aβ: 6±3 µm 

C: 0.76±0.2 µm 

Scaling coefficient, kΣ ~3.3·104 ~1.3·105 

 

Each nerve was simulated with a length of up to 50-cm and the duration of each 

simulation was 50 ms. Using the sequence of the steps explained above, dZ for all 

nerves were obtained at 2, 4, 10, 20 and 50 cm from the stimulation site. 

Experimentally observed root mean square (RMS) noise of 0.5 µV (Aristovich et al., 

2018) was added to the resultant compound dZ as the last step (Figure 5.2). Then, a 

signal-to-noise ratio was computed as a ratio of the amplitude of a pure compound dZ 

signal to the standard deviation of the added noise. Ten random models with the 

parameters specified above were computed for statistics. The maximum distance at 

which dZ can be theoretically measured and possibly imaged was calculated. The dZ 

signal was considered measurable if SNR was more than 1 (≥ 0 dB); the dZ was 

possible to be imaged if SNR ≥ 4 (>= 12 dB) (Gilad & Holder, 2009). All the results 

were compared with the available experimental data using SNR and maximum 

distances of signals’ detection. 

Source code for statistical models of complex nerves is available at 

https://github.com/EIT-team/Dispersion-modelling. 

5.3 Results 

5.3.1 Hodgkin-Huxley axons model 

The amplitudes of the CAPs simulated with the realistic 3D FEM model (Figure 

5.1) decreased with the distance from the AP initiation point (i.p., Figure 5.3): they 

https://github.com/EIT-team/Dispersion-modelling
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were ~ 7 mV at 10 cm, 6 mV at 19 cm, 4.5 mV at 25 cm and 3 mV at 35 cm from the 

stimulation point. Duration of the negative phase of the compound AP increased from 

4 to 5, 6 and 7 ms along the same distances respectively (Figure 5.3a). dZ had the same 

behaviour. It decreased from -3.5% (-7 µV) at 10 cm, to 2.9% (-5.8 µV) at 19 cm, 

2.5% (5 µV) at 25 cm and 1.8% (3.5 µV) at 35 cm from stimulus while duration of its 

negative phase increased from 9 to 11, 12 and 15 ms at the same distances (Figure 

5.3a). The area under the CAP fell to about 62% of the one at 10 cm from the location 

of nerve stimulation. In contrast, the area under dZ signal curves was close to constant 

at these distances (Figure 5.3c). 

Necessary statistics (standard deviations) in the calculated areas were obtained with 

the computation of 100 simplified statistical models with 50 fibres and the same CV 

distributions as in the FEM model. The CAP and dZ at DC in these models were close 

to the ones obtained with the accurate FEM model (Figure 5.4b, Figure 5.3a); they also 

allowed computation of dZ dispersion recorded at AC (1 kHz in HH case) current. The 

areas under the CAP computed with these models were (in respect to the ones at 10 

cm, Figure 5.3d): 83.1±2.9% at 19 cm, 75.6±3.8% at 25 cm and 67.9±4.3% at 35 cm. 

dZ measured at AC at the same distances were also decreasing with distance: 

84.4±2.7%, 77.5±3.3% and 71.5±3.3% with respect to the dZ at 10 cm from the 

stimulus. The area under the dZ curves measured at DC was constant and independent 

on the distance from AP initiation point (i.p.) (red line in Figure 5.3d, left). These 

values are in close agreement with the results obtained using the accurate FEM model. 
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Figure 5.3 Compound AP and dZ of nerves comprising 50 HH axons (left) or C fibres (right) 

measured at various distances from stimulation using the 3D FEM model (a)-(c) and 100 simplified 

models (d). dZ are depicted in per cent and in µV for comparison with the simplified model. 

(a)-(b) FEM models of HH axon and C fibre; 

(c) Normalised integral areas under the CAPs (blue dashed lines) and dZ (red solid lines) vs distance- 

from AP initiation point (i.p.), FEM model; 

(d) Areas under CAP and dZ curves obtained using the simplified 50-fibre models. Blue dashed and 

red solid lines designate areas under CAPs and dZ measured at DC; yellow lines designate dZ 

measured with AC current: 1 kHz for HH, 2 kHz for C fibre model. Standard deviations are computed 

on the basis of 100 random models with the same CV distributions (Table 5.1, eq. (5.1)) 

5.3.2 C fibres model 

At first glance, the FEM model containing 50 C fibres behaved similarly to the one 

with HH axons: CAP amplitude and compound dZ decreased while their durations 

increased further from the site of AP initiation (Figure 5.3b).  

(a)

(b)

(c)

(d)



Chapter 5. Effect of dispersion in nerve on impedance change  

159 

 

 

Figure 5.4 Single and compound APs and dZs used in the statistical 50-fibre models for comparison 

with the FEM models. 

(a) Examples of single HH and C fibre APs and dZs used for implementation of the simplified 50-

fibre models and for extension to complex nerves. The EIT AC current was 10 times larger than DC 

to increase the absolute measured dZ. The signals were taken from the models of HH axon and C 

fibre developed in Chapter 3. 

(b) Compound APs and dZs at the same distances as were used in the FEM model (Table 5.1). Lines 

of different colours represent AP and dZ simulated using different statistical models with the same 

mean and S.D. parameters (Table 5.2, Table 5.3) to obtain necessary statistics (Figure 5.3d). Velocity 

distribution of the AP and dZ signals was based on the values of resistivities used in the FEM model 

(Table 5.1) and their proportionality (5.1). The signals were summarized and scaled due to the 

increased diameter of the electrode from a single fibre model to 50-fibre model (Table 5.1, details 

are in the text). 

 

The values of CAP decrease were from 0.95 mV at 0.4 cm to 0.65, 0.5, 0.35 mV at 

0.8, 1 and 1.4 cm from the site of stimulus respectively; dZ decreased from -0.5% (-

dZ, DC

dZ, 1 kHz

Single HH axon Single C fibre

AP

V

Time

50 HH axons 50 C fibres(a)

(b)

AP dZ, DC
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0.4 µV) to -0.45% (-0.35 µV), -0.44% (-0.34 µV), -0.24% (-0.2 µV) at the same 

distances. Duration of the negative phases of the dispersed CAP increased from 3 ms 

at 0.4 cm to 5.5, 7, 9 ms at 0.8, 1 and 1.4 cm from stimulation; dZ durations – 3, 4.5, 

6, 7.5 ms (Figure 5.3b). 

However, for the C fibre nerve, the dependence of the areas under the compound 

AP and dZ on the distance from the point of nerve activation were different from the 

HH nerve (Figure 5.3c). In contrast to the HH model, the area under CAP stayed 

constant; the area under dZ decreased but fluctuated approximately 80% from the 

maximum value due to the noise associated with weak convergence of the C fibre FEM 

model requiring to solve 22 PDEs in parallel (see Discussion). 

As for the nerve model with HH axons, a 50-fibre statistical model with C 

nociceptors was implemented to compute statistics for the obtained values. In the 

developed model, the CAPs and dZ recorded at DC were in a good agreement to the 

ones simulated with the FEM model (Figure 5.4b, Figure 5.3b). This made it possible 

to implement 100 of these models with the same CV distributions as well as to add 

impedance change measured with an AC current (2 kHz) which was impossible to do 

with the computationally-heavy FEM model. The same as in the FEM model, areas 

under the CAP in respect to the area measured at 0.4 cm were practically constant (blue 

dashed line at Figure 5.3d) at 99.5±0.4%, 99.5±0.5% and 99.3±1.4% at 0.8, 1 and 1.4 

cm from the stimulus. In contrast to the HH model, dZ measured at DC decreased with 

distance from 86±5.3%, to 79.2±5.1% and 68.8±4.0% at the same locations. 

Compound dZ measured with AC current decreased slower than the one at DC: 

97±0.4%, 95.8±0.6%, 93.7±0.8% at the same sites in respect to the dZ measured at 0.4 

cm. 

5.3.3 Models of mixed diameter fibre nerves 

Due to the computational heaviness of the developed 50-fibre FEM models, the 

simplified statistical models of realistic nerves consisting of nerve fibres of a single 

type or mixed types were implemented. The parameters utilized for the development 
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of these models were found experimentally in various studies discussed in the Methods 

section 5.2.3  (Table 5.2, Table 5.3). 

 

 

Figure 5.5 Compound dZ simulated for nerves with multiple Aα, Aβ, Aδ or C fibres (Table 5.2) and 

with realistic rat sciatic and right vagus nerves (Table 5.3).  

Compound dZ were formed of single dZ of a C fibre (Figure 5.2) recorded at DC and scaled in time 

and amplitude depending on the fibre’s AP latency and cross-sectional area. The number of fibres in 

single type models were chosen to fit into a 0.1 mm2 nerve which approximately equals the size of 

the rat vagus nerve (Table 5.2). For detailed explanations, see Methods 5.2.3.  

dZ were computed at different distances from stimulation point: 1, 4, 10, 20 and 50 cm (1 cm was 

omitted for simplicity in A fibres and sciatic nerve); the colour legend is embedded into the graphs. 

The average experimental white noise with RMS of 0.5 µV (Aristovich et al., 2018) was added to 

the recordings after the simulations (Figure 5.2); it was omitted in the figure to improve its 

readability. 

 

Signal-to-noise ratio decreased with distance from stimulation for all nerves, but 

the maximum distances at which dZ could be measured were larger for nerves with 

larger and faster fibres. dZ of 0.1 mm nerves consisting of Aα and Aβ fibres were 

visible at up to at 50 cm from the stimulus (Figure 5.5) with SNR at DC equalling to 

2.7±0.2 and 1.8±0.1 respectively at this location (Figure 5.6). Aδ fibres had sufficient 
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SNR = 1.6±0.03 at 20 cm from initiation point but it fell below the noise to 0.6±0.02 

at 50 cm. These values were similar for rat sciatic nerve with the SNR falling from 

1.6±0.06 at 20 cm to 0.6±0.02 at 50 cm making the signal at this distance undetectable. 

dZ in the right branch of the vagus nerve of the rat consisting of small Aδ and C fibres 

was visible at 10 cm (SNR = 1.6±0.05) but was indistinguishable at 20 cm where SNR 

fell below 1. C fibres dZ was only distinguishable at 1 cm from stimulation point with 

signal-to-noise equalling to 2.4±0.02 there. SNR obtained with the dZ computed at 2 

kHz (Figure 5.4a) were in close agreement with the ones at DC (Figure 5.6, Table 5.4). 

All these results were in fair agreement with experimental data (Section 5.3.4). 

 

 

Figure 5.6 Signal to noise ratio (SNR) simulated at various distances from the AP onsite (initiation 

point, i.p.). 

Solid lines represent C fibre dZ recorded at DC, dashed – at 2 kHz (Figure 5.4a). SNR was calculated 

as a ratio of the pure dZ amplitude to the standard deviation of the noise. Standard deviations of the 

SNR were computed on the basis of 10 random models for each type of the nerve. The signal was 

treated undetectable where SNR was below 1. Colour labels are embedded in the figure. 

 

The theoretically maximum distances of dZ measurement where SNR fell below 1 

were (Figure 5.6): > 50 cm for Aα and Aβ fibres, ~40 cm for Aδ fibres and the sciatic 

nerve of the rat, ~15 cm for the rat vagus and about 3 cm for C fibres (Table 5.4). 



Chapter 5. Effect of dispersion in nerve on impedance change  

163 

 

These distances are at the limit of visibility because, at low values of SNR, a lot of 

averaging will be necessary to distinguish the sought-for signal from the unwanted 

noise.  

 

Table 5.4 

MIXED DIAMETER FIBRE NERVES MAIN RESULTS 

Nerve 

type 

Max. 

distance* 

SNR at DC** (mean ± s.d.) 

1 cm* 4 cm 10 cm 20 cm 50 cm 

Aα > 50 cm 11.1±0.1 9.2±0.2 7.0±0.2 5.5±0.2 2.7±0.2 

Aβ > 50 cm 9.9±0.1 7.5±0.1 5.7±0.1 4.0±0.1 1.8±0.1 

Aδ 40 cm 8.9±0.06 5.9±0.05 3.2±0.05 1.6±0.03 0.6±0.02 

C 3 cm 2.4±0.02 0.6±0.01 0.2±0.003 0.1±0.003 < 0.1 

Right 

vagus 
15 cm 6.4±0.1 3.7±0.08 1.6±0.05 0.7±0.04 0.3±0.02 

Sciatic 

nerve 
40 cm 9.5±0.09 6.2±0.07 3.2±0.06 1.6±0.06 0.6±0.02 

* Maximal distance of dZ recording from the onset site 

** Calculated as a ratio of the dZ amplitude to the standard deviation of the noise 
 

As was found in (Gilad & Holder, 2009), dZ could be reliably imaged when SNR 

> 4 which significantly decreases the possible distances to 35 cm for Aα and Aβ fibres, 

~8 cm for Aδ and rat sciatic, 4 cm for rat vagus and < 1 cm for C fibres. 

5.3.4 Comparison with experimental data 

The maximum distances and SNR simulated for different types of fibres and 

realistic rat vagus and sciatic nerves are in a good agreement with experimental data 

in the literature. For example, in the experiment on unmyelinated crab nerve (Boone, 

1995), the dZ was shown to be visible at up to 16 mm from the onsite. This was in 

accordance with the modelling as the maximal distance at which the modelled dZ in 

C-fibre nerve could be seen was found to be ~3 cm (Table 5.4, Figure 5.6). 

Low level of CAP dispersion in Aα and Aβ fibres where they could be seen at up 

to a meter from stimulation was shown in (Olney et al., 1987; Taylor, 1993; Schulte-

Mattler et al., 2001); it corresponds to the found low dispersion in dZ for these types 
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of fibres. High CAP dispersion in C fibres was experimentally demonstrated in 

(Freeman, 1972; Chang et al., 2015). In particular, CAP of the vagal C fibres of the 

mouse was shown to fall > 50% at 4 mm (Chang et al., 2015) which is similar to the 

results simulated for 50 C fibres where CAP decreased ~ 2-fold at 1.4 cm from the site 

of stimulation (Figure 5.3a, Figure 5.4b); the 50-fibre dispersion is lower due to 

smaller number of fibres. In (Freeman, 1972), CAP of mainly unmyelinated olfactory 

nerve of the cat could be recorded at up to 2.5 mm from the stimulus also confirming 

the large effect of dispersion in C fibres demonstrated in this study. Although the CAP 

dispersion for complex nerves was not simulated in this chapter, its shape for C fibre 

closely matches the one of dZ at 2 kHz (Figure 5.4a) which makes them comparable.  

In the  recently accomplished EIT imaging of rat sciatic nerve (Aristovich et al., 

2018), the highest obtained SNR at ~ 4 cm from the onset (length of the rat sciatic 

nerve) was equal to 8 after averaging which is in fair agreement with the values 

simulated in this study (SNR = 6.2±0.1 at 4 cm, Figure 5.6). In the same study, the C 

fibre response was not visible which also agrees with the results in this chapter. The 

literature on the dispersion for right vagus nerve of the rat was not available, however, 

the obtained results can be a reference of what to expect in this nerve as well as in 

human vagus nerve which is the main aim for neuromodulation of the internal organs 

it supplies. 

5.4 Discussion 

5.4.1 Summary of results 

1) Accurate coupled FEM models of the nerves comprising 50 HH axons or 50 C 

fibres and their simplified statistical equivalents showed different behaviour of 

compound AP and dZ with distance from the site of stimulation. In the HH case, 

the single APs cancel out with distance due to their biphasicity while the dZ 

measured at DC do not. The inverse was true for the nerve consisting of C fibres 
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due to differences in the shapes of the studied signals. The dZ recorded at AC 

current showed the decrease with distance in both models (Figure 5.3d).  

Thus, it was revealed that for compound impedance changes to be seen further 

from the stimulus than compound action potentials, the shape of these signals must 

satisfy certain condition: dZ needs to be more monophasic than the CAP, as in the 

case of HH axons at DC (Figure 5.3a, Figure 5.4a). 

2) By extension of the study to real nerves consisting of Aα, Aβ, Aδ or C fibres, the 

theoretical maximal distances at which dZ could be recorded were obtained. These 

distances were more than 40 cm for a 0.1 mm nerve consisting of A fibres and only 

up to ~3 cm for the one with C fibres. These findings agree with experimental data 

on impedance changes and action potentials dispersion (Olney et al., 1987; Taylor, 

1993; Boone, 1995; Schulte-Mattler et al., 2001). SNR for rat sciatic nerve at the 

distance of its length (4 cm) obtained in this study was close to the experimental 

one (Aristovich et al., 2018). In the same study, C fibres could not be measured, 

which also agrees with the results obtained in the current work (Figure 5.5, Figure 

5.6). Values for the rat vagus nerve were obtained to serve as an expectation 

guideline for further studies which need to be carried out with a purpose of its 

subsequent imaging and selective stimulation. 

5.4.2 Answers to the stated questions 

1. Is it possible to record dZ further than CAP? 

The level of dispersion of CAP and dZ signals highly depended on the shape of 

these signals for each particular case. In general, if multiple phases are significantly 

expressed in the compound AP of a nerve, the compound dZ may be measured further 

from the stimulus than the CAP. Such nerves with largely multiphasic extracellularly 

recorded CAPs include the ones containing many fast fibres like rat sciatic nerve 

(Aristovich et al., 2018). CAPs recorded in unmyelinated nerves were monophasic 

(Gilad et al., 2009; Oh et al., 2011)  that is in accordance with the current study. 
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Multiphase structure of the AP does not have the same significance in the 

impedance change due to the difference in the origin of these signals. Action potentials 

represent changes in the flow of the current through the membrane while dZ –changes 

in its impedance. In particular, a negative phase in the AP signal (or positive phase in 

the extracellular AP, Figure 5.4a) appears mainly due to opening of the potassium ion 

channels; however, this induces decrease in the impedance, the same as when Na 

channels open during the positive AP phase (negative EAP). A positive phase in the 

dZ may be associated either with phase change in the injected AC current (Chapter 3) 

or with the change in the flow of the injected current around the recording electrode 

(Chapter 4); this does not change the shape of the AP. 

These findings are relevant for assessing the feasibility of EIT imaging inside long 

autonomic nerves for development of neuromodulation techniques (Famm et al., 

2013); the vagus nerve is a good target for them as it has access to various internal 

organs (Berthoud & Neuhuber, 2000). For this, SNR of spontaneous activity from 

internal organs in this nerve should be sufficient at the cervical level.  

2. Are there differences between models in the effect of dispersion on dZ? 

In terms of dZ and CAP dispersion, HH giant axons of the squid and mammalian C 

fibres differed significantly. Because the single APs and CAPs of the HH model had 

larger positive phase than C fibres (Figure 5.4), the AP cancellation in the HH case 

was quicker than in the C fibre case (Figure 5.3); the inverse was true for dZ. 

Consequently, it is possible to measure dZ further than CAP in the HH case but not in 

the C fibre case. This result can be extended to nerves made of any fibre types: the 

more multiphasic the CAP is, the more the increment in distance for dZ measurement 

can be reached in respect to CAP measurement.  
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3. What is the largest distance from the site of stimulation at which dZ can be 

recorded: 

a) for nerves consisting of Aα, Aβ, Aδ and C fibres 

As may be expected from the values of the standard deviations of the CV of the 

simulated fibre types as well as their sizes proportional to the dZ amplitude (Table 5.2, 

Figure 5.2), the dZ decreases with distance significantly slower for the nerve consisting 

of large fast Aα or Aβ fibres. These nerves produce signals significantly larger than 

the noise level even at half a meter from the stimulation point. dZ in Aδ nerve was 

found to be detectable at up to 35 cm; the effect of dispersion becomes much stronger 

for C fibre nerve where the reliable signal can be obtained up to 2-3 cm from the 

stimulus (Figure 5.5, Figure 5.6).   

The maximum distance of dZ recording which is where SNR approaches 1 is not 

equal to the SNR required for dZ imaging. It was shown that for reproducible imaging 

of fast impedance changes, an SNR of 4 is required (Gilad & Holder, 2009) which 

substantially decreases the above distances. 

b) for the realistic vagus and sciatic nerves of the rat. 

The SNR of the dZ in the rat sciatic nerve was shown to decrease to 1 at ~35 cm, in 

the vagus nerve – at 15 cm; these values defined the maximum distances of dZ 

measurement for these nerves.  The SNR values for the sciatic nerve of the rat showed 

that only A fibres could be imaged at its length (~4 cm) (Figure 5.6) which was in 

agreement with the experiment (Aristovich et al., 2018). The same was valid for the 

vagus nerve: its SNR was higher than the one for C fibres (~6 at 1 cm and 1 at 15 cm, 

Figure 5.6) because it also contained A fibres. However, the majority of its fast-

myelinated fibres direct into the motor recurrent laryngeal nerve (Gacek et al., 1977), 

they cannot be used as a channel for neuromodulation. Conversely, the autonomic part 

of the vagus leading to the internal organs is mainly unmyelinated (Agostoni et al., 

1957), therefore, it is expected to be hardly measured and therefore imaged further 

than 2-3 cm from the location of stimulation (Results 5.3.3). Thus, an issue arises for 

imaging its spontaneous activity originating from different organs at a cervical level 
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located tens of cm away. One possible way to overcome it may be to record for longer 

periods of time during changes in state. 

5.4.3 Limitations and technical difficulties 

One of the limitations of the current study was that only one accurate 3D FEM nerve 

model was undertaken for each nerve type consisting of only 50 fibres. This was due 

to the lack of computational resources: the C fibre model demanded a system of 22 

nonlinear equations (Chapter 3, Section 3.2.4) to be solved at the 106 FEM elements at 

each time step which demanded around 100 Gb of RAM and a week of computations 

on a 2-CPU machine. However, the developed statistical simplifications were in a 

close agreement with the accurate models in terms of CAPs and dZ amplitudes (Figure 

5.3b and Figure 5.4b) and areas (Figure 5.3c, d). Therefore, they were used for 

performing necessary statistical analysis.  

The extension of the models to different types of nerve fibres and realistic nerves 

relied on experimentally found distributions of CVs and fibre diameters as well as their 

relation to each other. These values were based on a limited number of studied nerves 

and therefore were approximate. Also, the choice of scaling coefficients for the 

transition from the modelled to experimental conditions was based on limited literature 

and simple assumptions providing qualitative results which were in a fair agreement 

with the literature. To obtain such results as well as to predict the behaviour of studied 

signals on various nerves and experimental conditions was the original purpose of the 

study described in this chapter. 

5.5 Conclusion 

Due to variability in CVs of fibres composing nerves, it is challenging to record 

compound activity externally at a distance from a point of stimulation. The effect of 

dispersion is especially strong in unmyelinated fibres whose CAPs cannot be reliably 

recorded starting from a few centimetres from initiation. The accurate 50-fibre 3D 
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FEM and statistical multi-fibre models developed in the study presented in this chapter 

demonstrated that, for the nerves containing fibres with non-monophasic APs, like HH 

axons, the evoked impedance changes could be measured and possibly imaged with 

EIT, at greater distances than CAPs could be recorded. The reason is mainly that the 

bi-phasic AP of these fibres cancel out when desynchronised while the dZ do not. If 

taken together with the proportionality of the dZ to nerve cross-sectional area, this 

enables estimation of the maximal distances at which impedance changes could be 

measured as well as the SNR expected at these distances. The model predictions are 

in agreement with the available experimental data. 
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6.1 Summary of studies 

The general purpose of the work presented in this thesis was to study how the 

variation of experimental parameters affects dZ measurements in nerve fibres and, as 

a result, to determine the optimal parameters of performing fast neural EIT in nerves. 

This was accomplished by the development of accurate in silico models of 

unmyelinated and myelinated fibres which were additionally used to validate 

previously obtained experimental data and to address dispersion – a fundamental 

limitation of measuring dZ in nerves. 

In Chapter 3, 3D FEM models of single and multiple unmyelinated Hodgkin-

Huxley axons and the more complex mammalian C fibre were developed. A novel 

approach designed for bi-directional coupling of the models with external space served 

as a basis for all further studies carried out in this thesis. The created models were used 

to confirm the data obtained in previously performed experiments and to simulate fast 

neural dZ under various external conditions. In all models, negative dZ was the largest 

at DC and monotonically decreased with frequency approaching zero at around 2 kHz, 

in accordance with previous experiments (Boone, 1995; Gilad et al., 2009; Oh et al., 

2011; Aristovich et al., 2015). Small positive dZs simulated at 2-6 kHz were found to 

be due to a small phase shift of the measured voltage. Minimization of the distance 

between the electrodes and their size was found to be necessary for maximization of 

the measured dZ signals. Multiple fibre models showed that interaction between fibres 

did not have a substantial effect on dZ which nearly-linearly grew with the number of 

Chapter 6  

Discussion and future work 
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fibres. The slope of dZ dependence on frequency simulated with the C fibre model was 

found to be smaller than that of the standard and spatially modified HH models leading 

to the conclusion that the complex ion channels play a critical part in the determination 

of impedance changes. 

Chapter 4 covers the extension of the previously developed modelling approach for 

the creation of a FEM model of a mammalian myelinated fibre. The developed model 

was the first able to accurately simulate coupling of a myelinated fibre with 

extracellular space in both directions using the finite element approach. Similar to 

Chapter 3, this model helped to find the optimal parameters that maximize the 

measured dZ for further optimisation of fast neural EIT in myelinated fibres. The same 

as for the case of unmyelinated fibres, the largest dZ was simulated at DC when the 

distance between the electrodes was minimized. However, due to a high characteristic 

frequency of the dZ, only AC frequencies above 4 kHz could be used for 

measurements, in agreement with the recent experimental data (Aristovich et al., 

2018). Subtraction of in-phase and in antiphase signals during signal processing raised 

the dZ magnitudes by approximately two to three times in comparison to the single 

shot case. Optimal bandwidths for obtaining the maximal dZ were found to increase 

with the frequency of the applied current in both subtraction and single-shot cases, - 

optimal frequencies for imaging were found to be 8 kHz and 12 kHz with bandwidths 

of 7.5 kHz and 3.9 kHz in these cases respectively. In addition, the biophysical origin 

of the dZ increase observed at DC was determined to be due to redistribution of the 

injected current under the recording electrode caused by the activity of ion channels of 

the fibre during the repolarization phase of the AP. 

Dispersion in nerves and its influence on the recorded CAP and dZ was studied in 

Chapter 5. This work was accomplished by the development of 50-fibre FEM models 

based on the HH and C fibre models from Chapter 3, and statistical models which 

allowed simulation of complex nerves consisting of thousands of mixed-type fibres. 

The effect of dispersion was found to be significantly larger in C fibre nerves than in 

nerves of any other type due to their slow but widely diverging CV (Table 5.4). 

Maximum distances from the site of stimulation with SNR sufficient for dZ 

measurements were found to be above 50 cm for A-fibre nerves but only around 2 cm 

for C fibre nerves. The value of SNR obtained for the sciatic nerve of the rat at 4 cm 
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from the onset site was close to the experimental one (Aristovich et al., 2018). The 

models showed that mainly monophasic dZ could potentially be recorded and imaged 

further from the point of stimulation than multiphasic CAPs. 

6.2 Limitations 

The general limitation of the performed studies was computational efficiency. The 

main contribution to long computational times was brought on by bi-directional 

coupling of 3D or 2D axisymmetric models with the extracellular space. The approach 

used for its implementation included simultaneous simulation of two pairs of models 

containing a fibre or extracellular space when the current was or was not applied 

(Figure 3.2, Figure 3.3). Each model demanded from a couple of hours (HH model) to 

a couple of days (myelinated and multiple fibre models) to be computed on a 16-core 

workstation. Therefore, for the possible future implementation of a complete nerve 

model containing thousands of axons, acceleration of the models is required which can 

be implemented either by optimisation of the developed modelling approach or by 

addition of computational power.  

The cable model paradigm (Section 2.3.1) used in all the models was applicable for 

the studied case of long homogeneous fibres with electrodes located far enough from 

them (Schnabel & Struijk, 2001). This included the myelinated fibre model whose 

nodal and internodal segments were connected to a single long cable structure (Figure 

2.15). The connection of short nodes to long internodes caused irregularities in the 

solution in the points of attachment, but these irregularities were kept to a minimum 

by performing a mesh convergence analysis and using finer mesh elements closer to 

the node (Figure 4.1). 

The used model of C fibre provided significantly more accurate results than the HH 

model, however, the validation data used for the creation of this model is limited to 

the AP shape, CV and activity-dependent slowing. The same holds for the mammalian 

myelinated fibre for validation of which CV, shapes of nodal and internodal APs and 

threshold electrotonus predictions were used. Additional data including excitability 

properties of fibres under various external conditions or knowledge of which particular 
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ion channels are present on the membrane would improve the accuracy of simulations. 

Comparison with other models (McIntyre et al., 2002; Sundt et al., 2015) would also 

be valuable for assessment of the factors contributing to the precision of the modelled 

signals. 

Quasi-static conditions were used for simulation of the volume conduction in the 

external space so that inductive, capacitive and propagation effects were neglected. 

This was a valid assumption according to studies (Plonsey & Heppner, 1967; Bossetti 

et al., 2008) which showed that inclusion of these effects does not significantly 

contribute to the accuracy of the simulations even at frequencies up to 100 kHz. 

Also, in all performed studies, extracellular space was simulated as a saline 

solution. Although inclusion of the resistive connective tissue will change the absolute 

values of the measured dZ, it should not affect their dependence on the experimental 

parameters.  

The models of mixed nerves developed for studying dispersion in Chapter 5 were 

based on approximate literature data on fibre compositions of the sciatic and vagus 

nerves of the rat obtained from a limited number of histological samples. Also, 

transition from the single C fibre model to experimental conditions with multiple fibres 

and connective tissue was done by introduction of multipliers which were based on the 

averaged data of tissue conductivities and the percentage of the nerve area occupied 

by fibres derived from the literature.  

The developed models have not been directly experimentally validated as it is 

challenging to record from a single or a small number of mammalian nerve fibres with 

diameters in a micrometre range. Special training and equipment are needed to 

separate single fibres from the nerve and to record from them without inducing 

damage. Manufacturing of very small electrodes with micrometre diameters and 

widths as used in the models is also a non-trivial problem. However, simulations 

performed with a multiple-fibre model in Chapter 3 demonstrated that the rising of dZ 

magnitudes with the number of fibres was close to linear so that its dependence on 

experimental parameters remained the same as in the single fibre model. These results 

suggested that number of fibres should not strongly affect the nature of variation of dZ 

with experimental parameters which justified the comparison of the modelling results 

with the experimental data obtained on the whole nerves. Moreover, a full FEM model 
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of the nerve consisting of thousands of separate fibres would require an enormous 

amount of computational resources and time to be computed. 

6.3 Future work and outlook 

A natural expansion of the developed modelling approach is the creation of an 

accurate 3D model of the nerve with multiple fibres. Such a full model will include 

myelinated and unmyelinated fibres as well as the connective tissue to have a 

histologically accurate representation of any nerve of interest so that it can then be 

used for direct optimisation of fast neural EIT for the same nerve. The starting point 

can be the vagus nerve, which is currently the most widely studied nerve for 

development of a novel area of bioelectronic medicines (Waltz, 2016) as its 

stimulation was shown to have positive effects for the treatment of various illnesses 

(Ben-Menachem, 2001; Bonaz et al., 2016; Gold et al., 2016; Koopman et al., 2016). 

The complete accurate model of the vagus nerve will help to find precise optimal 

parameters for visualisation of its activity in the cross-section with fast neural EIT and 

aid in adding selectivity to its stimulation.  

However, because even single-fibre simulations were very computationally 

intensive and time consuming, significant acceleration of the models is required which 

can be implemented in several ways. The first approach is to optimise the developed 

models so that they require less computational power and therefore less time to 

compute. This may include division of the models by parts for more effective 

parallelization, or simplification of the models by eliminating those ion channels 

playing a non-critical role in dZ generation. Optimisation of a multifibre model can be 

accomplished by using a set of single fibre simulations with fibres uniformly 

distributed inside the cylindrical external space, as in Figure 3.1. The results of these 

simulations at each point of space and time can then be utilised as lookup tables for 

the transition to multi-fibre simulations using scattered interpolation. Hence, the 

response of the model would be obtained for any number and location of fibres as well 

as for any position of the recording electrode. The obvious brute-force approach to 

acceleration would be to use more powerful computer clusters or potentially GPUs. 
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The optimal parameters determined with the developed models can aid in 

optimization of frequency division multiplexing (FDM) and phase division 

multiplexing (PDM) approaches to imaging neural tissue with EIT (Dowrick & 

Holder, 2018; Hope et al., 2019). FDM and PDM allow simultaneous AC injection at 

multiple frequencies and phases for acceleration of obtaining the EIT data set so that 

high quality EIT images of fast neural activity can potentially be produced in brain and 

nerves in real time. 

Flexibility of the constructed models allows them to be used for the development 

and optimisation of various techniques involving stimulation or recording from nerves. 

For example, the novel method which enables inhibition of neural activity by 

application of high frequency AC currents, known as the conduction block (Patel & 

Butera, 2018), currently attracts strong interest. By blocking of the specific pathways 

in peripheral nerves, this technique was shown to be effective for reduction of the 

symptoms of chronic and acute pain (Soin et al., 2015; Miller et al., 2016) as well as 

for approaching the treatment of obesity (Apovian et al., 2017).  Potential applications 

may include suppression of pain or hyperactivity during various kinds of injuries or 

diseases (Patel & Butera, 2018). In addition, conduction block can help to improve 

selectivity of nerve stimulation by blocking activity in undesired off-target fascicles. 

The developed models are either published (Chapter 3, Chapter 5) or under review 

(Chapter 4) in peer-reviewed scientific journals which makes them available to a broad 

scientific audience. Apart from optimisation of fast neural EIT or other similar 

techniques, the models may also be applicable for studying causes and methods for 

treatment of nerve-related diseases. For example, the myelinated fibre model 

developed in Chapter 4 may be used for studying how the normal activity of the fibre 

is affected by demyelination which is responsible for progression of multiple sclerosis. 

Also, all the created models are suitable for investigation of neuronal behaviour 

associated with abnormal activity of ion channels and nerve degeneration for 

approaching the study of conditions like peripheral neuropathy or amyotrophic lateral 

sclerosis. 
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