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Abstract 
We used the Land Colour Mondrian experiments in a Bayesian context to test the 

degree to which subjects vary in categorizing the colour of different patches, when each 

patch is made to reflect light of the identical wavelength-energy composition. The brain 

uses a ratio-taking mechanism to determine the ratio of light of every waveband 

reflected from a surface and from its surrounds. Our (Bayesian) hypothesis was that 

this ratio-taking mechanism is similar in all humans and therefore leads to a constant 

categorization of colours that differs little between them. The similarly categorized 

colours are the initial priors, with initial hues attached to them. Twenty subjects of 

different ethnic and cultural backgrounds, for all but one of whom English was not the 

primary language, viewed 8 patches of different colour in two Mondrian displays; each 

patch, when viewed, was made to reflect identical ratios of long-, middle- and short- 

wave light. Subjects were asked to match the colour of the viewed patch with that of 

the Munsell chip coming closest in colour to that of the viewed patch, without using 

language. In terms of hue, there was less variability in matching warm hues than cool 

ones. In terms of colour categorization, there was little variability overall. We take the 

lack of significant variability between subjects in the matches made as a pointer to 

similar computational mechanisms being employed in different subjects to perceive 

colours, thus permitting them to assume that their categorization of colours has 

universal agreement and assent.  
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Introduction 
 
It is trite neurobiology to say that one of the primordial functions of the brain is to 

acquire knowledge. Yet this raises a fundamental issue of huge importance, namely the 

extent to which the knowledge acquired through brain mechanisms by one individual 

is identical to that acquired by another or others, thus allowing the acquiring individual 

to assume reasonably that there is universal assent to the knowledge and experience 

acquired by him or her. The question resolves, therefore, around asking what 

conditions, if any, enable all individuals, irrespective of their ethnic, cultural or 

educational status, to share the same experience and knowledge under the same 

conditions.  

There has been much philosophical debate about this subject, which we do not delve 

into here in any detail. Rather, accepting Immanuel Kant’s (1781/1996)  statement that 

“perceptions without concepts are blind”, we work on the assumption that all sensory 

inputs are interfaced through, or based on, brain concepts, of which, we believe, there 

are two kinds: acquired (synthetic) concepts and inherited one (Zeki, 2009). The 

former, among which we include concepts related to human-made objects such as 

utensils, cars and furniture, lead to experiences and knowledge that can differ 

profoundly between individuals even when experienced under identical conditions, and 

that can be modified throughout postnatal life. This makes it unsafe for the experiencing 

individual to assume that his or her experience will be identical or even similar to that 

of others. The latter, inherited, concepts lead to knowledge which, to a greater or lesser 

extent, is similar in all individuals and which is resistant to change through experience, 

thus making it easy for one individual to assume that others would share the same or 

nearly identical experience under similar conditions. In the work reported here we 
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concentrate on inherited concepts alone and on one of the most extreme examples of it, 

namely colour vision, which we approach in a Bayesian context.  

 

We could of course have used terms like algorithm or program, which have found wide 

usage in computational neurobiology, rather than the term ‘concept’ to describe the 

brain’s inherited ratio-taking mechanisms for generating colours. We prefer to use the 

term ‘concept’ here for two reasons; partly because it perpetuates the term used initially 

by Immanuel Kant when he wrote that all experiences, except time and space, must be 

interfaced through concepts, and partly because, in the Bayesian context in which we 

write, there are other inherited ‘concepts’ which have cross-cultural validity, such as 

that of ‘unity-in-love’, with which the term algorithm does not sit so easily and for 

which the term concept seems better suited (Zeki, 2009; Zeki & Chen 2019 for a 

discussion of the Bayesian brain).  

 

The Bayesian approach supposes that initial priors, or initial beliefs, generate 

posteriors through experience, experimentation and learning. The posteriors thus 

generated (through experience and learning) have (modified) beliefs attached to them 

and therefore modify inference and behaviour; the (modified) posteriors can then act as 

new priors from which, through experience and experimentation, new posteriors are 

generated, and so on, iteratively (Dayan et al., 1995; Rao & Ballard, 1999; López et al., 

2014; Friston et al., 2011; Pouget et al., 2013) (inter alia). Our hypothesis in this work 

is that, in colour vision, the initial prior generated from the brain’s inherited ratio-taking 

mechanisms (Land, 1986) leads to (a) constant colour categorization (Zeki et al., 2017), 

to which (b) a given initial hue is attached; the initial prior generated from the brain’s 

ratio-taking mechanism has, therefore, two constituents; we refer to these two 

constituents collectively as the initial biological or. B prior. However, unlike Bayesian 

priors in general, one of the two constituents of this initial biological prior, the constant 

colour categorization, is substantially the same in all individuals and is not easily 

modified even with extensive experience and learning. Hence, an individual can 

legitimately assume that the colour categorization that he or she makes under given 

conditions of illumination is very similar, if not identical, to the colour categorization 

(and experienced) by other individuals and hence that his or her experience has 

universal assent. In the sense that we use it here, “inherited” implies   a genetically 

inherited mechanism that engages the same neural connections and the same pattern of 
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brain activity in all individuals, something which is applicable to the brain’s ratio-

taking system.  The initial colour categorization, with the initial hue attached to it, (the 

two priors) are the consequence of that operation.  

Our present paper is a step in a broader experimental enquiry, which aims to address 

the degree of variability produced in individuals when their experience is the product 

of interfacing the incoming visual signals with inherited and acquired brain concepts. 

The first study addressed the question of the biological basis of mathematical beauty 

(Zeki, Chén, & Romaya, 2018). Here we test the hypothesis that there will be high 

agreement among individuals of different ethnic and cultural backgrounds regarding 

the colour category into which they assign coloured patches when, regardless of their 

colour, the patches are made to reflect light of the same wavelength-energy 

composition. This may seem obvious but was important to demonstrate formally. To 

do so, we used the Land Mondrian experiment, where subjects view patches of different 

colour when each, in turn, is made to reflect the same triplet of energies, measured in 

terms of milliwatts per steradian per m2 (mW.Sr-1.m-2). It is common knowledge that 

the colours of objects and surfaces do not change with fairly wide ranging changes in 

the wavelength-energy composition of the light in which they are viewed (Land & 

McCann, 1971; Land, 1986), a phenomenon generally referred to as colour constancy. 

We prefer to use the term “constant colour categorization” for two reasons; it avoids 

the use of the term “colour category” which in the past has been associated with use of 

language and because the hue (shade) of colour of a given surface or object does change 

with changes in the wavelength-energy composition of the light in which it is viewed, 

even if the colour categorization does not (Zeki et al., 2017). We avoid the term colour 

category because, as used in past literature, it includes a lexical element; language is 

the element that we exclude in our studies, concentrating on non-linguistic matching 

instead. The distinction between colour and colour categorization is thus important for 

the experiments described here, in which we set out to learn the extent of variability in 

the experience of colour categorization between individuals without the use of 

language.   

 

No one has determined the precise concept, in neural terms, which the brain uses to 

generate colours. But the ratio-taking formulations produced by Edwin Land and his 
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colleagues (Land & McCann, 1971; Land, 1983; Land, 1986) are perhaps the easiest to 

use, given their mathematical precision and the predictability of the results produced 

through them. We acknowledge that many different ways of implementing this have 

been proposed (Foster, 2011) but they all share a common feature, namely a comparison 

of the wavelength composition of light reflected from different surfaces. This is what 

we, too, emphasize here although we rely more on the classical approach of Land and 

his colleagues, without implying that it is the final word on the implementation. The 

exact concept is in any case not critical for the work reported here but the experiments 

we have used and the avoidance of language are, and these are based on Land’s.  

In summary, we used the Land Mondrian experiments to investigate how subjects of 

different ethnic and cultural backgrounds categorize patches of different colour without 

the use of language, by matching the colours they experience when viewing different 

patches with that of a standard set of Munsell chips, since the use of linguistic criteria 

in studies of colour categorization (Berlin & Kay 1969/1991) has been criticized for 

not being equally applicable across languages (Biggam, 2012). We return to this in the 

Discussion.  

Material & Methods 
 
Subjects: Twenty subjects, of whom 10 were females, took part in the experiment; their 

mean age was 24.1 years, with a standard deviation (s.d.) of 6.7. They were recruited 

through advertisements at University College London (UCL), were over 18 years of 

age and had normal or corrected to normal vision. They were all tested with Ishihara 

plates (Ishihara, 1988) for colour vision abnormalities and none was found to be 

deficient. No subject reported any neurological or psychological disorder, all gave 

informed consent and the experiment was approved by the UCL Ethics Committee 

(12327/001). Subjects came from the following countries: Cyprus, Thailand, Turkey, 

Lebanon, France, Ghana, China, Brazil, India, Greece, Egypt, Japan, Venezuela, 

Netherlands, United Kingdom and Spain; for all but one English was a second 

language.  

 

Task: Subjects had to match the colour of patches in a Land Colour Mondrian display 

under specific conditions of illumination (see below) with coloured Munsell chips 

which were also viewed under specific illumination conditions. The patch to be 
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matched was indicated to the subjects by a laser beam.  In making the matches, subjects 

did not use words or language as their response. The Mondrian displays: As in Land’s 

original experiments, we used Land Colour Mondrian displays, which were placed at a 

distance of 2 metres from the observers; they consisted of an assembly of squares and 

rectangles so arranged as to form an abstract scene with no recognizable shapes or 

objects, besides rectangles and squares. This controls for any effects due to memory 

and learning of what colours objects should have. To avoid specular reflectance, we 

used matt Color-Aid papers which reflect a constant amount of light in all directions. 

No patch was surrounded by another patch or patches of a single colour, thus avoiding 

induction effects.  

We constructed and used two Mondrian displays, and subjects had to match the colours 

of each to Munsell chips (see Figure 1). Eight test patches were selected in each display, 

seven examples representing each of the basic colour categories Blue, Brown, Green, 

Yellow, Orange, Red, the “extra-spectral” Purple and one boundary colour – Turquoise 

- lying between Blue and Green. In the following description, each of the test patches 

will be referred to by the colour names given above although in the experiments 

subjects did not use language but merely matched the patch to the Munsell chips. Both 

Mondrian displays included the same eight test colour patches but in different 

configurations; in both, each patch subtended 8.25º x 6º and the surrounding patches 

extended more than 10º in all directions.   

The Mondrian displays were illuminated by three carousel projectors (Kodak 

Ektagraphic B-2AR), equipped with ELH 120V 300W bulbs, rheostats and three 

gelatine filters passing long-, middle-, and short-wave light, respectively; the filters had 

been specially manufactured for Zeki’s experiments by Edwin Land (Zeki, 1980). The 

long-wave filter transmitted light in the range of 592nm to the long end of the visible 

spectrum with a peak transmittance greater than 660nm. The transmittance of the 

middle-wave filter was in the range 492-580nm (peak 528nm) while the short-wave 

filter transmitted light in the range 386-493nm (peak 432 nm) with a secondary peak at 

700nm. Each projector was equipped with a separate rheostat and shutter, thus enabling 

the intensity of light coming from each to be adjusted separately.  
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Figure 1.  Appearance of Mondrian displays 1 (left) and 2 (right) under daylight viewing 

conditions. Color-Aid notations of test patches and corresponding names: 1.BW T2=Blue, 2. 

O S3=Brown, 3. YG T3=Green, 4. YO Hue=Orange, 5. V T1=Purple, 6. R Hue=Red, 7. GBG 

T4=Turquoise, 8. Primrose Yellow=Yellow.  

 

For each test stimulus, we adjusted the amount of long, middle and short-wave light of 

the three carousel projectors so that each patch, when judged for its colour, reflected a 

nearly constant ratio of 60% long-, 20% middle- and 20% short- wave light. Apart from 

the slightly different ratios used compared to the ones used in Land’s experiments 

(Land, 1974; Land & McCann, 1971; Land, 1986), this constitutes a replication of 

Land’s classical experiment in colour vision, the only difference here being that we 

were interested in the colour category, rather than the hue, to which matches were made. 

We note that our subjects never experienced the Color Aid patches in daylight 

conditions; hence their only acquaintance with our test stimuli was under the conditions 

described above.  The reason for selecting Color Aid matte patches for the construction 

of the Mondrian displays was because our three projectors – equipped with a long, 

medium and short wave filters – were illuminating the Mondrian displays from slightly 

different angles and we wanted each test surface to reflect, as much as possible, constant 

amount of light in all directions from all three projectors. The energies reflected from 

each patch were measured in milliwatts per steradian per square meter (mW.Sr-1.m-2) 

separately for each projector using a PR-670 tele-spectroradiometer (Table 1). We also 

report the stimulus specifications for each test patch in 10o relative cone excitation units 
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(Stockman & Sharpe, 2000) in Supplementary Table S1. The consistency of the ratios 

was checked before each experimental session. 

 
Table 1. Ratio of radiances (mW/Sr-1/m-2) for long-, middle- and short wave light reflected 
from each test patch in the Mondrian displays. 

  Long wave light Middle wave light Short wave light 
Blue 58.88 20.22 20.89 
Brown 59.50 20.32 20.18 
Green 61.05 18.81 20.14 
Orange 59.85 20.12 20.03 
Purple 60.41 19.43 20.16 
Red 60.74 19.85 19.41 
Turquoise 60.11 19.83 20.06 
Yellow 60.11 20.06 19.83 

 

The Munsell Chips 
The Munsell colour system was designed with the objective of representing 

perceptually uniform visual spacing of hue, Chroma (saturation) and Value (lightness) 

dimensions. In the viewing conditions specified above, subjects were asked to match 

the colour of the eight nominated patches with one of the 44 colour chips from the 

Munsell Book of Color (Glossy Collection, M40115).  40 hues of the Munsell set were 

selected to have the maximum available Chroma and variable Value levels to which we 

also added 4 darker stimuli for the yellow to red hues (Munsell 2.5YR to 10YR) because 

there were no brown or yellow chips at the same Value level (see Figure 2 and 

Supplementary Table S2 for the full specifications of the chips). The order of the chips 

was randomised and displayed on an annulus at a constant eccentricity of 10º from the 

point of fixation. They were presented against a mid-neutral grey surround inside a 

viewing booth illuminated by two GrafiLite daylight simulators (CIE 1931 x = 0.327, 

y = 0.339). In this study we were more interested in the constancy of colour 

categorization and we have chosen the glossy version of the Munsell system because it 

is the one from which chips used in most colour categorization studies (Berlin & Kay, 

1969/1991; Sturges & Whitfield, 1995; Roberson et al., 2005; Kay et al., 2010) but in 

fact the use of the two would make little difference (Mylonas & MacDonald, 2010; 

Olkkonen et al., 2010). 
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Colour Matching Procedure 

Participants had to match the colour of the eight test patches in each Mondrian display 

with the Munsell chip that, to them, was closest in colour to the patch under 

examination. The viewing booth with the Munsell chips was placed on a desk at a 

distance of 60cm from the observers. After adjusting the rheostats of the projectors to 

make each patch reflect the (same) amounts of long-, middle-, and short-wave light 

(given above), all three projectors were switched on to illuminate the entire Mondrian 

display, while the two daylight sources were switched on to illuminate the 44 Munsell 

chips. Any remaining light sources in the experimental room were eliminated. 

Participants performed the successive colour matching tasks without time limit but, in 

practice, each trial took less than 1 minute. The procedure was repeated twice for each 

test patch using the two different Mondrian displays of Figure 1 to measure the 

reliability of the responses, thus giving a total of 16 trials per subject.  

Classification of hues into colour categories 

The exact hue or shade of a coloured surface varies under different conditions of 

illumination while its colour category remains constant (Zeki et al., 2017). To classify 

the hues of the Munsell chips into categories without the use of language, based on the 

distance between them in colour space, we employed a k-means algorithm (which is 

reproducible using Matlab’s k-means routine with default random settings) with 

Euclidean distances in CIELAB (D65), where the number of clusters was set equal to 

the number of the test samples (k=8). In Figure 2, we show the Munsell chips of our 

comparison stimuli clustered into eight categories. This perceptual-based clustering 

corresponds well to the observed distribution of the colour terms on the surface of the 

Munsell system with the exception of pink (see supplementary Figure S1). For the sake 

of convenience during the analysis only, we supplemented this by assigning a colour 

name to the numerical outputs of the k-means algorithm (1-8), based on a colour 

naming estimator trained on the responses obtained from hundreds of English speaking 

participants in an online experiment (Mylonas & MacDonald, 2016) (Figure S1). We 

note that our subjects were naïve to this classification scheme. 
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Figure 2. Munsell chips shown as though viewed from above (a* b* plane of CIELAB space) 
segregated into colour categories based on their in-between Euclidean distances. 

 

The means and standard deviations of hue and Value of the matches (between the 

Munsell chips and each of the eight test patches) for all subjects and for both Mondrians 

are shown in Figure 3. 
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Figure 3. Variability of colour matching responses for each of the eight test patches for both 
Mondrian displays. Rings denote the mean and the error bars the standard deviation. The 
horizontal lines show the variability in the hue dimension and the vertical lines the variance in 
the Value dimension. Achromatic contours correspond to high levels (white), medium levels 
(grey) and low levels (black) of saturation (Chroma).  The colour terms under each Munsell 
hue indicate the nearest hue of each test patch in terms of ΔE00 in CIELAB. 

 
The patches with the lowest hue variance in their matched Munsell chips were red, 

yellow, orange and brown, followed by green. The highest variability was observed for 

the ‘extra-spectral’ purple patch followed by blue and the boundary colour turquoise. 

Thus, the variability in colour matching responses is lower for reddish than bluish 

colours (r = 0.94, n = 8, p < 0.0005); this reflects the smaller perceptual extents of 

categories in the warm region (in terms of steps leading to a change in hue), than in the 

cool region of colour space (Berlin & Kay, 1969/1991; Mylonas & MacDonald, 2016). 

A comparison of the means obtained for the different patches in the two Mondrian 

displays produced a good agreement (mean CIE ΔΕ 2000 = 2.00), with the largest 

differences being observed for the brown and purple patches (ΔΕ00 = 4.58 and 

ΔΕ00=2.23, respectively) and the smallest for the yellow patch (ΔΕ00 = 1.08). The 

uneven saturation levels of the Munsell surface (see achromatic contours) can only 

account for part of our results, namely for two (red and orange) out of eight test colours 

(Witzel & Franklin, 2014; Witzel, Cinotti & O’Regan, 2015).  

The matching of the test patches showed that the categorization was constant, in other 

words that patches were neither identified as a different category nor was there a 

systematic shift towards the dominant long wavelength light. 

The above description applies to hues of the Munsell chips; we were in fact more 

interested in the variability of colour categories, because it is the colour category rather 

than the hue that remains constant (Zeki et al., 2017). In Figure 4, we convert the 

matches given in terms of the Munsell chips into categories following the k-means 
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classification scheme given above, i.e. without the use of language (Figure 2). There is 

no variability for matching the red, yellow and orange patches to their corresponding 

Munsell categories and high consistency for brown (χ2 = 61.2, p> 0.0001), turquoise 

(χ2= 48.05, p> 0.0001), purple (χ2 = 42.05, p> 0.0001), and green (χ2 = 18.05, p> 

0.0001) using Yate’s correction for all chi-square tests.  For the blue test patch, although 

the allocation was placed more frequently in the correct (blue) category, this allocation 

was not significant (χ2 = 0.45, p= 0.5) as it was often placed within the turquoise 

category. It should be noted however that they were placed in the blue or turquoise 

(neighbouring) categories, in spite of the fact that they were reflecting twice the amount 

of long-wave compared to middle- or short-wave light.  

 
 
Figure 4. Frequency of corresponding colour categories of Munsell chips selected as 
the best match for each test patch in both Mondrians. Colours denote the colour of 
the test patch and the labels show the corresponding clusters for the Munsell chips.  
 

In summary, our results shows that, of a total of 320 responses, 88% allocated the test 

patches of the Mondrian displays to the Munsell chips belonging to the same category. 

The 12% were matched to chips belonging to other, but closely neighbouring, colour 

categories (χ2 = 250, p < 0.0001). Of these, there was a high consistency of 90% in 

allocation of the boundary colour (turquoise) while the consistency was over 87% for 

’extra-spectral’ purple.  
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Discussion 
The experiments reported here constitute part of a series in which we explore, within 

the context of the brain as a knowledge-acquiring system, judgments that can 

reasonably be accounted for by supposing that they are based on biologically inherited 

concepts or mechanisms and are thus distinct from post-natally acquired ones (Zeki, 

2009). Certain characteristics facilitate the categorization of experiences or judgments 

as being based predominantly or even exclusively on biologically inherited concepts.  

Prominent among these are: (a) a lesser variability between subjects, even those 

belonging to different races and cultures, when making judgments based on inherited 

concepts and (b) a resistance of such concepts to change through experience and 

learning (Zeki & Chen, 2019). The consequence of this more restricted variability is 

that the individual making a judgment based on inherited concepts is more entitled to 

assume that his or her judgment has universal validity and assent. This has so far been 

found to be true for aesthetic judgments of portraits and landscapes (Vessel, Maurer, 

Denker & Starr, 2018) as well as mathematical formulae experienced as beautiful (Zeki 

et al.,  2018), all of which we consider to belong to the biological category. Aesthetic 

judgments based on such concepts are characterized by lesser variability in judgment 

ratings compared to aesthetic judgments of man-made artefacts (which are more likely 

to be interfaced through synthetic concepts). In the work reported here, we extend this 

approach to colour vision and do so in a Bayesian context.  

 

Berlin and Kay (1969/1991) proposed a total universal inventory of eleven basic colour 

categories (corresponding to the English terms: white, black, red, yellow, green and 

blue, grey, purple, brown, orange and pink) defined by a combination of multiple 

linguistic and psychological criteria. Such criteria have been strongly criticized as being 

not equally applicable across languages (Biggam, 2012). Others have identified basic 

colour categories on more objective behavioural criteria such as frequency, response 

time and consistency of colour naming responses (Boynton & Olson, 1987; Lindsey & 

Brown, 2014; Mylonas & MacDonald 2016). Recently, colour categories have been 

measured using simulated Munsell chips under varying lighting conditions; the strong 

correlation between naming consistency across illuminants and across observers 

suggests a close link between categorical colour constancy and consistent colour 

communication (Olkkonen, Hansen & Gegenfurtner, 2009).   
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Because these approaches have been based on the use of language and because 

variations in categorizations are traceable to language, we opted for a different 

approach, one that is widely used to access colour constancy and offers comparable 

performance (Troost  & De Weert, 1991; Speigle & Brainard, 1996); we investigated 

whether subjects of different linguistic and ethnic backgrounds categorize different 

colours in a similar way when light reflected from patches of different colour have the 

same wavelength-energy composition. We did so by asking subjects to match the 

experienced colours of the viewed patches with that of a standard set of Munsell chips, 

without the use of language. 

Colour categorization is dictated by inherited programs or concepts 

Colour is perhaps the most extreme example of an experience that is dictated by an 

inherited brain concept. We refer to this concept, based largely on the work of Edwin 

Land and his colleagues, as that of ratio-taking although one could equally refer to it as 

a brain algorithm or program (see Introduction). Specifically, the concept here is one 

in which light of any waveband reflected from a surface is compared with light of the 

same waveband reflected from surrounding surfaces, and a ratio between the two taken 

to  categorize the colour (β prior) of the viewed patch; this constitutes the initial prior 

to which an initial hue is attached. Therefore the prior consists of two components – 

the categorization of the colour and the hue attached to that categorization.  Although 

Land supposed that the ratio taking is applied three times, for long-, middle- and short-

wave light, it is equally possible that it is done many times for lights of many different 

wavebands, given the wide distribution in peak wavelength selectivity of cells in the 

cerebral cortex and particularly in area V4 (Zeki, 1980). The net result of these 

operations is that colour perception becomes largely independent of the continuous 

fluctuations in the wavelength-energy composition of the light reflected from a surface, 

thus leading to a perceptual stabilization of colours. It is common to suppose and write 

of the result of such a stabilization as colour constancy, by which is meant that the 

colours generated are constant and largely independent of the precise wavelength-

energy composition of the light reflected off them. We believe, however, that 

describing the end result as a constant colour category is preferable because what does 

not change as a result of this ratio-taking operation is in fact the colour category, not 

the hue (or shade of colour); the latter changes when surfaces are viewed in different 

illuminants (Zeki et al., 2017).  
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Within a Bayesian context, of the two linked initial β priors in colour vision - the 

constant colour category and the hue attached to it - the latter (hue or shade of colour) 

can change with changes in wavelength composition of the light reflected from a patch 

or with changes in the arrangements of the surrounds, while the former  (the colour 

category) either does not or changes much less. In this work, we showed that even when 

a patch (say the green or blue one) is reflecting more long-wave light, its colour 

category does not change to red or reddish colours but remains within the green 

category for all subjects.   Our experiment is a first step in showing that there is a high 

consistency across individuals in matching, without the use of language, patches that 

differ in colour but reflect light of the same wavelength-energy composition, to 

definitive colour categories in the Munsell system.  The implication of this is that the 

colour category β prior must be resistant to change or modification through experience 

and learning, in other words that there will be little variation in the posterior generated 

from the colour category β prior with experience and knowledge for individuals 

differing in their ethnic and cultural backgrounds. One would expect that to be so 

because the primordial function of the brain’s colour system is to acquire knowledge 

about the world in terms of colour; it has to undertake this task when the signals and 

information reaching it from the outside world is never the same from moment to 

moment. Hence the brain must stabilize the world of colour as best it can, in order to 

be able to acquire knowledge about the constant and invariant properties of objects and 

surfaces in terms of colour. Hence, if a constant colour category biological prior were 

to be hostage to change through experience, then that would diminish considerably the 

ability of the brain’s colour system to stabilize the world of colour and thus allow the 

organism to use colour as biological signalling mechanism and to communicate through 

it.  

 

Both Helmholtz and Hering tried to account for colour constancy by invoking, in the 

case of Helmholtz higher cognitive factors such as learning and judgment (Helmholtz, 

1911) and, in that of (Hering, 1877/1964), “memory colours”.  Such factors may well 

play a role to modify the experience of colour for objects of which one has knowledge 

through experience. But this, significantly, is not true for colour that is detached from 

definitive objects (Vandenbroucke, Fahrenfort, Meuwese, Scholte & Lamme, 2016)  or 

colour attached to “nonsense” objects, of which Land’s experiments constitute a classic 
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example and which is why we have used these experiments here. But even such 

knowledge about the colour of known objects may be over-ridden by the brain’s 

computational process to generate colours that make little sense in terms of the known 

colours of objects, as Land’s two colour projection experiments show (Land, 1959).  In 

any case, the role of memory colours is controversial (Connolly, 2019); we agree with 

Connolly that, where it exists, it may enhance perceptual learning by making it easier 

to separate objects from their backgrounds and that it cannot be a mechanism for 

generating colour constancy as sometimes supposed (e.g. Olkkonen et al., 2009) for the 

simple reason that the universality with which constant colour categorizations are 

generated in all humans makes it inconsistent with the supposition that memory colours 

enable colour constant categorization.    

 

Consistent with the belief outlined above, what we have shown here, in summary, is 

that colour categories remain stable (Figure 4) and that such variation as there is, is 

rather in the hues within these constant colour categories (Figure 3). Thus of the two 

inter-connected β priors in colour vision, colour category and hue, the former remains 

constant, does not vary in terms of the posteriors produced from it when the 

wavelength-energy composition of the light reflected from it is varied, or when patches 

belonging to different colour categories are made to reflect the same wavelength-energy 

composition. The initial colour category β prior is thus highly resistant to modification 

through learning and experience. This represents a departure from the general Bayesian 

principle that priors lead to different posteriors and different beliefs attached to them 

through experience (Zeki & Chen, 2019). Specifically, a colour category can never 

become a posterior; it is always a prior. This is because, no matter what the wavelength-

energy composition of the light reflected from, say, a green patch, it will always belong 

to the green category. Only the hues within that patch can become posteriors which can 

then act as priors for the generation of other (posterior) hues but ones which belong to 

the same colour category.  

 

 

Differences between ‘warm’ and ‘cool’ colours 

We undertook this study in the belief that the result of ratio-taking operations are similar 

in all humans. The consequence is that the results will also be similar in all humans, 

with little variability in the ascription of colours to given categories. The variability in 
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matching the colour of the patches with chips belonging to different Munsell categories 

was indeed very limited, especially for red, yellow and orange (warm colours) while it 

was broadest for purple and blue (cool colours). The small variance in the red and 

yellow matches reflects the fact that, in terms of their extent measured as steps leading 

to a change in hue, they are indeed smaller categories than blue or purple, which have 

a larger number of hue steps and hence a higher variability (Berlin & Kay, 1969/1991; 

Mylonas & MacDonald, 2016). 

 

This difference in the width between warm and cool colours, in terms of hue steps 

needed to change to another colour category, has been observed before. The work of 

(Gibson et al., 2017) showed that warm colour categories are more salient than cool 

ones and (Danilova & Mollon, 2010), in their colour discrimination studies, showed a 

border between warm and cool categories, which we interpret as signifying that warm 

colours are narrower in terms of hue steps than cool ones. Although our results 

correspond to theirs in drawing a distinction between warm and cool colours, we do not 

interpret our results, as they do, in terms either of post-receptoral channels (Danilova 

& Mollon, 2010) or of communication needs (Gibson et al., 2017). For us, the task was 

strictly a computational perceptual task and reflects the constancy of colour categories, 

reached by a computational brain process that is independent of learning, memory, 

environmental and social factors.  And, while acknowledging that linguistic criteria 

may be of importance in classifying colours in terms of language, we believe that the 

classification according to colour categories is not dependent upon language and 

experience. Supporting evidence for this comes from the ability of children and 

monkeys to categorize colours much like adult humans (Sandell et al.,  1979; Skelton 

et al.,  2017).  

It is worth adding that although we used “purple” as an example of an extra- spectral 

colour, one that is not considered to be a primary colour according to Hering 

(1877/1964), the constancy of its categorization by different subjects was actually 

higher than that of blue and green, which are considered to be primary colours (see 

Figure 4). Moreover, for turquoise which we used as an example of a boundary colour, 

and which is not considered to be either a primary colour or a basic colour term (see 

Berlin & Kay 1969/1991), was categorized with consistency, supporting earlier 

findings for its position as a basic colour (Mylonas & MacDonald, 2016). These 
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findings suggest that colour categorizations involve higher cortical processes and 

cannot be considered only in terms of early perceptual mechanisms. 

Limitations and future directions 

It is worth emphasizing some limitations of the present study.  Although we believe 

that our results are indicative of a fundamental uniformity, across races and cultures, in 

brain mechanisms that are engaged in categorizing colours, our sample nevertheless 

falls far short in that it was limited to 20 subjects. One future direction is to extend the 

sample significantly, not only by incorporating more subjects but by ensuring that there 

is an adequate representation of subjects from vastly under-represented populations. An 

interesting example is that of the Amazon Indian tribe, the Nambikwara, whose 

language does not distinguish between different shades of blue which is consequently 

often categorized with green or even black and for whom red and yellow “often” fall 

into the same category. Such a categorization that has been traced to the use members 

of the tribe make of seeds to prepare different dyes (Lévi-Strauss, 1955/2008). In 

addition, there might be subjects in industrialised societies, such as Russian speakers, 

who divide the unitary English blue category into light and dark segments (Paramei, 

Griber & Mylonas, 2018). This points to the importance, in future studies, of testing 

the constant categorization abilities of subjects from more diverse cultural, ethnic and 

environmental backgrounds.  

Another limitation relates to the fact that we used mostly typical examples of colour 

categories and did not investigate the shape of the categories by including in our studies 

a large number of boundary colours. Our test boundary colour (turquoise) between blue 

and green revealed an underlying constant category important to the subjects which is 

not named using a traditional universal basic colour term (Berlin & Kay, 1969/1991) 

and thus might be independent of language. Our study thus says little about possible 

variabilities in the categorization of the borders of colour categories, even though it 

shows that there is little variability when the matching is limited to more typical 

colours, which we believe to be an important step in demonstrating the restricted 

variability in categorizing colours. Future studies may well show that there is more 

variability in the shape of colour categories especially in the blue-green regions 

between subjects belonging to different races and different cultural and environmental 

backgrounds. 
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This ushers in another future direction that is important in pursuing studies in colour 

categorization. Although both monkeys and human infants appear to be able to 

categorize colours (see above), it is possible that subtler colour categories are acquired 

post-natally with exposure to different environments and that this fine-tuning may be 

dependent upon culture and environment. It would be fascinating to undertake such a 

study in the future, especially with humans who develop in environmentally 

conspicuously distinct surroundings. 

 

Conclusion 

In summary, there was a trivial variability in assigning colours that reflect a constant 

ratio of long-, middle- and short- wave light to different categories by subjects of 

different ethnic and cultural origins. This is a pointer to an important principle of the 

organization of the sensory brain, at least in terms of colour vision, namely that there 

is a very significant similarity in the inherited computational mechanisms for 

generating colour categories in all humans. 

 

Competing interests  
We have no competing interests. 

Authors' contributions 
SZ conceived and designed the study and authored the manuscript. AJ carried out the 

colorimetric measurements and collected the psychophysical data. DM coordinated the 

study, carried out the colour stimulus specifications and statistical analyses, and helped 

draft the manuscript. All authors gave approval for publication. 

Funding 
DM was supported by the University College London (UCL) Computer Science-

Engineering and Physical Sciences Research Council (EPSRC) Doctoral Training 

Grant: EP/M506448/1 - 1573073 

 

  



 20 

References 

Berlin, B and Kay, P. (1969) Basic Color Terms: Their Universality and Evolution. 

pp 3-224, University of California Press, Berkeley, CA.  

Biggam, C.P. (2012) The Semantic of Colour: A Historical Approach. pp 3-273, 

Cambridge University Press, Cambridge, UK. 

Boynton, R.M and Olson, C.X. (1987) Locating basic colors in the OSA space. Color 

Res. Appl., 12, 94–105. 

Connolly, K. (2019) Perceptual Learning. pp 241, Oxford University Press, Oxford 

and New York. 

Danilova, MV and Mollon, J. (2010) Parafoveal color discrimination: A chromaticity 

locus of enhanced discrimination. J. Vis., 10, 1–9. 

Dayan, P., Hinton, G.E.E., Neal, R.M.M., & Zemel, R.S.S. (1995) The Helmholtz 

machine. Neural Comput., 7, 889–904. 

Foster, D.H. (2011) Color constancy. Vision Res., 51, 674–700. 

Friston, K., Mattout, J., & Kilner, J. (2011) Action understanding and active 

inference. Biol. Cybern., 104, 137–160. 

Gibson, E., Futrell, R., Jara-Ettinger, J., Mahowald, K., Bergen, L., Ratnasingam, S., 

Gibson, M., Piantadosi., T. S., Conway, B.R. (2017) Color naming across 

languages reflects color use. Proc. Natl. Acad. Sci. USA, 114, 10785–10790. 

Helmholtz, H. von (1911)	Handbuch	Der	Physiologischen	Optik,	Vol.	II,	edited	by	
A.	Gullstrand,	J.	von	Kries	and	W.	Nagel,	pp	391,	Leopold	Voss,	Hamburg.		

	
Hering, E. (1877/1964)	Grundzüge der Lehre vom Lichtsinn translated as Outlines 

of theory of the light sense (1964) by LM. Hurvich and D. Jameson, pp 317, 

Harvard University Press, Cambridge, Mass.  

Kant, I. (1781/1996	-	A51/B75)	Kritik	Der	Reinen	Vernunft,	1st	Edition,	
Translated	by	WS	Pluhar	(1996)	as	Critique	of	Pure	Reason,	pp	1030		
Hackett,	Indianapolis.	



 21 

	
Land, E. (1974) The retinex theory of colour vision. Proc. R. Inst. GB., 47, 23–58. 

Land, E.H. (1959) Color vision and the natural image. Part 1. Proc. Natl. Acad. Sci. 

USA, 45, 115–129. 

Land, E.H. (1983) Recent advances in retinex theory and some implications for 

cortical computations: color vision and the natural image. Proc. Natl. Acad. Sci. 

USA, 80, 5163–5169. 

Land, E.H. (1986) An alternative technique for the computation of the designator in 

the retinex theory of color vision. Proc. Natl. Acad. Sci. USA., 83, 3078–3080. 

Land, E.H. & McCann, J.J. (1971) Lightness and Retinex Theory. J. Opt. Soc. Am., 

61, 1–11. 

Lévi-Strauss, C. (1955/2008). Tristes tropiques. pp 3-445 in Œuvres, Bibliothèque de 

La Pléiade, Gallimard, Paris. 

Lindsey, D. T., & Brown, A.M. (2014) The color lexicon of American English. J. 

Vis., 14, 1–25. 

López, J.D., Litvak, V., Espinosa, J.J., Friston, K., & Barnes, G.R. (2014) 

Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM. 

Neuroimage, 84, 476–487. 

Mylonas, D and MacDonald, L. (2016) Augmenting basic colour terms in English. 

Color Res. Appl., 41, 32–42. 

Olkkonen, M., Hansen, T., & Gegenfurtner, K.R. (2009) Categorical color constancy 

for simulated surfaces. J. Vis., 9(12):6. 1-18. 

Paramei, G. V., Griber, Y. A., & Mylonas, D. (2018). An online color naming 

experiment in Russian using Munsell color samples. Color Res. Appl., 43(3), 

358–374. https://doi.org/10.1002/col.22190 

Pouget, A., Beck, J.M., Ma, W.J., & Latham, P.E. (2013) Probabilistic brains: knowns 



 22 

and unknowns. Nat. Neurosci., 16, 1170–1178. 

Rao, R.P. & Ballard, D.H. (1999a) Predictive coding in the visual cortex: a functional 

interpretation of some extra-classical receptive-field effects. Nat. Neurosci., 2, 

79–87. 

Rao, R.P.N. & Ballard, D.H. (1999b) Predictive coding in the visual cortex: a 

functional interpretation of some extra-classical receptive-field effects. Nat. 

Neurosci., 2, 79–87. 

Sandell, JH, Gross, CG, and Bornstein, M. (1979) Color categories in macaques. J. 

Comp. Physiol. Psychol., 93, 626–635. 

Skelton, A. E., Catchpole, G., Abbott, J. T., Bosten, J. M., & Franklin, A. (2017) 

Biological origins of color categorization. Proc. Natl. Acad. Sci. USA, 114, 

5545–5550. 

Stockman, A., & Sharpe, L.T. (2000) The spectral sensitivities of the middle- and 

long-wavelength-sensitive cones derived from measurements in observers of 

known genotype. Vis. Res, 40, 1711–1737. 

Troost, J. M., & De Weert, C.M.M. (1991) Naming versus matching in color 

constancy. Percept. Psychophys., 50, 591–602. 

Vandenbroucke, A.R.E., Fahrenfort, J.J., Meuwese, J.D.I., Scholte, H.S. and Lamme, 

V.A.F. (2016) Prior knowledge about objects determines neural color 

representation in human visual cortex. Cereb. Cortex, 26, 1401–1408. 

Vessel, EA, Maurer, N, Denker, AH, & Starr, G. (2018) Stronger shared taste for 

natural aesthetic domains than for artifacts of human culture. Cognition, 179, 

121–131. 

Zeki, S. and Chen, O. (2019) The Bayesian-Laplacian Brain. Eur. J. Neurosci. in 

press. 



 23 

Zeki, S. Chén, O.Y. and Romaya, J.P. (2018) The Biological Basis of Mathematical 
Beauty. Front. Hum. Neurosci.,. 8	(68),	1-12	
https://doi.org/10.3389/fnhum.2014.00068.		

	
Zeki, S. (1980) The representation of colours in the cerebral cortex. Nature, 284, 

412–418. 

Zeki, S. (2009) Splendors and Miseries of the Brain: Love, Creativity and the Quest 

for Human Happiness. pp	234,	Wiley-Blackwell, Oxford. 

Zeki, S., Cheadle, S., Pepper, J., & Mylonas, D. (2017) The constancy of colored 
after-images. Front. Hum. Neurosci., 11, 1-8.	doi: 10.3389/fnhum.2017.00229 

 

 

 

 

  



 24 

Supplementary Material 
 
 Table S1. Long (L), Medium (M) and Short (S) cone excitation ratios (Stockman & Sharpe, 
2000) in 10-degrees for each of the eight test stimuli of the Mondrian displays. 

  L M S 
Blue 0.45 0.31 0.23 
Brown 0.47 0.31 0.22 
Green 0.45 0.32 0.23 
Orange 0.47 0.31 0.22 
Purple 0.46 0.31 0.23 
Red 0.47 0.32 0.21 
Turquoise 0.45 0.32 0.23 
Yellow 0.46 0.32 0.22 

 
 
 
 

 
Figure S1. Munsell chips shown as though viewed from above (a* b* plane of CIELAB 
space) segregated into lexical colour categories by a colour naming model trained by human 
observers (Mylonas & MacDonald, 2016). 

 
 



 25 

Table S2. Munsell notation of comparison stimuli. 

N° Hue Value Chroma 
1 2.5R 5 14 
2 5R 4 14 
3 7.5R 4 16 
4 10R 5 16 
5 2.5YR 6 16 
6 2.5YR 2 4 
7 5YR 7 14 
8 5YR 3 6 
9 7.5YR 7 14 
10 7.5YR 4 8 
11 10YR 8 14 
12 10YR 4 8 
13 2.5Y 8 16 
14 5Y 8 14 
15 7.5Y 8 12 
16 10Y 8 12 
17 2.5GY 7 12 
18 5GY 7 12 
19 7.5GY 6 12 
20 10GY 5 12 
21 2.5G 5 12 
22 5G 5 10 
23 7.5G 7 8 
24 10G 6 10 
25 2.5BG 6 10 
26 5BG 6 10 
27 7.5BG 5 10 
28 10BG 5 10 
29 2.5B 5 10 
30 5B 6 10 
31 7.5B 6 10 
32 10B 5 12 
33 2.5PB 5 12 
34 5PB 5 12 
35 7.5PB 4 12 
36 10PB 4 12 
37 2.5P 4 12 
38 5P 4 12 
39 7.5P 4 12 
40 10P 4 12 
41 2.5RP 6 12 
42 5RP 6 12 
43 7.5RP 5 14 
44 10RP 5 14 

 

 


