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Abstract
Purpose of Review We summarize key features pertaining to the two most commonly encountered types of cardiac amyloidosis
(CA), monoclonal immunoglobulin light chain (AL) and transthyretin type (ATTR), expanding upon the clinical application and
utility of various imaging techniques in diagnosing CA.
Recent Findings Advances in imaging have led to earlier identification, improved diagnosis of CA and higher discriminatory
power to differentiate CA from other hypertrophic phenocopies. The application of cardiac magnetic resonance imaging (CMR)
has led to a deeper understanding of underlying pathophysiological processes in CA, owing largely to its intrinsic tissue
characterization properties. The widespread adoption of bone scintigraphy algorithms has reduced the need for cardiac biopsy
and improved diagnostic confidence in ATTR CA.
Summary As new treatments for CA are rapidly developing, there will be even greater reliance on imaging, as the requirement to
diagnose disease earlier, monitor response and amend treatment strategies accordingly intensifies.

Keywords Cardiac amyloidosis . Magnetic resonance imaging . Cardiomyopathy . Immunoglobulin light chain . Transthyretin .

Echocardiography

Abbreviations
CA Cardiac amyloidosis
AL Monoclonal immunoglobulin light chain
ATTR Transthyretin
CMR Cardiovascular magnetic resonance
hATTR Hereditary ATTR
wtATTR Wild type ATTR
EF Ejection fraction
LV Left ventricular

TDI Tissue doppler imaging
MAPSE Mitral annular plane systolic excursion
LS Longitudinal strain
LGE Late gadolinium enhancement
PSIR Phase sensitive image reconstruction
GBCA Gadolinium-based contrast agents
ECV Extracellular volume
99mTc-DPD 99 m Technetium labelled

3,3-diphosphono-1,2-
propanodicarboxylic acid

99mTc-PYP 99 m Technetium
labelled pyrophosphate

99mTc-HMDP 99 m Technetium
labelled hydroxymethylene diphosphonate

PET Positron emission tomography
11C PiB 11-CPittsburgh compound B
NT-proBNP N-Terminal pro–B-type natriuretic peptide
TAPSE Tricuspid annular plane systolic excursion
SV Stroke volume

Introduction

The systemic amyloidoses comprise a heterogenous group of
diseases that are characterized by the extracellular deposition
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of proteins that misfold, aggregate and deposit as amyloid
fibrils causing disease when accumulation is sufficient to dis-
rupt the structure and integrity of affected organs [1].
Although up to thirty different proteins can deposit as amy-
loid, defined histologically by staining with Congo Red to
produce characteristic apple green birefringence under cross
polarized light, studies have demonstrated that amyloid fibrils
share a common core structure of highly ordered, abnormal
anti parallel beta strands that form sheets, properties of which
include relative stability and resistance to proteolysis [1, 2].
Cardiac amyloidosis (CA) occurs when amyloid fibrils depos-
it within the myocardial extracellular space, causing interrup-
tion and distortion of myocardial contractile elements, stiff-
ness of the ventricles and systolic and diastolic dysfunction.
Although amyloid is often a multi-organ disease, cardiac in-
volvement is the leading cause of morbidity and mortality [3,
4]. The majority of cases of CA can be attributed to two
precursor proteins: the monoclonal immunoglobulin light
chain (AL) protein type which is produced by an abnormal
clonal proliferation of plasma cells, and the transthyretin
(ATTR) protein type which is liver derived and normally in-
volved in the transport of thyroxine and retinol binding pro-
tein. [5, 6] Wider awareness of CA as an underdiagnosed
cause of restrictive cardiomyopathy, in conjunction with ad-
vances in imagingmodalities including bone scintigraphy, and
cardiac magnetic resonance imaging (CMR) over the past de-
cade have helped to transform the profile of CA allowing for
crucial earlier diagnosis, better understanding of underlying
disease processes, and an ability to track disease in response
to treatment. In the following review article, we summarize
key features pertaining to the two most common types of
cardiac amyloidosis, with predominant focus on the clinical
application and utility of imaging modalities in diagnosing
CA and the influence of imaging towards treatment.

Overview of AL and ATTR Amyloidosis

Historically, systemic immunoglobulin amyloidosis (AL)
was considered to be the most common type of amyloid-
osis with an estimated prevalence of 8 to 12 per million
person years. [7, 8] The associated clinical phenotype and
symptomatology are diverse, reflecting the potential for
amyloid infiltration to affect multiple organs. Diagnostic
delays often occur due to the non-specific nature of symp-
toms including but not limited to fatigue, dyspnoea and
weight loss. More specific clinical signs such as
macroglossia and periorbital bruising are essentially patho-
gnomonic but occur only in up to one third of cases [2].
Cardiac involvement affects up to 80% of patients with AL
CA [9], and patients present with heart failure symptoms.
Because the disease affects all cardiac chambers,
biventricular dysfunction is usually present, although the

most frequent presenting feature is severe right-sided heart
failure. Despite best medical treatment, the prognosis of
AL CA remains poor [10].

ATTRCA is classified into the hereditary form (hATTR) or
non-hereditary form which is known as wild type ATTR
(wtATTR) based on the type of transthyretin protein. [11]
The diagnosis of wtATTR has risen considerably in recent
years, with estimates of 13–16% prevalence in older patients
presenting with heart failure with preserved ejection fraction
(EF) [12, 13]. Wild type ATTR CA (formerly known as senile
systemic CA) has a male predominance, and although pre-
sents with a predominant cardiac phenotype and restrictive
cardiomyopathy, it has often been associated with lumbar ca-
nal stenosis, carpal tunnel syndrome and/or tendinopathy.
[14–17] This is in contrast to the clinical phenotype of
hATTR amyloidosis which presents at a younger age with a
variable clinical presentation usually comprising a mixed phe-
notype with peripheral neuropathy, autonomic neuropathy
and/or cardiomyopathy [18]. There are over 120 causative
TTR mutations [19], the most common being V122I which
is present in up to 3.4% of US African Americans, the clinical
presentation and onset of which closely mimics ATTRwt. [20]
It is estimated that approximately 2 million people in the US
are carriers of this variant, and at risk of developing CA.
Patients with nervous system involvement often experience
disabling neurological symptoms however, similar to AL am-
yloidosis, cardiac involvement in ATTR has the most impor-
tant impact on prognosis carrying a median survival of 4–
5 years [21].

Imaging

Echocardiography

Echocardiography is the most accessible and first line imaging
tool in the approach towards assessing patients with cardio-
myopathy. The amyloid phenotype is one of characteristic
biventricular wall thickening with small, non-dilated ventri-
cles and left ventricular (LV) wall thickness typically greater
than 12 mm (Fig. 1). There is a tendency towards a symmet-
rical increase in LVwall thickness in ALCA, while ATTRCA
more often demonstrates an asymmetrical pattern. [22, 23•] In
the latter, the morphology of the septummay be sigmoid (seen
in 70%) or demonstrate inversion of the septal curvature (seen
in 30%). [22] Although patients with ATTRCA typically have
higher LVand RVmass at diagnosis, which may in fact reflect
earlier clinical presentation in patients with AL CA [24], LV
mass in isolation is unsuited to differentiate between the types.
Well described but non-specific findings of CA include a
thickened and sparkling appearance of the valves and
interatrial septum, as well as a ‘speckled’ appearance of the
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myocardium. Pericardial and pleural effusions are also rela-
tively common findings, especially in AL amyloidosis.

Amyloid infiltration in the extracellular space leads to ven-
tricular stiffening, impaired relaxation and biventricular dia-
stolic dysfunction, which in combination with direct atrial
amyloid infiltration can lead to atrial dilatation, blood stasis
and a higher risk of thrombus formation [25–28]. Although
CA is traditionally categorized as a cause of ‘heart failure with
preserved EF’, this under-represents the extent of involvement
of both systolic and diastolic dysfunction. Ejection fraction,
which is a widely relied upon measure of ventricular function
is not a reliable indicator of systolic function in CA as EF
reflects radial contraction which is often preserved until end
stage disease. Longitudinal function is typically affected ear-
lier than radial contraction and indices of longitudinal function
can be used as early disease markers. This was initially dem-
onstrated measuring the systolic excursion of the mitral annu-
lus evaluated by Tissue Doppler imaging (TDI) or from M-
mode derived mitral annular plane systolic excursion
(MAPSE) [29, 30], and later on with strain imaging.
Longitudinal strain (LS) measurement by tissue Doppler and
echocardiographic speckle tracking are proving to be valued
tools in diagnosing CA, as well as differentiating CA from
other hypertrophic phenocopies [3]. Strain demonstrates not
only reduction in longitudinal contraction, but also reduction
in LS that affects predominantly the basal segments with spar-
ing of the apical segments. This is a highly characteristic fea-
ture of CA, which gives rise to the typical appearance of a
‘bull’s eye pattern’ with strain values that are reduced on the
side and preserved in the centre of the plot (Fig. 1) [3, 31]. The
extent of apical sparing can be quantified using relative ratio
between apical and basal LV regional strain, which is also
associated with poorer prognosis [32].

In CA patients diastolic function is almost invariably im-
paired and the degree of impairment ranges from impaired
relaxation to restrictive filling patterns [33]. Parameters of
diastolic dysfunction can also be used as early disease
markers, with TDI of the mitral annulus often being less than
6 cm/s (Fig. 1) [34].

Cardiovascular Magnetic Resonance

As a nowwell-established imagingmodality that is instrumen-
tal in the approach towards cardiomyopathies, CMR provides
unparalled accuracy on cardiac morphology.

and informs upon tissue composition through its intrinsic
capacity to define myocardial tissue characterization. The de-
position of amyloid fibrils in the extracellular myocardial
space leads to expansion of the extracellular volume, which
is well visualized by the administration of gadolinium-based
contrast agents, referred to as ‘late gadolinium enhancement’
(LGE). Gadolinium accumulates passively in gaps between
myocardial cells giving rise to the appearance of diffuse sub-
endocardial or transmural LGE in CA, in the presence of ab-
normal myocardial and blood pool gadolinium characteristics,
a phenomenon that was recognized over 10 years ago. [35]
LGE differentiates normal from abnormal myocardium, based
on the assumption that there are remote regions of normal
myocardium. However, this may not exist in diffuse infiltra-
tive diseases such as CA, exposing an area for potential oper-
ator error whereby the operator may erroneously null the ab-
normal and not normal myocardium, carrying a risk of
reporting ‘false negative’ examinations or ‘mirror images’ of
the true pattern. [36] The LGE technique has matured over the
years leading to the wide adoption of ‘phase sensitive image
reconstruction’ (PSIR) which is a more robust and reliable

Fig. 1 Top Panel: Echocardiography findings in a patient with advanced
cardiac amyloidosis. (a) Parasternal long axis view and (b) four chamber
view showing concentric left ventricular hypertrophy (c) pulse wave
Doppler showing restrictive left ventricular inflow pattern (d) strain
pattern characteristic of an infiltrative process. Bottom Panel: CMR
findings in a patient with advanced cardiac amyloidosis. (e) Four
chamber steady state free precession cine demonstrating left ventricular

hypertrophy (f) corresponding native T1 map showing a T1 value of
1150 ms in the basal inferoseptum (g) corresponding T2 map showing
a T2 value of 54 ms in the basal inferoseptum, within normal limits (h)
corresponding phase sensitive inversion recovery reconstruction showing
transmural late gadolinium enhancement (i) corresponding extracellular
volume map showing elevated value of 0.70
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technique than magnitude reconstruction with the primary ad-
vantage that it largely overrides the dependence on operator
determined optimal null point and related errors [36]. With the
PSIR LGE approach, 3 patterns of LGE have been recog-
nized; none, sub-endocardial and transmural, and
transmurality of LGE shows good correlation with the degree
of myocardial infiltration. (Fig. 1) [36] An important draw-
back of LGE is that gadolinium-based contrast agents
(GBCA) have been associated with nephrogenic systemic fi-
brosis (NSF), a serious and potentially fatal condition. Whilst
the risk of developing NSF is strongly related to baseline renal
function (being the highest when eGFR <30 mL/min), the
underlying chemical structure of the contrast agent also plays
an important role in determining risk. Recent guidelines from
the American College of Radiology recommend the preferen-
tial use of Group II agents in patients at risk of NSF if clini-
cally indicated, emphasizing the requirement for a balanced
assessment of the risks of administrating GBCA against the
risks of not performing a contrast scan. [37] Whilst the initial
understanding was that the gadolinium ion remained in a che-
lated state after intravenous administration, multiple studies
have demonstrated evidence of tissue retention, even in pa-
tients with normal renal function [38] including reports of
involvement in neural tissue (dentate nucleus, thalamus, pons,
and globus pallidus) [39–41] and bone tissue, [42] clinical
implications of which are not fully understood. A further lim-
itation of LGE is that it cannot be used to track changes in
disease status over time due its non-quantitative nature.

These limitations can be overcome by the use of T1 map-
ping which directlymeasures an intrinsic signal from the myo-
cardium, the longitudinal relaxation time, in a pixel wise man-
ner. (Fig. 1) Native (pre-contrast) myocardial T1 tracks cardi-
ac amyloid infiltration, markers of systolic and diastolic dys-
function and disease severity [43].

Important advantages of native myocardial T1 are its diag-
nostic accuracy for detecting CA in both AL and ATTR types
and its role as an early disease marker, frequently found to be
elevated prior to the onset of disease features such as LV
hypertrophy or LGE [43, 44].

Native T1 is a composite signal, from both the extra and
intracellular space. Following the administration of gado-
linium contrast agents, from the ratio of pre and post con-
trast T1 and haematocrit, the signal from the extracellular
space can be isolated with the measurement of the extra-
cellular volume (ECV).

ECV is the first non-invasive method for quantifying the
cardiac amyloid burden, and several studies have shown cor-
relation with markers of disease severity in both types of CA.
[22, 45] The ECV is globally elevated, often with values
>40% and higher in ATTR than AL CA. (Fig. 1) Important
benefits of ECVmeasurement in CA include its unique ability
to measure the continuum of amyloid infiltration, to track
markers of disease activity such as cardiac function, blood

biomarkers and functional performance, to act as an early
disease marker and to uniquely track changes over time. [45]
For example, almost half of the patients in a studied cohort
who achieved a good clonal response to chemotherapy in AL
amyloidosis demonstrated evidence of regression of cardiac
amyloid on ECV [46].

In conjunction with detailed morphological and functional
assessments, tissue characterization by CMRprovide a whole-
some understanding of the multiple disease processes that
exist within CA, transcending the concept of CA as a disease
of solely infiltration. T2 relaxation time is a time constant
representing the decay of transverse magnetization and detects
oedema in various pathologies including but not limited to
acute myocardial infarction, myocarditis, and Takotsubo car-
diomyopathy. (Fig. 1) [47] Recently, T2 mapping in CA has
added significantly to our understanding of CA as a heterog-
enous condition comprising multiple disease processes by
demonstrating that T2 levels were higher in a cohort of pa-
tients with untreated AL CA compared with treated AL and
ATTR CA, thereby showing oedema to have both important
pathophysiological and prognostic roles [48•].

Bone Scintigraphy

It has been recognized since the 1980’s that patients affected
by CA were incidentally observed to demonstrate uptake of
certain 99mTc-phosphate derivative, following which began
the application of bone scintigraphy in CA. Although the basis
for localisation of these agents to CA remains unclear, the
technique is sensitive for diagnosing ATTR CA. In 2005, a
small yet seminal paper demonstrated the strong diagnostic
potential of 99m Technetium-labelled 3,3-dicarboxypropane-
2, 1-diphosphonate (99mTc-DPD) in identifying ATTR CA.
[49] Further studies confirmed this finding, as well as the
utility of other bone tracers in identifying ATTR CA.

These seminal findings were recently reinforced by re-
sults from a large multicentre trial which demonstrated the
ability of bone scintigraphy to diagnose cardiac ATTR CA
reliably without the need for histology, the diagnostic al-
gorithm from which has been widely recognized and
adopted in clinical practice. [50] Briefly summarized, in
patients in whom free light chains are absent in the blood
and urine, once CA is suspected and 99mTc-PYP (99m

Technetium labelled pyrophosphate /99mTc-DPD/99mTc-
HMDP (99m Technetium labelled hydroxymethylene
diphosphonate) is negative, CA is very unlikely. If the
99mTc-PYP/99mTc-DPD/99mTc-HMDP cardiac scan is pos-
itive for either grade 2 or 3, and there is no evidence of free
light chains in the blood and/or urine, ATTR CA can be
diagnosed without a biopsy (specificity and positive pre-
dictive value >98%). However, if patients have evidence of
a plasma cell dyscrasia, further definitive tests such as bi-
opsies are still required as part of the algorithm as the
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presence of low grade uptake on a 99mTc-PYP/99mTc-
DPD/99mTc-HMDP cardiac scan does not confer 100%
specificity for ATTR CA, and mild cardiac localisation
may be seen in certain patients with advanced AL CA,
cardiac Apo1 and amyloid A amyloidosis [50–52].

An intriguing - yet not fully explored - field is the potential
of bone-tracers for the assessment of extra-cardiac involve-
ment in systemic amyloidosis. A typical pattern of muscle
and soft-tissue uptake of 99mTc-DPD has been previously re-
ported [52] and amyloid tissue infiltration has been later dem-
onstrated by soft tissue biopsy in a larger series of positive
patients [53]. Lung uptake may be found at 99mTc-HMDP
scintigraphy [54], with high selectivity for ATTR. The clinical
implications of these findings are not completely understood.
Notably, extracardiac uptake appears to be tracer-specific, as
Sperry et al. could not find any relevant skeletal muscle uptake
at 99mTc-PYP scintigraphy [55].

Positron Emission Tomography Positron emission tomogra-
phy (PET) imaging offers high spatial resolution, and may
facilitate absolute quantification of cardiac and extracardiac
amyloid burden [56]. PET amyloid binding radiotracers that
have been studied in patients with AL and ATTR CA include
11-C-Pittsburgh compound B (11C PiB) [57, 58], 18F-
florbetapir [56, 59], and 18F-florbetaben [60]. In these pilot

studies, high cardiac radiotracer uptake was consistently re-
ported in patients with CA compared to controls, including
studies that used hypertensive heart disease as a control [60].
Although results from the aforementioned studies are encour-
aging, further evaluation of PET radiotracers is warranted pri-
or to their incorporation into clinical practice.

Diagnosis

Several factors contribute to the under diagnosis of CA. These
include phenotypic heterogeneity, low index of clinical suspi-
cion in the presence of overlap with more commonly seen
phenocopies (hypertension, chronic renal failure, hypertro-
phic cardiomyopathy, aortic stenosis), a historical lack of
non-invasive diagnostic tests, and limited understanding of
the available treatment options.

Current non-invasive diagnostic algorithms follow an inte-
grated and multimodality approach towards diagnosing CA.
(Fig. 2) Important factors to consider include the presence or
absence of plasma cell dyscrasia, suggestive features on echo-
cardiography and CMR imaging and as appropriate, histolog-
ical samples and bone scintigraphy (Fig. 2).

Two frequently faced scenarios that raise a diagnostic
challenge include [1] distinguishing CA from other more
commonly seen hypertrophic phenotypes such as
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hypertensive heart disease, aortic stenosis, hypertrophic
cardiomyopathy and restrictive cardiomyopathy; [2]
Assessing for the CA on the background of known sys-
temic AL or ATTR in specific scenarios such as in pa-
tients with renal AL where confounding comorbidities
and often the inability to use gadolinium based contrast
agents makes the diagnosis more challenging or in pa-
tients with an ATTR related polyneuropathy.

Echocardiography is the most commonly performed first
line imaging modality for patients presenting with signs and
symptoms of heart failure. Whilst the majority of echocardio-
graphic findings in CA are non-specific, these can be highly
suggestive, and alter the pre-test probability.

Diagnosing Cardiac Amyloidosis in the Hypertrophic
Phenotype

Once echocardiography has raised the suspicion of CA, CMR
should be considered if both AL and ATTR or another under-
lying cause of myocardial hypertrophy (hypertension, hyper-
trophic cardiomyopathy, Anderson Fabry) are in the differen-
tials. Following a positive CMR, 99mTc-PYP/99mTc-DPD
/99mTc-HMDP scan in combination with the assessment of
free light chains in the blood and urine should be performed
to distinguish between AL and ATTR amyloidosis.

Diagnosing Cardiac Amyloidosis Patients with Known
Systemic AL or ATTR Amyloidosis

In patients with systemic AL, CMR should be considered the
imaging of choice to confirm cardiac involvement or detect
early disease. CMR has been shown to have high sensitivity
and specificity for AL CA [61], picking up early disease even
when there is insufficient cardiac infiltration for the diagnosis
to be made on echocardiography. CMR or bone scintigraphy
should be considered in patients with ATTR polyneuropathy
or ATTR mutation carriers, but further studies are needed in
these patient populations.

Prognosis

Blood biomarkers play a primary role in the stratification of
AL and ATTR CA. The Mayo Classification of AL CA uses
NT-proBNP and troponinmeasurements to categorize patients
into Grade 0 (both values below threshold), Grade 1 (either
value above threshold), and Grade 2 (both values above
threshold) providing a valuable prognostic tool as an adjunct
to other investigations. [62] In ATTR CA two different prog-
nostic classification have been developed, one based on tro-
ponin and N-terminal pro–B-type natriuretic peptide (NT-
proBNP), and one based on NT-proBNP and eGFR classify-
ing as such: Stage 1 (both values below threshold), Stage 2

(either value above threshold), and Stage 3 (both values above
threshold) [63, 64].

There are several structural and functional parameters seen
on echocardiography and CMR that correlate with prognosis
in both AL and ATTR amyloidosis, however on multivariable
assessment, tricuspid annular plane systolic excursion
(TAPSE) and stroke volume (SV) seem to be the strongest
markers of prognosis in patients with CA [65]. Whilst RV
failure is well documented independent predictor of prognosis
in patients with primary left heart failure, the principal reason
behind the prognostic importance of TAPSE in CA is likely to
be direct sub-endocardial infiltration rather than RV dysfunc-
tion secondary to LV impairment. The prognostic role of SV in
CA [65] is in keeping with the expected features of a restric-
tive cardiomyopathy characterized by low stroke volume de-
spite relative preserved EF. A recent prospective registry of
patients with both AL CA and wild type ATTR CA found that
patients with AL CA, LV global longitudinal strain was pre-
dictive for outcome even after multivariable adjustment,
whilst with wild type ATTR CA, RV free wall strain was the
most powerful predictor of cardiac outcome [66].

MRI parameters that have a prognostic role include the
transmurality of LGE, ECV,T1 and T2 in AL CA [36, 48•,
67], and ECV in ATTR. [22] For 99mTc-PYP/99mTc-DPD
/99mTc-HMDP scans, grade 1 carried a more favourable prog-
nosis than grade 2 and 3 [53].

Current Therapies, and the Future

An important area of expansion is in the domain of treatment in
both AL and ATTR CA. In AL amyloidosis, treatment strate-
gies are aimed at rapidly suppressing the production of
amyloidogenic light chains, central to which is cytotoxic che-
motherapy [2]. Although patients are assessed early for eligibil-
ity for stem cell transplant, the majority are considered ineligi-
ble owing to age, renal function, and advanced cardiac involve-
ment [68]. Treatment options are tailored as per individual pa-
tient profile and risk based on performance status, experience
which stems from treatments in multiple myeloma.
Chemotherapeutic agents include combinations of bortezomib,
melphalan, dexamethasone, cyclophosphamide, lenalidomide
and other agents. Daratumumab which is an anti-plasma cell
therapy for the treatment of relapsed multiple myeloma shows
promising activity in patients with AL amyloidosis. [68] Other
promising areas of development include monoclonal antibody
therapy that aim to target existing amyloid deposits [69•].

There has been a significant expansion in pharmacotherapy
directed at ATTR CA, and the approach towards treatment
involves reducing or eliminating the production of
transthyretin, disrupting the already deposited amyloid fibrils
or stabilizing the protein. [70] Inotersen, a 2 ′-O-
methoxyethyl–modified antisense oligonucleotide that in-
hibits hepatic production of TTR has been found in a
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randomized controlled trial of patients with ATTRm with
polyneuropathy to improve quality of life, and modify neuro-
logical disease [71]. In a landmark study, in patients with
ATTR CA, tafamidis, a TTR stabilizer, was shown to be as-
sociated with reductions in all-cause mortality and
cardiovascular-related hospitalizations. There was also benefit
seen in functional capacity and quality of life as compared to
placebo [72]. In the cardiac sub population of the drug trial
patisaran, an RNA interference agent, there was reduced echo-
cardiographic wall thickness, global longitudinal strain, NT-
proBNP compared with placebo at eighteen months [73].

Conclusion

With rapid advances in treatment strategies, the fundamental
goal of imaging is to focus on earlier diagnosis, treatment, and
subsequent improvement in patient quality of life and surviv-
al. Imaging holds a key role in delineating and understanding
the various disease mechanisms involved in CA. This richer
understanding will continue to transform the profile of CA,
allowing for treatment strategies to be tailored to patient dis-
ease characteristics, and for response to treatment to be
tracked effectively, ultimately ending in a more streamlined
and satisfactory patient experience.
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