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Featured Application: The present work represents a preliminary performance assessment of
a simulated system for Time Domain Diffuse Optical Tomography, in view of the upcoming
development of a real system for breast cancer imaging, which shall feature a reduced number
of sources and detectors, compact silicon-based detectors, and that shall avoid exceedingly
long breast examination times. These features make the proposed system suitable to be
integrated into a compact hand-held probe for breast lesion characterization (malignant vs.
benign). To improve the reconstructions, morphological information will be provided by
ultrasound imaging, integrating an ultrasound transducer in the probe along with the TD-DOT
instrumentation.

Abstract: Time Domain Diffuse Optical Tomography (TD-DOT) enables a full 3D reconstruction of
the optical properties of tissue, and could be used for non-invasive and cost-effective in-depth body
exploration (e.g., thyroid and breast imaging). Performance quantification is crucial for comparing
results coming from different implementations of this technique. A general-purpose simulation
platform for TD-DOT clinical systems was developed with a focus on performance assessment
through meaningful figures of merit. The platform was employed for assessing the feasibility and
characterizing a compact hand-held probe for breast imaging and characterization in reflectance
geometry. Important parameters such as hardware gating of the detector, photon count rate and
inclusion position were investigated. Results indicate a reduced error (<10%) on the absorption
coefficient quantification of a simulated inclusion up to 2-cm depth if a photon count rate ≥ 106 counts
per second is used along with a good localization (error < 1 mm down to 25 mm-depth).

Keywords: diffuse optics; optical mammography; diffuse optical tomography; time domain

1. Introduction

Medical imaging often employs tomography as an effective tool to help detecting and characterizing
both pathological and physiological conditions in tissues. Tomography provides 2D/3D images of
the tissue under investigation and is performed exploiting approaches that typically involve ionizing
radiations or complex magnetic field analysis (e.g., X-Ray CT, MRI).
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A different non-invasive experimental approach involves injecting low-power laser light in the
Near-Infrared (NIR) spectrum and studying photon paths through the tissue to derive its optical
properties, i.e., absorption and scattering. Thus, performing optical measurements with a set of
properly arranged sources and detectors enables a full 3D reconstruction of the optical properties that
correlate with the nature of imaged tissue. Such an approach is known as Diffuse Optical Tomography
(DOT), because light propagation follows a quasi-diffusion like model when working in the NIR on
large (cm3) tissue volumes (e.g., for clinical applications). Other approaches involve the detection of
the diffused fluorescence signal (Fluorescence DOT) emitted by a specific fluorescent marker after
being injected into the tissue [1].

Specifically, Time Domain DOT (TD-DOT) is performed by injecting pulsed laser light and
detecting the effects of propagation through the tissue (i.e., amplitude attenuation, delay and temporal
broadening of the pulse) to retrieve the optical properties of the tissue [2].

TD-DOT is potentially powerful for applications needing in-depth body exploration (such as brain
activation [3], thyroid and breast imaging), and can be implemented in compact hand-held probes
for easier non-invasive clinical examinations [4]. The main advantage of the TD approach is that it
enables one to uncouple the effects of scattering from the effects of absorption in a single measurement,
with no need for multiple distance measurements. Furthermore, when reflectance geometry is used,
the photon Time-of-Flight (TOF) provides information on the depth probed by the measurement.
More generally, the TD approach, exploiting time as an additional dimension, reduces —at least in
principle—the required number of sources and detectors with respect to continuous wave or frequency
domain operation, and that enables simpler implementations for medical use [5].

In the last years an important technology push has made the TD approach more attractive:
Detectors like Silicon Photomultipliers (SiPMs), adapted from different applications, proved to be
cheaper, more compact and sensitive than conventional detectors (e.g., Photomultiplier Tubes) and
started to be widely applied as single-photon detectors in optical measurements [4,6]. At the same
time, SiPMs can be developed for hardware gating of the photon distribution, thus opening to higher
penetration depths, but still keeping small dimension, which is not trivial for gated detectors [5].

Despite recent technology innovations, there is plenty of room for improvement in TD-DOT
in reflectance geometry on the software side (e.g., reconstruction algorithms), as well as on the
hardware side (e.g., more compact multiwavelength or tunable sources). Thus, anticipating a consistent
framework for this modality, a clear and widely shared approach to performance quantification is
essential for comparing results from different implementations, driving improvements in hardware
and data analysis, and anticipating problems that may arise in the clinical environment.

Breast cancer applications are crucial, as it is the most common cancer amongst women, with about
1 in 8 females being diagnosed with the disease during their lifetime [7,8]. Survival rate significantly
improves when an early diagnosis is reached. Nowadays screening mammograms play a key role in
the prevention programs, but X-ray mammography still suffers from a low sensitivity that generally
leads to unnecessary, social-care expensive, painful and invasive examinations [9,10]. Apart from
Magnetic Resonance Imaging (MRI) [11,12] and Ultrasound (US) imaging [13,14], that are already
applied in clinics as supplementary imaging tools, several techniques are presently being investigated
for the quantitative imaging of breast cancer [15]. Among them, a hand-held optical probe for
TD-DOT could prove useful to improve diagnostic sensitivity, performing non-invasive, cheap and
physiological-related examinations to better characterize and classify breast lesions after a positive
screening mammography.

The purpose of the paper is twofold. First, we present a simulation platform suitable for simulations
of large multi-parameter scenarios in DOT, and then we exploit this platform for a systematic study of
the performances and feasibility of a TD-DOT hand-held probe to work in reflectance geometry for
breast cancer imaging and characterization. More in detail, the key features and the novelty of the
platform are: (i) Fully automated scheme which permits to run automatically large multi-parametric
scenarios in batch processing; (ii) an objective, quantitative and operator-independent assessment of



Appl. Sci. 2019, 9, 2849 3 of 15

the outcome of the reconstruction in view of the desired clinical application; (iii) attempt to enforce
standardization and performance assessment criteria, following internationally agreed protocols
(e.g., BIP [16], MEDPHOT [17], NEUROPT [18]). As compared to existing tomographic packages
(e.g., TOAST [19] or NIRFAST [20]) our platform does not offer novelty in the algorithms, but rather
aims at studying automatically and with an objective and quantitative outcome the effects of different
parameters in a flexible and systematic way.

The second aim of the paper is to exploit the simulation platform to investigate TD-DOT in
reflectance geometry with a limited set of source-detector couples towards applications for breast
diagnostics. Many parameters with a complex interplay were considered simultaneously, at the level
of hardware implementation (number and temporal width of the time gates, counts per second),
experimental conditions (depth of the absorption inhomogeneity), and reconstruction parameters
(regularization, voxel size). Also, an objective quantification of the tomography reconstruction is
needed to assess the capability of the system to classify different lesions. The results will display the
limits of applicability, the expected performances, and the key bottlenecks of such a compact 3D probe
with respect to realistic scenarios.

The rest of this paper is organized as follows: In Section 2 we present the architecture of the
developed multipurpose simulation platform, followed by a detailed discussion about the specific kernel
for time domain breast tomography, with problem specifications. Finally, we describe the systematic
set of simulations we performed for investigating a wide combination of variables. In Section 3 we
report the main results we obtained along with the accuracy in the estimate of optical parameters.

2. Materials and Methods

2.1. Multi Simulation Platform

The (Matlab®-based) simulation platform was developed to perform systematic simulations
mimicking realistic instrumentation for different kinds of applications (simulation kernel), and a
generic software architecture was exploited to build a flexible and multipurpose tool. At the same time,
we focused on the quantitative assessment of the outcomes and on their comprehensive visualization
to help better understand system performances. Quantification is reached by the identification either of
some meaningful characteristics or figure of merit (FoM) that well describe system performances, or by
comparison with what is defined in well-established standardization protocols. Finally, a visualization
section provides a graphical representation of FoMs when up to 5 parameters are changed in
the simulations.

Figure 1 depicts the software architecture. The scheme can be divided into 5 main parts:

1. Setting of the simulation framework variables;
2. Simulation parameters update and override onto the default values;
3. The kernel: The single-shot simulation core code for the specific application the user wishes;
4. Quantification and extraction of the FoMs;
5. Visualization of the FoMs.

The first step is to set the entire variables framework the user wishes to use for the simulation
batch and flag only those for which the user wants to study a specific range of values. The space
of variables is described in an abstract way, so that the user can decide for each variable either to
fix a constant value, or to specify a range of discrete values. For up to five independent variables,
the program will study all possible combinations of values in the range.

The number of total iterations of the kernel code is given by the product of the numericity of the
flagged variables. Each iteration thus corresponds to a specific combination of the values of the flagged
variables. The values of all the variables are set just before the kernel runs.

At the end of each iteration, FoMs are calculated and stored for following visualization.
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2.2. Tomographic Kernel

The kernel is divided into two sections: (i) Forward problem and (ii) Inverse problem.
For the forward problem, analytical solutions to the Diffusion Equation under Extrapolated

Boundary Conditions for a semi-infinite medium have been computed both for the homogeneous
case and for the heterogeneous case. In the latter case, a perturbative solution under the Born
approximation has been used over a voxelated volume [21]. Notwithstanding the large availability
of more sophisticated models, such as finite-elements (FEM) [22] or Monte-Carlo [23,24], the use
of an analytical solution has the advantage to be quite faster than numerical methods, and to be
independent of the temporal discretization. After the computation of the forward time-resolved curves,
they are converted to photon-counts, accordingly to the desired count-rate, responsivity of the system,
measurement time, source/detector areas, and source power. More in detail: the fluence is translated to
actual photon counts, considering an average injection power of 1 mW at 800 nm. The acquisition time
is set to 1 s, while the detectors are simulated with a 7 mm2 active area and a 0.04 quantum efficiency.
The simulated values represent a realistic estimate based on actual system setups. No optical losses are
considered, since the detector is supposed to be in contact with the medium with full acceptance angle.
These figures are used to estimate the maximum number of detected photons. Then, to account for the
maximum count rate sustainable for the detection electronics, that number is clipped to an upper limit
(typically, this value is 106 counts per second). If desired, an experimentally-derived Instrumental
Response Function (IRF) can also be convolved to all the curves for simulating a specific detector.
Afterwards, multiplicative Gaussian noise (0.1%) is added to take into account amplitude fluctuations
and in general other instabilities of the system. Finally, Poisson noise is added to simulate the shot
noise associated with photon detection. The two types of noise simulate the modification of an ideal
distribution of time of flight due to the non-ideal experimental setup (Gaussian noise) and photon
detection (Poisson noise). More details can be found in [5]. In particular, measurements with a gated
detector can be also simulated [25].

Concerning the reconstruction of the absorption coefficient (µa) in the volume, a Jacobian matrix
is first computed by solving the following time convolution [21]:

J(ri, tk; rs,rd) =

∫ tk+∆t

tk

G(rs, ri, t)
⊗

G(ri, rd, t)
⊗

h(t; rs, rd)dt, (1)

where ri is the position of the ith voxel, tk is the kth ∆t broad temporal window, rs and rd the
source/detector position, respectively, G(rl, rm, t) is the Green’s Function for the semi-infinite medium
calculated at the position rm for a source placed at rl, and h(t; rs, rd) is the IRF related to the
source/detector pairs placed at rs and rd. The first convolution between the Green’s functions
has been analytically solved to speed up the calculation [21].
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The distribution of the absorption perturbation with respect to the background optical properties
is retrieved by solving the following problem:

∆µa = argmin
∆µa

∑i

(
yi − Ji∆µa

σi

)2

+ τ‖∆µa‖
2

, (2)

where ∆µa is the vector of the absorption perturbations in each voxel (∆µa = µ
perturbation
a − µ

background
a ),

yi is the simulated photon-count in each time window and for every source/detector pairs, Ji is the ith

row of the Jacobian, σi =
√

yi is the standard deviation accordingly to the Poisson statistics, and τ is a
regularization parameter. Even though the chosen regularization is basic, it provides a solid basis for
the future usage of more sophisticated methods, including total variation or lp sparsity [26–29]. Finally,
it is worth noticing that the whole simulated distribution time of flight is used for the reconstruction,
thus exploiting the information carried by the time domain data.

Problem (2) is solved by a direct solution of the normal equation:(̃
JT J̃ + τI

)
∆µa = J̃T ỹ, (3)

where J̃ and ỹ are the Jacobian matrix and the simulated data vector normalized by standard deviation
accordingly to the following: {

J̃ = Σ−1 J
ỹ = Σ−1y

, Σ = diag(σi) , (4)

2.3. Simulation Overview

For our Time Domain Diffuse Optical Tomography (TD-DOT) simulations in reflectance geometry
we used a fixed geometry of sources and detectors placed in a rectangular pattern (30 mm × 20 mm).
On each long side of the rectangle 4 pairs of sources and detectors are placed, with overlapping source
and detector positions. Spacing between two nearest source-detector pairs is of 10 mm. The simulated
probed volume is a parallelepiped (60 mm side and 30 mm) and the rectangular pattern of sources
and detectors is located on its top surface. A localized spherical heterogeneity (~5 mm radius,
µa = 0.04 mm−1) is moved within the simulated volume (µa = 0.01 mm−1), thus probing the system
performances in the region underlying the sources and detectors arrangement. Figure 2 depicts the
phantom and measure geometry.
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Both sources and detectors are simulated using realistic signal and noise (e.g., source power,
Instrument Response Function, detector area and quantum efficiency, and signal noise), mimicking the
typical performances of a TD instrument. We modeled the breast as a semi-infinite medium, with a
local absorbing perturbation with respect to the background.

To provide a full characterization of our system we performed a thorough series of simulations
studying the main parameters that could affect system performances both on the hardware side
(e.g., temporal gating) and the software side (e.g., reconstruction parameters). The set of simulations is
summarized in Table 1.

Table 1. Set of performed simulations.

Parameter #

Simulation
Name 1 2 3 4 5 Added Poisson

Noise

A Xp Yp Zp Regularization Voxel Size No
B Xp Yp Zp Time Channel Number of Temporal Steps No
C Xp Zp Number of Time Windows Regularization - Yes
D Xp Zp Number of Delays Regularization - Yes
E Xp Zp Counts per Second Regularization - Yes
F Xp Yp Zp Regularization - Yes

Where: Xp, Yp, Zp are the coordinates of the perturbation within the volume; “Regularization” refers to the
regularization parameters (named τ) indicated as a fraction of the maximum singular-value of the Jacobian J̃ in
Equation (3); “Number of Time Windows” is the number of software gating windows within the temporal scale;
“Number of Delays” is the number of hardware gating delays of the detectors; “Counts per Second” is the photon
count rate of the emitting source; “Time Channel” is the temporal width of the single channel of the temporal axis;
“Number of Temporal Steps” is the total number of channels of the temporal axis.

Table 2 lists the values of the parameters that have been studied.

Table 2. Ranges and default values of the parameters under investigation.

Parameter Name Range Default Value Unit

Xp −20:5:20 - mm
Yp −20:5:20 0 (C, D, E) mm
Zp 5:5:25 . mm

Counts per Second 105, 106, 107, 108 106 cps
Number of Delays 1, 3, 5, 10 1 (A, B), 3 (C, D, E, F) -

Regularization 10−4, 10−3, 10−2, 10−1, 1 10−4 (B) -
Voxel size (1 side of a cube) 1, 2, 5 2 mm

Time Channel 6, 12, 24, 48 12 ps
Number of Temporal Steps 200, 400, 600 600 -
Number of Time Windows 5, 10, 20, 40 20 -

Quantification of the simulations outcome is reached through the definition of FoMs:

• The error on the localization of the reconstructed inclusion along the three axes x, y and z with
respect to the simulated position according to the center of mass.

εloc =

∫
ROI

rrec
i −

∫
ROI

rtrue
i i = x, y, z, (5)

• The volumetric error on ∆µa is calculated as:

εvol =

∫
ROI ∆µrec

a dV −
∫

ROI ∆µtrue
a dV∫

ROI ∆µtrue
a dV

, (6)
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where ROI is a spherical region of interest (ROI) of radius 2 cm cantered on the center of mass
of the reconstructed inclusion and ∆µtrue

a and ∆µrec
a are the true and reconstructed absorption

perturbation values.

Each simulation set is made of ~2000 independent reconstructions and requested an average of
12 h to complete on a dedicated work station (Dell Precision Tower Workstation 7910, mounting Dual
Intel Xeon processors—10 cores, 2.35 GHz—and 64 Gb of RAM memory).

3. Results and Discussion

For the sake of clarity, in the following we will focus on the most meaningful simulations
(simulations E and F) and report the main conclusions for the simulations A, B, C and D. For simulations
from A to D, we provide external references to FigShare links, which give access to the relative figures
that are not reported in this paper, so as not to overload the discussion [30–35].

Simulation A has provided indications as for the best voxel size to use during the reconstruction
algorithm showing how the 1 mm and 2 mm voxel size are totally equivalent, while the 5 mm voxel
size slightly worsens the localization errors and spatial resolution in favor, though, of a significant
reduction of calculation time [30,32,35]. We used the 2 mm voxel size for the rest of simulations.

Simulation B showed no significant changes with the Time Channel duration up to 48 ps. A default
12 ps time channel duration was chosen. The number of temporal steps was fixed to be 600, thus
leading to a ~7 ns long temporal scale, which fully includes the dynamic range of the simulated
curves [33].

Simulation C suggested that the optimal temporal width of the software gating windows should
be less than 500 ps. A wider time window introduces errors especially on the absorption coefficient
estimation and reduces the penetration depth. The time window duration is given by the duration
of the time scale (i.e., the number of time channels multiplied by the time channel duration) divided
by the number of time windows. As we fixed the time channel duration to 12 ps and the number of
temporal steps to 600, the minimum number of temporal windows is 14: A rounded value of 20 was
chosen [31].

Simulation D showed how hardware gating of the detector improves the penetration depth.
The relative volumetric error on the absorption coefficient, without gating, is up to 30% at 2 cm depth,
while it decreases as close as 10% when several gating windows are used. We identified three as the
optimal number of hardware gates: A greater number possibly reduces the photon counts in each
window, which may increase error and worsen localization [34].

The previous simulations helped us to define the best variables set to provide a lower absorption
quantification error and a better localization of the perturbation. Simulation E is of great interest as it
studies the effects of the signal level, which is often a concern in optical breast imaging due to high
absorption (e.g., at long wavelengths due to water concentration) and breast thickness variability.
In the following we will discuss in detail the figures of merit.

Each panel of Figure 3 shows the error of the reconstructed x coordinate of the inclusion with
respect to the simulated one, i.e., the localization on x, expressed in millimeters. The horizontal axis of
each panel corresponds to the simulated x coordinate of the inclusion (from −20 mm to 20 mm at 5 mm
step), while the Y axis is the depth of the inclusion, i.e., the z coordinate (from 5 mm to 25 mm in 5 mm
steps). Different rows correspond to different count rates (105, 106, 107, 108 from top to bottom) while
columns represent different values of the regularization parameter (10−4, 10−3, 10−2, 10−1, 10−0 from
left to right). The error is color-coded: Red colors correspond to positive errors, while blue colors are
negative errors; small errors are identified by greenish colors. The thick black line is the error-free
contour line, while a label indicates the error value on the other contour lines.

Figure 3 suggests a general high localization of the x coordinate in most of the conditions as the
green color (indicating low error, close to 0 mm) is spread over most of the panels except for low
regularization (τ = 10−4). This is expected, as a very small value of the regularization parameter leaves
excessive room to the effects of the reconstruction noise. At the same time, the localization error is
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spatially more uniform for higher regularization: At a fixed count rate, the error dispersion tends to
reduce as the contour lines are straighter and zones with different error value are merged together.

However, values exceeding 10−1 could worsen the figure of merit, indicating that a high value of
regularization might induce artifacts. The count rate value does not seem to affect the x coordinate
localization error for τ ≥ 10−3, as within each column a low error (close to 0 mm) is obtained for every
experimented condition. A good localization is achieved even in depth down to 25 mm for τ ≥ 10−3.
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Figure 3. Localization error on the x coordinate (expressed in mm) at different values of τ (columns)
and count rates (rows). Horizontal axis of each subplot is the simulated x position of the inclusion and
vertical axis is the simulated z position. Colors show an error of −10 mm (blue) to +10 mm (red).

The same considerations apply to the localization along the y coordinate (data not shown).
Figure 4 shows the localization on the z coordinate, i.e., the reconstructed z coordinate of the

inclusion with respect to the simulated one. Similar conclusion to Figure 3 can be drawn for Figure 4,
but it is worth noticing the low localization error (around 0 mm) even in depth (25 mm) for τ = 10−3,
which seems to be the best value for the regularization parameter. This is a key aspect as the maximum
probed depth is a typical issue when dealing with DO systems, and 25 mm is considered to be a
significant value. Moreover, higher regularization values cause the inclusion to be reconstructed at
shallower depths, as the negative (blue) error increases for a fixed z coordinate value (same row).
As an example, let us consider the last row (count rate = 108 cps) and Zp = 15 mm. The error increases
(in absolute value) from 0 mm at τ = 10−3 to −2 mm at τ = 10−1, and reaches −3 mm at τ = 1.

Figure 5 shows the relative volumetric error on the absorption coefficient. The figure clearly
highlights that high regularization values cause a negative error—i.e., an underestimation of the
absorption coefficient—rapidly increasing with the regularization parameter (i.e., left to right within
each row). Again, the best value of τ seems to be 10−3 as the volumetric error is kept as low as 20%
(in absolute value), even at 2 cm-depth. Clearly, the error on the quantitation of ∆µa can be related
to the underestimation of z. The regularization tends to attract the perturbation towards the surface
and consequently a lower ∆µa is enough to match the observed contrast. For τ = 10−3, a photon count
rate ≥ 106 leads to a wide low-error region (<10%) up to 2 cm depth, which is a positive result as ~106

counts per second (cps) is a realistic signal level.
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Figure 4. Localization error on the z coordinate for different count rates (rows) and τ (columns).
Horizontal axis of each subplot is the simulated x position of the inclusion and vertical axis is the
simulated z position. Colors show an error of −10 mm (blue) to +10 mm (red).
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Figure 5. Volumetric error on the absorption coefficient for different count-rates (rows) and τ (columns).
Horizontal axis of each subplot is the simulated x position of the inclusion and vertical axis is the
simulated z position. Colors show an error of −100% (blue) to +100% (red).

Figure 6 sums up the previous results and corresponds to simulation F. In this case the Y axis of
each subplot is the y coordinate, while rows correspond to a different z coordinate of the inclusion.
Count rate is now fixed to 106 cps. A low error region is located within the rectangle identified by
sources and detectors positions, and a 2-cm depth can be reached with a ~80% accuracy level in the
estimate of the absorption coefficient if a τ = 10−3 is chosen. Higher regularization values cause
underestimation of the absorption coefficient as well as worse localization.
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Figure 6. Map of the volumetric error on the absorption coefficient. The horizontal axis of each subplot
is the simulated x position of the inclusion and the vertical axis is the simulated y position. Rows are
for different z coordinates of the inclusion, while columns are for different τ. Colors show an error of
−100% (blue) to +100% (red).

Figure 7 is obtained in the same condition as Figure 6, but it shows the Contrast-to-Noise Ratio
defined as:

CNR =
∆µrec,roi − ∆µrec,roi√

wroiσ2
roi + wroiσ

2
roi

where ∆µrec,roi and σroi are the mean value and standard deviation of the reconstructed ∆µrec
a calculated

in a region of interest; ∆µrec,roi and σroi are calculated on the complementary region of interest

(roi = 1 − roi); wroi and wroi are weights defined as the volume rations wroi =
Vroi
Vtot

and wroi =
Vroi
Vtot

.
The region of interest is defined as the region of space in which the reconstructed ∆µrec

a is greater than
half of the maximum reconstructed value.

This figure of merit is an indicator of the goodness of the reconstruction for specific structures
within the volume [36]. The CNR strongly decreases with the depth for any regularization value,
but quicker for higher τ values. The column τ = 10−3 and τ = 10−2 provide the best trend for the
CNR, leading to a CNR close to 10 at a depth of 2 cm, even though τ = 10−2 seems to offer a more
homogeneous distribution at all depths.

Overall, Figures 6 and 7 suggest that the simulated system would be capable of detecting inclusions
up to 2 cm depth with a significant accuracy and reasonable contrast.

The previous figures show the spatial distribution of the figures of merit in different experimental
conditions (i.e., photon count rate, regularization parameter). However, the most common method of
assessing the goodness of a reconstruction is through the cross sections of the overall tomographic
image. Thus, in the following Figures 8 and 9, we show an example of the simulated tomography
problem and of the obtained reconstruction, respectively. Each subplot corresponds to a different depth
(expressed in millimeters) and the X/Y axis is the x/y coordinate in space. The color bar shows the
value of the absorption coefficient in mm−1 units. The count rate is fixed at 106 cps and three hardware
gates of the detectors are simulated. The regularization parameter is set to 10−2. We simulated the
spherical inclusion (whose features are described in Section 2.3) in the center of the x-y plane and at a
10 mm-depth, thus spanning from 5 mm to 15 mm.
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Figure 9. Cross sections at different depths of the reconstruction. Localization is good in all of the
coordinates and the quantification error is low (5%).

The reconstruction in Figure 9 shows small surface artifacts, but the localization in the x-y plane is
good as the inclusion is set in the center of such plane, as expected. The z coordinate is reconstructed at
a slightly shallower position, as the center of the inclusion is at 9 mm, but the overall height is properly
identified. The quantification error is limited to 5%.

All of the presented simulations were carried out at 1 s acquisition time per source-detector
pair over the number of hardware gates of the detector. Overall, considering the 64 combinations
of the source-detector pair, the measurement time would be around 1 minute. That measurement
time was estimated as an acceptable trade-off between the collected signal and measurement duration.
Furthermore, different source-detector implementations may allow shorter times. For example, efficient
choosing of the most meaningful source-detector pair could reduce the measurement time, at least by a
factor of 2.

4. Conclusions

In our work on breast imaging and lesion characterization, we wanted to assess the performances
of a Time Domain Diffuse Optical Tomography (TD-DOT) system working in reflectance geometry,
formed by eight couples of sources and detectors placed in a rectangular pattern, with a particular focus
on the quantification of the system figures of merit. Thus, we developed a general-purpose simulation
platform to carry out a quantitative performance assessment of clinical TD-DOT systems. The platform
is able to study up to five parameters at the same time and to extract the corresponding figures of
merit. It also provides an immediate and concise visualization tool for an analysis and comparison of
results. We used the platform to provide a thorough characterization and validation of our TD-DOT
system using realistic levels of signal and noise and studying important parameters, such us inclusion
position, hardware gating of the detector, regularization parameter (τ) and the total photon count rate.
The main figures of merit used are the localization error of the reconstructed inclusion with respect to
the simulated one and the relative volumetric error on the absorption coefficient.

We found that the hardware gating of the detector significantly improves absorption quantification,
enabling one to probe the tissue down to 2 cm-depth with a volumetric error as low as 10%. At the
same time a software gating of the reconstructed photon distribution of time of flights improves the
penetration depth if the time window is shorter than 500 ps.
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Better inclusion localization in the x-y plane (error < 1 mm) was reached under most of the
experimented conditions when τ ≥ 10−3 and down to 25 mm-depth in the source-detector rectangular
region. The localization error is low along the z axis for τ = 10−3 (error < 1 mm down to 25 mm-depth)
but increases with higher values of τ, reaching a −4 mm value when τ = 1. Thus, the inclusion is
reconstructed at a shallower depth and there is a strong underestimation of the absorption coefficient.
Finally, once we fixed the other parameters, a photon count rate ≥ 106 cps leads to a wide volume
(under the source-detector pattern and down to a 2 cm-depth) in which the relative volumetric error
is low (<10%), indicating a high accuracy of the proposed TD-DOT system and fostering its use for
breast imaging.

To further improve these results multiple options are being studied: The use of a priori information
coming from US images should further improve the localization and penetration depth, and a finite
element fitting procedure should improve the quantification of the absorption coefficient as inversion
algorithms are avoided for the reconstruction in favor of a more robust data fitting procedure, using an
analytical solution of the problem. These approaches could also benefit from the implementation
of a discretization error model, thus further improving its quantification capability [37]. The use
of a multi-wavelengths approach is being considered to improve quantification. A spectral fitting
procedure would provide the concentrations of the main components of the breast which results in a
more direct method for breast and lesion type identification.
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