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Abstract

Background: Dairy cattle movement could be a major risk factor for the spread of bovine tuberculosis (BTB) in
emerging dairy belts of Ethiopia. Dairy cattle may be moved between farms over long distances, and hence
understanding the route and frequency of the movements is essential to establish the pattern of spread of BTB
between farms, which could ultimately help to inform policy makers to design cost effective control strategies. The
objective of this study was, therefore, to investigate the network structure of dairy cattle movement and its
influence on the transmission and prevalence of BTB in three emerging areas among the Ethiopian dairy belts,
namely the cities of Hawassa, Gondar and Mekelle.

Methods: A questionnaire survey was conducted in 278 farms to collect data on the pattern of dairy cattle
movement for the last 5 years (September 2013 to August 2018). Visualization of the network structure and analysis
of the relationship between the network patterns and the prevalence of BTB in these regions were made using
social network analysis.

Results: The cattle movement network structure display both scale free and small world properties implying local
clustering with fewer farms being highly connected, at higher risk of infection, with the potential to act as super
spreaders of BTB if infected. Farms having a history of cattle movements onto the herds were more likely to be
affected by BTB (OR: 2.2) compared to farms not having a link history. Euclidean distance between farms and the
batch size of animals moved on were positively correlated with prevalence of BTB. On the other hand, farms having
one or more outgoing cattle showed a decrease on the likelihood of BTB infection (OR = 0.57) compared to farms
which maintained their cattle.

Conclusion: This study showed that the patterns of cattle movement and size of animal moved between farms
contributed to the potential for BTB transmission. The few farms with the bulk of transmission potential could be
efficiently targeted by control measures aimed at reducing the spread of BTB. The network structure described can also
provide the starting point to build and estimate dynamic transmission models for BTB, and other infectious diseases.
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Background
Ethiopia has huge livestock resources including cattle
population of 60.4 million [1]. Cattle are the dominant
species constituting 70–90% of the Ethiopian livestock
producing households, and accounting for about 72% of
the meat and 77% of the milk produced annually in the
country, indicating its overriding role in generating
smallholders’ income and in meeting domestic meat and
milk consumption requirements [2]. At present, about
98% of the Ethiopian dairy cattle are of the Zebu breed
and managed under extensive farming in agro-pastoral
and pastoral systems. However, rapid urbanization is pla-
cing challenges to meet the demand for food (including
dairy products) from an increasing population. The milk
production potential of Zebu cattle is poor and as a re-
sult the possibility of meeting the increasing demand for
milk and its products using the Zebu breed is minimal.
Due to this situation, the Ethiopian Government, in its
economic development strategy, has prioritized im-
provement of the breed of dairy cattle, pasture develop-
ment and intervention on animal health to cope with
the increased demand of milk and other livestock prod-
ucts [2]. The breed improvement plan focuses on
breeding crosses of Holstein Friesian (HF) (Bos taurus)
and Zebu (Bos indicus) breeds mainly by using artificial
insemination services through synchronization wher-
ever possible. Animals produced through cross breed-
ing will have an added advantage of resilience to
harsher environments in addition to increased milk
production and dairy cattle productivity. Thus, the
dairy development is of paramount importance particu-
larly for the provision of employment opportunities (es-
pecially for women), poverty alleviation, and
improvement of human nutrition and health [3]. As a
consequence of these development efforts, intensive
dairy farms and smallholder farms raising HF crosses
are increasing in and around major urban centers.
The dairy farming is relatively well-developed in cen-

tral parts of the country although it has also become an
emerging sector in the peripheral regions [4]. The de-
mand for the improved breed of dairy cattle for stocking
of the emerging and/ or expanding farms in the periph-
eral regions is met mainly by the purchase of cross bred
dairy cattle from the central areas of the country.
However, the central part of the country has a high
prevalence of bovine tuberculosis (BTB) [5–9]. The cen-
trifugal trade of dairy cattle from areas with higher
prevalence of BTB to areas with lower prevalence poses
a high risk of transmission into the peripheral areas
where much lower disease prevalence have been re-
corded in the diary sector [10]. Prevailing conditions
such as developing infrastructures, national development
plans etc., favor trade of cattle from long distances.
Nevertheless, it has been well documented that animal

movement within and between animal populations is a
central driver of disease spread as pathogens can be
transmitted over long distances via movement of infec-
tious animals [11–17]. Understanding the structure of
cattle movement networks and exploring the trade
routes, volumes and frequency of dairy cattle movement
in the Ethiopian conditions can inform how BTB and
other infectious disease could potentially spread in the
country. Studies on the impact of cattle movement net-
works and the associated risk of BTB transmission are
lacking in Ethiopia. In the United Kingdom, movement
of dairy cattle was estimated to be responsible for up to
84% incidence rate of BTB in herds [18]. In recent years
social network analysis has become a tool of choice to
link movement networks with transmission and dynam-
ics of infectious diseases [19–24]. Although the applica-
tion of social network analysis for studying disease
transmission has not been common in developing coun-
tries, several studies have been conducted in Europe in-
cluding the network analyses of the initial phase of the
2001 foot and mouth disease epidemic in the UK [12],
the transmission of infectious disease in sheep popula-
tion in the Scotland [16] and the spread of BTB and its
control in the UK [18]. The main challenge in devel-
oping countries including Ethiopia, though suggested
for more informed disease control [25], is a lack of
animal identification, registration and traceability sys-
tem in which data regarding cattle movement is re-
corded. While data scarcity and quality issues remain
a problem, possible efforts to better understand the
existing conditions need attention. Therefore, the pur-
pose of this study was to understand the network
structure using available cattle movement information,
identify relevant network properties and explore asso-
ciations with the epidemiology of BTB.

Results
Centrality measures
Analysis of the established network due to dairy cattle
movement within the study sites identified 278 farms/
sites as nodes and 584 connections (cattle movement
records dated between September 2013 and August
2018) as edges. The cattle movement network topology
for the full network is presented in Fig. 1a & b. Among
farms 81% (225/278) had at least one connection with
any of the farms, majority of which (68%, 190/278) had
connections lower than five compared to farms having
at least five connections (13%, 35/278) accounting, re-
spectively, for 55.5% (324/584) and 45.5% (260/584) of
the overall connections in the network. However, 19%
(53/278) of the farms in the network did not have any
connections with regards to dairy cattle movement
(Additional file 1: Table S1).
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Fig. 1 a and b. Network topology constructed based on dairy cattle movement data between September 2013 and August 2018; (a) vertex size based
on herd size; (b) vertex size based on the number of connections; vertex colors indicated regions/sites, arrows indicate direction of animal movement
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The outputs of node centrality measures are presented
in Table 1. Each farm was observed to have a median
link of 1 (range: 0 to 37) with other farms, as measured
by the degree centrality. This was found to be consistent
across all sites. The outdegree centrality for any of the
node in the full network was also observed to show a
median of 1 while the indegree showed a median of 0
but fewer farms had higher number of incoming connec-
tion (range: 0 to 29). These centralities in the full net-
work were found to correlate negatively (Spearman
correlation, r = − 0.25). Higher level of farm centrality
due to closeness was observed in the full network indi-
cating requirement of only very fewer steps (average
0.01) to access every other farm from a given farm in
the network. In this regard, Gondar showed higher level
of farm centrality compared to other sub-networks.
Fewer farms were observed to show a higher between-
ness of up to 299 connections although majority of them
showed very little or no potential as explained by the
median value of betweenness centrality. The probability
of well-connected farms in the full network to connect
with other well-connected farms was observed to be
lower (Eigenvector of about 3%) compared to sub-
networks specific to the study sites.

Network properties
Results of the dairy cattle movement network analysis
based on selected network parameters are presented in
Table 2.
The full cattle movement network displayed lower

density of connections, which means that only 0.4% of
the possible links were present, suggesting a very lower
overall cohesiveness of the network and illustrating the
local/ regional nature of trade in Ethiopia. A minimum
of six steps were required for connecting the two most
distant reachable farms in the network, as measured by
the network diameter. Visualization of the path of the
network diameter showed that it began from farm ID
9F011 and ends at farm ID 9F003, all the farms along
the path being located in Hawassa only. In the full net-
work, the assortativity measurements based on degree

centrality showed that farms with higher degree centrali-
ties tend to preferentially connect with farms of lower
degree centrality measures, and the tendency was found
to be stronger for Gondar (− 0.32) as compared to that
of either Mekelle (− 0.04) or Hawassa (− 0.01). Network
centralization based on degree centrality demonstrated
that the sub-network in Gondar was more centralized al-
though the overall network showed more of decentra-
lized tendency (Table 2).
The average of the local clustering coefficient of each

farm (called the global clustering coefficient) for the full
cattle movement network was 0.13 (Table 2). When
comparing the sub-networks, the one in Gondar was
more clustered while the one in Hawassa was less clus-
tered than the sub-network in Mekelle. The average
shortest path length for the full network was 1.96 which
means very few steps could be required for a farm to ac-
cess other farms in the network. To ascertain whether
the full network displayed a small world structure, the
values of average shortest path length and clustering
coefficient were compared with that of the random net-
work [26]. Accordingly, the random network showed a
much lower clustering coefficient (0.01, about 13 times
lower) and higher average shortest path length (8.5)
proving that the established cattle movement network
was highly clustered and efficient to reach out quite
easily, showing that the real network displayed a small
world structure. Considering the geographic Euclidean
distance between the source and end farms (range:
0.02–709 km), 49% of the distances among farms were
below 5 km, and only about 8% of the distances were
greater than 300 km, showing that cattle movement in
most instances were localized and it was only in few
cases that cattle were moved from distant places
(Fig. 2b).
The degree distribution of the farms in the dairy cattle

movement network was not normally distributed. It was
skewed to the right indicating that only very fewer farms
were highly connected compared to the majority of the
farms (Fig. 2a). The distribution is well described by a
power-law distribution at alpha and R2 of 1.62 and 0.86,

Table 1 Node centrality metrics of cattle movement network (median values for degree, indegree, outdegree and betweenness;
mean for closeness and eigenvector)

Centralitya Centrality values (ranges)

Mekelle Gondar Hawassa Full network

Degree 1 (0, 11) 1 (0, 37) 1 (0, 12) 1 (0, 37)

Indegree 0 (0, 11) 0 (0, 29) 0 (0, 6) 0 (0, 29)

Outdegree 0 (0, 5) 1 (0, 8) 1 (0, 12) 1 (0, 12)

Closeness 0.019 (0.01, 0.02) 0.0004 (0.0001, 0.0005) 0.04 (0.01, 0.05) 0.01 (0.004, 0.013)

Betweenness 0 (0, 15) 0 (0, 299) 0 (0, 30) 0 (0, 299)

Eigenvector 0.11 (0, 1) 0.1 (0, 1) 0.15 (0, 1) 0.03 (0, 1)
aMetrics were calculated separately for each study sites and for the full network
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Table 2 Network metrics of cattle movement network calculated separately for each site and then for the full network

Parameter Metrics values

Mekelle Gondar Hawassa Full network

Diameter 2 5 6 6

Average shortest path length 1.36 2.1 2.1 1.96

Density 0.01 0.013 0.012 0.004

Reciprocity 0.027 0.018 0 0.014

Assortativity (based on degree) -0.04 -0.32 -0.01 -0.17

Global clustering coefficient (CC) 0.15 0.18 0.07 0.13

Modularitya 0.68 0.49 0.60 0.72

Components (GWCC) 33 18 15 63

Community (based on greedy optimization) 38 24 22 73

Centralization (by degree) 0.05 0.19 0.05 0.06
aModularity value near to 0 indicates that the network considered is close to a random one (barring fluctuations), while a value near to 1 indicates strong
community structure

Fig. 2 a and b Degree and Euclidian distance distributions of dairy cattle movement network. (a) Degree distribution; (b) Distribution of Euclidian
distance among farms
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respectively. As a consequence of this large heterogen-
eity in the number of connections per farm, the exist-
ence of hubs (farms with high outdegree) and authorities
(farms with high indegree), we conclude that the cattle
network demonstrates a scale free structure.

Key actor analysis
Farms playing a critical role in the cohesiveness of the
network were identified based on the correlation analysis
of node centrality measures (Additional file 2: Table S2).
The overall correlations among node centralities were
low to high. Higher correlation (r = 0.83) was observed
between closeness and eigenvector centralities, while
weaker correlation (r = 0.24) was observed between
eigenvector and betweenness centralities and thus ap-
plied to detect critical farms in the network. Accord-
ingly, three dairy farms with farm ID’s 7F020 from
Gondar, 9A038 from Hawassa, and 8F007 from Mekelle,
were identified as critical, serving both pulse taker’s and
gate keeper’s roles within their respective sub-networks.
The identified critical farms were considered as the
nucleus for the structural functionality of the sub-
networks, in fact they were essential in connecting part
of the sub-networks that would otherwise be isolated. A
couple of farms were also recognized to serve as either
pulse taker’s or gate keeper’s role in Hawassa and
Mekelle; however, no farm was observed to function ei-
ther of the roles in Gondar. In the full network, farm ID
7F020 (from Gondar) served both the attributes of pulse
taker’s and gate keeper’s function but none of the
remaining farms showed no role for the functionality of
the full network (Additional file 4: Figure S1).

Cohesive analysis
The dairy cattle movement network was organized in 4
core sub-groups of k: 3, 2, 1 and 0 with size of 9, 89, 126
and 53 nodes, respectively (Additional file 5: Figure S2).
Among the farms involved in the network, there were 63
GWCC, 53 of which contained only one node, the
remaining components contained between 2 and 204
nodes. However, the network has no giant strong
connected component. A measure of the quality of com-
munity structure in the dairy cattle movement network
was determined in terms of the modularity, estimated at
0.72 (Table 2), indicating higher tendency of intra-
community connections than the same community
structure would present if the connections would be
rewired under random network. Community detection
based on greedy optimization algorism identified 73
communities within the connected network. The largest
community involved 46 farms while the smallest had
one farm. Three of the top largest communities con-
tained 119 farms, accounting for 43% of the farms in the

network, while the remaining 57% of the communities
had between 1 and 20 farms per community. Distribu-
tions of communities in majority of the cases were re-
stricted to the study sites but there were crossing of few
communities between regions/sites. Fewer farms in Gon-
dar and Mekelle had connections with farms in Hawassa
and thus communities involving such farms were ob-
served to cross over. Few other smaller communities in
Mekelle and Gondar were also observed to cross each
other although there were no connected farms in be-
tween (Additional file 6: Figure S3).

Network reliability
A percolation analysis was carried out to assess the vul-
nerability of the cohesion of the network structure as
measured by the size of GWCC and largest community.
Figure 3a and b compare the impact of selective removal
of farms according to their centrality measures to ran-
dom selection.
Targeted removal of farms in the network based on

decreasing order of the betweenness, indegree, outde-
gree and eigenvector values showed remarkably faster
changes in the network structure with faster reduction
on the size of GWCC compared to random removal
(Fig. 3a). Removal of farms based on their betweenness
is the first to fall outside the random targeting simula-
tion envelope but then out performed by in-degree,
out-degree and eigenvector centrality. Therefore it
seems that the GWCC can be disintegrated if one use
in the order of eigenvector, indegree, outdegree and be-
tweenness centrality for the targeted removal of vertex
compared to the random removal. Removal of about
24% (50/150) of the farms in the network could reduce
the size of the GWCC by more than 85% (174/204). In
contrast, removal using closeness centrality did not dis-
integrate the network structure better than random re-
moval. The effect of targeted removal on the size of the
largest community was also investigated. The largest
community size in the network dropped promptly when
farms were removed based on the value of their eigen-
vector centrality followed by the indegree and then the
out-degree; however, removal based on the values of
the closeness centrality showed a similar pattern of re-
duction with random removals (Fig. 3b).

BTB infection and features of cattle movement network
The herd level prevalence of BTB was compared be-
tween farms which had at least one incoming link to
those which had no any incoming connection. Accord-
ingly, a 27% positivity to the tuberculin test was ob-
served among the connected farms compared to 18%
positivity among the non-connected ones. We used a
logistic regression model to estimate the strength of as-
sociation between network characteristics and BTB
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positivity. We were also interested in quantifying the
effect of batch size of movement and Euclidean dis-
tance between herds. However, due to missingness in
the data it was necessary to estimate a second model to
explore these two additional factors. The response vari-
able for both models was the probability of a herd hav-
ing any positive animals (defined by presence of any
reactor animals within herd) and predictor variables
were selected based on a univariate screen with a p
value < 0.25.
Results of the regression model with network charac-

teristics as predictor variables are shown in Table 3.
Within the network, some farms were observed to have
higher level of throughput as demonstrated by higher
values of their indegree and outdegree measures. The

regression model estimates that the log odds of ‘farm
BTB positivity’ increased by 120% with a unit increase
of the indegree (adjusted OR 2.2). On the other hand, a
decrease on the likelihood of BTB positivity by 43%
(adjusted OR = 0.57) was observed among farms that
had one or more outgoing animals (outdegree ≥1) com-
pared to farms that maintained their animals (outde-
gree =0). Comparing the relative closeness between
farms on the ‘farm BTB positivity’, farms having close-
ness centrality value of higher than average showed a
decrease by 60% on the odds of ‘farm BTB positivity’
(adjusted OR 0.4). On the other hand, farms having
eigenvector centrality of at least the average value
showed significantly (p < 0.05) higher likelihood of be-
ing BTB positive (adjusted OR 3.3).

Fig. 3 a and b. The effect of targeted farm removal, driven by the different centrality measures on the fragmentation of the GWCC (a) and largest
community size (b) of the cattle movement network. The y axis shows the size of the GWCC (a) and the largest community size (b), and the x axis
shows the number of farms removed from the network. The graph was based on the median of the centrality measures after 1000 simulations
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The second regression model, constructed to estimate
the herd BTB positivity using batch size and Euclidean
distance as predictor variables, suggested that a batch
size of ≥2 cattle could significantly increase the BTB
positivity of a farm compared to farms with a batch size
of one or no incoming cattle (Table 4). Euclidean dis-
tances between the source and destination farms were
also found to be associated with BTB positivity of farms.
Farms that had cattle sourced from distant farms /sites
were more likely to have BTB infection compared to
farms that had cattle sourced from closer farms/sites.
The herd and animal level BTB positivity were also eval-

uated across the community structure in the network.
The number of infected farms in the community were
moderately correlated with community size (Spearman
correlation r = 0.63); while, proportion of infected animals
was observed to fairly correlate (Spearman correlation r =
0.45) with community size. To test the effect of commu-
nity structures on BTB positivity, we constructed univari-
ate logistic regression models for the animal and herd
level BTB positivity independently. The response variable
was either the herd positivity or animal positivity, and
community size was predictor variable in both cases. Ac-
cordingly, the univariate regression analysis at herd level
demonstrated that a unit increase on the community size
significantly increased (p < 0.05) the log odds of ‘farm
BTB positivity’ by 0.23 units (crude OR = 1.3, 95% CI: 1 to
1.6). Similarly, the regression on animal level, showed an

increase on the log odds by 0.25 units (crude OR 1.3, 95%
CI: 1.1 to 1.9) due to a unit increase on the community
size (Additional file 7: Figure S4).

Discussion
In the present study, the dairy cattle movement network
and its impact on the spread of BTB were investigated in
three emerging dairy belts of Ethiopia, namely the cities
of Hawassa, Gondar, and Mekelle using a social network
analysis in conjunction with tuberculin testing. The re-
sult of this study showed a higher prevalence of BTB in
farms that had a link history within the network than in
farms that had no connection in the network suggesting
that the possibility of BTB transmission through the
movement of the dairy cattle. This observation is sub-
stantiated by earlier studies that indicated the role of
animal movement in the spread infectious diseases
[18, 19, 23, 27].
Higher variation in the number of connections per

farm and betweenness in the network structure illus-
trated the heterogeneity of the number of connections
per farm. Highly connected farms, which can be called
hubs, may serve as super spreader of BTB once infected.
If a farm serving as hub is removed from the network,
spread of infections might be reduced with better effect
than removal of other farms with lower degree and
betweenness in the network [28]. Farms with higher
indegree tend to have lower outdegree suggesting the

Table 3 Point estimates of node characteristics by logistic regression univariate and multivariable models for herd level BTB
positivity (n = 252)

Risk factors Class Univariate Multivariable

Crude OR (95% CI) P Adjusted OR (95% CI) P

Availability of incoming connection (indegree) No – – – –

Yes 1.72 (0.9, 3.2) 0.077 2.2 (1, 5) 0.054

Availability of outgoing connection (outdegree) No

Yes 0.39 (0.2, 0.72) 0.003 0.57 (0.3, 1.2) 0.170

Connecting other neighboring farms (betweenness) No – – – –

Yes 1.5 (0.7, 3.2) 0.304 – –

Closeness < average – – – –

≥average 0.55 (0.3, 1) 0.067 0.4 (0.2, 1) 0.058

Eigenvector < average – – – –

≥average 2.2 (0.84, 5.5) 0.093 3.3 (1.2, 9) 0.022

Table 4 Point estimates of risk factors by logistic regression univariate and multivariable models for herd level BTB positivity (n = 181)

Risk factors Class Univariate Multivariable

Crude OR (95% CI) P Adjusted OR (95% CI) P

Euclidean distance in km 1.009 (1.005, 1.01) < 0.001 1.007 (1, 1.01) 0.002

Batch size
(number of animals)

≤1 – – – –

2–4 2.6 (1.2, 5.7) < 0.001 2.7 (1.3, 6) 0.012

≥5 14.6 (7.2, 31) < 0.001 12 (5.8, 26.5) < 0.001
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absence of farms which are both likely to become in-
fected and to transmit infection playing an important
role in facilitating BTB transmission within the network
[27]. In farms with incoming connectivity, an increased
odds of BTB positivity was observed (adjusted OR = 2.2,
95% CI: 1 to 5); on the other hand, farms having out-
going connections showed a decrease of odds ratio by
43% (adjusted OR = 0.57, 95% CI: 0.3 to 1.2) compared
to farms that had no any connection. The increase due
to incoming connectivity could be due to the purchase
of infected cattle from farms which did not know the
BTB status of the animal and thus the buyer took the
risk by chance, or rarely, fewer infected farms might sell
reactor animals hiding the BTB status instead of culling
since there is no policy in the country enforcing them
not to do so. This can further be corroborated by supple-
mental data that cattle sourced from other farms/sites
showed significantly higher level of BTB infection than
the preexisting ones [29]. Whereas, the decrease of posi-
tivity on farms with outgoing connections showed the im-
pact of prompt removal of reactor animals from the herd;
and repeated skin testing and removal of reactors could
help to create apparently BTB clean farm [30, 31]. In
addition to the links, batch size has also been evidenced to
relate with BTB infection of a farm. This study found that
farms introducing a batch size of ≥2 cattle showed an in-
creased likelihood of BTB positivity compared to farms
which introduced one animal or not introducing at all.
This is in line with previous suggestion that restricting the
number of traded dairy cattle could prevent BTB trans-
mission [32]. Although nearly half of the moved cattle
were sourced from within 5 km distances (Fig. 2b), cattle
sourced from distant origins showed more likelihood of
BTB infection suggesting the risk of BTB spread through
cattle traded/moved from far areas. This was in line with
the trend of dairy cattle movement following the govern-
ment’s dairy expansion plan where cattle moved from the
central parts of the country where the dairy sector was
well developed but with high BTB prevalence. This could
also be substantiated to the socio-cultural reasons that
BTB infected cattle, if not culled, are more likely to be
traded to distant areas instead of closer or neighbor farms.
The present study suggests that the cattle movement

network between Ethiopian dairy herds has small world
properties due to its higher global clustering coefficient
(CC = 0.13) and a relatively short average path length
(only 1.96 steps) compared to a random network gener-
ated with same number of nodes and connections. The
global clustering coefficient for the present network is
lower showing that the local farm to farm interactions
are at smaller level and thus spread of BTB among
themselves are inconsistent [33] and the spread may be
relatively slow [34]. Transmissions of infectious agents
have been suggested to be quicker in networks with

similar properties but with higher clustering coefficients
[17, 35]. In small world networks, the BTB spread may
cover most clustered farms relatively quickly; however, the
presence of fewer long-range connections suggest the po-
tential of disease breakouts in less clustered farms [36].
The right skewed degree distribution and its power-

law fit of the cattle movement network also suggest a
scale free property. Fewer farms having high number of
connections with majority of the farms serving as hubs,
are at greater risk in getting the BTB infection and once
infected can be potential supper spreaders to many other
farms connected to them [27]. Hubs can not only play a
role as super spreaders but also as maintainers of BTB
infection. Previous studies of infectious disease epi-
demics on scale free network demonstrated faster epi-
demics spread due to the presence of hubs [37–40].
Higher-order relationships between farms in the full

network shows negative assortative mixing suggesting
that highly connected farms tend to connect with less
connected farms, and this relationship was found to be
stronger in Gondar compared to that either in Hawassa
or Mekelle, demonstrating the potential in accelerating
BTB spread within their respective sub-networks [11].
Frequent connections between highly and less with well-
connected farms have been substantiated to slow the
spread of infectious disease as compared to networks with
positive assortative relationships [27]. Negative assortative
relationship as observed in our networks can be beneficial
for BTB control, since implementing control measures
such as movement restriction, culling and /or increased
biosecurity measures to highly connected farms protects
less connected farms attached to them [23].
Disintegration of giant connected components and

biggest communities restricts the spread of infectious
diseases [23]. Targeted removal of farms in the cattle
movement network to fragment its cohesiveness can be
considered as an effective strategy to identify farms play-
ing vital role in disease transmission and impose effect-
ive disease control measures such as implementation of
movement restriction, vaccination or diagnostic testing
[24, 27, 41]. In this regard, the present data suggested
that targeting on the top 5% of highly connected farms
based on their eigenvector value would reduce the cohe-
siveness of the network by nearly 35% (as explained
from the fragmentation of the GWCC), and if we
increase the target to 15% of the connected farms then
the cohesiveness would be reduced considerably (reduce
by greater than 75%). Targeted removal based on the
eigenvector value also showed good effect on fragmenta-
tion of the biggest community but this is at lower rate
compared to the effect on GWCC as a measure of net-
work resilience. Fragmenting the network cohesiveness
relatively quickly suggests that the rate at which BTB
spread among farms in the network could be restricted.
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Targeted removal of farms based on eigenvector values
signifies that targeted interventions could be one possi-
bility for disease control. However, the effectiveness may
be progressive for BTB due to its chronic nature and
take longer period to recognize the intervention impact
compared to acute infections. Thus, the control efficacy
can be enhanced if targeted intervention is combined
with other control measures such as implementation of
good biosecurity measures, movement restriction from
BTB endemic areas, reduce the number of traded cattle,
segregation and culling of skin test positive animals.
In this study, the information used for the network

analysis was based on the recall of the respondents due
to absence of recording system. However, possible verifi-
cations were made by involving other family members,
animal attendants who had stayed at the farm for longer
period and local extension workers who closely support
the farming system. The analysis was made focusing
mainly on cattle movement. Other possible pathogen
transmission pathways such as movement of other
species of animals, people and vehicles, neighborhood,
sharing of bulls and facilities were not considered.
Characterization of the cattle movement network is not
an easy task especially in developing countries where
there is no proper recording system.

Conclusions
This paper provides a first estimate and quantitative de-
scription of the cattle movement patterns between dairy
herds in Ethiopia and suggests that control interventions
could be targeted to achieve a greater impact. Assessing
the relative impact of alterative control strategies such
as test-and-slaughter, vaccination and movement restric-
tions will require the development of dynamic transmis-
sion models. This data provides the starting point to
build and estimate such models for BTB, and other in-
fectious diseases, in Ethiopia.

Methods
Study sites
The study was conducted in three selected cities of Ethi-
opian regional Governments namely Hawassa, Gondar,
and Mekelle (Fig. 4). The cities were purposively selected
due to the fact that the dairy industry has been rapidly
growing in these areas in accordance with the Ethiopian
Government long term plan to expand the dairy industry
to achieve the need of animal sourced nutrition in these
areas [2]. Hawassa represents the southern, Gondar the
northwestern and Mekelle the northern emerging dairy
belts of the country with the number of herds (animals)
of more than 200 (5200), 440 (4800) and 260 (2600), re-
spectively. These cities are densely populated with a hu-
man population size of about 0.3 Million in each city

[42]. Their respective distances from the capital, Addis
Ababa, are 273, 738 and 783 km.

Data collection
The study involved 278 farms in total, of which 67, 66
and 81 were located, respectively in Hawassa, Gondar
and Mekelle while 64 were located in other sites and
served as cattle sources. Researchers described the ob-
jective of the study to the respondents before forwarding
any of the questions to ensure that the feeling and mood
of participants was good. Data were collected using a
pretested questionnaire addressing specific questions on
dairy cattle movement including number of cattle, batch
size, purpose and date of movement (September 2013 to
August 2018). Information was collected from farm
owners and/or farm managers. To optimize the memory
of the respondents the researchers assessed the history
of each animal through focused conversation with the
respondent walking within the barn where cattle were
kept. The interview was made in such a way that respon-
dents would feel secured about all information provided.
Data on tuberculin testing and other pertinent animal
level data were collected in parallel with the question-
naire survey.

Herd classification based on tuberculin test
Herds were classified as infected or non-infected to BTB
based on Single Intradermal Comparative Cervical Tu-
berculin (SICCT) test. Herds were classified as infected
when at least one animal was found positive in the herd.
We followed standard interpretation as described in OIE
[43], where we considered a skin reaction as positive if
the increase in skin thickness at the bovine site was
more than 4mm greater than the reaction shown at the
site of the avian injection measured after 72 h of injec-
tion. SICCT test is known to have high diagnostic speci-
ficity (99.98%) [44] but imperfect (and variable)
sensitivity (75–95.5%) [45–47]). The SICCT test is con-
sidered more reliable as a herd level test rather than as
an individual animal test - hence we examine how net-
work characteristics relate to herd level risk where we
have a relatively higher confidence in the ability of the
test to classify infected and non-infected herds. However,
this work acknowledges the possibility of misclassifying
herds with low prevalence of BTB.

The network topology and metrics
Aggregates of cattle movement data were used to con-
struct a directed static network. Farms from which cattle
were sourced from or to which cattle were destined to
go, were considered as nodes and cattle movements
between farms as links or edges. The overall network
topology was checked for small world or scale free struc-
tures, as both do have important roles in determining
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the nature of epidemics [48, 49]). The definition of a
small world network is one where the clustering coeffi-
cient is significantly higher and the average shortest path
length lower than that computed from a random net-
work of equivalent magnitude i.e. the same number of
nodes and links as the real network [35]. Similarly the
network is considered scale free when the degree distri-
bution follows a power law [50].
Node centralities relevant as possible targets for

disease control [15, 51] were calculated by the indegree,
outdegree, closeness, betweenness and eigenvectors. The
indegree and outdegree centralities refer the number of
incoming and outgoing cattle moves, respectively.

Betweenness measures the frequency with which a farm
is located on the shortest path length between pairs of
other farms; and eigenvector centrality measures the
degree to which a farm is connected to other well con-
nected farms. The degree distribution was assessed
following the guidelines described by Clauset et al. [52].
The network topology was described by using various
network level metrics, including network diameter, aver-
age shortest path length, density, assortativity, clustering
coefficients, modularity and network centralization.
Node and network level metrics considered for the ana-
lyses were adapted as defined in Motta et al. [41], Dubé
et al. [53] and Pavlopoulos et al. [54]. Definition of

Fig. 4 Geographic location of study sites and distributions of dairy farms in each site. Size of dots represents farm size while colors show BTB status: red
indicates positive and black negative results recorded by tuberculin skin test. Base map source: http://maplibrary.org/library/stacks/Africa/Ethiopia/index.htm
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various node and network level terminologies are pre-
sented in Additional file 3: Table S3.
Key actors in the context of cattle movement networks

refers the most important farm(s) in the network that have
significant role in the functionality of the network, remov-
ing of which would result in the least possible cohesion of
the network [55, 56]. Identification of such important
farms was made based on a correlation analysis between
node centrality measures. Centrality measures with weak
correlations were considered to detect important farms in
the network for they would show very low or none linear
relation between them. The analytic approach followed
the study conducted by Motta et al. [41] who used the
method to identify key markets on a trade network.

Network cohesiveness and reliability analysis
The overall network connectivity and structural fea-
tures of the network were explored by conducting
cohesive sub-group analyses based on k-core decom-
position. A k-core is a sub-group in which each node
is adjacent to at least a minimum number, k, of the
other nodes in the sub-group. K-core decomposition
allows identifying the core and periphery of the net-
work. The largest connected components within the
network, namely the giant strongly connected compo-
nent (GSCC) and giant weakly connected component
(GWCC) of the network were identified. The GSCC
is the sub-group of nodes in which a node could be
reached from every other node considering the direc-
tionality of links, whereas the GWCC is the sub-
group of nodes for which directionality of the con-
nections was disregarded. Further subsets of networks
within the giant connected components that were more
connected to each other than to the rest of the network
were also identified using a greedy optimization commu-
nity detection algorithm.
Vulnerability of the cohesiveness of the network

structure due to targeted removal of farms was assessed
using percolation analysis. This analysis examines the
impact of progressively removing farms one after the
other in the descending order of a given centrality
measure on the structure of the network. Centrality
measures utilized for this analysis involved indegree,
outdegree, betweenness, closeness and eigenvector. The
cohesiveness of the cattle movement network was eval-
uated by computing at each removal step on the size of
the GWCC and size of the biggest community present
in the remaining networks.

Statistical analysis and graphics
Apparent prevalence was calculated using proportions
of positive farms or animals from the total number of
tested farms or cattle. Analyses of herd level risk fac-
tors were analyzed using generalized linear models

(GLM) with binomial family and logit link. Variable
were selected for the full model if the p value was
less than 0.25 in the univariate model. Software used
for the statistical analysis and graphics was R statis-
tical software (version 3.4.1) (R Core Team) with R
Studio editor using igraph [57], network [58], RColor-
Brewer [59], ggplot2 [60], poweRlaw [61], raster [62],
glm2 [63], questionr [64], car [65], resourceSelection
[66] and pROC [67] packages. In all cases, 95% confi-
dence level and significance level of 5% were used to
determine statistical significance.

Data management and quality control
Data collection and tuberculin testing were carried
out by trained and experienced personnel to avoid
possible errors. The researcher closely supervised each
step of data collection and ensured that data were
collected properly. Completed questionnaires and ani-
mal level data collection formats were checked for
completeness and presence of outliers on daily basis
for prompt correction. Data were double entered and
managed by a trained staff using the OpenClinica
database (open source software, version 3.1; www.
OpenClinica.com) and any entry errors were detected
by the internal quality control system of the software.

Additional files

Additional file 1: Table S1. Nodes and connections in the overall cattle
movement network. (DOCX 14 kb)

Additional file 2: Table S2. Correlation between node centrality
measures. (DOCX 14 kb)

Additional file 3: Table S3. Node and network level metrics definitions.
(DOCX 16 kb)

Additional file 4: Figure S1. Key-actor analysis on the cattle movement
network. Key-actor analysis for the full-network (D) and specific sites (re-
gions) (A, B & C) based on correlation between betweenness and eigen-
vector centralities. Size and color-fade of the labels is relative to the value of
residuals obtained through linear regression showing the deviation from a
linear relationship. Definition: farms placed in quadrant (a) were farms which
did not have any particular role in the network; (b) are pulse-takers; (c) are
farms which tends to have both gate-keeper and pulse taker abilities; and
(d) were gate-keepers. (TIF 466 kb)

Additional file 5: Figure S2. Core decomposition plot. Four cores
identified with size of 53, 126, 89 and 9, respectively. (TIF 297 kb)

Additional file 6: Figure S3. Communities and vertexes by study sites
(regions), as detected by greedy optimization algorism. Three bigger
groups of farms for three loosely connected regions clustered together
forming sub-networks generated after reducing vertices having no con-
nections. Group of communities encompassing vertexes of similar color
correspond to one region. Vertexes with dark-orange were based in Gon-
dar; vertex color aquamarine corresponds to Mekelle; deep-sky-blue cor-
responds to Hawassa; yellow corresponds to farms which do not belong
to any of the regions (these are ‘unknown’ with respect to detailed data).
Communities were shown with various shades of colors to differentiate
one from the other. (TIF 682 kb)

Additional file 7: Figure S4. Graphs showing relationship of community
size and number of infected farms (bottom) and infected animals (upper).
(TIF 275 kb)
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