Manuscript Details

Manuscript number	ECSS_2019_96_R2
Title	Geophysical and geochemical analysis of shallow gas and an associated pockmark field in Bantry Bay, Co. Cork, Ireland.
Article type	Research Paper

Abstract

An integrated geophysical, geological, and geochemical investigation of seabed fluid venting was carried out in upper Bantry Bay, a large marine inlet on the southwest coast of Ireland. The results provide evidence of the seafloor venting of gas rich fluids, resulting in the formation of a pockmark field identified here for the first time. The pockmarks occur in an area where sub-bottom profiles provide evidence of chimney-like features interpreted to record upward gas migration through Quaternary sediments to the seafloor. Three vibrocores up to 6 m long were acquired in water depths of 24-34 m, two from the pockmark field and one from outside. Methane of predominantly biogenic origin was quantified in all three cores by headspace analysis of sediment sub-samples. Well-defined sulfate methane transition zones (SMTZs) were observed in two of the cores, the shallowest (1.25 m) inside the pockmark field and the other (3.75 m) outside. It is likely that an SMTZ occurs at the location of the third core, also within the pockmark field, although beneath the samples obtained during this study. Gas release possibly from a combination of various faulting mechanisms and shallow methanogenesis appears to drive diffuse pore fluid migration across wide areas, while focused flow through the pockmarks may be related to gas originating from the Owenberg River Fault and methanogenesis of pre-glacial lacustrine sediments preserved in a bedrock basin. Analysis of phospholipid fatty acids (PLFAs) and archaeal isoprenoid hydrocarbons was used to investigate the microbial ecology of these sediments. Anaerobic oxidation of methane (AOM) may play a role in controlling release of CH4 to the water column and atmosphere in this shallow gas setting, potentially mediated by syntrophic sulfate reducing bacteria (SRB) and anaerobic methanotrophic archaea (ANME).

Keywords	Geophysics; biogeochemical processes; pockmarks; fluid migration; anaerobic oxidation of methane (AOM); lipid biomarkers
Taxonomy	Oceanography, Methane
Corresponding Author	Brian Kelleher
Corresponding Author's Institution	Dublin City University
Order of Authors	Sean Jordan, Shane O' Reilly, Daniel Praeg, Dayton Dove, Lorenzo Facchin, Roberto romeo, Michal Szpak, xavier monteys, Brian Murphy, Gill Scott, Stephen McCarron, Brian Kelleher
Suggested reviewers	Alan Judd, Joseph Kelley, Aggeliki Georgiopoulou, Crispin Little

Submission Files Included in this PDF

File Name [File Type] coverletterKelleher.doc [Cover Letter] Response to reviewers [Rev].docx [Response to Reviewers] Highlights (2).docx [Highlights] Manuscrpit.docx [Manuscript File] Figure 4.pdf [Figure] Figure Captions (3).docx [Figure] Fig 1 [Rev] pdf.pdf [Figure] Figure 1 [Rev] tif.tif [Figure] Figure 2 [Rev] pdf.pdf [Figure] Figure 2 [Rev] tif.tif [Figure] Figure 3.pdf [Figure] Supporting Information [Rev].docx [Supporting File]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE Homepage, then click 'Download zip file'.

Research Data Related to this Submission

There are no linked research data sets for this submission. The following reason is given: Data will be made available on request

Highlights

- Acoustic data provided evidence for widespread fluid migration in a shallow marine bay in Co. Cork, Ireland including shallow gas deposits near the seabed.
- Fluid migration has led to the formation of a previously undescribed pockmark field within the bay.
- Ground-truthing confirmed that the fluid was methane which is likely both thermogenic and biogenic in origin, possibly derived from an underlying fault and methanogenesis of pre-glacial lacustrine sediments.
- Geochemical evidence suggests that microbial anaerobic oxidation of methane (AOM) plays a key role in controlling the release of methane to the atmosphere from the bay.

1	Geophysical and geochemical analysis of shallow gas and an associated
2	pockmark field in Bantry Bay, Co. Cork, Ireland.
3	S.F. Jordan ^a , S.S. O'Reilly ^b , D. Praeg ^{c,d} , D. Dove ^e , L. Facchin ^d , R. Romeo ^d , M. Szpak ^f , X.
4	Monteys ^f , B.T. Murphy ^a , G. Scott ^g , S.S. McCarron ^g , and B.P. Kelleher ^{a,*}
5	
6	^a School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
7	^b Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of
8	Technology, Cambridge, MA, USA
9	^c Géoazur (UMR7329 CNRS), 250 Rue Albert Einstein, 06560 Valbonne, France
10	^d OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Borgo Grotta Gigante
11	42C, Trieste, 34010, Italy
12	^e British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh, EH14 4AP,
13	UK
14	$^{\mathrm{f}}$ Geological Survey of Ireland, Beggars Bush, Haddington Road, Dublin, Ireland
15	^g Maynooth University Department of Geography, Maynooth, Co. Kildare, Ireland
16	
17	*Corresponding author: <i>E-mail address</i> : <u>brian.kelleher@dcu.ie</u> (B.P. Kelleher).
18	
19	Abstract
20	
21	An integrated geophysical, geological, and geochemical investigation of seabed fluid venting
22	was carried out in upper Bantry Bay, a large marine inlet on the southwest coast of Ireland.
23	The results provide evidence of the seafloor venting of gas rich fluids, resulting in the formation
24	of a pockmark field identified here for the first time. The pockmarks occur in an area where
25	sub-bottom profiles provide evidence of chimney-like features interpreted to record upward

gas migration through Quaternary sediments to the seafloor. Three vibrocores up to 6 m long were acquired in water depths of 24-34 m, two from the pockmark field and one from outside. Methane of predominantly biogenic origin was quantified in all three cores by headspace analysis of sediment sub-samples. Well-defined sulfate methane transition zones (SMTZs) were observed in two of the cores, the shallowest (1.25 metres below sea floor (mbsf)) inside the pockmark field and the other (3.75 mbsf) outside. It is likely that an SMTZ occurs at the location of the third core, also within the pockmark field, although deeper than the samples obtained during this study. Gas migration towards the seafloor is suggested to involve both diffuse pore fluid migration across wide areas and focused flow through the pockmarks, together driven by methanogenesis of pre-glacial lacustrine sediments preserved in a bedrock basin, and possible gas release from the Owenberg River Fault. Analysis of phospholipid fatty acids (PLFAs) and archaeal isoprenoid hydrocarbons was used to investigate the microbial ecology of these sediments. Anaerobic oxidation of methane (AOM) may play a role in controlling release of CH₄ to the water column and atmosphere in this shallow gas setting, potentially mediated by syntrophic sulfate reducing bacteria (SRB) and anaerobic methanotrophic archaea (ANME).

Keywords

> Seafloor; pockmarks; biogeochemical processes; fluid migration; anaerobic oxidation of methane (AOM); lipid biomarkers; methane; climate change; geohazards

- **1. Introduction**

Pockmarks are concave depressions within seabed sediments, circular to ellipsoidal in shape, ranging from <1 to 400 m in diameter and up to 20 m deep (Hovland and Judd, 1988;

King and MacLean, 1970), although typically 30 to 40 m wide and 2 to 3 m deep (Acosta et al., 2001). Pockmarks can occur as singular features, in linear patterns known as pockmark trains, or in complex groups known as pockmark fields. The formation and dynamics of these features are still not fully understood, but they are generally considered to be the result of the expulsion of fluids typically including hydrocarbon gases, mainly methane (CH₄), from seafloor sediment (Hovland, 2013; Hovland and Judd, 1988). The emission of fluids containing gas from pockmarks makes them of interest in relation to issues of global carbon cycling and climate change, as well as for seafloor geohazards (Judd and Hovland 2007).

Geologic Emissions of Methane (GEM), which include marine seeps such as pockmarks, have been recognized as a natural source of atmospheric methane second only to wetlands (Etiope et al., 2008). As a greenhouse gas, the warming potential of CH₄ outweighs carbon dioxide (CO₂) by a factor of 25 times per ton, and since pre-industrial times is estimated to have been responsible for approximately 20% of the Earth's warming (Yvon-Durocher et al., 2014). Recent work indicates that contributions from marine sources have been greatly underestimated (Skarke et al., 2014) and there is a need for CH₄ flux revisions in terms of understanding the global carbon cycle (Judd and Hovland, 2009). Seepage sites are globally widespread in shallow water coastal regions and have been suggested to be an important source of CH₄ (Borges et al., 2016; Janssen et al., 2005; Shakhova et al., 2010; Skarke et al., 2014). However, global estimates of the contribution to atmospheric CH₄ concentrations from marine seepage sites are highly uncertain (Römer et al., 2014).

The presence of pockmarks may also be of significance in terms of marine geohazards (Hovland, 1989). Fluid migration through marine sediments, through its influence on pore pressures and sediment strength, is thought to play a key role in slope failure and seabed instability (e.g. Locat and Lee, 2002). Therefore in pockmarked areas the development of offshore infrastructures, such as pipelines, may need to avoid these features (Hovland et al.,

2002). In addition, pockmarks have been suggested as possible indicators of seismic activity (Hovland et al., 2002), based on observations of gas venting from pockmarks before and during earthquakes at sites in California (Field and Jennings, 1987) and Greece (Hasiotis et al., 1996; Soter, 1999). Large-scale multinational monitoring of pockmarks has been advocated (Hovland et al., 2002).

Anaerobic oxidation of methane (AOM) and the microbial consortia involved are important factors in the global methane cycle, and yet they are still poorly understood (Gauthier et al., 2015; Ruff et al., 2016). Although large amounts of CH₄ are transported from deep reservoirs to shallow sediments, it is estimated that <3% reaches the atmosphere due to the AOM performed by microbial communities (Niemann and Elvert, 2008). The predominant mechanism of AOM is thought to be a syntrophic process whereby anaerobic methanotrophic archaea (ANME) and sulfate reducing bacteria (SRB) oxidise CH₄ to CO₂ whilst reducing SO₄²⁻ to H₂S providing energy for both microbial consortia (Boetius et al., 2000; Elvert et al., 2003; Reeburgh, 2007; Valentine and Reeburgh, 2000):

 $SO_4^{2-} + CH_4 \rightarrow HCO_3^{-} + H_2S + H_2O$

These communities are predominantly found in sediments, however they have also been found in anoxic marine and saline lacustrine water bodies, and in terrestrial mud volcanoes (Alain et al., 2006; Joye et al., 1999; Wakeham et al., 2003). AOM primarily occurs at what is known as the sulfate methane transition zone (SMTZ), where CH₄ diffusion from deeper sediments and SO₄²⁻ penetration from seawater provide optimal conditions for AOM communities (Knittel and Boetius, 2009).

Lipid biomarkers can provide evidence for the role played by archaea and SRB in AOM (Caldwell et al., 2008). Phospholipid fatty acids (PLFAs) are fatty acids chemically cleaved from ester linkage to polar head groups and are a useful tool to provide quantitative measures of viable biomass and microbial community composition (Ringelberg et al., 1997; Zelles,

1997). Phospholipids are rapidly degraded after cell death making them excellent biomarkers for viable microbial cells (Navarrete et al., 2000; White et al., 1997). Certain PLFAs have been used as chemotaxonomic markers for SRB, such as $C_{16:1\omega5c}$ and $cyC_{17:0\omega5.6}$ as indicators of Desulfosarcina/Desulfococcus species (Elvert et al., 2003). Archaeal cell membranes are comprised of ether-linked isoprenoid lipids (Schouten et al., 2013). Analysis of these intact lipids or their hydrocarbon skeletons (e.g. phytane, acyclic and cyclic C₄₀ isoprenoids) in environmental samples provides a broad measure of archaeal abundance and diversity (e.g. (King et al., 1998). δ^{13} C values of AOM derived lipids are typically significantly depleted with values < -50‰ (Elvert et al., 2003; Niemann and Elvert, 2008; van Dongen et al., 2007). Isolation of these compounds combined with determination of their δ^{13} C signatures can help provide an overview of the microbial consortia and their involvement in AOM within cold seep environments (Ge et al., 2015; Pancost et al., 2000).

Pockmark and seepage sites have been reported and investigated at several sites around the coast of Ireland and we are only beginning to understand the dynamics and ubiquity of coastal methane cycling (Croker et al., 2005, O'Reilly et al., 2014, Szpak et al., 2012, and Szpak et al., 2015). In this paper we present the first description of a pockmark field in the shallow waters (<30 m) of upper Bantry Bay, on the west coast of Ireland. The aim of the study is to characterise CH₄ migration associated with the pockmarks, based on core data acquired during an Irish-led campaign in 2014. The results provide information on the source of the CH₄ and its relation to the microbial ecology of this area, as well as the possible causes of pockmark formation at this site. Our findings contribute to an improved understanding of gas venting features in Irish coastal waters, that may be relevant to environmental planning, economic developments, and global climate change.

²⁹² 293 124

2. Regional setting

Bantry Bay is the largest marine inlet in the southwest of Ireland, spanning an offshore area of 300 km² (Fig. 1A). It is approximately 40 km long, narrowing in width from 10 km at its mouth, where water depths are up to 60 m, to 5 km at its head. The bay contains two large islands; Bere Island in the outer bay and Whiddy Island in the inner bay. The Melagh, Owvane, Coomhola, Glengarriff, and Adrigole rivers all drain into Bantry Bay. Geologically, the bay lies within the South Munster Basin, comprising Devonian strata dominated by the Old Red Sandstone beneath uppermost Devonian and Carboniferous marine sandstones and mudstones (Plets et al., 2015; Vermeulen et al., 2000). Several fault lines are inferred to run through the bay offsetting the Old Red Sandstone (Fig. 1B): the Bantry Fault runs from the southeast of Whiddy Island, continuing along the centre of the bay; the Owenberg River Fault lies north east of Whiddy Island before meeting the Bantry Fault; while northeast of Whiddy Island are the Glengarriff Harbour and Coolieragh Faults (Szpak et al., 2015).

The sedimentary infill of the Bay was described by (Plets et al. 2015), based on sub-bottom profiles tied to shallow sediment cores, who recognized bedrock to be overlain by up to six units, interpreted to record deposition prior to and since the last glacial maximum (LGM). The oldest unit corresponds to stratified sediments infilling bedrock depressions, correlated to pre-LGM lacustrine sediments reported in the upper Bay by Stillman (1968). This is overlain by glacial sediments, truncated by tidal to estuarine units recording the inundation of the Bay and capped by a seafloor unit recording the establishment of fully marine conditions after 11 ka BP. In the inner Bay, the upper stratified marine unit is underlain by a unit of strong discontinuous reflections described as 'turbid', that cores show to correspond to estuarine deposits, laminated sands and muds containing organic matter, suggested on the basis of its acoustic character to also contain pockets of gas (Plets et al. 2015). In addition, in the upper Bay above at least 65 m water depth, the sediment column is crossed by vertical, pillar-like

acoustic turbidity zones (ATZs) that rise to within several metres of seafloor; although not interpreted by Plets et al. (2015), these appear typical of gas chimneys (Dondurur et al. 2011). Seabed classification maps based on backscatter and particle size analysis (PSA) show that the sediment type is predominantly mud to fine sand with increasing medium to coarse sand towards the mouth of the bay. There are areas of medium to coarse sand, coarse sand to gravel, and rock throughout the bay primarily along the perimeter (INFOMAR, 2011).

- 3. Materials and methods

The data used in this study were acquired during campaigns undertaken as part of the INFOMAR (Integrated Mapping for the Sustainable Development of Ireland's Marine Resources) programme. Acoustic datasets including multibeam bathymetric and backscatter coverage of all of Bantry Bay were obtained during INFOMAR campaigns from 2004-2007 (see Plets et al. 2015), while the sediment cores and sub-bottom profiles used in this study were acquired as part of the GATEWAYS campaign of the Celtic Explorer in February 2014 (CE14003).

3.1. Acoustic data

Seafloor bathymetric and backscatter data were collected using two Kongsberg Simrad multibeam systems, an EM1002 (95 kHz) and an EM3002D (200 kHz). The multibeam data were processed using QTC Multiview software to generate bathymetric terrain models of 2 x 2 m grid size. No multibeam water column data were available for this study.

Sub-bottom profiles were acquired in 2014 using a heave-corrected SES Probe 5000 pinger with a 4x4 transducer array (hull-mounted) and a CODA DA2000 acquisition system.

Frequency content of 2.5 kHz corresponds to decametric vertical resolution. Acquisition parameters, data logging, and interpretation were performed using the CODA Geokit suite.

3.2. Sediment cores

Three sediment cores were obtained in 2014 using a 6 m pneumatic vibrocorer, deployed in water depths of 24-34 m. Recorded positions are those of the ship, which may differ from the corer by up to 30 m. Two cores were obtained from within the pockmark field and one core was taken from outside the field. Once on deck, cores were cut into 1 m sections and capped. Core sections were split and the archive halves were photographed and logged. Sediment porewaters were sampled downcore using Rhizons (Rhizosphere Research Products) for analysis of SO₄²⁻ distribution. These were attached to 10 mL plastic syringes to create vacuum pressure. The sampled porewater was placed in a plastic vial and preserved with 10 µL CHCl₃ for sulfate analysis. All porewater samples were refrigerated at 4°C onboard for the duration of the cruise and back in the laboratory prior to analysis.

Gas samples were immediately taken from the vibrocore sections to determine gas composition and distribution. Two 10 cm³ sediment plugs were sampled using plastic syringes with tips removed and transferred to 50 mL glass headspace vials containing 20 mL 2 M sodium hydroxide. Vials were sealed, homogenised, and stored upside-down in the dark at 4 °C for the duration of the cruise.

Sediment sub-samples were taken immediately after porewater and gas sub-samples. Particle size analysis (PSA) samples were placed in ziplock bags and stored at room temperature. Samples for lipid biomarker analysis were wrapped in fired Al foil, placed in ziplock bags, and stored at -20 °C.

3.3. Porewater and gas analysis

 SO_4^{2-} concentration in porewater was determined by the turbidimetric method. 10 mL of sample was stirred constantly and 2-3 drops of glycerol were added. Crushed BaCl₂, approximately 50 mg, was added to the mixture and stirring was continued for 1 minute after which an aliquot was taken and the absorbance measured at 420 nm on a Shimadzu UV Mini 1240. Further aliquots were taken after 2, 2.5, and 3 minutes and an average reading was calculated and used to determine concentration by extrapolation from a calibration curve. The calibration curve was prepared with Na₂SO₄ standards in a range of 10 to 100 ppm.

CH₄ analysis was performed on an Agilent 7820A GC-FID with a 30 m HP-PLOTQ column (Agilent, Santa Clara, USA). Column conditions were isothermal (50 °C). CH₄ was quantified using calibration standards prepared from a 99.995% CH₄ standard (Sigma Aldrich, Dorset, UK).

507 211

3.4. Bulk physical and chemical analysis

PSA and total organic carbon (TOC) data were obtained from sub-samples taken surrounding the SMTZ locations which were determined by CH₄ and SO₄²⁻ analyses. PSA was determined by laser granulometry using a Mastersizer 2000 particle size analyser (Malvern, Worcestershire, UK). Organic carbon (OC) was removed using 30% hydrogen peroxide (H₂O₂) prior to analysis. Elemental analysis was performed in triplicate using a Fisons NCS 1500 NA elemental analyser. Samples were treated with 1 N HCl in Ag capsules following the procedure of Verardo et al. (1990) to remove carbonate. After drying overnight, the capsules were wrapped in Sn boats and combusted in the presence of O₂. The CO₂ evolved was measured and the TOC content (%) calculated by comparison with the certified reference standard acetanilide.

533 223

224 3.5. Lipid biomarker analysis

Sediment samples were selected from sub-samples associated with the SMTZs. These were freeze-dried and homogenized and lipid compounds were extracted from 30 g of powdered sediment using a modified Bligh-Dyer extraction (White et al., 1997). Total lipid extracts (TLEs) were concentrated and elemental S was removed by reaction with activated Cu. TLEs were fractionated into neutral, glyco-, and polar lipids using Bond-Elut SPE columns packed with an aminopropylsilica solid phase (5mm diameter, PE, 500mg Ultra-Clean NH2, Agilent Technologies) as outlined by Pinkart et al. (1998). A portion of each polar lipid fraction was subjected to acid methanolysis (0.5 M sodium methoxide, 50 °C, 30 min) to transmethylate ester-linked fatty acids. Double-bond positions of monounsaturated PLFAs were determined by the formation of dimethyl disulfide (DMDS) adducts as described by Nichols et al., (1986). Archaeal isoprenoid lipids were separated from polar head groups by cleavage of their ether linkages following the method of Trent et al. (2003). 100 ppm 5α cholestane was added to all derivatised fractions as an internal standard prior to analysis.

Aliquots (1 µl) of samples were injected in triplicate onto an Agilent model 7890N gas chromatograph coupled to an Agilent 5973N mass selective detector operating in electron impact mode at 70 eV. The column was a 30 m HP-5MS column (0.25 mm i.d., 1 µm film thickness). Each sample (1 µl) was injected with a 2:1 split ratio. The GC inlet temperature was 280 °C and the oven programme was 65 °C (held 2 min) to 300 °C (held 20 min) at 6 °C/min. Individual compounds were assigned from comparison with mass spectral library databases (NIST and Wiley) and comparison of MS patterns with published spectra and authentic standards. Analytes were quantified from total ion peak area using multiple-point calibration curves of representative standards (methyl tetradecanoate and squalane). Percentage recovery was measured using an internal standard added prior to extraction and was found to be > 95%. Procedural blanks were run to monitor background interferences.

1 µl aliquots of samples were injected in triplicate onto an Agilent model 7890N gas chromatograph coupled to an IsoPrime 100 isotope ratio mass spectrometer. The δ^{13} C values were measured against a CO₂ reference gas of known δ^{13} C value and are reported vs. a stable isotope reference standard (*n*-alkanes mixture B2, Indiana University, USA). Reproducibility was better than ± 0.5 ‰ and only well resolved major analytes are reported here.

Lipid nomenclature is according to $xCy\omega z$, where x refers to the number of carbon atoms present, y refers to the number of double bonds on the carbon chain and z refers to the position of the first double bond from the methyl end. Iso and anteiso branching is denoted by '*i*' and '*ai*' respectively whilst the presence of the cyclopropane ring in a compound is denoted by '*cy*'.

4. Results

629 261

4.1. Geophysical analyses

Multibeam morpho-bathymetric data provide evidence of an elongate pockmark field north of Whiddy Island (Fig. 2). This is a narrow (max width ca. 275 m) pockmark field of approximately 2.4 km in length, covering an area of ca. 0.5 km². Interestingly, this field coincides with part of the Owenberg River Fault (Fig. 1B). The data show that the pockmarks average ca. 10 m in diameter and are of low relief, with some features near the core locations as shallow as ca. 0.3 m in depth (Fig. 2B). Recorded GPS position onboard the vessel may differ from the actual sample location by up to 20–30 m. Therefore, although both VC24 and VC25 were taken within the pockmark field, it is not possible to be sure whether either core penetrated directly into a single pockmark feature.

652
653272A sub-bottom profile for VC27 was not prepared as the data was obstructed by654
655273sideswipe from a rocky outcrop. Sub-bottom profiles across the sites of VC24 and VC25

provide acoustic evidence of gas migration through the sediment column (Fig. 3). The sedimentary succession is crossed by columnar or conical zones of blanking (AB on Fig. 3), most of which underlie strong reflector segments that lie at varying depths of ca. 4-10 metres below sea floor (mbsf) (Fig. 3). Similar 'pillar-like' acoustic zones were previously described on sub-bottom profiles across upper Bantry Bay by Plets et al. (2015). On high frequency seismic data, such effects may arise due to overlap with the resonance frequencies of gas bubble populations, resulting in energy loss by attenuation (reverberation and scattering) as well as changes in P-wave velocity (Mathys et al. 2005). Gas concentrations as low as 0.5% may result in a range of possible amplitude and coherence effects described as acoustic turbidity (Abegg and Anderson 1997; Fleischer et al. 2001; Judd and Hovland 2007). We interpret the vertical acoustic zones observed in Bantry Bay to be typical chimney structures, recording the upward migration of gas-rich fluids through the sediment column (e.g. Dondurur et al., 2011).

On Fig. 3, the tops of the chimneys are seen to lie at varying stratigraphic levels, the shallowest within an interval of strong discontinuous reflections of varying thickness. This interval corresponds to unit III of Plets et al. (2015), which their cores showed to comprise organic-rich laminated sands/muds of estuarine origin, hypothesised to contain gas pockets due to their acoustically 'turbid' character. This unit was also penetrated by our cores, which provide no evidence that its acoustic character can be correlated to higher gas content. We suggest instead that the reflective character is likely to reflect the unit's distinctive lithology, comprising sand and mud laminae capable of generating strong impedance contrasts (SI Fig. S1).

708 295

4.2. Gas and porewater geochemistry

713297All measured CH4 values are provided in the supporting information (SI Table S1). The713
714
715298highest concentrations of CH4 were observed in VC24, taken from the pockmark field (Fig. 4).

Values fluctuated between 2.62 and 3.57 mM rising through the core before steadily decreasing from 3.28 mbsf (3.68 mM) to the surface sample at 0.01 mbsf (0.002 mM), the minimum overall value for VC24. SO_4^{2-} concentrations for VC24 ranged from 7.0 to 26.8 mM displaying an overall decreasing trend from the surface, opposite to that of CH₄ (Fig. 4). A minimum value was observed at 2.12 mbsf from which concentrations remain relatively constant through to the bottom of the core.

Overall CH₄ concentrations detected within VC25 were the lowest of the three306vibrocores analysed with a maximum observed at 5.23 mbsf (0.018 mM) and a minimum306observed at 1 mbsf (Fig. 4). Concentrations decrease gradually from the base of the core to the307observed at 1 mbsf (Fig. 4). Concentrations decrease gradually from the base of the core to the308sediment surface from 0.016 mM to 0.003 mM. Concentrations of porewater SO_4^{2-} were309relatively high throughout VC25 compared to VC24 and VC27 (Fig. 4). Values were gradually310depleted from the seafloor (0.17 mbsf) with a concentration of 22.1 mM to the deepest sample311from the core (5.66 mbsf) with a concentration of 12.0 mM.

In VC27, outside the pockmark field, CH₄ concentrations decreased from 3.66 mM at the base of the core (4.96 mbsf) to 0.97 mM at 4.08 mbsf before falling sharply to 0.07 mM at 3.6 mbsf (Fig. 4). Depletion gradually continued from this depth to 0.001 mM at the surface of the core (0.02 mbsf). SO_4^{2-} concentrations followed an opposing trend with a maximum of 23.9 mM at 0.02 mbsf decreasing to a minimum of 7.1 mM at 4.08 mbsf and remained at similar concentration to the base (4.96 mbsf) (Fig. 4).

764 318

4.3. PSA and elemental analysis

The overall sediment type for the three cores taken from Bantry Bay was poorly to very poorly sorted sandy mud. All values for mean particle size, percentage clay, silt, sand, and gravel are provided in table 1. Mud percentages (clay and silt) ranged from 69.4 to 92.3% in VC24, from 42.2 to 81.2% in VC25, and from 29.3 to 84.0% in VC27. The 42.2% value from VC25 was obtained at 4.99 mbsf, a sample comprised of poorly sorted muddy sand due to its high sand content (57.8%). The 29.3% value in VC27 was obtained at 1.93 mbsf where sediment type can be described as very poorly sorted, slightly gravelly, muddy sand due to its gravel (4.9%) and sand (65.8%) content. This gravel-containing layer had the largest mean particle size of 0.8 phi whereas the lowest value of 5.3 phi was observed in VC24 at 0.77 mbsf, the layer with the highest overall mud content (92.3%). The mean particle size for the remaining samples ranged between 4.5 and 3.3 phi.

Total organic carbon (TOC) content was low throughout all cores with an average overall value of 0.6% (Table 2). The highest observed values were 2 and 1.2% for VC24 0.025 and 0.27 mbsf respectively. No other sample had a value greater than 0.7%. In VC24, TOC decreased from 0.025 to 1.93 mbsf (2 to 0.3%) before increasing slightly to 0.5% at 2.92 mbsf and decreasing again to 0.3% at 3.9 mbsf. VC25 values were relatively constant. The TOC content of VC27 at 1.93 and 2.96 mbsf was 0.5%. This decreased to 0.4% at 3.98 mbsf and 0.3% at 4.97 mbsf.

813 338

339 Table 1. PSA results for all vibrocores.

Core	Depth (mbsf)	Mean (phi)	Clay (%)	Silt (%)	Sand (%)	Gravel (%)
VC24	0.08	4.5	10.6	69.4	20	0
	0.33	3.3	10.1	62.8	27.1	0
	0.72	5.3	15.3	77	7.7	0
	1.88	4.0	9.7	68.9	21.4	0
	2.97	3.7	6.2	77.2	16.6	0
	3.96	3.8	5.5	63.9	30.6	0
VC25	0.81	3.7	2.3	63.5	34.2	0
	2.93	3.4	6.1	62.8	31.1	0
	3.93	4.3	8.4	72.7	18.8	0
	4.99	3.6	1.8	40.4	57.8	0
VC27	0.93	0.8	2.7	26.6	65.8	4.9
	1.96	4.1	11.9	72.1	16	0
	2.98	4.1	10.9	69.1	20	0

3.97	3.4	11.7	41	47.3	0
0.27		/	• •		•

4.4.4. Lipid biomarkers

A summary of key lipid biomarker concentrations is provided in table 2. The highest overall concentrations of PLFAs in all three vibrocores were observed in VC24. 310.1 and 235.2 µg gOC⁻¹ were detected at 0.03 and 0.27 mbsf respectively, the largest quantities of PLFAs in all analysed samples. The remaining depths of VC24 contained between 31.1 (0.77 mbsf) and 90.1 µg gOC⁻¹ (1.93 mbsf). Saturated fatty acids (SATFAs) and monounsaturated fatty acids (MUFAs) were the dominant PLFAs at 0.03 and 0.27 mbsf whilst SATFAs and branched fatty acids (brFAs) were dominant from 0.77 to 3.9 mbsf. Polyunsaturated fatty acids (PUFAs) were not found at 1.93 or 2.92 mbsf and were the smallest class of PLFAs at all other depths. Total PLFA concentrations ranged from 49.7 to 73.9 µg gOC⁻¹ (5.96 and 2.93 mbsf respectively) in VC25. SATFAs were the dominant compounds throughout the core with concentrations approximately 10 times greater than MUFAs and brFAs. There were no PUFAs observed in any VC25 samples. The highest concentration of PLFAs in VC27 was 77.4 µg gOC⁻¹ observed at 3.98 mbsf. The lowest concentration was 51.2 µg gOC⁻¹ which was observed at 1.93 mbsf. Similar to VC25, total SATFA concentrations were significantly greater than other PLFA classes. There was little variation in total concentrations of other PLFA classes throughout the core.

Five archaeal ether (AE) lipids were isolated from each sample taken from VC24, VC25, and VC27. These were; phytane, acyclic biphytane $(cyC_{40:0})$, and three cyclic biphytanes ($cyC_{40:1}$, $cyC_{40:2}$, and $cyC_{40:3}$). The $cyC_{40:0}$ was the major isoprenoid in all samples whilst the cy40:1 was the minor isoprenoid.

- 893894 363 4.5. Carbon isotope values of individual PLFAs

902		
903 904	364	$\delta^{13}C$ values could not be obtained for most lipid compounds identified in the three
905 906	365	Bantry Bay vibrocores. This was due to a combination of low abundance in polar lipid extracts
907		
908 909	366	and low sensitivity of the GC-IRMS instrument. δ^{13} C values for three PLFAs were measured
910 911	367	in the VC24 0.27 sample which contribute to the study of these sediments. The MUFAs $C_{16:1\omega7}$
912 913	368	and $C_{16:1\omega5}$ provided $\delta^{13}C$ values of -31.0‰ and -46.1‰ respectively, and the SATFA $C_{16:0}$
914 915	369	δ^{13} C value was -27.7‰.
916		
917		
918 010		
919		
921		
922		
923		
924		
925		
920 927		
928		
929		
930		
931		
932		
933		
934 935		
936		
937		
938		
939		
940		
941 042		
942 943		
944		
945		
946		
947		
948		
949 950		
951		
952		
953		
954		
955		
956 957		
958		
959		179
960		

371	and total con	ncentratio	ns for cert	ain grou	ps of bic	markers	are inclu	ded (indica	ated by th	ne prefix	Σ). Individ	dual conce	ntrations	of select	ed
372	biomarker c	ompounds	from with	nin each	group ar	e also sh	own. Dep	th in mbsf	•						
		VC24						VC25				VC27	7		
	Depth	0.025	0.270	0.768	1.933	2.920	3.895	2.930	3.925	4.980	5.960	1.930	2.960	3.980	4.970
	TOC	2.0	1.2	0.6	0.3	0.5	0.3	0.3	0.3	0.3	0.3	0.5	0.5	0.4	0.3
	ΣPLFA	310.14	235.24	31.07	90.12	51.21	44.02	73.90	57.15	56.90	49.68	51.24	68.89	77.36	63.01
	ΣSATFA	133.28	118.72	20.43	64.94	33.06	30.99	52.11	41.72	42.73	43.24	36.15	42.50	50.35	46.84
	ΣMUFA	91.12	51.97	2.61	2.25	3.40	1.94	5.18	3.86	1.35	8.54	4.22	5.89	5.99	5.78
	ΣPUFA	12.92	17.73	0.00	0.00	0.00	1.16	0.00	0.00	0.00	0.00	1.15	1.66	1.73	0.00
	ΣbrFA	64.58	32.62	4.31	4.44	12.15	7.62	7.19	5.09	5.17	4.38	4.91	4.90	4.50	5.25
	ΣΑΕ	4.67	5.40	7.39	13.37	19.30	11.75	11.35	4.25	9.18	6.93	11.20	10.28	9.37	5.98
	SATFA														
	12:0	0.78	0.65	0.10	-	-	-	0.25	-	0.19	-	0.16	0.14	0.18	-
	13:0	0.35	0.27	0.05	-	-	-	0.07	-	0.08	-	0.11	0.13	0.12	0.11
	14:0	7.34	6.85	1.36	0.98	1.43	0.94	2.00	1.06	1.60	1.12	1.81	1.82	1.58	1.78
	15:0	2.69	2.27	0.63	0.54	0.77	0.54	0.82	0.60	0.73	0.61	0.91	0.83	0.63	0.71
	16:0	28.08	20.90	6.38	5.77	8.21	5.73	8.65	7.04	6.14	7.29	8.32	6.46	8.03	8.82
	17:0	2.52	1.16	0.33	0.47	1.58	0.40	0.53	0.52	0.46	0.53	0.52	0.62	0.57	0.65
	18:0	10.40	2.49	1.75	2.55	3.68	2.30	3.32	2.89	3.53	3.09	2.69	3.48	3.97	4.33
	19:0	2.70	5.54	0.28	0.50	0.56	0.93	0.71	0.90	0.51		0.60	0.62	0.73	0.76
	MUFA														
	16:1ω?	16.26	4.27	0.32	0.39	0.48	0.41	0.35	0.37	0.40	0.31	0.36	0.44	0.47	0.54

16:1ω7	2.67	0.88	-	-	-	-	-	-	-	-	-	-	-	-
16:1w5	5.72	2.40	0.19	-	-	-	-	-	-	-	0.21	0.20		
18:1w9	12.09	0.83	0.48	1.28	0.73	1.00	0.92	0.99	0.95	1.25	0.91	0.98	0.67	0.78
18:1w7	24.80	9.96	0.40	0.59	0.41	-	-	-	-	-	0.45		0.84	0.86
19:1ω?	10.61	3.05	1.22	4.46	1.78	1.09	3.91	2.50	2.90	-	2.29	4.27	4.01	3.60
PUFA														
18:2ω?	-	-	-	-	-	-	-	-	-	-	0.44	0.56	0.67	-
20:4ω6	3.77	3.05	-	-	-	-	-	-	-	-	-	-	-	-
20:5ω3	3.71	5.54	-	-	-	-	-	-	-	-	-	-	-	-
brFA														
<i>i</i> 13:0	0.43	0.24	0.06	-	-	-	0.09	-	0.06	-	0.10	0.10	0.07	-
ai13:0	0.58	0.40	0.05	-	-	-	0.13	-	0.08	-	0.16	0.15	0.10	-
<i>i</i> 15:0	7.68	3.37	0.47	0.61	0.77	0.75	0.79	0.55	0.53	0.45	0.63	0.66	0.55	0.60
ai15:0	14.39	7.55	0.90	1.17	0.54	0.54	1.69	1.12	1.24	1.17	1.56	1.41	1.14	1.21
3Me15:0	-	-	-	-	-	-	0.25	-	-	-	0.29	0.52	0.35	0.36
<i>i</i> 16:0	3.18	2.40	-	-	-	0.53	0.70	0.78	-	-	0.56	0.67	0.51	0.47
<i>i</i> 17:0	2.13	1.36	0.18	0.43	0.27	0.38	0.29	0.32	0.39	0.85	0.30	0.29	0.27	0.26
ai17:0	1.72	2.46	0.28	0.56	0.34	0.40	0.50	0.39	0.47	0.53	0.47	0.50	0.41	0.40
cyFA														
<i>cy</i> 17:0	-	4.36	-	-	-	-	-	-	-	-	-	-	-	-
AE														
Phytane	0.76	0.64	0.72	1.43	1.63	0.86	1.24	0.47	0.85	0.81	0.94	1.51	1.30	0.98
C40:0	2.28	2.72	3.47	5.80	8.25	4.75	5.04	1.79	4.24	3.19	5.62	4.40	4.26	2.95
C40:1	0.36	0.51	0.44	1.67	1.74	1.44	0 92	0.45	0.71	0.51	0.81	0 76	0.75	0.31

1043															
1044															
1045															
1046	C40:2	0.70	0.81	1.45	2.31	3.69	2.50	2.20	0.88	1.74	1.23	2.03	1.86	1.41	0.88
1047	C40:3	0.57	0.72	1.31	2.16	3.99	2.21	1.94	0.67	1.64	1.19	1.79	1.75	1.65	0.87
1048															
1049															
1050															
1051															
1052															
1053															
1054															
1055															
1056															
1057															
1058															
1059															
1060															
1061															
1062															
1063															
1064															
1065															
1066															
1067															
1068															
1069															
1070															
1071															
1072															
1073															
1074															
1075															
1076															
1077															
1078															
1079															
1080															
1081															
1082							1	82							
1083															

5. Discussion

Methane is widespread within upper Bantry Bay, as shown here through both acoustic evidence and millimolar concentrations of CH₄ in core samples. Migration of gas-rich fluids towards the seafloor is interpreted to have led to the formation of pockmarks, which we describe here for the first time. Detailed geochemical analysis of porewater samples coupled to results from the gas analysis of sediment plugs, depict strong SMTZs occurring in two of three sediment core locations. Results from the third core, VC25, suggest that a similar SMTZ likely occurs below the maximum penetration depth of the vibrocorer. Lipid biomarker analysis provides evidence of the presence of active communities of both SRB and archaea within these sediment cores. These archaea are potentially anaerobic methanothrophs (ANME) which are likely involved in AOM, contributing to the prevention of regular methane seepage above the seafloor as evidenced by the distinct SMTZs.

Sub-bottom profiles provide evidence of vertical gas migration through the sediments of upper Bantry Bay, although no gas signals were observed within the water column, geochemical data provide evidence of low concentrations of gas just beneath the seafloor. In the area of the pockmark field where our sediment cores were obtained, we observed vertical zones of acoustic blanking (AB) beneath strong reflectors at varying depths below the seafloor, which we interpret as typical gas chimneys (Fig. 3). The observation of chimney-like features as well as of blanking below enhanced reflectors suggest upward fluid migration is predominant at this location (Szpak et al., 2012). Similar acoustic chimneys were observed to rise to within a few metres of the seafloor across upper Bantry Bay above water depths of at least 65 m by Plets et al. (2015, their Fig. 10a), which we interpret to indicate the upward migration of gas from depth over wide areas beneath the pockmark field. However,

our results do not support the suggestion of Plets et al. (2015) that the presence of gas
may account for the reflective character of their unit III, penetrated by our cores at ca.
2-6 mbsf (Fig. 3), which we instead suggest is due to its laminated lithological
character (SI Fig. S1).

All gas headspace samples yielded undetectable amounts of C₂-C₄ hydrocarbons, indicating a biogenic source, rather than thermogenic source for gas in Bantry Bay (Faber and Stahl, 1984; Floodgate and Judd, 1992). The likely origins of this biogenic gas are microbial decomposition of buried organic matter and methanogenesis (Antler et al., 2014; Froelich et al., 1979). River run-off likely delivers a significant amount of OM to the bay. However, the majority of this terrestrially derived OM is likely consumed in the surface sediments as seen from the TOC results obtained from VC24. As such, this OM is probably not a large contributor to CH_4 generation within Bantry Bay. Previous work in Bantry Bay encountered black lacustrine sediments at ca. 57 m water depth (ca. 25 mbsf) which were dated to 13-14 ka cal. BP within a borehole off Whiddy Island (Stillman, 1968). Plets et al. (2015) found that these deposits occurred within Unit 2 of their assigned seismo-stratigraphy profile. They suggested that the material was likely older than the value provided by Stillman (1968) as they were situated below acoustic Unit 4 which was described as a possible glacial till, thereby placing Unit 2 in the position of a pre-Last Glacial Maximum (LGM) deposit. The LGM is defined as 26.5-19 ka BP (Clark et al., 2009). These sediments likely undergo enhanced anaerobic decomposition and methanogenic activity due to their high organic content which makes them favourable candidates for the source of the gas observed in this area, however this awaits further investigation. The pockmark field north of Whiddy Island is comprised of very shallow

depressions of ca. 0.3 m depth. Due to the substantial gas activity observed in these

sediments it is likely that biogenic CH₄ resulting from the decomposition of organic material, possibly from ancient lacustrine deposits buried deep beneath the seafloor, was the primary cause of pockmark formation. Although no active seepage from pockmarks to the water column was observed in this study it is still possible that some of them are actively venting. Wheeler (2002) determined that significant currents regularly resuspend the seabed near Whiddy island. If the pockmarks were inactive, this could suggest that they have been filled in by fresh sediment. However, recent work suggests that inactive pockmarks can in fact be kept open by ocean currents (Hammer et al., 2009; Pau et al., 2014). Many studies have proposed that accumulation of large volumes of gas below the seafloor followed by periodic large expulsions is the predominant cause of pockmark formations (Cole et al., 2000; Dondurur et al., 2011; Gay et al., 2007; Hovland et al., 2002; Hovland and Judd, 1988). As such, these events likely reform the present features in Bantry Bay and potentially form new features as well. Further bathymetric analysis of this site is required to determine the precise layout of this field and the exact number of pockmarks within it, as well as regular monitoring of this area to determine the level of gas seepage activity which may represent a potential hazard to any planned economic activity in the bay.

A pockmark field in a similar setting has been described in Dunmanus Bay, south of Bantry Bay (Szpak et al., 2015). These authors showed that the pockmarks were associated with CH₄ emissions and argued that the source of the gas was an underlying Dunmanus Fault, via a venting mechanism involving seal failure-renewal cycles. The CH₄ from Dunmanus contained only trace levels of C₂-C₄ hydrocarbons and it was suggested that methanogenesis also contributed to the gas in this location. The Bantry Bay pockmark field overlies the Owenberg River Fault, which runs along the northwest of Whiddy Island. It is possible that venting in Bantry Bay is controlled

by a similar bedrock faulting mechanism as proposed in Dunmanus. Both bays lie in
the South Munster Basin and are similar in their geology (Vermeulen et al., 2000).
However, a higher contribution of low molecular weight hydrocarbons would be
expected if this gas was predominantly thermogenic. Therefore, it is most likely that
the gas observed at both of these sites is a combination of thermogenic gas release
from underlying faults and biogenic gas produced by methanogenic communities
feeding on deeply buried organic material.

Both VC24 and VC27 yielded clear SMTZs, where CH₄ diffusing upwards from depth first encounters SO_4^{2-} diffusing downwards from the ocean, which reflect the depth of maximal anaerobic oxidation (Antler et al., 2014; Lin et al., 2016; Valentine, 2002). The decreasing trend of SO_4^{2-} in VC25 suggests complete depletion coinciding with a SMTZ at ca. 10 mbsf. The sub-bottom profile suggests that there is no significant gas penetration into this core whereas there is gas penetration observed in the core location of VC24. This is consistent with the significantly lower CH_4 concentrations within the VC25 samples. Analysis of sediments from the deeper SMTZ in VC25 would likely yield similar CH₄ concentrations to that of VC24 and VC27. Thus the three cores are indicative of variable rates of upward penetration of gas-rich fluids towards the seafloor.

467 These SMTZs suggest that microbial communities are consuming CH_4 rising 468 from depth as well as SO_4^{2-} diffusing downward from the seafloor above. This 469 signature represents the metabolic pathways of microorganisms involved in the AOM, 470 namely ANME and SRB. At present, it appears that the activity of these microbial 471 communities aids in preventing the release of CH_4 to the water column and potentially 472 the atmosphere on a regular basis, reducing the potential impact of this powerful 473 greenhouse gas on global climate. However, as previously mentioned, the pockmark

474 features are indicative of possible recurring episodic expulsions of gas from these 475 sediments and as such the overall CH_4 flux from this site is poorly constrained. This 476 is a scenario which is observed in shallow marine seepage environments around the 477 world. It is important for these unique environments to be monitored so that their 478 potential contribution to climate change can be better understood.

PLFA biomarker results provide further evidence of this ongoing microbial activity. High levels of MUFAs and low levels of PUFAs are an indication of the dominant contribution of bacterial communities to sediment biomass (Rajendran et al., 1995, 1992; Taylor and Parkes, 1983; Volkman et al., 1980). Bacteria appear to dominate the microbial ecology in all three vibrocores in this study. Abundances of PUFAs are increased in the surface sediments of VC24, however MUFA abundances are still higher. Interestingly, at 0.8 and 3.9 mbsf in VC24, contributions of MUFAs and PUFAs are similar although MUFAs remain dominant. Comparison of MUFAs $(<C_{19})$ with total brFAs provides an insight to the aerobic/anaerobic conditions in the sediment. Values less than 1 indicate an anaerobic environment whereas values greater than 1 are representative of aerobic conditions (Rajendran et al., 1992). Only the shallower sediments of VC24 (1.12 and 1.08 for 0.03 and 0.27 mbsf respectively) are classified as aerobic using this approach, therefore the overall conditions observed here are anaerobic.

493 Mid-chain brFAs in marine sediments are often produced by SRB and are used 494 as chemotaxonomic markers for these microorganisms (Dowling et al., 1986; Li et al., 495 2007). $iC_{15:0}$, $aiC_{15:0}$, $iC_{16:0}$, $iC_{17:0}$, and $aiC_{17:0}$ are all reported biomarkers for the 496 *Desulfovibrio* species of SRB (Dowling et al., 1986; Findlay et al., 1990; Li et al., 497 2007; Rajendran et al., 1995; Taylor and Parkes, 1983). These compounds were 498 present throughout all three vibrocores taken in Bantry Bay, suggesting a significant

1385		
1386 1387	499	contribution of SRB to the microbial ecosystem here. SRB tend to display a higher
1388 1389	500	ratio of $iC_{15:0}$ to $aiC_{15:0}$ in their PLFA profiles (Dowling et al., 1986). Applying this
1391	501	ratio to the Bantry Bay sediments resulted in substantially higher values observed in
1393 1394	502	VC24 than VC25 or VC27, both of which had similar values. This suggests that SRB
1395 1396	503	are substantially higher contributors to the microbial community of VC24. Elvert et al
1397 1398	504	determined that $C_{16:1\omega5}$, $C_{17:1\omega6}$, and $cyC_{17:0\omega5,6}$ were specific membrane fatty acids for
1399 1400	505	SRB of the Desulfosarcinia/Desulfococcus group which were involved in AOM
1401 1402 1403	506	(Elvert et al., 2003). $C_{16:1005}$ was identified in four samples from the Bantry Bay
1404 1405	507	vibrocores; VC24 0.03 mbsf, VC24 0.27 mbsf, VC27 1.93 mbsf, and VC27 2.96 mbsf.
1406 1407	508	Isotope ratio analysis provided a depleted δ^{13} C value of -46.1‰ for this compound at
1408 1409	509	0.27 mbsf in VC24, compared with those obtained from more ubiquitous bacterial
1410 1411	510	PLFAs; $16:1\omega7$ and $16:0$ at -31.0% and -27.7% respectively. While lipid abundances
1412 1413	511	are low, these depleted values still indicate the possible incorporation of CH ₄ derived
1414 1415 1416	512	C into the membranes of these SRB providing evidence of their involvement in AOM
1417 1418	513	at this site.
1419 1420	514	Archaeal biomarkers are present at all depths in all three vibrocores taken in
1421 1422	515	Bantry Bay. Archaea involved in AOM typically belong to three major anaerobic
1423 1424	516	methanotroph (ANME) consortia (Caldwell et al., 2008). It is generally assumed that
1425 1426	517	ANMEs oxidize and assimilate CH ₄ , following which CH ₄ -derived C is consumed by
1427 1428 1429	518	the SRB as CO ₂ or a partially oxidized intermediate completing the syntrophic reaction
1430	519	(Alperin and Hoehler, 2009). It has been suggested that C_{20} isoprenoids derived from
1432 1433	520	archaeal ether lipids may be specific biomarkers for ANME-2 archaea whilst C_{40}
1434 1435	521	isoprenoids may be specific for the ANME-1 type (Blumenberg et al., 2004; Brocks
1436 1437	522	and Pearson, 2005). The presence of these compounds within the gas-rich sediments
1438	523	in Bantry Bay further suggests the involvement of AOM mediated by ANME and SRB

in limiting gas release at this site. More detailed biogeochemical analysis of these sediments could shed more light on the composition of this particular microbial community with isotopic analysis determining their contribution to AOM. Due to the importance of understanding the microbial community structure at shallow gas seepage sites like Bantry Bay, a more detailed phylogenetic study of this site is recommended.

- 531 6. Conclusions

The upward migration of gas-rich fluids through the sediment column appears to be widespread in upper Bantry Bay, as inferred from chimney-like acoustic zones on sub-bottom profiles and confirmed by shallow SMTZs within sediment cores. Shallow SMTZs are observed both within and outwith a newly identified pockmark field, suggesting that diffuse pore fluid upwelling over wide areas is only locally accompanied by focused flow within conduits. Methanogenesis is taking place within organic-rich Quaternary sediments deposited across the upper Bay prior to and since the last deglaciation. The presence of pockmarks off Whiddy Island may be explained by enhanced gas flux from the underlying Owenberg River Fault and methanogenesis of organic-rich lacustrine sediments pre-dating the LGM that are preserved in bedrock basins.

Fluid flow affects not only the physical nature of the sea-floor in the bay but also the microbial ecosystem. The gas is CH_4 with a predominantly biogenic signature. As CH_4 flows upwards from its origin it provides a substrate for certain microorganisms to thrive in the shallower sediments above. Archaea, possibly ANMEs, are present in these shallower sediments as are SRB. The CH_4 is steadily

depleted before it reaches the seafloor and SO_4^{2-} concentrations also become depleted in the opposite direction providing a well-defined SMTZ. This is likely due to AOM carried out by these two groups of microorganisms in a syntrophic relationship, however further work is needed to confirm this pathway. This study suggests that AOM in Bantry Bay is important in limiting CH₄ emissions from the seafloor preventing the potential climatic implications of a release of this powerful greenhouse gas to the atmosphere. Similar conditions have been observed in a pockmark field in Dunmanus Bay, to the east of Bantry Bay (Szpak et al. (2015)) and on the Malin Shelf off the north coast of Ireland (Szpak et al. (2012). This indicates that marine CH₄ production may be common around the island of Ireland.

Global estimates of the contribution of CH₄ from marine seepage sites are highly uncertain (Römer et al., 2014). Release of CH₄ to the atmosphere has been observed in Arctic regions, areas particularly vulnerable to climate change, and these releases have been attributed to rising temperatures (Shakhova et al., 2010; Westbrook et al., 2009). As CH₄ is a potent greenhouse gas, these releases serve only to increase rates of global climate change. AOM and the microbial consortia involved are important factors in the global methane cycle (Gauthier et al., 2015). For these reasons further study of these sites and their microbial ecology should be prioritised.

568 Acknowledgements

570 The authors would like to thank the INFOMAR program, joint programme 571 between the Geological Survey Ireland and the Marine Institute funded by DCCAE. 572 We also thank the captain and crew of the R.V. *Celtic Explorer* during the 573 GATEWAYS II campaign (CE14003), which was funded by a ship-time award to

1566	57 A	
1567	574	Stephen McCarron under the Sea Change strategy with the support of the Marine
1568	575	Research Sub meansmus of the Irigh National Development Plan 2007 2012 We
1569	5/5	Research Sub-programme of the Irish National Development Plan 2007-2015. We
1570	576	would like to thank the Irish Research Council for supporting the work of these
1571	570	would like to thank the firsh Research Counch for supporting the work of those
15/2	577	researchers based at Dublin City University. The participation of OGS in the
1574	511	researchers based at Dublin City University. The participation of 0005 in the
1575	578	GATEWAYS II campaign was supported by Italian PNRA project IPY GLAMAR
1576		
1577	579	(grant number 2009/ A2.15), and Daniel Praeg also acknowledges funding from the
1578		
1579	580	European Union's Horizon 2020 research and innovation program under the Marie
1580		
1582	581	Skłodowska-Curie grant agreement No 656821 (project SEAGAS, 2016-2020). Bulk
1583		
1584	582	physical analyses of core samples was carried out at the Coastal and Marine Research
1585	502	
1586	583	Centre (CMRC) at University College Cork (UCC). We also thank Dr. Bart van
1587	581	Dongon and the anonymous reviewers whose input significantly improved this
1588	364	Dongen and the anonymous reviewers whose input significantly improved this
1589	585	manuscript
1590	505	manasempt.
1592	586	
1593		
1594	587	References
1595		
1596	588	
1597		
1590	589	Abegg, F. & Anderson, A.L. 1997. The acoustic turbid layer in muddy sediments of
1600		
1601	590	Eckernförde Bay, Western Baltic: methane concentration, saturation and bubble
1602	501	characteristics Marine Castery 127, 127, 147
1603	391	characteristics. Marine Geology, 157, 157–147.
1604	502	Acosta I Munoz A Herranz P. Palomo C. Ballesteros M. Vaquero M.
1605	572	Acosta, J., Munoz, A., Herranz, F., Fatonio, C., Danesteros, M., Vaquero, M.,
1607	593	Uchupi E 2001 Pockmarks in the Ibiza Channel and western end of the
1608	0,0	
1609	594	Balearic Promontory (western Mediterranean) revealed by multibeam mapping.
1610		
1611	595	Geo-Marine Lett. 21, 123–130.
1612		
1613	596	Alain, K., Holler, T., Musat, F., Elvert, M., Treude, T., Krüger, M., 2006.
1615		
1616	597	Microbiological investigation of methane- and hydrocarbon-discharging mud
1617	500	
1618	598	volcanoes in the Carpathian Mountains, Romania. Environ. Microbiol. 8, 5/4–
1619		
1620		
1621		101
1623		171

1624		
1625		
1626	599	90
1627	077	
1628	600	Alperin M I Hoehler T M 2009 Anaerobic methane oxidation by
1629	000	riperin, inisi, fibenier, fini, 2009. Filiaeroore mediane oktaation oy
1630	601	archaea/sulfate-reducing hacteria aggregates: 2 Isotonic constraints Am I Sci
1631	001	arenaea sunate readening bacteria aggregates. 2. isotopie constraints. 7 mil. 5. 501.
1632	602	300 958-981
1634	002	507, 750-70 4 .
1635	603	Antler G. Turchyn A. V. Herut B. Davies A. Rennie V.C.F. Siyan O. 2014
1636	005	Ander, O., Turenyii, A. V., Herut, D., Davies, A., Kennie, V.C.F., Sivan, O., 2014.
1637	604	Sulfur and avugan isotona tracing of sulfate driven anarchia methana
1638	004	Sumul and oxygen isotope tracing of sumate driven anaeroote methane
1639	605	avidation in actuaring godiments, Ectuar Coast Shalf Sai 142 4 11
1640	003	oxidation in estuarme sediments. Estuar. Coast. Shen Sci. 142, 4–11.
1641	606	Divergentary M. Saifart D. Daitson I. Dana T. Michaelia W. 2004 Marshare
1642	000	Blumenoerg, M., Sellert, K., Kenner, J., Pape, T., Michaens, W., 2004. Memorane
1643	(07	
1644	607	lipid patterns typily distinct anaeroolc methanotrophic consortia. Proc. Nati.
1645	(00	
1646	008	Acad. Sci. 101, 11111–11110.
1647	(00	Desting A. Dessentibles, K. Celerbert, C.L. Dislant, D. Widdel, F. Cisseles, A.
1648	609	Boetius, A., Ravenschlag, K., Schubert, C.J., Kickert, D., Widdel, F., Gleseke, A.,
1649	(10	
1650	610	Amann, R., Jørgensen, B.B., Witte, U., Pfannkuche, O., 2000. A marine
1651	(11	
1652	611	microbial consortium apparently mediating anaerobic oxidation of methane.
1653	(10	
1655	612	Nature $40/, 623-6$.
1656	(12	Denses A. V. Chammania W. Camana N. Dalilla D. Harlan, I. 2016 Marrier
1657	613	Borges, A. V., Champenois, W., Gypens, N., Dellie, B., Harlay, J., 2016. Massive
1658	(14	
1659	614	marine methane emissions from near-shore shallow coastal areas. Sci. Rep. 6,
1660	(17	27000
1661	615	27908.
1662	(1)	
1663	616	Brocks, J.J., Pearson, A., 2005. Building the Biomarker Tree of Life. Rev. Mineral.
1664	(17	
1665	617	Geochemistry 59, 233–258.
1666	(10	
1667	618	Caldwell, S.L., Laidler, J.R., Brewer, E.A., Eberly, J.O., Sandborgh, S.C., Colwell,
1668	(10	
1669	619	F.S., 2008. Anaerobic Oxidation of Methane: Mechanisms, Bioenergetics, and
1670		
1671	620	the Ecology of Associated Microorganisms. Environ. Sci. Technol. 42, 6/91–
1672		
1674	621	6799.
1675	(0.0	
1676	622	Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B.,
1677		
1678	623	Mitrovica, J.X., Hostetler, S.W., McCabe, A.M., 2009. The Last Glacial
1679		
1680		
1681		
1682		192
1683		

1685		
1686	624	Maximum. Science (80). 325, 710 LP – 714.
1687		
1689	625	Cole, D., Stewart, S. a., Cartwright, J. a., 2000. Giant irregular pockmark craters in
1690		
1691	626	the Palaeogene of the Outer Moray Firth Basin, UK North Sea. Mar. Pet. Geol.
1692		
1693	627	17, 563–577.
1694		
1695	628	Croker, P.F., Kozachenko, M., Wheeler, A.J., 2005. Gas-Related Seabed Structures
1695	(20)	in the Western Inish Cas (IDL CEAC) SEAC Technical Demant
1698	629	in the western irish Sea (IRL-SEAO), SEAO Technical Report
1699	630	Dondurur D. Cifei G. Drahor M.G. Coskun S. 2011 Acoustic avidance of
1700	050	Dondurur, D., Çirçi, G., Dranor, W.O., Coşkur, S., 2011. Acoustic evidence of
1701	631	shallow gas accumulations and active pockmarks in the İzmir Gulf Aegean sea
1702	001	Sharrow gas accumulations and active pochiliants in the infinite Gan, regean sea.
1703	632	Mar. Pet. Geol. 28, 1505–1516.
1704		
1705	633	Dowling, N.J.E., Widdel, F., White, D.C., 1986. Phospholipid Ester-linked Fatty
1707		
1708	634	Acid Biomarkers of Acetate-oxidizing Sulphate-reducers and Other Sulphide-
1709	() -	
1710	635	forming Bacteria. Microbiology 132, 1815–1825.
1/11	636	Elvert M. Boetius A. Knittel K. Jargensen B.B. 2003 Characterization of
1712	050	Elvert, W., Doetius, A., Kintter, K., Jørgensen, D.D., 2003. Characterization of
1714	637	Specific Membrane Fatty Acids as Chemotaxonomic Markers for Sulfate-
1715	007	
1716	638	Reducing Bacteria Involved in Anaerobic Oxidation of Methane. Geomicrobiol.
1717		
1710	639	J. 20, 403–419.
1720		
1721	640	Etiope, G., Milkov, A., Derbyshire, E., 2008. Did geologic emissions of methane
1722	(11	
1723	641	play any role in Quaternary climate change? Glob. Planet. Change 61, 79–88.
1724	642	Faher F. Stahl W. 1984 Geochemical surface exploration for hydrocarbons in
1725	042	raber, E., Stani, W., 1984. Geoenennear surface exploration for hydrocarbons in
1720	643	North Sea, Am, Assoc. Pet, Geol. Bull, 68, 363–386.
1728		······································
1729	644	Field, M.E., Jennings, A.E., 1987. Seafloor gas seeps triggered by a northern
1730		
1731	645	California earthquake. Mar. Geol. 77, 39–51.
1732		
1733	646	Findlay, R.H., Trexler, M.B., Guckert, J.B., White, D.C., 1990. Laboratory study of
1735	617	disturbance in marine addimental rear and of a microbial community. Mar
1736	647	disturbance in marine sediments: response of a microbial community. Mar.
1737	648	Ecol Prog Ser Oldend 62 121–133
1738	0-10	2001. 1105. 501. Oldend. 02, 121 155.
1739		
1740 1741		
1742		193
1743		

1744		
1745		
1746	640	Floodgate G.D. Judd. a. G. 1002. The origins of shallow gas. Cont. Shalf Res. 12
1747	049	Floodgate, O.D., Judu, a. O., 1992. The origins of shahow gas. Cont. Sheh Kes. 12,
1748	(50	1145 1157
1749	650	1143–1130.
1750	(- 1	
1751	651	Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R.,
1752		
1753	652	Cullen, D., Dauphin, P., Hammond, D., Hartman, B., Maynard, V., 1979. Early
1754		
1755	653	oxidation of organic matter in pelagic sediments of the eastern equatorial
1756		
1757	654	Atlantic: suboxic diagenesis, Geochim, Cosmochim, Acta 43, 1075–1090.
1758		
1759	655	Gauthier M Bradley R L Šimek M 2015 More evidence that anaerobic
1760	000	Sudmer, III., Drudley, R.D., Shilek, III., 2015. More evidence that and roote
1761	656	ovidation of methane is prevalent in soils: Is it time to upgrade our
1762	050	oxidation of methane is prevalent in sons. Is it time to upgrade our
1763	657	his see shaming 1 models? Sail Diel Discham 90, 167, 174
1764	037	biogeochemical models? Soll Biol. Biochem. 80, 107–174.
1765	(50	
1766	638	Gay, a., Lopez, M., Berndt, C., Seranne, M., 2007. Geological controls on focused
1767	(- 0	
1768	659	fluid flow associated with seafloor seeps in the Lower Congo Basin. Mar. Geol.
1769		
1770	660	244, 68–92.
1771		
1772	661	Ge, L., Jiang, SY., Blumenberg, M., Reitner, J., 2015. Lipid biomarkers and their
1773		
1774	662	specific carbon isotopic compositions of cold seep carbonates from the South
1775		
1776	663	China Sea. Mar. Pet. Geol. 66, 501–510.
1777		
1778	664	Hammer, Ø., Webb, K.E., Depreiter, D., 2009, Numerical simulation of upwelling
1779		
1780	665	currents in pockmarks and data from the Inner Oslofiord Norway Geo-Marine
1781	000	
1782	666	Lett 29 269_275
1783	000	Lott. 29, 209 275.
1784	667	Hasiatis T. Panatheodorou, G. Kastanos, N. Ferentinos, G. 1006, A. nockmark
1785	007	Hasious, 1., I apatheodolod, O., Kastanos, N., Ferentinos, O., 1990. A pockinark
1/86	660	field in the Detrog Culf (Crasse) and its activation during the $14/7/02$ saismin
1/8/	008	There in the Patras Guil (Greece) and its activation during the 14/7/95 seisinic
1788	(())	
1789	009	event. Mar. Geol. 130, 555–544.
1790		
1791	6/0	Hoviand, M., 1989. The formation of pockmarks and their potential influence on
1702	(71	
1794	6/1	offshore construction. Q. J. Eng. Geol. Hydrogeol. 22, 131–138.
1795	(= 2	
1796	672	Hovland, M., 2013. Characteristics of Marine Methane Macroseeps. In: Aminzadeh,
1797		
1798	673	F., Berge, T.B., Connolly, D.L. (Eds.), Hydrocarbon Seepage: From Source to
1799		
1800		
1801		
1802		194
1803		

1805		
1806	674	Surface Society of Exploration Geophysicists (SEG) and American
1807	071	Surface. Secrety of Empleration Geophysicious (SEG), and Emplered
1808	675	Association of Petroleum Geologists (AAPG) nn 63-82
1809	070	
1010	676	Hoyland M Gardner J V Judd a G 2002 The significance of pockmarks to
1812	0,0	
1813	677	understanding fluid flow processes and geohazards. Geofluids 2, 127–136.
1814	0,,,	
1815	678	Hovland, M., Judd, A.G., 1988. Seabed pockmarks and seepages: impact on
1816		
1817	679	geology, biology, and the marine environment. Graham and Trotman, London.
1818		
1819	680	Janssen, F., Huettel, M., Witte, U., 2005. Pore-water advection and solute fluxes in
1820		
1821	681	permeable marine sediments (II): Benthic respiration at three sandy sites with
1822		
1823	682	different permeabilities (German Bight, North Sea). Limnol. Oceanogr. 50,
1024		
1826	683	779–792.
1827		
1828	684	Joye, S.B., Connell, T.L., Miller, L.G., Oremland, R.S., Jellison, R.S., 1999.
1829		
1830	685	Oxidation of ammonia and methane in an alkaline, saline lake. Limnol.
1831		
1832	686	Oceanogr. 44, 178–188.
1833		
1834	687	Judd, A., Hovland, M., 2009. Seabed Fluid Flow - The Impact on Geology, Biology
1836	(00	
1837	688	and the Marine Environment. Cambridge University Press, Cambridge.
1838	(00	
1839	689	King, L.H., MacLean, B., 1970. Pockmarks on the Scotian Shell. Geol. Soc. Am.
1840	600	$D_{12} = 11 \cdot 01 \cdot 21 \cdot 41 \cdot 21 \cdot 40$
1841	690	Bull. 81, 3141–3148.
1842	601	King I. I. Dansa T.V. Wakaham S.G. 1008 Arabasa in Plack San water solumn
1843	091	King, L.L., Pease, T.K., Wakenam, S.G., 1998. Alchaea in Black Sea water column
1844	602	particulate matter and sodiments avidence from other linid derivatives. Ora
1845	092	particulate matter and sediments—evidence from ether npid derivatives. Org.
1846	693	Geochem 28 677_688
1047	075	Geochem: 28, 077–088.
1849	694	Knittel K Boetius A 2009 Anaerobic Oxidation of Methane [.] Progress with an
1850	074	Kindel, K., Doends, H., 2007. Mideroble Oxidation of Mediane. 11051ess with an
1851	695	Unknown Process Annu Rev Microbiol 63 311–334
1852	075	
1853	696	Li Y Peacock a White D Gever R Zhang C 2007 Spatial patterns of
1854	090	
1855	697	bacterial signature biomarkers in marine sediments of the Gulf of Mexico.
1856		č
1857	698	Chem. Geol. 238, 168–179.
1000		
1860		
1861		
1862		195
1863		

1865		
1866	699	Lin, O., Wang, J., Algeo, T.J., Sun, F., Lin, R., 2016, Enhanced framboidal pyrite
1867	• • • •	
1860	700	formation related to anaerobic oxidation of methane in the sulfate-methane
1870		
1871	701	transition zone of the northern South China Sea. Mar. Geol. 379, 100-108.
1872		
1873	702	Locat, J., Lee, H.J., 2002. Submarine landslides: advances and challenges. Can.
1874	702	C (1 1 20 102 212
1875	/03	Geotecn. J. 39, 193–212.
1877	704	Navarrete & Peacock & Macnaughton S. Urmeneta I. Mas-Castellà I. White
1878	704	Nuvariete, M., Fedeber, M., Machaughton, S., Ormeneta, J., Mas Castena, J., White,
1879	705	D., Guerrero, R., 2000. Physiological Status and Community Composition of
1880		
1881	706	Microbial Mats of the Ebro Delta, Spain, by Signature Lipid Biomarkers.
1883		
1884	707	Microb. Ecol. 39, 92–99.
1885	700	Nichola DD. Content LD. White D.C. 100(Determination of monocontents d
1886	/08	Nichols, P.D., Guckert, J.B., White, D.C., 1986. Determination of monosaturated
1887	709	fatty acid double-bond position and geometry for microbial monocultures and
1888	105	lady dela dedele cona position and geometry for intercolar monocultures and
1890	710	complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J.
1891		
1892	711	Microbiol. Methods 5, 49–55.
1893	- 10	
1894	/12	Niemann, H., Elvert, M., 2008. Diagnostic lipid biomarker and stable carbon isotope
1896	712	signatures of microbial communities modiating the anacrobic evidation of
1897	/15	signatures of interoblar communities inculating the anacrobic oxidation of
1898	714	methane with sulphate. Org. Geochem. 39, 1668–1677.
1899		
1900	715	O'Reilly, S.S., Hryniewicz, K., Little, C.T.S., Monteys, X., Szpak, M.T., Murphy,
1902		
1903	716	B.T., Jordan, S.F., Allen, C.C.R., Kelleher, B.P., 2014. Shallow water methane-
1904	717	derived outbigenie eerbanete mounds at the Cadling Fault Zone, western Irigh
1905	/1/	derived autiligenic carbonate mounds at the Couning Fault Zone, western mish
1906	718	Sea Mar Geol 357 139–150
1908	110	
1909	719	Pancost, R.D., Sinninghe Damste, J.S., de Lint, S., van der Maarel, M.J.E.C.,
1910		
1911	720	Gottschal, J.C., 2000. Biomarker Evidence for Widespread Anaerobic Methane
1912	70.1	
1914	/21	Oxidation in Mediterranean Sediments by a Consortium of Methanogenic
1915	722	Archaea and Bacteria Appl Environ Microbiol 66 1126–1132
1916	122	Thended and Dacteria. Appl. Environ. Wierobiol. 00, 1120-1152.
1917	723	Pau, M., Gisler, G., Hammer, Ø., 2014. Experimental investigation of the
1918		
1920		
1921		
1922		196
1923		

1924		
1925		
1926	724	hydrodynamics in pockmarks using particle tracking velocimetry. Geo-Marine
1927		janaja ni rita ang Srattan Stati njeti a
1920	725	Lett. 34, 11–19.
1930		
1931	726	Pinkart, H.C., Devereux, R., Chapman, P.J., 1998. Rapid separation of microbial
1932		
1933	727	lipids using solid phase extraction columns. J. Microbiol. Methods 34, 9–15.
1934	50 0	
1935	728	Plets, R.M.K., Callard, S.L., Cooper, J.A.G., Long, A.J., Quinn, R.J., Belknap, D.F.,
1930	720	Edwards B. L. Jackson D.W.T. Kelley, J.T. Long D. Milno, C.A. Monteurs
1938	129	Edwards, K.J., Jackson, D. W.T., Keney, J.T., Long, D., Minne, G.A., Monteys,
1939	730	X 2015 Late Quaternary evolution and sea-level history of a glaciated marine
1940	750	A., 2015. Eule Qualemai y evolution and sea level mistory of a graduated marine
1941	731	embayment, Bantry Bay, SW Ireland. Mar. Geol. 369, 251–272.
1942		
1943	732	Rajendran, N., Matsuda, O., Imamura, N., Urushigawa, Y., 1992. Variation in
1945		
1946	733	Microbial Biomass and Community Structure in Sediments of Eutrophic Bays
1947	72.4	
1948	/34	as Determined by Phospholipid Ester-Linked Fatty Acids. Appl. Envir.
1949	735	Microbiol 58 562 571
1950	155	Wilcrobiol. 58, 502–571.
1952	736	Rajendran, N., Matsuda, O., Imamura, N., Urushigawa, Y., 1995, Microbial
1953		
1954	737	community structure analysis of euxinic sediments using phospholipid fatty
1955		
1956	738	acid biomarkers. J. Oceanogr. 51, 21–38.
1957	= 2 0	
1959	739	Reeburgh, W.S., 2007. Oceanic Methane Biogeochemistry. Chem. Rev. 107, 486–
1960	740	512
1961	/40	515.
1962	741	Ringelberg D.B. Sutton S. White D.C. 1997 Biomass bioactivity and
1963	/ 11	
1965	742	biodiversity: microbial ecology of the deep subsurface: analysis of ester-linked
1966		
1967	743	phospholipid fatty acids. FEMS Microbiol. Rev. 20, 371-377.
1968		
1969	744	Römer, M., Torres, M., Kasten, S., Kuhn, G., Graham, A.G.C., Mau, S., Little,
1970	715	CTC Lines V. Dens T. Commers D. Eisshan D. Wintersteller D. Manage
1972	/43	C. I.S., Linse, K., Pape, I., Geprags, P., Fischer, D., Wintersteiner, P., Marcon,
1973	746	V Rethemever I Bohrmann G 2014 First evidence of widespread active
1974	740	1., Rememeyer, J., Dominiani, G., 2014. Thist evidence of widespread active
1975	747	methane seepage in the Southern Ocean, off the sub-Antarctic island of South
1976		
1977	748	Georgia. Earth Planet. Sci. Lett. 403, 166–177.
1979		
1980		
1981		
1982		197
1983		

1984		
1985		
1986	749	Ruff S.F. Kuhfuss H. Wegener G. Lott C. Ramette A. Wiedling I. Knittel
1987	777	Kun, S.E., Kunuss, II., Wegener, G., Lou, C., Kunleue, H., Wiedning, J., Kinuer,
1988	750	K Weber M 2016 Methane Seen in Shallow-Water Permeable Sediment
1989	750	K., Weber, W., 2010. Mediane Seep in Shahow Water Ferneaste Seannent
1990	751	Harbors High Diversity of Anaerobic Methanotrophic Communities Elba Italy
1991	701	The construction of the co
1992	752	Front Microbiol
1994		
1995	753	Schouten, S., Hopmans, E.C., Sinninghe Damsté, J.S., 2013. The organic
1996		
1997	754	geochemistry of glycerol dialkyl glycerol tetraether lipids: A review. Org.
1998		
1999	755	Geochem. 54, 19–61.
2000		
2001	756	Shakhova, N., Semiletov, I., Salyuk, A., Yusupov, V., Kosmach, D., Gustafsson, O.,
2002		
2003	757	2010. Extensive methane venting to the atmosphere from sediments of the East
2004		
2005	758	Siberian Arctic Shelf. Science 327, 1246–50.
2007		
2008	759	Skarke, A., Ruppel, C., Kodis, M., Brothers, D., Lobecker, E., 2014. Widespread
2009		
2010	760	methane leakage from the sea floor on the northern US Atlantic margin. Nat.
2011		
2012	761	Geosci 7, 657–661.
2013		
2014	762	Soter, S., 1999. Macroscopic seismic anomalies and submarine pockmarks in the
2015	= < 0	
2017	763	Corinth–Patras rift, Greece. Tectonophysics 308, 275–290.
2018	764	Stillman C. L. 1060. The Deet Cleared Changes in Sec. Level in Sections sterm Indeed
2019	/04	Stillman, C.J., 1908. The Post Glacial Change in Sea Level in Southwestern Ireland.
2020	765	Now Evidence from Fresh water Deposits on the Fleer of Pantry Pay. The
2021	705	New Evidence nom riesh-water Deposits on the ribbi of Dantry Day, The
2022	766	scientific proceedings of the Royal Dublin Society, Royal Dublin Society
2023	700	scientific proceedings of the Royal Dublin Society. Royal Dublin Society.
2024	767	Sznak M.T. Monteys X. O'Reilly S. Simpson A.I. Garcia X. Evans R.L.
2025	/0/	52pux, 11.1., 11.011095, 71., 6 110119, 5., 5111p561, 71.5., 641614, 71., Evalis, 11.E.,
2020	768	Allen C C R McNally D J Courtier-Murias D Kelleher B P 2012
2028	,	
2029	769	Geophysical and geochemical survey of a large marine pockmark on the Malin
2030		
2031	770	Shelf, Ireland. Geochemistry, Geophys. Geosystems 13.
2032		
2033	771	Szpak, M.T., Monteys, X., O'Reilly, S.S., Lilley, M.K.S., Scott, G.A., Hart, K.M.,
2034		
2035	772	McCarron, S.G., Kelleher, B.P., 2015. Occurrence, characteristics and
2036		
2037	773	formation mechanisms of methane generated micro-pockmarks in Dunmanus
2039		
2040		
2041		
2042		198
2043		

2045		
2046	774	Bay, Ireland, Cont. Shelf Res. 103, 45–59.
2047		<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2049	775	Taylor, J., Parkes, R.J., 1983. The Cellular Fatty Acids of the Sulphate-reducing
2050		
2051	776	Bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans.
2052	777	Microbiology 120, 2202, 2200
2053	///	Microbiology 129, 5505–5509.
2055	778	Trent, J.D., Kagawa, H.K., Paavola, C.D., McMillan, R.A., Howard, J., Jahnke, L.,
2056		
2057	779	Lavin, C., Embaye, T., Henze, C.E., 2003. Intracellular localization of a group
2058	700	
2039	780	II chaperonin indicates a membrane-related function. Proc. Natl. Acad. Sci. U.
2061	781	S A 100 15589_15594
2062	701	5. 1. 100, 15507 15574.
2063	782	Valentine, D.L., 2002. Biogeochemistry and microbial ecology of methane oxidation
2064		
2066	783	in anoxic environments: a review. Antonie Van Leeuwenhoek 81, 271-282.
2067	704	
2068	784	Valentine, D.L., Reeburgh, W.S., 2000. New perspectives on anaerobic methane
2069	785	ovidation Environ Microbiol 2 477-484
2070	705	$\mathbf{O}_{\mathbf{A}}$
2072	786	van Dongen, B.E., Roberts, A.P., Schouten, S., Jiang, WT., Florindo, F., Pancost,
2073		
2074	787	R.D., 2007. Formation of iron sulfide nodules during anaerobic oxidation of
2075	700	
2077	/88	methane. Geochim. Cosmochim. Acta /1, 5155–516/.
2078	789	Verardo D I Froelich P N McIntyre A 1990 Determination of organic carbon
2079	107	
2080	790	and nitrogen in marine sediments using the Carlo Erba NA-1500 analyzer. Deep
2082		
2083	791	Sea Res. Part A. Oceanogr. Res. Pap. 37, 157–165.
2084	702	Vermeuler N.J. Shanner D.M. Messen F. Lendes M. 2000 Wide engle seismie
2085	192	Vermeulen, N.J., Shannon, P.M., Masson, F., Landes, M., 2000. Wide-angle seisinic
2086	793	control on the development of the Munster Basin, SW Ireland, Geol. Soc.
2088	, , , 0	
2089	794	London, Spec. Publ. 180, 223–237.
2090		
2091	795	Volkman, J.K., Johns, R.B., Gillan, F.T., Perry, G.J., Bavor, H.J., 1980. Microbial
2092	706	linide of an intertidal sodiment. I Fatty saids and hydrogerbane. Geochim
2094	790	nplus of an intertidal sediment—1. Party aclus and nyurocarbons. Geochini.
2095	797	Cosmochim. Acta 44, 1133–1143.
2096		
2097	798	Wakeham, S.G., Lewis, C.M., Hopmans, E.C., Schouten, S., Sinninghe Damsté, J.S.,
2099		
2100		
2101		100
2102		199

799	2003. Archaea mediate anaerobic oxidation of methane in deep euxinic waters
800	of the Black Sea. Geochim. Cosmochim. Acta 67, 1359-1374.
801	Westbrook, G.K., Thatcher, K.E., Rohling, E.J., Piotrowski, A.M., Pälike, H.,
802	Osborne, A.H., Nisbet, E.G., Minshull, T.A., Lanoisellé, M., James, R.H.,
803	Hühnerbach, V., Green, D., Fisher, R.E., Crocker, A.J., Chabert, A., Bolton, C.,
804	Beszczynska-Möller, A., Berndt, C., Aquilina, A., 2009. Escape of methane gas
805	from the seabed along the West Spitsbergen continental margin. Geophys. Res.
806	Lett. 36.
807	Wheeler, A.J., 2002. Environmental controls on shipwreck preservation: The Irish
808	context. J. Archaeol. Sci. 29, 1149-1159.
809	White, D.C., Ringelberg, D.B., MacNaughton, S.J., Srinivas, A., Schram, D., 1997.
810	Signature Lipid Biomarker Analysis for Quantitative Assessment In Situ of
811	Environmental Microbial Ecology. In: Eganhouse, R.P. (Ed.), Molecular
812	Markers in Environmental Chemistry. American Chemical Society, Washington
813	D.C., pp. 22–34.
814	Yvon-Durocher, G., Allen, A.P., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre,
815	A., Thanh-Duc, N., del Giorgio, P.A., 2014. Methane fluxes show consistent
816	temperature dependence across microbial to ecosystem scales. Nature 507, 488-
817	491.
818	Zelles, L., 1997. Phospholipid fatty acid profiles in selected members of soil
819	microbial communities. Chemosphere 35, 275–294.
820	
	200
	 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820

Figure 1. (A) Map of Bantry Bay and surrounding area, location of Bantry Bay within Ireland (inset). (B) Bathymetric map of inner Bantry Bay showing locations of underlying faults.

Figure 2. (A) Bathymetric map of inner Bantry Bay, vibrocore locations marked with red dots. The pockmark field north of Whiddy Island is located within the white box. (B) Close up of pockmark field from (A) with the entire field highlighted by a white outline and vibrocore locations marked with red dots. A close up of the section of the pockmark field within the black dashed rectangle is also depicted (inset).

Figure 3. Sub-bottom profiles taken at the site of VC24 and VC25 vibrocores showing sampling locations (black line), enhanced reflectors (ER), and acoustic blanking (AB).

Figure 4. CH₄ (mM) and SO₄²⁻ (mM) profiles for each core. Green dots represent sub-sampling locations for lipid biomarker analysis.

9.550°W

9.500°W

 $\square SO_4^{2-}$

• Biomarker Sample

Supporting Information

Geophysical and geochemical analysis of shallow gas and an associated pockmark field in Bantry Bay, Co. Cork, Ireland.

S.F. Jordan^a, S.S. O'Reilly^b, D. Praeg^{c,d}, D. Dove^e, L. Facchin^d, R. Romeo^d, M. Szpak^f, X. Monteys^f, B.T. Murphy^a, G. Scott^g, S.S. McCarron^g, and B.P. Kelleher^{a,*}

^a School of Chemical Sciences, Dublin City University, Dublin 9, Ireland

^b Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA

^c Géoazur (UMR7329 CNRS), 250 Rue Albert Einstein, 06560 Valbonne, France

^d OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Borgo Grotta Gigante 42C, Trieste, 34010, Italy

^e British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh, EH14 4AP, UK

^f Geological Survey of Ireland, Beggars Bush, Haddington Road, Dublin, Ireland ^g Maynooth University Department of Geography, Maynooth, Co. Kildare, Ireland

*Corresponding author: *E-mail address*: <u>brian.kelleher@dcu.ie</u> (B.P. Kelleher).

Results

	VC24			VC25		VC27		
Depth	CH ₄	SO4 ²⁻	Depth	CH ₄	SO4 ²⁻	Depth	CH ₄	SO4 ²⁻
(mbsf)	(µM)	(mM)	(mbsf)	(µM)	(mM)	(mbsf)	(µM)	(mM)
0.01	1.5	23.9	0.17	2.5	22.1	0.02	0.9	23.9
0.19	1.8	26.8	0.37	3.8	22.5	0.38	2.6	22.2
0.47	8.6	24.2	0.56	3.0	21.3	0.79	4.5	22.5
0.89	30.5	16.9	1.00	2.5	20.9	1.11	3.8	20.8
1.13	68.9	12.6	1.30	3.6	20.8	1.42	5.5	21.2
1.55	983.5	10.0	1.63	4.2	22.4	1.85	11.2	18.9
2.12	1519.6	7.0	1.84	4.4	19.6	2.05	12.4	18.0
2.53	2409.5	7.0	2.26	4.8	18.7	2.45	31.9	16.3
2.95	2707.7	7.0	2.56	7.7	18.8	2.85	20.3	14.1
3.28	3674.9	7.0	2.90	8.5	19.6	3.13	19.9	12.7
3.56	2895.5	7.0	3.19	13.2	18.7	3.60	69.6	11.1
4.02	3146.6	7.0	3.51	13.0	16.9	4.08	964.9	7.1
4.27	2989.9	7.0	3.81	13.7	16.3	4.50	1770.4	7.1
4.52	3531.9	7.0	4.17	14.2	15.9	4.91	2697.4	7.2
4.88	2615.2	7.0	4.55	11.7	16.3	4.96	3664.2	7.3
5.16	3258.2	7.1	4.85	15.2	15.9			
5.46	3573.0	7.1	5.23	18.0	14.9			
5.74	2946.9		5.61	16.5	14.2			
			5.66	16.2	12.0			

Table S1. CH₄ (μ M) and SO₄²⁻ (mM) data from geochemical analysis of vibrocores.

Fig. S1. Photographs of vibrocore sections taken onboard the *RV Celtic Explorer* during research cruise CE14003. Graphical depictions of sediment type from core logs are displayed alongside relevant sections.