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Abstract
Weconsider feedback cooling in a cavityless levitated optomechanics setup, andwe investigate the
possibility to improve the feedback implementation.We apply optimal control theory to derive the
optimal feedback signal both for quadratic (parametric) and linear (electric) feedback.We numerically
compare optimal feedback against the typical feedback implementation used for experiments. In
order to do so, we implement a state estimation scheme that takes into account themodulation of the
laser intensity.We show that such an implementation allows us to increase the feedback strength,
leading to faster cooling rates and lower center-of-mass temperatures.

1. Introduction

The ability to precisely control and cool themotionofmechanical resonators in order to generate quantumstates is of
great interest for testing fundamental physics, such as investigating the quantum-to-classical transition [1, 2]. Awide
variety of resonator systemshave shownpromise for achieving such goals, includingmembranes [3, 4],micro- and
nano-resonators [5–8] and cantilevers [9, 10]. Althoughground state coolinghasbeen experimentally realized in
optomechanical systems [3, 4, 8], there is an appetite to reach such states in levitated systems. Levitatednanoparticles
are extremelywell isolated fromtheir environment, openingup thepossibility for very longdecoherence times and
ground state cooling in room temperature conditions. Indeed, optically levitated silica particles havehad their center-
of-massmotion cooled tomillikelvin [11–14] and sub-millikelvin [15, 16] temperatures,whereas nanodiamonds
[17, 18]havebeenused for spin coupling experiments [19, 20].Other levitationmechanisms, such asPaul traps [21],
hybrid electro-optical traps [22], andmagnetic traps [23–25]have alsobeenproposed as candidates for preparing
macroscopic quantumstates [26–28] and testing spontaneous collapsemodels [29, 30]. In order for anyof these
resonator systems to approach thequantumregime, theirmotionmustfirst be cooled to close to the ground state,
which canbe achievedwith cryogenically cooling the environment orwith active feedback schemes.

In this paperwe consider an optically levitated silica nanoparticle, trapped by the gradient force generated by
tightly focusing a 1550 nm laser with a high numerical aperture paraboloidalmirror, as shown in figure 1. The
optical trap is containedwithin a vacuumchamber to isolate the particle from its environment asmuch as
possible. Typically, parametric (quadratic) feedback cooling, bymodulating the intensity of the trapping laser at
twice the particle’s oscillation frequency [11, 12], is implemented to cool the particle’smotion to∼mK
temperatures. Currently, feedback signals are implemented by tracking the phase of the oscillator by locking to
the frequency ofmotion, using either lock-in amplifiers or,more recently, with aKalmanfilter [31]. TheKalman
filter, a filtering technique used in engineering applications [32–35], can be implemented in real-time to
accurately estimate the state of the particle’s position and velocity. This state information is then used to apply
themodulating feedback signal [13, 36]. Such schemes are very effective for estimating the particlemotion for
small lasermodulation, but above a certain (low) threshold loses track of the particle. This is a limitation as
highermodulation results in faster cooling rates and a lowerfinal temperature.

Recently, cooling themotion of charged nanoparticles by applying an electric fieldwhich is at the same
frequency of the particle’smotion has been demonstrated [16, 37] and implementedwith optimal control
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protocols [38] for optical traps, as well as proposed for electrical traps [26]. A charged needle, placed in the
vacuumchamber close to the laser focus, has been used for force sensing applications [39] and investigations of
Fano resonances [40] in levitated optomechanics. Tofirst approximation, the electric field generated by the
needle couples linearly to the particle position,making it suitable to implement linear feedback cooling. By
applying a force to oppose the particlemotion, the amplitude ofmotion can be reduced. It is worth noting that
for this cooling technique the coupling strength cannot be indefinitely high, as too strong an applied force would
drive the particle to hotter temperatures, and could even result in the particle being ejected from the trap.

In this article we consider whether it is possible to implement a feedback protocol which takes into account
all the contributions to the particle dynamics, including decoherence and photon recoil, and compare to current
feedback schemes discussed previously.We utilize optimal control theory to investigate both quadratic
(parametric) and linear (electric) feedback (section 3). Optimal control theory has been applied to other
experimental systems [41], including formanipulation of Bose–Einstein condensates to prepare complex
quantum states [42], designing excitation pulses inNMR [43] and tailoring robustness in solid-state spin
magnetometry [44]. Additionally, it has been proposed formixed state squeezing in cavity optomechanics [45],
feedback cooling and squeezing of levitated nanopshperes in cavities [46] and recently for feedback cooling in
low frequencymagnetic traps [27]. To compare optimal coolingwith typical feedback cooling, we numerically
emulate the system, by solving its equations ofmotion, andwe estimate itsmotion by numerically solving a
second set of equations (section 4). This technique takes into account the laser intensitymodulation, which
allows us to increase themodulation depth far beyondwhat is possible with a time-invariant Kalmanfilter. This
allows us to achieve better cooling of the trapped nanoparticle. Sections 4.1 and 4.2 are respectively dedicated to
quadratic and linear feedback results, while section 4.3 concerns the common features of the two cooling
schemes. In the next sectionwe start by introducing the theoretical framework of the setup considered, and of its
numerical simulation.

We remark that, although the analysis presented concerns a gradient force optical trap, themethod
developed is flexible, and could be also implemented in the other optomechanical setups previously described.

2.Dynamicalmodels

The optically levitated nanoparticle undergoes continuousmonitoring of itsmotion by the trapping laser
[39, 47]. Specifically, we consider the experimental situationwhen the translational and rotational degrees of
freedomare decoupled, and a single translation degree of freedom can be identified in the detected signal [48].
Wewill label the position of this one-dimensionalmotionwith z.We call J the homodyne current that is
physically accessible with the experimental setup, i.e. the quantity recorded by themeasurement apparatus.

We consider two types of dynamicalmodelling of the experiment: (i) an emulationmodel and (ii) a tracking
model [49]. Themodels of type (i) are used to generate a trajectory of the system and to output the homodyne
current J, i.e. to emulate the systemwhen the experimentallymeasured J is not available. This proves useful if one
wants to investigate numerically the efficacy of a technique before implementing it in the experimental setup.
Themodels of type (ii) are used to provide the best estimate of the state of the system, either in real-time or in
post-selection, given the input homodyne current Jmeasured by the experimental setup [50, 51].

We nowdiscuss in detail the emulation (section 2.1) and tracking (section 2.2)models, while the feedback
mechanismwill be discussed in section 3.

Figure 1.The experimental setup that we are simulating. The position of the particle is detected by interference between the scattered
and divergent light at the photodetector. This detected signal is then passed into an oscilloscope for recording and a field
programmable gate array (FPGA) to perform the state estimation and generate the feedback signals which can then be sent to the
acousto-opticmodulator (AOM) tomodulate the light and performquadratic feedback or to the needle to perform linear feedback.
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2.1. System emulation
In order to emulate the system and to generate an output homodyne current Jweuse the following dynamical
model.Wewill write the update termdue to the detected photons as a stochastic back-action term andwewill
include additional stochastic terms to account for the undetected photons aswell as gas collisions [47, 49, 52].
This is fully analogous to a classical emulation of the system: loosely speaking, each scattering event due to
photons (even if undetected) or to gas particlesmakes the particle recoil, and this ismodelled by noise terms.We
will refer to such amodel as the emulationmodel and denote the corresponding state of the systemby ρE, i.e. the
emulated state.

To emulate the systemwe consider the following dynamical equation:
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thefirst being the harmonic trap provided by the laser, and the second being the feedbackHamiltonian, where u
(t) and v(t) are feedback signals that depend on the particlemeasured position andmomentum. The first line of
equation (1) (from left to right) includes the unitary evolution, the diffusion termdue to gas scattering, the
diffusion termdue to photon scattering, and the stochastic back-action termdue to the detected photons.Here,


G = gmk T4 b c

2 and


= + g
G

ˆ ˆ ˆL z pi c [53–55], k is the lasermonitoring strength, η the detection efficiency and dW is a
Wiener process with zeromean and correlation  =[ ]W W td d d . The second line accounts for the nanoparticle
recoil due to undetected photons (∝dV ) and gas particles (∝dZ), where dV and dZ are additional independent
Wiener processes with zeromean and correlations set to  = =[ ] [ ]V V Z Z td d d d d . This latter term∝dZ is
responsible for thermalizing themotion of the nanoparticle with the gas particles. The associated homodyne
current is given by:

h
= á ñ +ˆ ( )J t z t

W

k
d d

d

8
, 3E

where rá ñ =· [ · ˆ ]trE E .
Weassume that the particle is describedby an initialGaussian state. Since thedynamics of equation (1) is
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2.2. System tracking
The dynamics of the continuouslymonitored trapped particle is described by the followingmaster equation
[56]:
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Similar to the emulationmodel, the second and third terms describe respectively decoherence andmonitoring
provided by laser photons, with detection efficiency η andmonitoring strength k. The fourth term accounts for
decoherence due to residual gas particles.Wewill refer to thismodel as the trackingmodel and to the
corresponding state by ρT, i.e. the tracked state.

Again, we limit the discussion toGaussian states and introduce the vector º = á ñ( ) ( ˆx x x x x x z, , , , ,T1 2 3 4 5
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case equation (9) can be reduced to the following coupled set of stochastic differential equations:
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These equations account for the fact that themonitoring strength k is proportional to the laser power, that is

modulated by the feedback signal u(t): k=α(1+β u(t)), where a = p
l

s
pw w

P12

5 L

2

2
0
2 is the coupling strength that

depends on the laser powerP [13].

3.Optimal feedback

Our aim is to determine the optimal controls *( )u t and *( )v t (here and in the following the asterisk denotes the
optimal realization of a function) that provide the best cooling of the trapped particle, i.e. thatminimizemean
energy

w
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Note that, although á ñĤ0 does not depend explicitly on the control functions u(t) and v(t), y does. Since such a
dependence is linear, LQGoptimization cannot be applied [57, 58], and one needs to tackle the problem
differently.We exploit Pontryagin’sMinimumPrinciple (PMP), an important tool of optimal control theory,
that allows tofind the optimal control thatminimizes a given cost function [59]. The problem solved by the PMP
is aminimization problemwith constraints (given by the equations ofmotion (10)–(14)). It is convenient to
introduce the ‘co-states vector’l l l l l lº ( ), , , ,1 2 3 4 5 and to define a ‘co-stateHamiltonian’ as follows:

l l= - á ñ( ) · ˙ ˆ ( )y yH u v H, , , . 16co 0

One can check that the evolution equation for the co-states is
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while equations (10)–(14) can be conveniently rewritten as follows:
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Pontryagin’s principle precisely states that the optimal control *u , *v are those such that
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Since the equations ofmotion for the components of y are linear both in u and v, one can check the optimal
signals satisfying the condition(19) are
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where sgn is the sign function that is 1(−1)when its argument in positive (negative).We remark that the sign
function formof the control has a simple intuitive explanation: in the case of quadratic feedback onewants to
stiffen (weaken) the trapmaximally when the particlemoves away (towards) the trap center, and, similarly in the
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case of linear (electric) feedback onewould like to stop the particle in itsmotion by applying themaximum
‘breaking’ force. The only restriction is thus on the the feedback strength, i.e. on themodulation depth: if the
modulation depth is too strong one risks losing track of the particle, or worse, losing the particle from the trap.

In order to obtain the explicit expressions for the two control functions, one needs to solve the two coupled
sets of equations (17)–(18). This is in general a hard task because, while the state equations (18) have initial
boundary conditions and propagate forward in time, the co-state equations (17) have final boundary conditions
(at themeasurement timeΔt) and propagate backward in time [59]. Aswewill discuss in the next section, under
certain conditions it is numerically convenient to adopt a different strategy instead of solving the co-state
equations.

4.Numerical analysis of feedback schemes

To emulate the systemwe first discretize equations (3)–(8), i.e. we consider a time stepΔtE, and theWiener
incrementsΔW,ΔV,ΔZ.We set the initial state to be aGaussian thermal state, i.e.

   
w

w w w
= = = =

⎛
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⎞
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⎞
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m k T
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m

k T
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2
coth

2
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2
coth

2
, 21
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3 4

and y1=y2=y5=0, whereT is the temperature of the gas particles and kB is Boltzmann’s constant.
Specifically, we setT=300 K, i.e. we assume that the gas of particles is at room temperature.We set
ω=2π×70 kHz, andm=9.42×10−19 kg, which are typical values of trapped dielectric silica particles of
radius∼50 nm.We also set η=0.003 andα=4.04×1025which are typical values for our optical trap [11].
We then propagate the initial state for a time t=tprep∼5 ms, with the control functions set tou=v=0: this
preparation procedure ensures that the state of the system at time t=tprep ismore realistic, i.e. the noise and
dynamics of the emulationmodel will drive the system to a new state ( )y tprep . It also allows the tracking to
converge and begin tracking the systemwell. Specifically, we solve the stochastic differential equations in
equations (3)–(8) using the fourth-order stochastic Runge–Kuttamethod.

To track and control the systemweneed to solve in parallel also the equations (10)–(14), as well as choose the
control functions u and v. However the experimentally available time-step for the tracking and control is limited
by the apparatus, e.g. sampling rates, reaction times and time lags. It is thus reasonable to consider larger time-

steps,Δt=MΔtE andD = DtC
t

N
, for themeasurement and tracking/control respectively, with ÎN M, .

To simulate the current experimental capabilities presented in [13]we setN=5,M=2000 andΔtE=0.5 ns.
We have verified numerically that such a value ofΔtE provides with enough temporal resolution to simulate
sufficiently well the evolution of the system.

We set the initial state of the tracking at time t=0 to be aGaussian thermal state, i.e. =( ) ( )x y0 0 , where the
non-zero values of ( )y 0 are given in equations (21).We switch on the feedback control at time t=tprep. In order
to avoid the difficulties of propagating the co-states equations backward in time, we adopt the following strategy.
At each stepΔtwe select the optimal control by selecting the optimal trajectory: we propagate the estimated

state x forward in time forΔt using the time-stepD = DtC
t

N
for each possible trajectory of the controls u or v.

Since according to equation (20) the value u can have only values±1 this amounts to 2N trajectories; the same
applies also for v. If both u and vwould be controlled simultaneously in such awaywewould have a total of 4N

trajectories.We select the trajectory thatminimizes the cost function given in equation (15), i.e. the one that
minimizes the estimated energy. It turns out that, at least for low valuesN, the parallelization of the optimal
control problem is computationally feasible. In particular, the scenario investigated here is particularly relevant
for experiments involving FPGAs; for example, settingN=5 gives a total of 25=32 trajectories for a single
control function, which is readily solved in parallel using evenmoderately priced FPGAs.

The schematic diagram infigure 2 gives an overview of the emulation-tracking implementation; for amore
detailed introduction see e.g. [49, 58]. The feedback details for quadratic and linear cases will be respectively
discussed in the following sections 4.1 and 4.2. Section 4.3 is devoted to the discussion of common features of the
two feedback schemes.

4.1.Quadratic feedback
Parametric (i.e. quadratic) feedback is widely used in levitated optomechanics. The relevant equations
describing this type of feedback can be obtained simply setting δ=0 in section 2. This type of feedback is
typically performed bymodulating the laser at twice the phase of the particle, setting = wu x x

E 1 2 [13], where

= + wE xx

m

m

2 2 1
22

2 2

. For afixed value ofβwe can then directly compare the optimal control *u with the simple

double phase u.
Specifically,figures 3 and 4 show that the cooling obtainedwith the double phasemodulation is effectively

equivalent to the optimal feedback; this is explained by the fact that the feedback time trace for the two cooling
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Figure 2. Schematic diagramof the numerical simulation. The emulation part (purple) consists of the system and detector: the system
is aGaussian state described by the vector y and evolves according to equations (4)–(8)with three inputs, i.e. the control (u and v), the
environmental noise (dV and dZ), and the back-action noise (dW), while the detector has two inputs, i.e. the state y and the
imprecision noise (dW), and produces the output current J given by equation (3). The estimation and control part (blue) consists of
the tracking and actuator: the estimator of the state consists of the vector x and evolves according to equations (10)–(14)with two
inputs, i.e. the control (u and v) and the current J, while the actuator controls the functions u and v in response to the best estimate of
the system given by x . In an experimental realization the emulation part and simulated current J are replaced by the experiment and
the experimental current, respectively; the estimation and control part remains unchanged.

Figure 3.Quadratic feedback: simulated time trace of the phonon number associatedwith the translationalmotion in the emulation
and tracking equations. For thefirst 5 ms the system evolves freely in the harmonic trap before optimal or double phase quadratic
feedback cooling is applied. The insets show a small slice of the simulated position in the emulation and tracking equations alongwith
the corresponding feedback signal applied to cool the translationalmotion for optimal and double phase quadratic feedback cooling.
For these two simulationsβ=0.01. The initial cooling rate rc is∼2089 s−1 where the phonon number = -( )n Ae r tc .
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approaches is almost the same (see inset infigure 3). The difference between the sine profile and the square-wave
function does not substantially affect themagnitude of the cooling.

However, there is one important difference between the basic tracking technique (exploited in double phase
cooling) and the new tracking (exploited in optimal cooling). Thefirst is performed via aKalmanfilter that
simulates a phase-locked loop by exploiting equations (10)–(14)withβ=0 (unmodulated tracking). The latter
insteadmakes use of equations (10)–(14)with the sameβ as in equations (4)–(8) (modulated tracking), and
requires a fully FPGA-based implementation. One of the limitations of the typical (unmodulated)
implementation of parametric feedback is that one can reach only strength of aboutβ=0.01. This is due to the
fact that for higher values ofβ the tracking loses track of the particle because of the larger frequency variation of
the system and therefore cooling is not as effective, and for highermodulation depths even heats the system
instead of cooling, see figure 5.One of themerits of our improved tracking scheme is that it allows us to track the
system trajectories for highermodulation strength. Figures 4 and 5 clearly show thatβ can be increased, allowing
faster cooling rates and lower particle temperatures to be obtained.

Figure 4.Quadratic feedback: shows the dependency of the average phonon number reached once the energy has convergedwith the
modulation depth of feedback cooling for optimal and double phase quadratic feedback at different pressures.

Figure 5.Quadratic feedback: dependency of the average phonon number reached once the energy has convergedwith themodulation
depth of feedback cooling for double phase quadratic feedback formodulated and unmodulated tracking.

7

New J. Phys. 21 (2019) 073019 L Ferialdi et al



4.2. Linear feedback
Linear feedback can be implemented in the experimental setup by inserting into the vacuumchamber a needle to
which an electric voltage is applied [40]. The electric force generated by the needle affects the particlemotion as
described in section 2, i.e. we setβ=0 andmodulate the control function v.

Figure 6 compares the optimal linear feedbackwith cold damping, i.e. a force proportional to the particle

velocity, =v
y

m
2 showing that the latter is comparable to the performance of the optimal feedback. The

explanation is the same as the quadratic case: the difference between the square optimal signal and the sinusoidal
velocity does not significantly affect the cooling efficiency. An important issue one needs to account forwhile
using linear feedback is that the force kicking the particlemight lead to re-heating and particle loss if the force is
too strong. For this reason the simulation offigure 6makes use of a δ in the ‘optimal range’ identified infigure 7.

4.3.Discussion
Fromour simulation and analysis, it is found that low phonon number states can in principle be reachedwith
both quadratic (figure 3) and linear (figure 6) feedback protocols.We find that the cooling signal obtained via
optimal control theory does not outperform typical feedback cooling. This can be explained by the fact that our
knowledge of the system is given only by the (measured) position of the particle, and this contains all the
information about its dynamics (including decoherence and recoil effects). Since typical feedback controls are
based on themeasured position and velocity of the particle (i.e. the difference of two subsequent positions), they
already contain our best knowledge on the system, and the control shape does not play a crucial role.We remark
here that the equations for themean values (equations (10)–(11) and (4)–(5)) are essentially decoupled from the
equations for the variances (equations (12)–(14) and (6)–(8)), the only connection being the arguments of the
control functions (see equation (20)). Accordingly, for all practical purposes it is enough to use only
equations (10)–(11) and (4)–(5).

Figure 6. Linear feedback: simulated time trace of the phonon number associatedwith the translationalmotion in the emulation and
tracking equations. For thefirst 5 ms the system evolves freely in the harmonic trap before optimal or cold damping linear feedback
cooling is applied. The insets show a small slice of the simulated position in the emulation and tracking equations alongwith the
corresponding feedback signal applied to cool the translationalmotion for optimal and cold damping linear feedback cooling. For
these two simulations, different δ values were chosen such that both are at theminimum in temperature.
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Wefind that for quadratic feedback, increasing themodulation depthsβ decreases theminimumphonon
number (or temperature) achievable, and for linear feedback there is an ‘optimal range’ of coupling strength δ
for when cooling ismost effective. Above this optimal region the particle will be cooled less effectively, and
eventually heated, as δ increases. The achievable phonon number for increasedmodulation depth (coupling
strength) can be seen infigure 7.

Increasing the cooling strengthsβ and δ also increases the initial rate that the nanoparticle is cooled, as
expected. The initial cooling rate as a function of cooling strength for both cases can be seen infigure 8. As the
quadraticmodulation depthβ increases the initial cooling rate increases linearly, whereas increasing the linear
cooling strength δ results in an nonlinear increase in the initial cooling rate that approaches an asymptotic value.
It was found numerically that this is because the equations (4)–(8)with b d¹ =0, 0 (quadratic feedback)

Figure 7. Shows the dependency of the phonon number reached on the strength of the feedback applied for optimal linear (δ) and
optimal quadratic (β) feedbackwhere themeasurement time-stepΔt is 1 μs. For double phase quadratic feedback the relationship is
very similar to the optimal quadratic feedback. For cold damping feedback the relationship is similar to the optimal linear feedback,
although shifted right by around 102, but temperature diverges to infinity after a critical point, as the cooling strength term in cold
damping is proportional to the velocity.

Figure 8.Cooling rates: shows the dependency of the initial cooling rate rc (where the phonon number = -( )n Ae r tc ) on the the
strength of the feedback applied for linear and quadratic feedbackwhere themeasurement time-stepΔt is 1 μs. The inset shows the
initial cooling rate with linear coolingwhere for the blue data themeasurement time-stepΔt is 1 μs and for the green datawhere the
measurement time-stepΔt is 10 ns.
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require a smaller sampling rate than the equations (4)–(8)with b d= ¹0, 0 (linear feedback) in order to track
the systemwell. By increasing the sampling rate sufficiently, it was found that the cooling rate also increases
linearly for linear feedback, as is shown in the inset offigure 8. Experimentally, where sampling rates cannot be
set arbitrarily high, this has practical implications in cooling rates that can be achieved via linear feedback.We
also remark that for large feedback strengths on the zmotionwe anticipate coupling between other degrees of
freedom, x and y. However, providing any feedback applied to the other degrees of freedom is small, as is typical,
the couplingwill not influence the ability to cool z, only x and y, meaning our one-dimensional approach is
suitable providingwe are only concernedwith the zmotion.

In previous experimental works, where parametric feedback has been utilized, the tracking of the particle’s
motion does not take into account the laser intensitymodulation due to the feedback, which results in a
maximummodulation depth of∼1.5% [11], after which the effectiveness of cooling decreases, eventually
causing heating. This is due to the fact that this tracking does not take into account the varying laser intensity,
which effectively changes the oscillation frequency of the particle for a fraction of an oscillation period. For small
modulation depths this is not an issue as the effective frequency is still within the tracking bandwidth of the
trackingmechanism, but for largermodulations results in the feedback being out of phase. The tracking scheme
presented here overcomes this limitation by factoring in the lasermodulation in the tracking equations, allowing
access to extremely highmodulation depths and cooling rates with quadratic feedback.

After cooling, it was found that the contribution to themean energy of the particle is dominated by the
expectation values of the position and velocity, (x1, x2 in equation (15))whereas the variances’ (x3, x4)
contribution is found to be negligible. The energy contained in the variances quite rapidly achieve the
Heisenberg limit x3x4=ÿ/2, and the energyfluctuations are due to random collisions with gas particles and
photons. It is interesting to investigate which of these hasmore of an effect of the particle dynamics. Note that
since the variances are constant , equations (12)–(14) are essentially a ‘time-dependent Kalmanfilter’ [60, 61].

Figure 9 shows that for high pressures the phonon number ismostly affected by the gas particles collisions.
This effect can bemade negligible by reducing the gas pressure in the vacuumchamber. However, when the
pressure is sufficiently low one reaches the photon recoil limit, the regimewhere fluctuations aremostly given by
the photon scattering. This kind of effect is always present in the experiment, and it ultimately limits the
achievable phonon value.Onemight try to decrease photon scattering by lowering the laser power, but this leads
to a less stable trapping and to aweaker detected signal.

We eventually remark that linear and quadratic feedback can be combined and used at the same time
although in our investigations withmodulation depth around 1.5% this has not significantly altered thefinal
temperature.

Figure 9. Shows the dependency of the average phonon number reached once the energy has convergedwith the pressure at which the
simulation is performed for optimal and double phase quadratic feedback at three different feedbackmodulation depths. At about
∼10−8 mbar we reach the photon-recoil regime [15].
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5. Conclusions

Wehave considered a cavityless levitation experimental setup, andwe numerically investigated both parametric
(quadratic) and electric (linear) optimal feedback cooling. The comparison of optimal feedbacks against the
typical implementations (respectively double phase and cold damping) show that, although the feedback profiles
are different, this does not substantially affect themagnitude of the cooling. However, the implementation of
optimal feedback forced us to develop amore sophisticated tracking scheme. This allowed us to go beyond one
of the limitations of the typical implementations of parametric feedback, namely the lowmodulation strength
limit. One of themerits of themore sophisticated tracking scheme is that it allows us to increase themodulation
strength, obtaining a faster cooling rate and reaching lower temperatures. Furthermore, it was found that for
linear feedback there exists an ‘optimal range’ for the coupling strength, that providesmost effective cooling.
Moreover, although combined (quadratic+linear) feedback does not seem to significantly alter the achieved
temperature, itmight still be experimentally helpful tomake the coolingmore stable. Further improvement
might be obtained by applying functional non-Markovian techniques [62] to optimal control theory, in order to
account for experimental time lags in the derivation of the optimal feedback.
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