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Abstract—Developing a tool which identifies emotions based on
their effect on cardiac activity may have a potential impact on
clinical practice, since it may help in the diagnosing of psycho-
neural illnesses. In this study, a method based on the analysis of
heart rate variability (HRV) guided by respiration is proposed.
The method was based on redefining the high frequency (HF)
band, not only to be centered at the respiratory frequency, but
also to have a bandwidth dependent on the respiratory spectrum.
The method was first tested using simulated HRV signals, yielding
the minimum estimation errors as compared to classic and
respiratory frequency centered at HF band based definitions,
independently of the values of the sympathovagal ratio. Then,
the proposed method was applied to discriminate emotions in a
database of video-induced elicitation. Five emotional states, relax,
joy, fear, sadness and anger, were considered. The maximum
correlation between HRV and respiration spectra discriminated
joy vs. relax, joy vs. each negative valence emotion, and fear vs.
sadness with p-value ≤ 0.05 and AUC ≥ 0.70. Based on these
results, human emotion characterization may be improved by
adding respiratory information to HRV analysis.

Index Terms—Emotion recognition, autonomic nervous system,
heart rate variability, respiration, spectral analysis, biomedical
signal processing.

I. INTRODUCTION

Developing a tool which identifies human emotions may
have a potential value in several fields. First, in the clinical
practice, it may have value to reduce the diagnostic time of
a psycho-neural illness, and, subsequently, it could directly
represent a beneficial economic impact for the health system.
Secondly, it can improve on the human-machine interaction
since it could provide knowledge regarding the affective state
of a user, bringing the machine closer to the human by
including emotional content in the communication [1].

Several strategies have been proposed for emotion recog-
nition in the area of non-invasive biosignals as electroen-
cephalography (EEG) [1]–[6], galvanic skin response (GSR)
[7], [8], skin temperature variation (ST), electrodermal activity
[9] and electrocardiography (ECG) [10]–[13], among others.
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This work has been focused on emotion recognition by means
of heart rate variability (HRV) analysis.

Emotions activate biochemical mechanisms at the level
of the hypothalamus, pituitary, and other peripheral glands.
These tend to restore or suppress the immune and endocrine
responses, making the development of diverse pathological
processes possible [14]. Transient behaviour of the cardiovas-
cular function is often linked with some emotional responses.
In particular, heart rate is profoundly influenced by neural
inputs from sympathetic and parasympathetic divisions of the
autonomic nervous system (ANS), which allows the modifi-
cation of cardiac function to meet the changing homeostatic
needs of the body [15]. For example, cardiovascular reaction
to a perceived stress situation creates an increase in blood
pressure as a consequence of a general increase in cardiovas-
cular sympathetic nerve activity and a decrease in parasympa-
thetic activity [15]–[17]. When adrenergic sympathetic fibers
activate, they release noradrenaline (NA) on cardiac cells,
increasing the heart rate. When cholinergic parasympathic
nerve fibers activate, they release acetylcholine on cardiac
muscle cells and the heart rate decelerates [18]. Sympathetic
and parasympathetic activation work to increase and decrease
cardiac pumping, respectively [19]. Usually, an increment in
parasympathetic nerve activity is accompanied by a reduction
in sympathetic nerve activity, and vice versa.

In previous studies, recognition of emotional states assessed
by means of HRV spectral analysis has been reported [11],
[20]–[25]. HRV spectral analysis typically considers the power
in three bands: a) very low frequency (VLF) component in
the range between 0 Hz and 0.04 Hz, b) low frequency
(LF) component between 0.04 Hz and 0.15 Hz, and c) high
frequency (HF) component between 0.15 Hz and 0.40 Hz [26].

It is well known that HRV is influenced by respiration.
Heart rate is increased during inspiration and reduced during
expiration, phenomenon described as Respiratory Sinus Ar-
rhythmia (RSA). RSA has been used as an index of cardiac
vagal or parasympathetic function, usually measured by the
HF component of the HRV [27], while the LF component
is affected by both sympathetic and parasympathetic activity.
The necessity of redefining the HF band to be centered on
the respiratory frequency when respiratory frequency (FR) is
above 0.40 Hz, has already been highlighted, as well as the
misinterpretation of spectral HRV indices when respiratory
frequency lies within the LF band [28].

Several studies have already used respiratory information
to define the HF band. Most of them define the HF band
centered at respiratory frequency and use a fixed bandwidth.
Only a few of them use variable HF bandwidth dependent
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on respiration. In [29], respiratory frequency as well as its
rate of variation were used to estimate HF power based on a
parametric decomposition of the instantaneous autocorrelation
function. In [30], an HF bandwidth dependent on respiration
stability was used to analyze HRV in critically ill patients.
Recently, spectral coherence between respiration and HRV has
been used to define the HF band [31], [32].

Moreover, the relationship between respiration and HRV
might be further exploited to add relevant information regard-
ing ANS regulation. Interactions between respiration and HRV
have been continuously assessed using time-varying spectral
coherence, partial coherence and phase differences during
orthostatic test and under selective autonomic blockade [33],
[34]. Characterization of these interactions might be crucial in
applications where both respiration and HRV are altered, such
as during stress [13].

In this work, we propose the joint analysis of HRV and
respiration to improve human emotion characterization. HF
band is defined based on the maximum spectral correlation
between HRV and respiration. Both the center and bandwidth
of HF band depend on respiration. The maximum spectral cor-
relation itself is proposed as an index to identify emotions. Our
hypothesis is that this index, characterizing the relationship
between respiration and HRV, can add relevant information to
HRV analysis to describe human emotions.

First, a simulation study is designed to evaluate the ability
of the proposed HF band to quantify RSA. The performance
of the proposed HF band is compared to other commonly used
HF band definitions. Then, the ability of the proposed indices
to characterize human emotions will be tested on a database
of video-induced emotions.

II. METHODS AND MATERIALS

A. Emotion database

A database of 25 volunteers was recorded at the University
of Zaragoza during an induced emotion experiment. It contains
the simultaneous recording of ECG and respiration using a
MP100 BIOPAC device. The limb ECG leads I, II and III
were sampled at 1 kHz and the respiration signal, r(t), at 125
Hz. The distribution of male (12) and female (13) were: four
men and five women in the age range [18-35] years, four men
and four women in the age range [36-50] years and four men
and four women over 50 years.

The following emotions were induced using videos: joy,
fear, anger and sadness. Each subject was required to watch
8 different videos (two videos per emotion) in 2 days. The
first day were recorded sessions 1 and 2, while sessions 3 and
4 were recorded in the second day. In session 1 and 4, the
subject was stimulated with videos of joy and fear, and with
videos of anger and sadness in session 2 and 3. The videos of
each session were presented in randomized order. Each video
was preceded and followed by a relaxing video considered as
baseline, to ensure that the physiological parameters returned
to the baseline condition. A schema of the organization of the
video-induced emotion sessions is represented in Fig. 1.

The contents of the videos were: the joy videos were
excerpts from laughing monologues; the fear videos were

Day 2
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sadness relax relax anger
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relax joy sadness relax fear relax relaxrelax anger
Session 1 Session 2

relax

Day 1

Fig. 1. Scheme of the organization of the video-induced emotion sessions.
Session 1 and 2 were recorded the first day, and session 3 and 4 were recorded
the second day. In session 1 and 4, the subject was stimulated with videos of
joy and fear, and with videos of anger and sadness in session 2 and 3. All
videos were presented in randomized order.

excerpts from scary movies, like Alien and Misery; the sadness
videos were an excerpt from the film The Passion of the Christ
and a documentary film about history wars; the anger videos
were an excerpt of the documentary film of the Columbine
High School massacre in 1999 and a documentary about
domestic violence; and the relax videos were excerpts from
nature images with classical music.

All videos were five minutes long, except one of the videos
corresponding to emotion fear, which lasted three minutes. The
Institution′s Ethical Review Board approved all experimental
procedures involving human subjects and the subjects gave
their written consent.

The emotion database has been validated by 16 subjects,
different from the ones participating in the database, using
the Positive and Negative Affect Schedule - Expanded Form
(PANAS-X) [35]. To assess specific emotional states, a 60-item
scale is used. Based on the sum of specific items, the following
affect scales can be computed: fear, sadness, guilt, hostility,
shyness, fatigue, surprise, joviality, self-assurance, attentive-
ness and serenity. Then, a Basic Negative Emotion (BNE)
scale is defined as the average of sadness, guilt, hostility and
fear scales, and a Basic Positive Emotion (BPE) scale as the
average of joviality, self-assurance and attentiveness scales. In
this work we studied the BPE, BNE, joviality, fear, sadness
and hostility scales.

B. Signal Preprocessing

Beat occurrence times were detected from the recorded ECG
using a wavelet-based detector [36]. Instantaneous heart rate
(dHR(t)) was estimated from the beat occurrence times based
on the integral pulse frequency modulation (IPFM) model,
which takes into account the presence of ectopic beats [37]. A
time-varying mean heart rate (dHRM(t)) was computed by low
pass filtering (cut-off frequency 0.03 Hz) dHR(t), and then
the HRV was obtained as dHRV (t) = dHR(t)− dHRM(t). The
modulating signal, m(t), which is assumed to carry the ANS
information according to the IPFM model [38], was estimated
as m(t) = (dHR(t)−dHRM(t))/dHRM [38], being dHRM the mean
of dHRM(t). The m(t) was resampled at 4 Hz.

The respiratory signal, r(t), was filtered by a band pass
filter from 0.04 Hz to 0.80 Hz, which is assumed to cover
the physiological frequency range for m(t) and r(t), and
undersampled at 4 Hz.
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Spectral HRV indices were estimated from the power spec-
trum density (PSD) of m(t) (Sm( f )), computed by means of the
Welch Periodogram. Then, the power content in the HF band
(PHF ) and in the LF band (PLF ), the normalized power in the
LF band (i.e. PLFn = PLF /(PLF +PHF )) and the ratio R=PLF /PHF
were computed. The limits of the bands are defined in Section
II.C. The respiratory frequency FR was estimated from the
location of the largest peak in the PSD obtained from r(t)
(Sr( f )).

C. Frequency band definition

1) Shifted and resized HF band based on Spectrum Cor-
relation (SCHF): The HF band is redefined based on the
correlation between Sm( f ) and Sr( f ) as given in Eq. (1),
where a and b are the lower and upper limits of the analyzed
frequency range. The maximum value of ρab

(Sm,Sr) is searched,
following the steps detailed below:
• Step 1: the spectral correlation of Sm( f ) and Sr( f ),

ρab
(Sm,Sr), is computed within a bandwidth of 0.02 Hz

centered at FR.
• Step 2: the integration frequency range [a, b] is symmet-

rically expanded 0.02 Hz and ρab
(Sm,Sr) is recomputed. This

step is repeated until the physiological range from 0.1 Hz
to dHRM/2 is covered, with the following restrictions: (1)
the lower limit a must be above 0.10 Hz, (2) the upper
limit b must be below half the mean heart rate (dHRM/2)
and (3) Sr(b) must be above 5% of the maximum value
of Sr( f ) to avoid including in the correlation estimation
frequencies with no respiratory power. In these cases, the
restricted limit (lower or upper) is kept fixed and the other
limit is increased in 0.01 Hz. The resulting integration
frequency ranges are no longer symmetric with respect
to FR.

• Step 3: the maximum value of ρab
(Sm,Sr), denoted by

ρmax = ρ
amaxbmax
(Sm,Sr) , determines the lower and upper limits

of the [amax, bmax] redefined HF band (HFSC).
Only those recordings showing ρmax ≥ 0.5 were considered

for further analysis, being this value selected empirically as
a trade-off between subject number inclusion and correlation
strength. Fig. 2 shows a diagram of the SCHF method.

Standard LF band was considered in the range of [0.04,
0.15] Hz, except when the HF band encroached the LF band.
In these cases, the upper limit of the LF band was reduced
to the lower limit of the HF band, i.e., LF band was ∈ [0.04,
amax] Hz.

2) Classic HF band: The classic HF band described in Task
Force [26] was analyzed, i.e. [0.15, 0.40] Hz.

3) Shifted HF band centered at FR with fixed bandwidth:
As defined in previous studies [28], [39], the HF band was
centered at FR and had a fixed bandwidth of 0.11 Hz (HFFR ).

In approaches to HFSC and HFFR , which take into account
respiratory information, those recordings with FR < 0.1 Hz are
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Fig. 2. Diagram of the SCHF methodology: PSD of m(t) (Sm( f )) and PSD
of r(t) (Sr( f )). The correlation between Sm( f ) and Sr( f ) was calculated by
expanding symmetrically the [a, b] range in steps of 0.02 Hz per iteration. The
maximum value of the correlation between Sm( f ) and Sr( f ) (ρmax) determines
the lower and upper limits (amax, bmax) of the redefined HF band (HFSC).

excluded from the analysis due to the overlapping between the
LF and HF bands.

D. Simulation study

A simulation study was carried out to validate the proposed
HFSC definition.

Synthetic modulating signals (ms(t)) were generated as the
sum of a HF and a LF component, following the steps detailed
below:
• Step 1: the HF component was obtained by filtering a

respiration signal r(t) from the emotion database from
0.25 Hz to dHRM/2. This HF component is denoted by
mHFi(t), i = 1, ..., I, where I is the number of cases with
FR > 0.35 Hz since those are the most challenging for the
classic HF band. A total of I = 59 cases were identified.

• Step 2: the LF component was simulated based on a time-
varying autoregressive moving average (ARMA) model
[40]. The frequency for the ARMA model was obtained
as the maximum of the original modulating signal spec-
trum Sm( f ), associated with the i-th subject, in the band
from 0.04 Hz to 0.15 Hz and the amplitude was fixed to
0.1. A total of 50 realizations of the LF component were
generated for each considered subject, yielding mLFi

k(t)
with k = 1, ..., 50.

• Step 3: the simulated modulating signals were constructed
as msi

k(t) = mLFi
k(t)+αmHFi(t), where the α parameter

allows to simulate a set of sympathovagal ratios, R.
The following R were considered: 0.5, 1, 2, 5, 10,



2168-2194 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2019.2895589, IEEE Journal of
Biomedical and Health Informatics

0 2 4 6 8 10
−400
−200

0
200
400
600

−0.2

−0.1

0

0.1

0.2

Time(s)

500 100 150 200 250 300
1.2

1.25

1.3

1.35

1.4

Emotion  database

highest spectral peak 

IPFM  model

band-pass filtered 
range [0.25, dHRM/2] Hz

band-pass filtered 
range [0.04, 0.15] Hz

0 2 4 6 8 10

0

500

1000

r(
t)

 [
m

V
]

E
C

G
 [
u

V
]

m
(t

) 
[a

di
m

.]

d H
R

M
(t

) 
[H

z]

ARMA model

IPFM model

Time(s)
500 100 150 200 250 300

Amplitude = 0.1

dHR    (t)s
k

i

Time(s)

Time(s)

 i=1, ..., 59;

ms 
k(t) = mLF 

k(t) + α · mHF (t) i i i

mHF (t) mLF 
k(t) i i

i=1, ..., 59; k=1, ..., 50;

Fig. 4. Schema of the simulation process for a single recording detailed in
the following steps: (1) the HF component of the synthetic m(t) signals was
obtained by filtering the r(t) of the emotion database from 0.25 Hz to the
dHRM/2, resulting in mHFi (t), (2) the LF component was simulated by an
ARMA model with a fixed amplitude of 0.1 and a frequency calculated by
the maximum of the original Sm( f ), associated with the i-th subject, resulting
in mLFi

k(t), (3) the simulated modulating signals msi
k(t) were constructed

as the sum of the LF and HF components, where i is the number of the
subject analyzed and k the number of the realization performed and (4) each
modulating signal msi

k(t) fed an IPFM model with time-varying threshold
(1/dHRMi (t)) which generates the beat occurrence times, and from them the
HRV signal dHRsi

k(t) is derived.

15, 20 and 30, as shown in Fig. 3. This range allows
to cover the physiological R values computed during
pure parasympathetic stimulation, median (interquartile
range) of 1.53(0.83|2.11) and pure sympathetic stimu-
lation 19.52(11.80|27.75) in a database of healthy sub-
jects during pharmacological blockade and body position
changes [41].

• Step 4: finally, each modulating signal msi
k(t) fed an

IPFM model with time-varying threshold which generates
the beat occurrence time series [38]. The time-varying
threshold is defined as 1/dHRMi(t). From the simulated
beat occurrence time series, a simulated instantaneous
heart rate was obtained dHRsi

k(t). The same processing
described in section II.B for real signals was applied to
simulated dHRsi

k(t). A diagram of the whole process is
shown in Fig. 4.

E. Performance measurement
The mean relative error (MRE) of HF power was calculated

for each ratio Eq. (2).

MRE(%) = mean
(

PHFi
k−PHFri

PHFri

)
100 (2)

Where PHFi
k was the spectral content in the HF band,

calculated as explained in Section II.C, from the simulated
dHRsi

k(t) signal (Fig. 4) for each simulation and the PHFri

was the reference spectral content ∈ [0.25,dHRM/2] Hz derived
from dHRsi

k(t) signal.
The proposed SCHF methodology was compared with the

other HF band definitions. Therefore, PHFi
k and PHFri for the

MRE calculation were computed according to the bandwidth
definitions detailed in Section II.C: (1) HFSC, (2) HF and (3)
HFFR .

F. Statistical analysis
Prior to the statistical analysis, normality distribution of all

indices was evaluated by Lillie test.
Statistical analysis was done by T-test or Wilcoxon-test

when necessary, depending on normality test results to evaluate
differences for all followed paired conditions: relax vs. joy (R-
J), relax vs. fear (R-F), relax vs. sadness (R-S), relax vs. anger
(R-A), joy vs. fear (J-F), joy vs. sadness (J-S), joy vs. anger
(J-A), fear vs. sadness (F-S), fear vs. anger (F-A) and sadness
vs. anger (S-A).

Firstly, the affect scales BPE, BNE, joviality, fear, sadness
and hostility have been statistically evaluated for database
validation. Subsequently, the following HRV indices have been
analyzed:
• Indices derived from the HFSC band: PHFSC , PLFnSC , RSC,

∆HF , amax and bmax and the novel index proposed in this
work ρmax. The respiratory frequency of the recordings
which accomplishes all the restrictions imposed in Sec-
tion II.C, denoted by FRSC was also considered.

• Indices derived from the classic HF band: PHF , PLFn and
R. The respiratory frequency, FR, of all recordings was
also studied.

• Indices derived from the HFFR band: PHFFR
, PLFnFR

and
RFR . The respiratory frequency of the recordings which
accomplishes the unique restriction of FR ≥ 0.10 Hz,
denoted by FRFR

was also considered.
The significant statistical level was p-value ≤ 0.05, that

provides a reliable value for statistical discrimination [42]. To
analyze the capability of the indices to discriminate emotions,
the area under the receiver operating characteristic curve
(AUC) was calculated and only those indices with AUC ≥ 0.70
were further considered. Finally, sensitivity, specificity and
accuracy for each index in 2-class emotion classification were
calculated using the leave-one-out cross validation method
[43].

III. RESULTS
A. Validation of the emotion database

The validation of the emotion database was performed by
mean of the PANAS-X scale [35].
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Fig. 3. PSD of the modulating signal simulated dHRsi
k(t) for the physiological sympathovagal ratios: 0.5, 1, 2, 5, 10, 15, 20 and 30.

TABLE I
MEAN AND STANDARD DEVIATION (M±STD) OF THE PANAS-X SCALES:
BASIC POSITIVE EMOTION (BPE), BASIC NEGATIVE EMOTION (BNE),

JOVIALITY, FEAR, SADNESS AND HOSTILITY.

Emotions
Scales Joy Fear Sadness Anger
BPE 13.1±4.8 8.1±1.7 7.4±1.5 7.8±2.2
BNE 6.5±0.8 12.2±3.9 14.3±4.4 12.8±3.8
Joviality 22.3±8.6 9.0±2.4 8.4±0.8 8.8±1.6
Fear 6.4±1.1 19.0±6.6 14.8±5.3 13.8±5.9
Sadness 5.2±0.6 8.7±4.6 14.8±5.5 11.7±4.5
Hostility 8.1±1.7 14.3±5.3 15.7±5.4 15.8±4.8

In Table I, the mean and standard deviation (M±STD) of
the scales evaluated for each emotion are shown. It could be
observed that the highest mean value of BPE scale corresponds
to the emotion with positive valence (joy), while mean value
of BNE was higher for emotions with negative valence (fear,
sadness, anger). In addition, the affect scale with highest value
in joy is joviality and the highest value in fear emotion is fear
scale. However, there is not a single affect scale for sadness
and anger that defines each emotion, resulting in high values
for the fear, sadness and hostility scales.

Table II displays the p-values obtained in the comparison of
PANAS-X scales between different emotions. All affect scales
showed statistically significant differences between positive
valence and negative valence emotions (J-F, J-S, J-A). Affect
scales showing largest statistically significant differences be-
tween negative valence emotions were: fear scale (F-S, F-A)
and sadness scale (F-S, S-A).

B. Evaluation of the methods for synthetic data

Fig. 5 presents the Mean and STD of the relative errors in
PHF estimation obtained from HFSC, HF and HFFR for several
physiological sympathovagal ratios, R i.e. 0.5, 1, 2, 5, 10, 15,
20 and 30. The standard HF bandwidth presents relative error
values strongly dependent on the ratio, while the HFFR and the
HFSC bandwidth presents lower relative error values regardless

HF
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Fig. 5. Mean and standard deviation (M±STD) of the mean relative errors
(MRE) obtained by Eq. (2) for HFSC , HF and HFFR methods for eight
physiological sympathovagal ratios studied: 0.5, 1, 2, 5, 10, 15, 20 and 30.

of the ratio values. Furthermore, the HFSC bandwidth presents
lower relative errors than the HFFR one.

C. Evaluation of the methods for real data
All indices derived from the HFSC, HF and HFFR bands have

been evaluated and compared between each pair of emotions,
however, only those parameters that revealed statistical differ-
ences to discriminate between pairs of emotions are shown.

In Fig. 6, the boxplots are shown in terms of median
and interquartile ranges as first (Q1) and third (Q3) quartile,
median (Q1|Q3) of: (a) PLFnSC , (b) PLFn, (c) PLFnFR

, (d) RSC,
(e) R, (f) RFR and (g) ρmax for the emotions studied.

The spectral indices PLFn and R revealed statistically signif-
icant differences between R-J, J-F and J-S. However, PLFnFR

,
PLFnSC , RFR and RSC only show statistically significant dif-
ferences between R-J and J-F. Additionally, the novel ρmax
provided statistically significant differences between R-J, J-
F, J-S, J-A and F-S. Since ρmax obtained AUC ≥ 0.8, its
discrimination capability was further analyzed, calculating
sensitivity, specificity and accuracy using cross validation
(Table III).

Therefore, among all the emotions compared, neutral state
vs. positive valence, positive valence vs. all negative valences
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TABLE II
p-VALUES OF THE PANAS-X SCALES: BASIC POSITIVE EMOTION (BPE), BASIC NEGATIVE EMOTION (BNE), JOVIALITY, FEAR, SADNESS AND

HOSTILITY FOR THE PAIR OF EMOTIONAL CONDITIONS INDUCED BY VIDEOS: JOY VS. FEAR (J-F), JOY VS. SADNESS (J-S), JOY VS. ANGER (J-A), FEAR
VS. SADNESS (F-S), FEAR VS. ANGER (F-A) AND SADNESS VS. ANGER (S-A).

Emotions analyzed
Scales J−F J−S J−A F−S F−A S−A
BPE p≤ 0.001 p≤ 0.001 p≤ 0.001 0.011 0.043 n.s.
BNE p≤ 0.001 p≤ 0.001 p≤ 0.001 0.005 n.s. 0.007
Joviality p≤ 0.001 p≤ 0.001 p≤ 0.001 n.s. n.s. n.s.
Fear p≤ 0.001 p≤ 0.001 p≤ 0.001 p≤ 0.001 p≤ 0.001 n.s.
Sadness p≤ 0.001 p≤ 0.001 p≤ 0.001 p≤ 0.001 0.002 p≤ 0.001
Hostility p≤ 0.001 p≤ 0.001 p≤ 0.001 n.s. n.s. n.s.

TABLE III
SENSITIVITY, SPECIFICITY AND ACCURACY CALCULATED USING CROSS

VALIDATION FOR THE PARAMETER ρmax WITH AUC ≥ 0.8: RELAX VS. JOY
(R-J), JOY VS. SADNESS (J-S) AND JOY VS. ANGER (J-A).

R-J J-S J-A
Sensitivity (%) 66.7 88.9 99.9
Specificity (%) 91.7 66.7 63.6
Accuracy (%) 79.2 77.8 77.3

and F-S were significantly different. No statistical differences
were found in the comparison between neutral state vs. nega-
tive valences and anger vs. negative valences.

In Table IV, the median (Q1|Q3) for FRSC , FR and FRFR
are

shown. In the same Table IV, the indices ∆HF , amax and bmax
derived from the SCHF methodology are shown. No statistical
significant differences have been obtained for these indices.

Fig. 7 displays two examples where the SCHF method is
especially useful:
(a) The FR is below 0.15 Hz and therefore the HFSC band

encroaches the classic LF band. In this particular case the
HFSC band limits are: amax = 0.10 Hz and bmax = 0.29 Hz.
The LFSC band is redefined from 0.04 Hz to 0.10 Hz.

(b) FR is 0.40 Hz and the HFSC upper band limit should be
shifted to the right to consider all the RSA information.
In this particular case, the HFSC band limits are: amax =
0.34 Hz and bmax = 0.46 Hz.

IV. DISCUSSION

In this study four out of the six emotions defined by Ekman
[44] were studied. Disgust and surprise were not considered
and should be evaluated in a future study, although recent
research supports the theory of four basic emotions instead of
six [45].

All subjects in this experiment reported an agreement be-
tween the theoretical positive valence of joy elicitation and
the emotion felt, and fear, sadness and anger were identified
as negative emotions. According to the analysis of the affect
scales derived from the PANAS-X scale, shown in Table
I, it could be stated that: joy emotion presents the highest
values for the BPE and joviality scales; all negative emotions
presented lower BPE and higher BNE, as expected; fear emo-
tion obtains the highest mean value for the affect scale fear;
however, sadness and anger emotions have a high mean value
for fear, sadness and hostility scales. As shown in Table II, all

PANAS-X affect scales were significantly different between
joy and all negative valence emotions (fear, sadness, anger).
Statistical differences between negative valence emotions were
only found in a subset of PANAS-X affect scales, challenging
their discrimination through HRV (Table II).

According to the simulation results, the SCHF method
presented the lowest relative error values for HF content esti-
mation independently of the considered low-to-high frequency
ratio, R, values (Fig. 5). In this way, the choice of adaptive HF
frequency limits may avoid physiological misinterpretations of
HF power content, because frequency limits depend strongly
on age and physiological conditions [46].

The statistical analysis presented in Fig. 6 revealed statisti-
cally significant differences between: (1) R-J, (2) J-F, (3) J-S,
(4) J-A and (5) F-S with different parameters.

The SCHF methodology proposed in this study differenti-
ated R-J, J-F, J-S, J-A and F-S by means of ρmax. No statistical
differences were found for neutral state vs. negative valences
and anger vs. negative valences.

Classic frequency indices PLFn and R were able to discrim-
inate between R-J, J-F and J-S. Note that emotions J-A and
F-S were only distinguished by parameter ρmax derived from
the new method SCHF, which offered additional statistical
significant information based on the relationship between HRV
and respiration.

Regarding respiratory information, neither FR, nor FRFR
,

nor FRSC showed statistical significant differences between
all pairs of emotions studied. Hernando et al. [13] did not
found significant differences in respiratory frequency between
relax and stress. The FR index, computed from all recordings,
showed a median value around 0.30 Hz and with a first quartile
above 0.15 Hz for for relax, fear, sadness and anger. Therefore,
in all these cases, the redefined HF band HFSC does not
encroach the classic LF band. However, in the case of joy,
FR presented the lowest median value of 0.18 Hz with a first
quartile of 0.08 Hz. For this reason and during joy elicitation,
the HFSC could encroach the classic LF band. Therefore, this
highlights the need to redefine the HF band, especially in joy
condition.

For this reason, all cases presenting a FR inside the classic
LF band, a redefinition of the HF classic band could improve
the measurement of the HF band, as shown in Fig. 7 (a).
A similar situation occurs in Fig. 7 (b) when FR is near
to or above the classic upper limit of the HF band (0.40
Hz), where the classic range [0.15, 0.40] Hz could miss the
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, (d) RSC , (e) R, (f) RFR and (g) ρmax. The nomenclature used for each pair of emotions is: relax vs. joy (R-J), joy vs.
fear (J-F), joy vs. sadness (J-S), joy vs. anger (J-A) and fear vs. sadness (F-S). The statistical differences between the pair of emotions are indicated by ∗ for
p-value ≤ 0.05, ∗∗ for p-value ≤ 0.01, ∗∗∗ for p-value ≤ 0.001 and † for AUC ≥ 0.80. Note that those indices which are not marked by a † have an AUC
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Fig. 7. Correlation between Sm( f ) and Sr( f ) in two particular cases: (a) FR is below 0.15 Hz and (b) FR is 0.40 Hz.

RSA information. With a redefinition of the HF band in
these cases, a more refined description of the physiological
information could be extracted from the signals. However, only

recordings which accomplished the restrictions of the SCHF
method could be analyzed. This implies to discard an amount
of signals from the analysis, and subsequently the number



2168-2194 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2019.2895589, IEEE Journal of
Biomedical and Health Informatics

TABLE IV
MEDIAN (Q1|Q3) VALUES FOR ∆HF , amax , bmax , FRSC , FR AND FRFR

FOR THE EMOTIONAL STATES STUDIED: STUDIED FOR RELAX, JOY, FEAR, SADNESS
AND ANGER.

Relax Joy Fear Sadness Anger
∆HF (Hz) 0.16 (0.12|0.20) 0.18 (0.14|0.23) 0.14 (0.12|0.18) 0.16 (0.12|0.18) 0.14 (0.12|0.18)
amax (Hz) 0.21 (0.18|0.27) 0.25 (0.22|0.27) 0.24 (0.20|0.26) 0.24 (0.20|0.27) 0.24 (0.21|0.27)
bmax (Hz) 0.40 (0.35|0.42) 0.41 (0.39|0.51) 0.40 (0.36|0.44) 0.40 (0.36|0.45) 0.40 (0.36|0.43)
FRSC (Hz) 0.30 (0.27|0.35) 0.33 (0.31|0.38) 0.32 (0.29|0.35) 0.32 (0.28|0.36) 0.32 (0.29|0.36)

FR (Hz) 0.29 (0.24|0.35) 0.18 (0.08|0.33) 0.31 (0.27|0.35) 0.31 (0.28|0.36) 0.30 (0.25|0.35)
FRFR

(Hz) 0.30 (0.27|0.35) 0.32 (0.15|0.35) 0.32 (0.28|0.35) 0.32 (0.28|0.36) 0.31 (0.27|0.35)

of analyzed subjects in each case is reduced. Note that the
percentage of subjects excluded is different for each of the
comparisons, with a minimum of 22.7% for the comparison
S-A and a maximum of 65.7% for the comparison R-J.

Classic ∆HF [0.15, 0.40] Hz has a bandwidth of 0.25 Hz.
Analyzing the results obtained by the SCHF method, the ∆HF
presented a median bandwidth value of 0.16 Hz for relax,
0.18 Hz for joy, 0.14 Hz for fear and anger and 0.16 Hz for
sadness. The lower and upper limit of the HFSC, i.e., amax
and bmax, showed similar values within the different emotions,
although both are subject dependent. The SCHF reveals a
slight improvement in the reliability of sympathovagal balance
estimation capable of discriminating neutral (relax) vs. positive
(joy) valence, positive vs. negative (fear, sadness and anger)
valences and negative (fear) vs. negative (sadness) valence. In
accordance with our results, Goren Y. et al. [46] concluded
the importance of redefining the boundary of the HF band for
a correct evaluation of physiological changes of the ANS.

Mikuckas A. et al. [25] found that LF component and
LF/HF ratio increased during exciting and sedative music,
but decreased during silence. Moreover, Rantanen A. et al.
[23] evidenced that negative valence elicitation, induced by
unpleasant pictures, produced a higher LF/HF ratio than
neutral and pleasant pictures in a female cohort. Valenza G.
et al. [47] investigated the synchronization between breathing
patterns and heart rate during emotional visual elicitation by
means of a set of neutral vs. increasing level of arousal images.
In that study, it was found that the LF/HF ratio presented
statistical differences between neutral and arousal sessions
with higher LF/HF ratio values while arousal sessions, in
which sympathetic activity should be dominant. In our study,
an increase in the PLFnSC and RSC indices during joy (Fig.
6 (a-f)) was observed. Thus, joy could be associated with
a sympathetic predominance. Additionally, PLFnSC and RSC
presented statistical differences discriminating neutral sessions
vs. positive valence and J-F.

Besides the aforementioned elicitation types and emotions,
population characteristics such as age could influence the
results [46]. Thus, interpretation of the results should be
addressed within this framework.

Although by means of the affect scales derived from the
PANAS-X scale it was possible to differentiate between all
emotion conditions, nor the indices derived from the SCHF
methodology nor the other indices derived from the other
HF band definitions were able to distinguish between all
emotion conditions. This opens the door to explore other
options as non-linear methodologies or a multimodal approach

combining other physiological signals.
The newly introduced index ρmax, derived from the SCHF

methodology, is a parameter suitable to be implemented on
medical equipment, opening the door to help in identify-
ing emotional behaviours in people suffering from mental
pathologies. However, further studies are needed to test the
validity and reliability of the proposed index outside laboratory
settings.

V. CONCLUSIONS

In this study, human emotion recognition was assessed by
HRV analysis. To increase the reliability of HRV measure-
ments a novel methodology based on spectral correlation of
HRV signal and respiration was proposed. Five emotional
states corresponding to calm-neutral state (relax), positive
valence (joy) and negative valences (fear, sadness and anger)
were compared. The new proposed method, the Spectrum Cor-
relation for High Frequency band, revealed an improvement in
the reliability for sympathovagal balance estimation capable
of discriminating between relax vs. joy, joy vs. each of the
negative valences and fear vs. sadness. This method provided
the novel index (ρmax) which offers additional information for
emotion recognition, based on the relationship between HRV
and respiration.
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