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ABSTRACT 

Background 

Vascular risk factors promote cerebral small vessel disease and neuropathological 

changes, particularly in white matter where large-caliber axons are located. How 

Alzheimer’s pathology influences the brain’s vulnerability in this regard is not well 

understood.  

Objective 

Systemic vascular risk was assessed in relation to cerebrospinal fluid concentrations of 

neurofilament light, a biomarker of large-caliber axonal injury, evaluating for interactions 

by clinical and protein markers of Alzheimer’s disease.  

Methods 

Among Alzheimer’s Disease Neuroimaging Initiative participants with normal cognition 

(n=117), mild cognitive impairment (n=190), and Alzheimer’s disease (n=95), linear 

regression related vascular risk (as measured by the modified Framingham Stroke Risk 

Profile) to neurofilament light, adjusting for age, sex, education, and cognitive diagnosis. 

Interactions were assessed by cognitive diagnosis, and by cerebrospinal fluid markers 

of A42, phosphorylated tau, and total tau. 

Results 

Vascular risk and neurofilament light were not related in the main effect model (p=0.08). 

However, interactions emerged for total tau (p=0.01) and phosphorylated tau (p=0.002) 

reflecting vascular risk becoming more associated with CSF neurofilament light in the 

context of greater concentrations of tau biomarkers. An interaction also emerged for the 

Alzheimer’s disease biomarker profiles (p=0.046) where in comparison to the referent 
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‘normal’ biomarker group, individuals with abnormal levels of both A42 and total tau 

showed stronger associations between vascular risk and neurofilament light.  

Conclusion 

Older adults may be more vulnerable to axonal injury in response to higher vascular risk 

burdens in the context of concomitant Alzheimer’s disease pathology.  
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INTRODUCTION 

Modifiable vascular risk factors, such as systolic hypertension [1], diabetes 

mellitus [2], and smoking [3,4] are associated with an increased incidence of cognitive 

impairment and dementia, likely due to effects on cerebral small vessel disease (SVD) 

contributing to abnormal cognitive aging [5]. Cerebral SVD exists in the majority of 

pathologically-confirmed dementia cases [6] and disrupts network connectivity [7,8], 

conferring cognitive impairment and decline [9]. Longitudinal data from large-scale 

multicenter collaborations (i.e., the Leukoaraiosis and Disability (LADIS) Study) are 

increasingly substantiating the role of cerebral SVD and white matter changes in 

contributing to cognitive and motor declines, depressive symptomatology, and reduction 

of functional autonomy with aging [10], including clinical manifestation of vascular-

related dementia [11]. 

Cerebral SVD is the most common pathology to co-occur with Alzheimer’s 

disease (AD) [12,13], lowers the threshold for clinical expression of AD pathology [14], 

and compromises the efficacy of anti-amyloid therapy [15]. Extant literature has yet to 

fully establish the extent to which AD and SVD confer disparate versus overlapping 

pathological cascades, constituting a critical knowledge gap with important implications 

for identifying effective prevention and treatment targets.  Even if SVD and AD 

represent unique injury pathways, these two disease processes may exacerbate one 

another and compromise the aging brain in a synergistic manner [13].  

Cerebral white matter is particularly vulnerable to ischemic injury from SVD in 

advanced age [16], but little is known about whether co-occurring AD pathology affects 

susceptibility to white matter damage, including axonal injury, in response to vascular 
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risk factors. Animal models of compromised cerebrovascular function suggest ischemia 

promotes diffuse amyloid precursor protein expression [17] and increased A deposition 

[18]. Given that A clearance occurs through vascular-mediated pathways across the 

blood-brain barrier [19] and through interstitial fluid bulk flow between perivascular 

basement membranes [20,21], cerebral SVD may propagate A deposition by 

interfering with the integrity of clearance pathways [22], contributing to worse disease 

trajectory [23,24]. Progressive degeneration of cholinergic cells in AD can also disrupt 

regional cerebral blood flow homeostasis [25,26], increasing susceptibility of the 

cerebral vasculature to damage [27,28]. Overall, vascular risk likely drives cognitive and 

neurodegenerative changes through non-AD pathways [29] but concomitantly 

exacerbates AD-related damage once neural injury exists [30].   

A current limitation in understanding the implications of SVD is that the cerebral 

microvasculature is too small to be clearly visualized in vivo, thus interfering with prompt 

diagnosis and intervention [31]. Accordingly, there is a pressing need to better 

characterize underlying physiological changes related to cerebrovascular disease 

burden and unhealthy brain aging [31]. Neurofilament light (NFL) is a protein polymer 

found in large-caliber myelinated axons. Elevated cerebrospinal fluid (CSF) levels of 

NFL are posited to reflect axonal injury [32] and correlate with white matter damage and 

clinical severity across neurodegenerative diseases [33-35]. Unlike the mechanistically 

heterogeneous nature of white matter hyperintensities observed on magnetic resonance 

imaging (MRI) fluid-attenuated inversion recovery (FLAIR), which correspond to multiple 

structural changes and pathological processes [36], CSF concentrations of NFL allow 

for measurement of axonal injury. Accordingly, CSF NFL offers a means of measuring 
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axonal damage in the aging brain. Given the high prevalence of vascular-related health 

problems among older adults at risk for AD [37], more research is warranted to 

elucidate how burgeoning AD pathology influences the aging brain’s vulnerability to 

vascular-related damage, including axonal injury. This research topic is especially 

clinically relevant given the modifiable nature of most vascular risk factors and paucity 

of promising prevention and treatment targets for AD.  

 In the current study, we assess how vascular risk burden as measured by the 

Framingham Stroke Risk Profile (FSRP) relates to axonal injury as measured by CSF 

NFL in the context of varying degrees of concomitant AD pathology. The FSRP is a 

composite measure of vascular risk burden. Originally designed to predict incidents of 

clinical stroke, FSRP scores also correspond to neuroimaging evidence of cerebral 

SVD, including white matter hyperintensities [38,39] silent cerebral infarcts [40,41], and 

microbleeds [42]. We leveraged the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

cohort, which represents a spectrum from normal cognition (NC), mild cognitive 

impairment (MCI), and clinical AD. In doing so, we are able to (a) test interactions 

between FSRP and cognitive diagnosis to determine whether FSRP and NFL 

associations depend on the presence of clinical symptoms and (b) test interactions 

between FSRP and AD CSF biomarkers (i.e., A42, total tau [t-tau], and phosphorylated 

tau [p-tau]) to determine how associations differ as a function of co-occurring evidence 

of AD. Since co-occurring cerebrovascular disease and AD synergistically confer worse 

clinical outcomes [43,44], we hypothesize that the association between FSRP and CSF 

NFL will be strongest with increased AD pathology defined as presence of abnormal 
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concentrations of AD CSF biomarkers (i.e., A42, t-tau, and p-tau) and clinical evidence 

(i.e., stronger associations across cognitive spectrum from NC to clinical AD).   
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MATERIALS & METHODS 

Participants 

 Participants were drawn from the ADNI, launched in 2003 

(http://adni.loni.usc.edu). The original ADNI study enrolled approximately 800 

participants, aged 55-90 years, excluding major neurological disease (other than AD), 

and history of brain lesion, head trauma, or psychoactive medication use (for full 

inclusion/exclusion criteria, please refer to http://www.adni-info.org). Participants were 

enrolled based on criteria outlined in the ADNI protocol (http://www.adni-

info.org/Scientists). Specifically, NC participants showed no signs of depression, MCI, 

or dementia. Participants with MCI presented with subjective memory concerns and 

impaired performance on Wechsler Memory Scale Logical Memory II in the context of 

preserved daily living activities and no significant levels of impairment in other cognitive 

domains nor signs of dementia. Participants with AD met clinical criteria for dementia 

with a predominantly amnestic profile. Written informed consent was obtained from all 

participants prior to assessments at each site. Analysis of ADNI’s publicly available 

database was approved by our local Institutional Review Board. We accessed publicly 

available data from ADNI on 06/09/2017. For the current study, we included participants 

from the ADNI1 cohort with available baseline CSF biomarker samples and vascular 

risk factor data necessary to calculate the FSRP. 

 

Vascular Risk Burden 

To assess systemic vascular risk burden, we calculated a modified FSRP in the 

ADNI dataset based on baseline visit data. FSRP assigns points by sex for age, systolic 

http://adni.loni.usc.edu/
http://www.adni-info.org/Scientists
http://www.adni-info.org/Scientists
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blood pressure (accounting for antihypertensive medication usage), history of diabetes, 

current cigarette smoking, prevalent cardiovascular disease (i.e., history of myocardial 

infarction, angina pectoris, coronary insufficiency, intermittent claudication, or heart 

failure), left ventricular hypertrophy, and history of atrial fibrillation [45]. The FSRP 

calculation was modified for the current study by excluding left ventricular hypertrophy 

due to this information being unavailable in ADNI [29,46].  

 

Lumbar Puncture and Biochemical Analyses 

ADNI’s CSF protocol, including collection, processing, and storage procedures, 

have been outlined in detail [47]. We leveraged the master CSF dataset compiled by the 

University of Pennsylvania (UPENNBIOMK_MASTER) and used the first measure of 

A42, t-tau, and p-tau for each participant. CSF NFL levels were quantified by the 

Blennow laboratory in Sweden using a sandwich ELISA method (UmanDiagnostics, 

Umeå, Sweden) following established procedures [48]. The measurements were 

performed by board-certified laboratory technicians who were blinded to clinical data. 

Samples were analyzed in singlicates using one batch of reagents. Analytical variation 

was monitored using internal quality control samples at each plate; intra-batch 

coefficients of variation were below 10%. All samples were in the measureable range.  

 

AD Biomarker Profiles 

 Participants were classified into AD [49] and suspected non-AD pathology 

(SNAP) [50] biomarker profiles according to A and t-tau-defined neurodegeneration 

(ND) status, including biomarker negative (A-/ND-), amyloid positive only (A+/ND-), 
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SNAP (i.e., A-/ND+), and both biomarker positive (A+/ND+). CSF A42 values ≤192 

pg/mL reflected amyloid positivity, and t-tau values ≥93 pg/mL reflected presence of ND 

based on established cutoffs [51].  

 

Experimental Design and Statistical Analysis 

Prior to analyses, six participants were excluded for outlying CSF NFL values 

(defined as >4 standard deviations). For hypothesis testing, linear regression cross-

sectionally related modified FSRP (minus points assigned to age) to CSF NFL 

concentration (pg/mL), adjusting for age, sex, education, and cognitive diagnosis (NC, 

MCI, AD). Next, a series of interaction terms, including (a) FSRP x cognitive diagnosis, 

(b) FSRP x CSF A42, (c) FSRP x CSF t-tau, (d) FSRP x CSF p-tau, and (e) FSRP x AD 

biomarker profile were related to CSF NFL in separate models. For interpretive 

purposes, models were repeated stratifying by cognitive diagnosis, by CSF A42 and 

CSF t-tau using established cutoffs [51], and by AD biomarker profile. Models were not 

stratified by CSF p-tau due to its established cutoff having relatively poor sensitivity and 

specificity in distinguishing AD from NC in the ADNI cohort [51]. Significance was set a 

priori at α=0.05. Analyses were conducted with R version 3.3.1 (http://www.r-

project.org).   
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RESULTS 

Participant Characteristics 

The sample included 402 adults age 54-89 years (74±7 years), including 117 

participants with NC, 190 participants with MCI, and 95 participants with clinical AD. 

CSF NFL ranged from 405 to 5315 pg/mL. CSF A42 ranged from 71 to 300 pg/mL. CSF 

t-tau ranged from 28 to 495 pg/mL. CSF p-tau ranged from 8 to 115 pg/mL. See Table 1 

for participant characteristics by cognitive diagnosis. In this participant sample, CSF 

NFL weakly correlated with p-tau (r=0.14, p<0.0001) and total tau (r=0.23, p<0.0001). 

CSF NFL and A42 were not correlated (p=0.66). 

FSRP and CSF NFL 

See Table 2 for detailed results of main effect, interaction, and stratified 

analyses. Among the whole sample, FSRP appeared modestly related to NFL, but the 

association did not meet the a priori statistical significance threshold (=17.97, p=0.08). 

FSRP did not interact with cognitive diagnosis on NFL levels (F(2,398)=0.30; p=0.74). In 

stratified models, FSRP was unrelated to NFL in each of the three diagnostic groups (p-

values>0.29).  

 FSRP interacted with t-tau (=0.40, p=0.01) and p-tau (=1.67, p=0.002) on CSF 

NFL. In stratified models, FSRP was associated with NFL among t-tau positive 

(=47.57, p=0.002) but not among t-tau negative participants (=-0.96, p=0.94). See 

Fig 1A for illustration. Although the FSRP interaction with amyloid was nonsignificant 

(=-0.25, p=0.18), a similar pattern was observed in stratified analyses whereby FSRP 

was associated with NFL among amyloid positive (=35.17, p=0.006) but not amyloid 

negative participants (=-19.35, p=0.24). See Fig 1B for illustration.  
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Similar to the continuous biomarker interactions, FSRP interacted with AD 

biomarker profile (F(3,389)=2.68; p=0.046). Compared to the A-/ND- referent group, 

the A+/ND+ group differed in the association between FSRP and NFL (=71.3, 

p=0.005). No differences were observed between the referent group and the A+/ND- 

(=42.4, p=0.10) or A-/ND+ (=55.3, p=0.29) groups. In stratified models, FSRP was 

associated with NFL in the A+/ND+ group (=58.74, p=0.002) but not in the A-/ND- 

(=-32.20, p=0.06), A+/ND- (=14.18, p=0.49), or A-/ND+ (=30.18, p=0.39) groups. 

See Fig 2 for illustration.   
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DISCUSSION 

 We evaluated associations between FSRP, a comprehensive index of vascular 

risk, and axonal injury among community-dwelling older adults ranging from cognitively 

normal to clinical dementia, assessing for interactions with cognitive diagnosis and CSF 

measurements of AD pathology. Axonal injury was quantified using CSF NFL, a 

biomarker posited to reflect large-caliber axon damage [52] that is elevated in MCI [48] 

and clinical AD [32] and may explain unique variance in clinical manifestation of AD 

beyond core AD pathology [32]. Within the ADNI cohort, we found the association 

between vascular risk burden and axonal damage appears amplified by the presence of 

AD pathology. Specifically, FSRP interacted with both p-tau and t-tau in a manner 

suggesting that associations with axonal injury became stronger in participants 

commensurate with their extent of neurofibrillary tangle pathology (p-tau) and 

neurodegeneration (t-tau).  A similar interaction also emerged for AD biomarker profile 

wherein compared to the referent ‘normal’ biomarker group, individuals with abnormal 

levels of both A42 (indicating cerebral amyloid deposition) and total tau (indicating 

neurodegeneration) showed stronger associations between vascular risk and axonal 

injury. While FSRP did not interact with A42 on NFL, stratified analyses indicated a 

modest association was present within the amyloid positive group. However, these 

stratified results should be interpreted with caution given the lack of a significant 

interaction effect. 

Older adults may be more vulnerable to axonal injury in response to vascular risk 

burden when neural integrity is already compromised by the cumulative effects of 

mounting AD pathology. It is unlikely that tau pathology on its own directly accounts for 
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the stronger association between vascular risk factors and axonal injury since prior work 

has not consistently supported a link between CSF tau and white matter damage [53], 

including work from our group investigating white matter macrostructure [36] and 

microstructure damage [54]. Like NFL, tau is a cytoskeleton protein, but tau differs from 

NFL in that it promotes microtubule stability and is more abundant in smaller, 

unmyelinated axons localized predominantly in cortical tissue. In contrast, NFL primarily 

serves to increase diameter and conduction velocity of large-caliber, myelinated 

subcortical axons [55,56]. Compared to tau, NFL appears to have more clinical staging 

and prognostic utility across brain diseases involving prominent degradation of white 

matter tracks. For example, CSF concentrations of NFL but not tau differentiate 

between relapsing-remitting and primary progressive types of multiple sclerosis [57]. 

CSF concentrations of NFL but not tau also distinguish clinical Huntington disease 

patients from preclinical gene expansion carrier controls and correlate with 5-year 

probability of disease onset among the gene expansion carriers [58]. While NFL does 

not appear to have disease specificity as a marker of axonal injury, its utility in reflecting 

clinical staging across diseases may convey value as a concomitant biomarker to be 

studied in conjunction with more disease-specific markers of AD. 

The dominant theory of AD pathophysiology posits that biomarkers become 

abnormal in an ordered but temporally overlapping manner. A long asymptomatic phase 

of amyloid aggregation eventually reaches a threshold with subsequent progressive 

neuronal dysfunction and death corresponding to CSF t-tau elevations [59]. Accordingly, 

elevated t-tau and p-tau coupled with increased evidence of amyloid aggregation may 

reflect more advanced AD pathology and neurodegeneration, which could compromise 
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neural resilience to vascular risk burden, resulting in greater vulnerability to axonal 

injury.  

It is noteworthy that cognitive diagnosis did not modify the association between 

FSRP and NFL, suggesting the link between vascular risk burden and axonal injury 

occurs in both asymptomatic and symptomatic individuals. This finding has important 

therapeutic implications, as vascular-related axonal damage in AD may be detectable 

both prior to and throughout the clinical manifestation of symptoms. Future research 

should incorporate longitudinal models to further elucidate how vascular-related axonal 

injury temporally relates to the emergence and progression of AD symptoms.  

Collectively, findings from this study suggest presence of vascular risk factors 

confers a greater likelihood of axonal damage in the context of mounting AD pathology 

and neurodegeneration, regardless of clinical status. These findings should be 

interpreted in the context of certain study limitations. The cross-sectional nature of our 

design limits our ability to draw causal inferences or speculate about temporal ordering 

of pathological changes or whether specific substrates of the AD pathophysiological 

cascade drive the observed associations. Unfortunately, gold-standard MRI FLAIR data 

are unavailable in this particular subset of the ADNI cohort, so white matter 

hyperintensities and other markers of cerebral SVD could not be examined. Other 

limitations to consider when interpreting results include that ADNI participants are 

predominantly non-Hispanic white and well-educated, so findings may not be 

generalizable to more diverse populations. Furthermore, ADNI eligibility criteria 

excluded for overt cerebrovascular disease (i.e., Hachinski score ≤4), so stroke risk and 

cerebrovascular pathology are likely underrepresented in the ADNI sample compared to 
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the general population. Even with this study exclusion, we still observed associations 

between vascular risk burden and axonal injury. We speculate that in a cohort with 

greater vascular risk factors and cerebral SVD, the associations reported here would be 

stronger.  

Despite these limitations, our study has several strengths, including the large, 

well-characterized dataset representing the entire cognitive aging spectrum from 

clinically normal to dementia. This range permitted evaluation of vascular risk and 

axonal injury in the context of preclinical and clinical AD. Additionally, the FSRP 

incorporates multiple vascular risk factors, offering a more comprehensive and 

integrated risk index, as opposed to examining risk factors individually.  

Vascular-related axonal injury represents an important potential target for primary 

prevention and clinical intervention among individuals at high risk for developing AD or 

in the preclinical stages of AD. Whereas there are no current treatments or preventative 

therapies for AD, most vascular health problems are preventable or modifiable in 

nature. Primary prevention and close medical management of vascular health 

conditions should be emphasized to mitigate the clinical progression of AD in older 

adults. Further investigation into mechanisms linking vascular risk factors and axonal 

damage in AD and in non-AD-related abnormal cognitive aging is warranted to examine 

longitudinal associations and identify possible therapeutic targets.  
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Table 1. Participant Characteristics 

 
NC 

n=117 
MCI 

n=190 
AD 

n=95 
p-value 

Age, years 76±5 75±7 75±8 0.28 
Sex, % female 48 33 43 0.03a 

Race, % White Non-Hispanic 91 94 98 0.09 
Education, years 16±3 16±3 15±3 0.06 
APOE-ε4, % carrier 25 55 69 <0.001abc 

Modified FSRP, total* 12.8±3.2 12.3±4.0 12.8±4.2 0.91 
 Systolic blood pressure, mmHg 133±17 134±18 135±15 0.56 
 Anti-hypertensive medication usage, % 54 48 57 0.31 
 Diabetes mellitus, % 5 5 3 0.77 
 Current cigarette smoking, % 39 41 46 0.57 
 Prevalent CVD, % 3 6 4 0.41 
 Atrial fibrillation, % 1 1 0 0.68 
CSF NFL, pg/mL 1120±450 1405±636 1631±764 <0.001abc 

CSF A42, pg/mL 206±55 165±54 144±41 <0.001abc 

CSF t-tau, pg/mL 70±30 103±61 122±58 <0.001abc 

CSF p-tau, pg/mL 25±15 36±18 41±20 <0.001abc 

Biomarker Group     

 A-/ND-, % 54 24 6 <0.001abc 

 A+/ND-, % 27 31 29 0.79 

 A+/ND+, % 10 43 61 <0.001abc 

 A-/ND+, % 9 2 3 0.02a 

Note. Values denoted as mean±standard deviation or percentage. *Modified FSRP excludes 
points assigned for left ventricular hypertrophy. Modified FSRP minus age points for each 
diagnostic group were NC 5.9±2.8, MCI 5.9±2.9 and AD 6.2±2.7. aNC differed from MCI, 
p<0.05; bMCI differed from AD, p<0.05; cNC differed from AD, p<0.05. AD=Alzheimer’s 
disease; APOE=apolipoprotein E; CSF=cerebrospinal fluid; CVD=cardiovascular disease; 
FSRP=Framingham Stroke Risk Profile; MCI=mild cognitive impairment; NC=normal 
cognition; ND=neurodegeneration; NFL=neurofilament light; p-tau=phosphorylated tau; t-
tau=total tau. 
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Table 2. Main Effect, Interaction, and Sub-group Analyses of FSRP on NFL 

 
  

 
95% Confidence 

Interval 
t-value F-value p-value 

*Covariates +      

FSRP 17.97 -1.93, 37.87 1.78 -- 0.08 

FSRP x diagnosis† -- -- -- 0.30 0.74 

NC 13.58 -12.97, 40.12 1.01 -- 0.31 
MCI 14.85 -14.54, 44.23 1.00 -- 0.32 
AD 28.97 -26.13, 84.07 1.04 -- 0.30 

FSRP x A42 -0.25 -0.62, 0.12 -1.35 -- 0.18 

A42 positive 35.17 10.42, 59.93 2.80 -- 0.006 

A42 negative -19.35 -51.98, 13.27 -1.17 -- 0.24 

FSRP x T-tau 0.40 0.09, 0.71 2.53 -- 0.01 

T-tau positive 47.57 17.23, 77.91 3.10 -- 0.002 
T-tau negative -0.96 -27.87, 25.95 -0.07 -- 0.94 

FSRP x P-tau 1.67 0.59, 2.74 3.05 -- 0.002 

FSRP x Biomarker Group† -- -- -- 2.68 0.046 

A-/ND- -32.20 -65.11, 0.72 -1.94 -- 0.06 

A+/ND- 14.18 -26.72, 55.08 0.69 -- 0.49 

A+/ND+ 58.74 21.30, 96.17 3.12 -- 0.002 

A-/ND+ (SNAP) 30.18 -45.28, 105.65 0.91 -- 0.39 

Note. *Covariates include age, sex, education, and cognitive diagnosis. †ANOVA; all other 
models presented are linear regression analyses. CSF=cerebrospinal fluid; 
FSRP=Framingham Stroke Risk Profile; MCI=mild cognitive impairment; NC=normal 
cognition; ND=neurodegeneration; NFL=neurofilament light; P-tau=phosphorylated tau; 
SNAP=suspected non-AD pathology; T-tau=total tau. 
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Fig 1. FSRP and CSF NFL Stratified by Biomarker Status.  

A. FSRP and CSF NFL by Total Tau Status 

 

B. FSRP and CSF NFL by Amyloid Status 

 
 
Solid lines reflect unadjusted values of CSF NFL concentration (Y axis, pg/mL) 
corresponding to modified FSRP score excluding points assigned for age (X axis). Shading 

reflects 95% confidence interval. Amyloid positive=CSF A42<193 pg/mL; amyloid 

negative=CSF A42≥193 pg/mL; t-tau positive=t-tau≥93 pg/mL; t-tau negative=t-tau<93 
pg/mL; CSF=cerebrospinal fluid, FSRP=Framingham Stroke Risk Profile, 
NFL=neurofilament light, t-tau=total tau. 
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Fig 2. FSRP and CSF NFL by Alzheimer’s Disease and Suspected Non-AD 

Pathophysiology (SNAP) Profile. 

 

 
 
Solid lines reflect unadjusted values of CSF NFL concentration (Y axis, pg/mL) corresponding to 
modified FSRP score excluding points assigned for age (X axis). Shading reflects 95% 
confidence interval; CSF=cerebrospinal fluid, FSRP=Framingham Stroke Risk Profile, 
NFL=neurofilament light. 

 


