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                                                     Highlights

• Acoustic data provided evidence for widespread fluid migration in a shallow 

marine bay in Co. Cork, Ireland including shallow gas deposits near the seabed.

• Fluid migration has led to the formation of a previously undescribed pockmark 

field within the bay.

• Ground-truthing confirmed that the fluid was methane which is likely both 

thermogenic and biogenic in origin, possibly derived from an underlying fault 

and methanogenesis of pre-glacial lacustrine sediments.

• Geochemical evidence suggests that microbial anaerobic oxidation of methane 

(AOM) plays a key role in controlling the release of methane to the atmosphere 

from the bay.
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19 Abstract

20

21 An integrated geophysical, geological, and geochemical investigation of seabed fluid venting 

22 was carried out in upper Bantry Bay, a large marine inlet on the southwest coast of Ireland. 

23 The results provide evidence of the seafloor venting of gas rich fluids, resulting in the formation 

24 of a pockmark field identified here for the first time. The pockmarks occur in an area where 

25 sub-bottom profiles provide evidence of chimney-like features interpreted to record upward 
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26 gas migration through Quaternary sediments to the seafloor. Three vibrocores up to 6 m long 

27 were acquired in water depths of 24-34 m, two from the pockmark field and one from outside. 

28 Methane of predominantly biogenic origin was quantified in all three cores by headspace 

29 analysis of sediment sub-samples. Well-defined sulfate methane transition zones (SMTZs) 

30 were observed in two of the cores, the shallowest (1.25 metres below sea floor (mbsf)) inside 

31 the pockmark field and the other (3.75 mbsf) outside. It is likely that an SMTZ occurs at the 

32 location of the third core, also within the pockmark field, although deeper than the samples 

33 obtained during this study. Gas migration towards the seafloor is suggested to involve both 

34 diffuse pore fluid migration across wide areas and focused flow through the pockmarks, 

35 together driven by methanogenesis of pre-glacial lacustrine sediments preserved in a bedrock 

36 basin, and possible gas release from the Owenberg River Fault. Analysis of phospholipid fatty 

37 acids (PLFAs) and archaeal isoprenoid hydrocarbons was used to investigate the microbial 

38 ecology of these sediments. Anaerobic oxidation of methane (AOM) may play a role in 

39 controlling release of CH4 to the water column and atmosphere in this shallow gas setting, 

40 potentially mediated by syntrophic sulfate reducing bacteria (SRB) and anaerobic 

41 methanotrophic archaea (ANME).

42

43 Keywords

44 Seafloor; pockmarks; biogeochemical processes; fluid migration; anaerobic oxidation of 

45 methane (AOM); lipid biomarkers; methane; climate change; geohazards

46

47 1. Introduction

48

49 Pockmarks are concave depressions within seabed sediments, circular to ellipsoidal in 

50 shape, ranging from <1 to 400 m in diameter and up to 20 m deep (Hovland and Judd, 1988; 
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51 King and MacLean, 1970), although typically 30 to 40 m wide and 2 to 3 m deep (Acosta et 

52 al., 2001). Pockmarks can occur as singular features, in linear patterns known as pockmark 

53 trains, or in complex groups known as pockmark fields. The formation and dynamics of these 

54 features are still not fully understood, but they are generally considered to be the result of the 

55 expulsion of fluids typically including hydrocarbon gases, mainly methane (CH4), from 

56 seafloor sediment (Hovland, 2013; Hovland and Judd, 1988). The emission of fluids containing 

57 gas from pockmarks makes them of interest in relation to issues of global carbon cycling and 

58 climate change, as well as for seafloor geohazards (Judd and Hovland 2007).

59 Geologic Emissions of Methane (GEM), which include marine seeps such as 

60 pockmarks, have been recognized as a natural source of atmospheric methane second only to 

61 wetlands (Etiope et al., 2008). As a greenhouse gas, the warming potential of CH4 outweighs 

62 carbon dioxide (CO2) by a factor of 25 times per ton, and since pre-industrial times is estimated 

63 to have been responsible for approximately 20% of the Earth’s warming (Yvon-Durocher et 

64 al., 2014). Recent work indicates that contributions from marine sources have been greatly 

65 underestimated (Skarke et al., 2014) and there is a need for CH4 flux revisions in terms of 

66 understanding the global carbon cycle (Judd and Hovland, 2009). Seepage sites are globally 

67 widespread in shallow water coastal regions and have been suggested to be an important source 

68 of CH4 (Borges et al., 2016; Janssen et al., 2005; Shakhova et al., 2010; Skarke et al., 2014). 

69 However, global estimates of the contribution to atmospheric CH4 concentrations from marine 

70 seepage sites are highly uncertain (Römer et al., 2014). 

71 The presence of pockmarks may also be of significance in terms of marine geohazards 

72 (Hovland, 1989). Fluid migration through marine sediments, through its influence on pore 

73 pressures and sediment strength, is thought to play a key role in slope failure and seabed 

74 instability (e.g. Locat and Lee, 2002). Therefore in pockmarked areas the development of 

75 offshore infrastructures, such as pipelines, may need to avoid these features (Hovland et al., 
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76 2002). In addition, pockmarks have been suggested as possible indicators of seismic activity 

77 (Hovland et al., 2002), based on observations of gas venting from pockmarks before and during 

78 earthquakes at sites in California (Field and Jennings, 1987) and Greece (Hasiotis et al., 1996; 

79 Soter, 1999). Large-scale multinational monitoring of pockmarks has been advocated (Hovland 

80 et al., 2002).

81 Anaerobic oxidation of methane (AOM) and the microbial consortia involved are 

82 important factors in the global methane cycle, and yet they are still poorly understood (Gauthier 

83 et al., 2015; Ruff et al., 2016). Although large amounts of CH4 are transported from deep 

84 reservoirs to shallow sediments, it is estimated that <3% reaches the atmosphere due to the 

85 AOM performed by microbial communities (Niemann and Elvert, 2008). The predominant 

86 mechanism of AOM is thought to be a syntrophic process whereby anaerobic methanotrophic 

87 archaea (ANME) and sulfate reducing bacteria (SRB) oxidise CH4 to CO2 whilst reducing 

88 SO4
2- to H2S providing energy for both microbial consortia (Boetius et al., 2000; Elvert et al., 

89 2003; Reeburgh, 2007; Valentine and Reeburgh, 2000):

90 SO4
2- + CH4 → HCO3

- + H2S + H2O

91 These communities are predominantly found in sediments, however they have also been 

92 found in anoxic marine and saline lacustrine water bodies, and in terrestrial mud volcanoes 

93 (Alain et al., 2006; Joye et al., 1999; Wakeham et al., 2003). AOM primarily occurs at what is 

94 known as the sulfate methane transition zone (SMTZ), where CH4 diffusion from deeper 

95 sediments and SO4
2- penetration from seawater provide optimal conditions for AOM 

96 communities (Knittel and Boetius, 2009). 

97 Lipid biomarkers can provide evidence for the role played by archaea and SRB in AOM 

98 (Caldwell et al., 2008). Phospholipid fatty acids (PLFAs) are fatty acids chemically cleaved 

99 from ester linkage to polar head groups and are a useful tool to provide quantitative measures 

100 of viable biomass and microbial community composition (Ringelberg et al., 1997; Zelles, 
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101 1997). Phospholipids are rapidly degraded after cell death making them excellent biomarkers 

102 for viable microbial cells (Navarrete et al., 2000; White et al., 1997). Certain PLFAs have been 

103 used as chemotaxonomic markers for SRB, such as C16:1⍵5c and cyC17:0⍵5,6 as indicators of 

104 Desulfosarcina/Desulfococcus species (Elvert et al., 2003). Archaeal cell membranes are 

105 comprised of ether-linked isoprenoid lipids (Schouten et al., 2013). Analysis of these intact 

106 lipids or their hydrocarbon skeletons (e.g. phytane, acyclic and cyclic C40 isoprenoids) in 

107 environmental samples provides a broad measure of archaeal abundance and diversity (e.g. 

108 (King et al., 1998). δ13C values of AOM derived lipids are typically significantly depleted with 

109 values < -50‰ (Elvert et al., 2003; Niemann and Elvert, 2008; van Dongen et al., 2007). 

110 Isolation of these compounds combined with determination of their δ13C signatures can help 

111 provide an overview of the microbial consortia and their involvement in AOM within cold seep 

112 environments (Ge et al., 2015; Pancost et al., 2000).

113 Pockmark and seepage sites have been reported and investigated at several sites around 

114 the coast of Ireland and we are only beginning to understand the dynamics and ubiquity of 

115 coastal methane cycling (Croker et al., 2005, O’Reilly et al., 2014, Szpak et al., 2012, and 

116 Szpak et al., 2015). In this paper we present the first description of a pockmark field in the 

117 shallow waters (<30 m) of upper Bantry Bay, on the west coast of Ireland. The aim of the study 

118 is to characterise CH4 migration associated with the pockmarks, based on core data acquired 

119 during an Irish-led campaign in 2014. The results provide information on the source of the CH4 

120 and its relation to the microbial ecology of this area, as well as the possible causes of pockmark 

121 formation at this site. Our findings contribute to an improved understanding of gas venting 

122 features in Irish coastal waters, that may be relevant to environmental planning, economic 

123 developments, and global climate change. 

124

125 2. Regional setting
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126

127 Bantry Bay is the largest marine inlet in the southwest of Ireland, spanning an offshore 

128 area of 300 km2 (Fig. 1A). It is approximately 40 km long, narrowing in width from 10 km at 

129 its mouth, where water depths are up to 60 m, to 5 km at its head. The bay contains two large 

130 islands; Bere Island in the outer bay and Whiddy Island in the inner bay. The Melagh, Owvane, 

131 Coomhola, Glengarriff, and Adrigole rivers all drain into Bantry Bay. Geologically, the bay 

132 lies within the South Munster Basin, comprising Devonian strata dominated by the Old Red 

133 Sandstone beneath uppermost Devonian and Carboniferous marine sandstones and mudstones 

134 (Plets et al., 2015; Vermeulen et al., 2000). Several fault lines are inferred to run through the 

135 bay offsetting the Old Red Sandstone (Fig. 1B): the Bantry Fault runs from the southeast of 

136 Whiddy Island, continuing along the centre of the bay; the Owenberg River Fault lies north 

137 east of Whiddy Island before meeting the Bantry Fault; while northeast of Whiddy Island are 

138 the Glengarriff Harbour and Coolieragh Faults (Szpak et al., 2015).

139 The sedimentary infill of the Bay was described by (Plets et al. 2015), based on sub-

140 bottom profiles tied to shallow sediment cores, who recognized bedrock to be overlain by up 

141 to six units, interpreted to record deposition prior to and since the last glacial maximum (LGM). 

142 The oldest unit corresponds to stratified sediments infilling bedrock depressions, correlated to 

143 pre-LGM lacustrine sediments reported in the upper Bay by Stillman (1968). This is overlain 

144 by glacial sediments, truncated by tidal to estuarine units recording the inundation of the Bay 

145 and capped by a seafloor unit recording the establishment of fully marine conditions after 11 

146 ka BP. In the inner Bay, the upper stratified marine unit is underlain by a unit of strong 

147 discontinuous reflections described as ‘turbid’, that cores show to correspond to estuarine 

148 deposits, laminated sands and muds containing organic matter, suggested on the basis of its 

149 acoustic character to also contain pockets of gas (Plets et al. 2015). In addition, in the upper 

150 Bay above at least 65 m water depth, the sediment column is crossed by vertical, pillar-like 
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151 acoustic turbidity zones (ATZs) that rise to within several metres of seafloor; although not 

152 interpreted by Plets et al. (2015), these appear typical of gas chimneys (Dondurur et al. 2011).

153 Seabed classification maps based on backscatter and particle size analysis (PSA) show 

154 that the sediment type is predominantly mud to fine sand with increasing medium to coarse 

155 sand towards the mouth of the bay. There are areas of medium to coarse sand, coarse sand to 

156 gravel, and rock throughout the bay primarily along the perimeter (INFOMAR, 2011). 

157

158 3. Materials and methods

159

160 The data used in this study were acquired during campaigns undertaken as part of the 

161 INFOMAR (Integrated Mapping for the Sustainable Development of Ireland’s Marine 

162 Resources) programme. Acoustic datasets including multibeam bathymetric and backscatter 

163 coverage of all of Bantry Bay were obtained during INFOMAR campaigns from 2004-2007 

164 (see Plets et al. 2015), while the sediment cores and sub-bottom profiles used in this study were 

165 acquired as part of the GATEWAYS campaign of the Celtic Explorer in February 2014 

166 (CE14003).

167

168 3.1. Acoustic data

169 Seafloor bathymetric and backscatter data were collected using two Kongsberg Simrad 

170 multibeam systems, an EM1002 (95 kHz) and an EM3002D (200 kHz). The multibeam data 

171 were processed using QTC Multiview software to generate bathymetric terrain models of 2 x 

172 2 m grid size. No multibeam water column data were available for this study.

173 Sub-bottom profiles were acquired in 2014 using a heave-corrected SES Probe 5000 

174 pinger with a 4x4 transducer array (hull-mounted) and a CODA DA2000 acquisition system. 

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420



171

175 Frequency content of 2.5 kHz corresponds to decametric vertical resolution. Acquisition 

176 parameters, data logging, and interpretation were performed using the CODA Geokit suite.

177

178 3.2. Sediment cores

179 Three sediment cores were obtained in 2014 using a 6 m pneumatic vibrocorer, 

180 deployed in water depths of 24-34 m. Recorded positions are those of the ship, which may 

181 differ from the corer by up to 30 m. Two cores were obtained from within the pockmark field 

182 and one core was taken from outside the field. Once on deck, cores were cut into 1 m sections 

183 and capped. Core sections were split and the archive halves were photographed and logged. 

184 Sediment porewaters were sampled downcore using Rhizons (Rhizosphere Research Products) 

185 for analysis of SO4
2-

 distribution. These were attached to 10 mL plastic syringes to create 

186 vacuum pressure. The sampled porewater was placed in a plastic vial and preserved with 10 

187 µL CHCl3 for sulfate analysis. All porewater samples were refrigerated at 4ºC onboard for the 

188 duration of the cruise and back in the laboratory prior to analysis.

189 Gas samples were immediately taken from the vibrocore sections to determine gas 

190 composition and distribution. Two 10 cm3 sediment plugs were sampled using plastic syringes 

191 with tips removed and transferred to 50 mL glass headspace vials containing 20 mL 2 M 

192 sodium hydroxide. Vials were sealed, homogenised, and stored upside-down in the dark at 4 

193 ℃ for the duration of the cruise.

194 Sediment sub-samples were taken immediately after porewater and gas sub-samples. 

195 Particle size analysis (PSA) samples were placed in ziplock bags and stored at room 

196 temperature. Samples for lipid biomarker analysis were wrapped in fired Al foil, placed in 

197 ziplock bags, and stored at -20 ℃.

198

199 3.3. Porewater and gas analysis
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200 SO4
2- concentration in porewater was determined by the turbidimetric method. 10 mL 

201 of sample was stirred constantly and 2-3 drops of glycerol were added. Crushed BaCl2, 

202 approximately 50 mg, was added to the mixture and stirring was continued for 1 minute after 

203 which an aliquot was taken and the absorbance measured at 420 nm on a Shimadzu UV Mini 

204 1240. Further aliquots were taken after 2, 2.5, and 3 minutes and an average reading was 

205 calculated and used to determine concentration by extrapolation from a calibration curve. The 

206 calibration curve was prepared with Na2SO4 standards in a range of 10 to 100 ppm.

207 CH4 analysis was performed on an Agilent 7820A GC-FID with a 30 m HP-PLOTQ 

208 column (Agilent, Santa Clara, USA). Column conditions were isothermal (50 ℃). CH4 was 

209 quantified using calibration standards prepared from a 99.995% CH4 standard (Sigma Aldrich, 

210 Dorset, UK).

211

212 3.4. Bulk physical and chemical analysis

213 PSA and total organic carbon (TOC) data were obtained from sub-samples taken 

214 surrounding the SMTZ locations which were determined by CH4 and SO4
2- analyses. PSA was 

215 determined by laser granulometry using a Mastersizer 2000 particle size analyser (Malvern, 

216 Worcestershire, UK). Organic carbon (OC) was removed using 30% hydrogen peroxide (H2O2) 

217 prior to analysis. Elemental analysis was performed in triplicate using a Fisons NCS 1500 NA 

218 elemental analyser. Samples were treated with 1 N HCl in Ag capsules following the procedure 

219 of Verardo et al. (1990) to remove carbonate. After drying overnight, the capsules were 

220 wrapped in Sn boats and combusted in the presence of O2. The CO2 evolved was measured and 

221 the TOC content (%) calculated by comparison with the certified reference standard 

222 acetanilide.

223

224 3.5. Lipid biomarker analysis
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225 Sediment samples were selected from sub-samples associated with the SMTZs. These 

226 were freeze-dried and homogenized and lipid compounds were extracted from 30 g of 

227 powdered sediment using a modified Bligh-Dyer extraction (White et al., 1997). Total lipid 

228 extracts (TLEs) were concentrated and elemental S was removed by reaction with activated 

229 Cu. TLEs were fractionated into neutral, glyco-, and polar lipids using Bond-Elut SPE columns 

230 packed with an aminopropylsilica solid phase (5mm diameter, PE, 500mg Ultra-Clean NH2, 

231 Agilent Technologies) as outlined by Pinkart et al. (1998). A portion of each polar lipid fraction 

232 was subjected to acid methanolysis (0.5 M sodium methoxide, 50 ℃, 30 min) to transmethylate 

233 ester-linked fatty acids. Double-bond positions of monounsaturated PLFAs were determined 

234 by the formation of dimethyl disulfide (DMDS) adducts as described by Nichols et al., (1986). 

235 Archaeal isoprenoid lipids were separated from polar head groups by cleavage of their ether 

236 linkages following the method of Trent et al. (2003). 100 ppm 5⍺ cholestane was added to all 

237 derivatised fractions as an internal standard prior to analysis. 

238 Aliquots (1 µl) of samples were injected in triplicate onto an Agilent model 7890N gas 

239 chromatograph coupled to an Agilent 5973N mass selective detector operating in electron 

240 impact mode at 70 eV. The column was a 30 m HP-5MS column (0.25 mm i.d., 1 μm film 

241 thickness). Each sample (1 µl) was injected with a 2:1 split ratio. The GC inlet temperature 

242 was 280 °C and the oven programme was 65 °C (held 2 min) to 300 °C (held 20 min) at 6 

243 °C/min. Individual compounds were assigned from comparison with mass spectral library 

244 databases (NIST and Wiley) and comparison of MS patterns with published spectra and 

245 authentic standards. Analytes were quantified from total ion peak area using multiple-point 

246 calibration curves of representative standards (methyl tetradecanoate and squalane). 

247 Percentage recovery was measured using an internal standard added prior to extraction and was 

248 found to be > 95%. Procedural blanks were run to monitor background interferences. 
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249 1 µl aliquots of samples were injected in triplicate onto an Agilent model 7890N gas 

250 chromatograph coupled to an IsoPrime 100 isotope ratio mass spectrometer. The δ13C values 

251 were measured against a CO2 reference gas of known δ13C value and are reported vs. a stable 

252 isotope reference standard (n-alkanes mixture B2, Indiana University, USA). Reproducibility 

253 was better than ± 0.5 ‰ and only well resolved major analytes are reported here. 

254 Lipid nomenclature is according to xCyωz, where x refers to the number of carbon 

255 atoms present, y refers to the number of double bonds on the carbon chain and z refers to the 

256 position of the first double bond from the methyl end. Iso and anteiso branching is denoted by 

257 ‘i’ and ‘ai’ respectively whilst the presence of the cyclopropane ring in a compound is denoted 

258 by ‘cy’.

259

260 4. Results

261

262 4.1. Geophysical analyses

263 Multibeam morpho-bathymetric data provide evidence of an elongate pockmark field 

264 north of Whiddy Island (Fig. 2). This is a narrow (max width ca. 275 m) pockmark field of 

265 approximately 2.4 km in length, covering an area of ca. 0.5 km2. Interestingly, this field 

266 coincides with part of the Owenberg River Fault (Fig. 1B). The data show that the pockmarks 

267 average ca. 10 m in diameter and are of low relief, with some features near the core locations 

268 as shallow as ca. 0.3 m in depth (Fig. 2B). Recorded GPS position onboard the vessel may 

269 differ from the actual sample location by up to 20–30 m. Therefore, although both VC24 and 

270 VC25 were taken within the pockmark field, it is not possible to be sure whether either core 

271 penetrated directly into a single pockmark feature.

272 A sub-bottom profile for VC27 was not prepared as the data was obstructed by 

273 sideswipe from a rocky outcrop. Sub-bottom profiles across the sites of VC24 and VC25 
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274 provide acoustic evidence of gas migration through the sediment column (Fig. 3). The 

275 sedimentary succession is crossed by columnar or conical zones of blanking (AB on Fig. 3), 

276 most of which underlie strong reflector segments that lie at varying depths of ca. 4-10 metres 

277 below sea floor (mbsf) (Fig. 3). Similar ‘pillar-like’ acoustic zones were previously described 

278 on sub-bottom profiles across upper Bantry Bay by Plets et al. (2015). On high frequency 

279 seismic data, such effects may arise due to overlap with the resonance frequencies of gas bubble 

280 populations, resulting in energy loss by attenuation (reverberation and scattering) as well as 

281 changes in P-wave velocity (Mathys et al. 2005). Gas concentrations as low as 0.5% may result 

282 in a range of possible amplitude and coherence effects described as acoustic turbidity (Abegg 

283 and Anderson 1997; Fleischer et al. 2001; Judd and Hovland 2007). We interpret the vertical 

284 acoustic zones observed in Bantry Bay to be typical chimney structures, recording the upward 

285 migration of gas-rich fluids through the sediment column (e.g. Dondurur et al., 2011). 

286 On Fig. 3, the tops of the chimneys are seen to lie at varying stratigraphic levels, the 

287 shallowest within an interval of strong discontinuous reflections of varying thickness. This 

288 interval corresponds to unit III of Plets et al. (2015), which their cores showed to comprise 

289 organic-rich laminated sands/muds of estuarine origin, hypothesised to contain gas pockets due 

290 to their acoustically ‘turbid’ character.  This unit was also penetrated by our cores, which 

291 provide no evidence that its acoustic character can be correlated to higher gas content. We 

292 suggest instead that the reflective character is likely to reflect the unit’s distinctive lithology, 

293 comprising sand and mud laminae capable of generating strong impedance contrasts (SI Fig. 

294 S1). 

295

296 4.2. Gas and porewater geochemistry

297 All measured CH4 values are provided in the supporting information (SI Table S1). The 

298 highest concentrations of CH4 were observed in VC24, taken from the pockmark field (Fig. 4). 
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299 Values fluctuated between 2.62 and 3.57 mM rising through the core before steadily decreasing 

300 from 3.28 mbsf (3.68 mM) to the surface sample at 0.01 mbsf (0.002 mM), the minimum 

301 overall value for VC24. SO4
2- concentrations for VC24 ranged from 7.0 to 26.8 mM displaying 

302 an overall decreasing trend from the surface, opposite to that of CH4 (Fig. 4). A minimum value 

303 was observed at 2.12 mbsf from which concentrations remain relatively constant through to 

304 the bottom of the core. 

305 Overall CH4 concentrations detected within VC25 were the lowest of the three 

306 vibrocores analysed with a maximum observed at 5.23 mbsf (0.018 mM) and a minimum 

307 observed at 1 mbsf (Fig. 4). Concentrations decrease gradually from the base of the core to the 

308 sediment surface from 0.016 mM to 0.003 mM. Concentrations of porewater SO4
2- were 

309 relatively high throughout VC25 compared to VC24 and VC27 (Fig. 4). Values were gradually 

310 depleted from the seafloor (0.17 mbsf) with a concentration of 22.1 mM to the deepest sample 

311 from the core (5.66 mbsf) with a concentration of 12.0 mM.

312 In VC27, outside the pockmark field, CH4 concentrations decreased from 3.66 mM at 

313 the base of the core (4.96 mbsf) to 0.97 mM at 4.08 mbsf before falling sharply to 0.07 mM at 

314 3.6 mbsf (Fig. 4). Depletion gradually continued from this depth to 0.001 mM at the surface of 

315 the core (0.02 mbsf). SO4
2- concentrations followed an opposing trend with a maximum of 23.9 

316 mM at 0.02 mbsf decreasing to a minimum of 7.1 mM at 4.08 mbsf and remained at similar 

317 concentration to the base (4.96 mbsf) (Fig. 4).

318

319 4.3. PSA and elemental analysis

320 The overall sediment type for the three cores taken from Bantry Bay was poorly to very 

321 poorly sorted sandy mud. All values for mean particle size, percentage clay, silt, sand, and 

322 gravel are provided in table 1. Mud percentages (clay and silt) ranged from 69.4 to 92.3% in 

323 VC24, from 42.2 to 81.2% in VC25, and from 29.3 to 84.0% in VC27. The 42.2% value from 
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324 VC25 was obtained at 4.99 mbsf, a sample comprised of poorly sorted muddy sand due to its 

325 high sand content (57.8%). The 29.3% value in VC27 was obtained at 1.93 mbsf where 

326 sediment type can be described as very poorly sorted, slightly gravelly, muddy sand due to its 

327 gravel (4.9%) and sand (65.8%) content. This gravel-containing layer had the largest mean 

328 particle size of 0.8 phi whereas the lowest value of 5.3 phi was observed in VC24 at 0.77 mbsf, 

329 the layer with the highest overall mud content (92.3%). The mean particle size for the 

330 remaining samples ranged between 4.5 and 3.3 phi.

331 Total organic carbon (TOC) content was low throughout all cores with an average 

332 overall value of 0.6% (Table 2). The highest observed values were 2 and 1.2% for VC24 0.025 

333 and 0.27 mbsf respectively. No other sample had a value greater than 0.7%. In VC24, TOC 

334 decreased from 0.025 to 1.93 mbsf (2 to 0.3%) before increasing slightly to 0.5% at 2.92 mbsf 

335 and decreasing again to 0.3% at 3.9 mbsf. VC25 values were relatively constant. The TOC 

336 content of VC27 at 1.93 and 2.96 mbsf was 0.5%. This decreased to 0.4% at 3.98 mbsf and 

337 0.3% at 4.97 mbsf. 

338

339 Table 1. PSA results for all vibrocores.

Core Depth 
(mbsf)

Mean 
(phi)

Clay 
(%)

Silt 
(%)

Sand 
(%)

Gravel 
(%)

VC24 0.08 4.5 10.6 69.4 20 0
0.33 3.3 10.1 62.8 27.1 0
0.72 5.3 15.3 77 7.7 0
1.88 4.0 9.7 68.9 21.4 0
2.97 3.7 6.2 77.2 16.6 0

 3.96 3.8 5.5 63.9 30.6 0
VC25 0.81 3.7 2.3 63.5 34.2 0

2.93 3.4 6.1 62.8 31.1 0
3.93 4.3 8.4 72.7 18.8 0

 4.99 3.6 1.8 40.4 57.8 0
VC27 0.93 0.8 2.7 26.6 65.8 4.9

1.96 4.1 11.9 72.1 16 0
2.98 4.1 10.9 69.1 20 0
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 3.97 3.4 11.7 41 47.3 0
340

341 4.4.4. Lipid biomarkers

342 A summary of key lipid biomarker concentrations is provided in table 2. The highest 

343 overall concentrations of PLFAs in all three vibrocores were observed in VC24. 310.1 and 

344 235.2 µg gOC-1 were detected at 0.03 and 0.27 mbsf respectively, the largest quantities of 

345 PLFAs in all analysed samples. The remaining depths of VC24 contained between 31.1 (0.77 

346 mbsf) and 90.1 µg gOC-1 (1.93 mbsf). Saturated fatty acids (SATFAs) and monounsaturated 

347 fatty acids (MUFAs) were the dominant PLFAs at 0.03 and 0.27 mbsf whilst SATFAs and 

348 branched fatty acids (brFAs) were dominant from 0.77 to 3.9 mbsf. Polyunsaturated fatty acids 

349 (PUFAs) were not found at 1.93 or 2.92 mbsf and were the smallest class of PLFAs at all other 

350 depths. Total PLFA concentrations ranged from 49.7 to 73.9 µg gOC-1 (5.96 and 2.93 mbsf 

351 respectively) in VC25. SATFAs were the dominant compounds throughout the core with 

352 concentrations approximately 10 times greater than MUFAs and brFAs. There were no PUFAs 

353 observed in any VC25 samples. The highest concentration of PLFAs in VC27 was 77.4 µg 

354 gOC-1 observed at 3.98 mbsf. The lowest concentration was 51.2 µg gOC-1 which was observed 

355 at 1.93 mbsf. Similar to VC25, total SATFA concentrations were significantly greater than 

356 other PLFA classes. There was little variation in total concentrations of other PLFA classes 

357 throughout the core. 

358 Five archaeal ether (AE) lipids were isolated from each sample taken from VC24, 

359 VC25, and VC27. These were; phytane, acyclic biphytane (cyC40:0), and three cyclic 

360 biphytanes (cyC40:1, cyC40:2, and cyC40:3). The cyC40:0 was the major isoprenoid in all samples 

361 whilst the cy40:1 was the minor isoprenoid.

362

363 4.5. Carbon isotope values of individual PLFAs
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364 δ13C values could not be obtained for most lipid compounds identified in the three 

365 Bantry Bay vibrocores. This was due to a combination of low abundance in polar lipid extracts 

366 and low sensitivity of the GC-IRMS instrument. δ13C values for three PLFAs were measured 

367 in the VC24 0.27 sample which contribute to the study of these sediments. The MUFAs C16:1ω7 

368 and C16:1ω5 provided δ13C values of -31.0‰ and -46.1‰ respectively, and the SATFA C16:0 

369 δ13C value was -27.7‰.
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370 Table 2. TOC values (%) and Biomarker concentrations (µg gOC -1) for each vibrocore taken in Bantry Bay. Total overall concentrations 

371 and total concentrations for certain groups of biomarkers are included (indicated by the prefix Σ). Individual concentrations of selected 

372 biomarker compounds from within each group are also shown. Depth in mbsf.

VC24 VC25 VC27

Depth 0.025 0.270 0.768 1.933 2.920 3.895 2.930 3.925 4.980 5.960 1.930 2.960 3.980 4.970
TOC 2.0 1.2 0.6 0.3 0.5 0.3 0.3 0.3 0.3 0.3 0.5 0.5 0.4 0.3
ΣPLFA 310.14 235.24 31.07 90.12 51.21 44.02 73.90 57.15 56.90 49.68 51.24 68.89 77.36 63.01
ΣSATFA 133.28 118.72 20.43 64.94 33.06 30.99 52.11 41.72 42.73 43.24 36.15 42.50 50.35 46.84
ΣMUFA 91.12 51.97 2.61 2.25 3.40 1.94 5.18 3.86 1.35 8.54 4.22 5.89 5.99 5.78
ΣPUFA 12.92 17.73 0.00 0.00 0.00 1.16 0.00 0.00 0.00 0.00 1.15 1.66 1.73 0.00
ΣbrFA 64.58 32.62 4.31 4.44 12.15 7.62 7.19 5.09 5.17 4.38 4.91 4.90 4.50 5.25
ΣAE 4.67 5.40 7.39 13.37 19.30 11.75 11.35 4.25 9.18 6.93 11.20 10.28 9.37 5.98

SATFA
12:0 0.78 0.65 0.10 - - - 0.25 - 0.19 - 0.16 0.14 0.18 -
13:0 0.35 0.27 0.05 - - - 0.07 - 0.08 - 0.11 0.13 0.12 0.11
14:0 7.34 6.85 1.36 0.98 1.43 0.94 2.00 1.06 1.60 1.12 1.81 1.82 1.58 1.78
15:0 2.69 2.27 0.63 0.54 0.77 0.54 0.82 0.60 0.73 0.61 0.91 0.83 0.63 0.71
16:0 28.08 20.90 6.38 5.77 8.21 5.73 8.65 7.04 6.14 7.29 8.32 6.46 8.03 8.82
17:0 2.52 1.16 0.33 0.47 1.58 0.40 0.53 0.52 0.46 0.53 0.52 0.62 0.57 0.65
18:0 10.40 2.49 1.75 2.55 3.68 2.30 3.32 2.89 3.53 3.09 2.69 3.48 3.97 4.33
19:0 2.70 5.54 0.28 0.50 0.56 0.93 0.71 0.90 0.51 0.60 0.62 0.73 0.76

MUFA
16:1⍵? 16.26 4.27 0.32 0.39 0.48 0.41 0.35 0.37 0.40 0.31 0.36 0.44 0.47 0.54
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16:1⍵7 2.67 0.88 - - - - - - - - - - - -
16:1⍵5 5.72 2.40 0.19 - - - - - - - 0.21 0.20
18:1⍵9 12.09 0.83 0.48 1.28 0.73 1.00 0.92 0.99 0.95 1.25 0.91 0.98 0.67 0.78
18:1⍵7 24.80 9.96 0.40 0.59 0.41 - - - - - 0.45 0.84 0.86
19:1⍵? 10.61 3.05 1.22 4.46 1.78 1.09 3.91 2.50 2.90 - 2.29 4.27 4.01 3.60

PUFA
18:2⍵? - - - - - - - - - - 0.44 0.56 0.67 -
20:4⍵6 3.77 3.05 - - - - - - - - - - - -
20:5⍵3 3.71 5.54 - - - - - - - - - - - -

brFA
i13:0 0.43 0.24 0.06 - - - 0.09 - 0.06 - 0.10 0.10 0.07 -
ai13:0 0.58 0.40 0.05 - - - 0.13 - 0.08 - 0.16 0.15 0.10 -
i15:0 7.68 3.37 0.47 0.61 0.77 0.75 0.79 0.55 0.53 0.45 0.63 0.66 0.55 0.60
ai15:0 14.39 7.55 0.90 1.17 0.54 0.54 1.69 1.12 1.24 1.17 1.56 1.41 1.14 1.21

3Me15:0 - - - - - - 0.25 - - - 0.29 0.52 0.35 0.36
i16:0 3.18 2.40 - - - 0.53 0.70 0.78 - - 0.56 0.67 0.51 0.47
i17:0 2.13 1.36 0.18 0.43 0.27 0.38 0.29 0.32 0.39 0.85 0.30 0.29 0.27 0.26
ai17:0 1.72 2.46 0.28 0.56 0.34 0.40 0.50 0.39 0.47 0.53 0.47 0.50 0.41 0.40

cyFA
cy17:0 - 4.36 - - - - - - - - - - - -

AE
Phytane 0.76 0.64 0.72 1.43 1.63 0.86 1.24 0.47 0.85 0.81 0.94 1.51 1.30 0.98
C40:0 2.28 2.72 3.47 5.80 8.25 4.75 5.04 1.79 4.24 3.19 5.62 4.40 4.26 2.95
C40:1 0.36 0.51 0.44 1.67 1.74 1.44 0.92 0.45 0.71 0.51 0.81 0.76 0.75 0.31
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C40:2 0.70 0.81 1.45 2.31 3.69 2.50 2.20 0.88 1.74 1.23 2.03 1.86 1.41 0.88
C40:3 0.57 0.72 1.31 2.16 3.99 2.21  1.94 0.67 1.64 1.19  1.79 1.75 1.65 0.87
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374 5. Discussion

375 Methane is widespread within upper Bantry Bay, as shown here through both 

376 acoustic evidence and millimolar concentrations of CH4 in core samples. Migration of 

377 gas-rich fluids towards the seafloor is interpreted to have led to the formation of 

378 pockmarks, which we describe here for the first time. Detailed geochemical analysis 

379 of porewater samples coupled to results from the gas analysis of sediment plugs, depict 

380 strong SMTZs occurring in two of three sediment core locations. Results from the 

381 third core, VC25, suggest that a similar SMTZ likely occurs below the maximum 

382 penetration depth of the vibrocorer. Lipid biomarker analysis provides evidence of the 

383 presence of active communities of both SRB and archaea within these sediment cores. 

384 These archaea are potentially anaerobic methanothrophs (ANME) which are likely 

385 involved in AOM, contributing to the prevention of regular methane seepage above 

386 the seafloor as evidenced by the distinct SMTZs.

387 Sub-bottom profiles provide evidence of vertical gas migration through the 

388 sediments of upper Bantry Bay, although no gas signals were observed within the 

389 water column, geochemical data provide evidence of low concentrations of gas just 

390 beneath the seafloor. In the area of the pockmark field where our sediment cores were 

391 obtained, we observed vertical zones of acoustic blanking (AB) beneath strong 

392 reflectors at varying depths below the seafloor, which we interpret as typical gas 

393 chimneys (Fig. 3). The observation of chimney-like features as well as of blanking 

394 below enhanced reflectors suggest upward fluid migration is predominant at this 

395 location (Szpak et al., 2012). Similar acoustic chimneys were observed to rise to within 

396 a few metres of the seafloor across upper Bantry Bay above water depths of at least 

397 65 m by Plets et al. (2015, their Fig. 10a), which we interpret to indicate the upward 

398 migration of gas from depth over wide areas beneath the pockmark field. However, 
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399 our results do not support the suggestion of Plets et al. (2015) that the presence of gas 

400 may account for the reflective character of their unit III, penetrated by our cores at ca. 

401 2-6 mbsf (Fig. 3), which we instead suggest is due to its laminated lithological 

402 character (SI Fig. S1). 

403 All gas headspace samples yielded undetectable amounts of C2-C4 

404 hydrocarbons, indicating a biogenic source, rather than thermogenic source for gas in 

405 Bantry Bay (Faber and Stahl, 1984; Floodgate and Judd, 1992). The likely origins of 

406 this biogenic gas are microbial decomposition of buried organic matter and 

407 methanogenesis (Antler et al., 2014; Froelich et al., 1979). River run-off likely delivers 

408 a significant amount of OM to the bay. However, the majority of this terrestrially 

409 derived OM is likely consumed in the surface sediments as seen from the TOC results 

410 obtained from VC24. As such, this OM is probably not a large contributor to CH4 

411 generation within Bantry Bay. Previous work in Bantry Bay encountered black 

412 lacustrine sediments at ca. 57 m water depth (ca. 25 mbsf) which were dated to 13-14 

413 ka cal. BP within a borehole off Whiddy Island (Stillman, 1968). Plets et al. (2015) 

414 found that these deposits occurred within Unit 2 of their assigned seismo-stratigraphy 

415 profile. They suggested that the material was likely older than the value provided by 

416 Stillman (1968) as they were situated below acoustic Unit 4 which was described as a 

417 possible glacial till, thereby placing Unit 2 in the position of a pre-Last Glacial 

418 Maximum (LGM) deposit. The LGM is defined as 26.5-19 ka BP (Clark et al., 2009). 

419 These sediments likely undergo enhanced anaerobic decomposition and methanogenic 

420 activity due to their high organic content which makes them favourable candidates for 

421 the source of the gas observed in this area, however this awaits further investigation.

422 The pockmark field north of Whiddy Island is comprised of very shallow 

423 depressions of ca. 0.3 m depth. Due to the substantial gas activity observed in these 
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424 sediments it is likely that biogenic CH4 resulting from the decomposition of organic 

425 material, possibly from ancient lacustrine deposits buried deep beneath the seafloor, 

426 was the primary cause of pockmark formation. Although no active seepage from 

427 pockmarks to the water column was observed in this study it is still possible that some 

428 of them are actively venting. Wheeler (2002) determined that significant currents 

429 regularly resuspend the seabed near Whiddy island. If the pockmarks were inactive, 

430 this could suggest that they have been filled in by fresh sediment. However, recent 

431 work suggests that inactive pockmarks can in fact be kept open by ocean currents 

432 (Hammer et al., 2009; Pau et al., 2014). Many studies have proposed that accumulation 

433 of large volumes of gas below the seafloor followed by periodic large expulsions is 

434 the predominant cause of pockmark formations (Cole et al., 2000; Dondurur et al., 

435 2011; Gay et al., 2007; Hovland et al., 2002; Hovland and Judd, 1988). As such, these 

436 events likely reform the present features in Bantry Bay and potentially form new 

437 features as well. Further bathymetric analysis of this site is required to determine the 

438 precise layout of this field and the exact number of pockmarks within it, as well as 

439 regular monitoring of this area to determine the level of gas seepage activity which 

440 may represent a potential hazard to any planned economic activity in the bay. 

441 A pockmark field in a similar setting has been described in Dunmanus Bay, 

442 south of Bantry Bay (Szpak et al., 2015). These authors showed that the pockmarks 

443 were associated with CH4 emissions and argued that the source of the gas was an 

444 underlying Dunmanus Fault, via a venting mechanism involving seal failure-renewal 

445 cycles. The CH4 from Dunmanus contained only trace levels of C2-C4 hydrocarbons 

446 and it was suggested that methanogenesis also contributed to the gas in this location. 

447 The Bantry Bay pockmark field overlies the Owenberg River Fault, which runs along 

448 the northwest of Whiddy Island. It is possible that venting in Bantry Bay is controlled 

1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263



186

449 by a similar bedrock faulting mechanism as proposed in Dunmanus. Both bays lie in 

450 the South Munster Basin and are similar in their geology (Vermeulen et al., 2000). 

451 However, a higher contribution of low molecular weight hydrocarbons would be 

452 expected if this gas was predominantly thermogenic. Therefore, it is most likely that 

453 the gas observed at both of these sites is a combination of thermogenic gas release 

454 from underlying faults and biogenic gas produced by methanogenic communities 

455 feeding on deeply buried organic material.

456 Both VC24 and VC27 yielded clear SMTZs, where CH4 diffusing upwards 

457 from depth first encounters SO4
2- diffusing downwards from the ocean, which reflect 

458 the depth of maximal anaerobic oxidation (Antler et al., 2014; Lin et al., 2016; 

459 Valentine, 2002). The decreasing trend of SO4
2- in VC25 suggests complete depletion 

460 coinciding with a SMTZ at ca. 10 mbsf. The sub-bottom profile suggests that there is 

461 no significant gas penetration into this core whereas there is gas penetration observed 

462 in the core location of VC24. This is consistent with the significantly lower CH4 

463 concentrations within the VC25 samples. Analysis of sediments from the deeper 

464 SMTZ in VC25 would likely yield similar CH4 concentrations to that of VC24 and 

465 VC27. Thus the three cores are indicative of variable rates of upward penetration of 

466 gas-rich fluids towards the seafloor.

467 These SMTZs suggest that microbial communities are consuming CH4 rising 

468 from depth as well as SO4
2- diffusing downward from the seafloor above. This 

469 signature represents the metabolic pathways of microorganisms involved in the AOM, 

470 namely ANME and SRB. At present, it appears that the activity of these microbial 

471 communities aids in preventing the release of CH4 to the water column and potentially 

472 the atmosphere on a regular basis, reducing the potential impact of this powerful 

473 greenhouse gas on global climate. However, as previously mentioned, the pockmark 
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474 features are indicative of possible recurring episodic expulsions of gas from these 

475 sediments and as such the overall CH4 flux from this site is poorly constrained. This 

476 is a scenario which is observed in shallow marine seepage environments around the 

477 world. It is important for these unique environments to be monitored so that their 

478 potential contribution to climate change can be better understood.

479 PLFA biomarker results provide further evidence of this ongoing microbial 

480 activity. High levels of MUFAs and low levels of PUFAs are an indication of the 

481 dominant contribution of bacterial communities to sediment biomass (Rajendran et al., 

482 1995, 1992; Taylor and Parkes, 1983; Volkman et al., 1980). Bacteria appear to 

483 dominate the microbial ecology in all three vibrocores in this study. Abundances of 

484 PUFAs are increased in the surface sediments of VC24, however MUFA abundances 

485 are still higher. Interestingly, at 0.8 and 3.9 mbsf in VC24, contributions of MUFAs 

486 and PUFAs are similar although MUFAs remain dominant. Comparison of MUFAs 

487 (<C19) with total brFAs provides an insight to the aerobic/anaerobic conditions in the 

488 sediment. Values less than 1 indicate an anaerobic environment whereas values greater 

489 than 1 are representative of aerobic conditions (Rajendran et al., 1992). Only the 

490 shallower sediments of VC24 (1.12 and 1.08 for 0.03 and 0.27 mbsf respectively) are 

491 classified as aerobic using this approach, therefore the overall conditions observed 

492 here are anaerobic.

493 Mid-chain brFAs in marine sediments are often produced by SRB and are used 

494 as chemotaxonomic markers for these microorganisms (Dowling et al., 1986; Li et al., 

495 2007). iC15:0, aiC15:0, iC16:0, iC17:0, and aiC17:0 are all reported biomarkers for the 

496 Desulfovibrio species of SRB (Dowling et al., 1986; Findlay et al., 1990; Li et al., 

497 2007; Rajendran et al., 1995; Taylor and Parkes, 1983). These compounds were 

498 present throughout all three vibrocores taken in Bantry Bay, suggesting a significant 
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499 contribution of SRB to the microbial ecosystem here. SRB tend to display a higher 

500 ratio of iC15:0 to aiC15:0 in their PLFA profiles (Dowling et al., 1986). Applying this 

501 ratio to the Bantry Bay sediments resulted in substantially higher values observed in 

502 VC24 than VC25 or VC27, both of which had similar values. This suggests that SRB 

503 are substantially higher contributors to the microbial community of VC24. Elvert et al 

504 determined that C16:1ω5, C17:1ω6, and cyC17:0ω5,6 were specific membrane fatty acids for 

505 SRB of the Desulfosarcinia/Desulfococcus group which were involved in AOM 

506 (Elvert et al., 2003). C16:1ω5 was identified in four samples from the Bantry Bay 

507 vibrocores; VC24 0.03 mbsf, VC24 0.27 mbsf, VC27 1.93 mbsf, and VC27 2.96 mbsf. 

508 Isotope ratio analysis provided a depleted δ13C value of -46.1‰ for this compound at 

509 0.27 mbsf in VC24, compared with those obtained from more ubiquitous bacterial 

510 PLFAs; 16:1ω7 and 16:0 at -31.0‰ and -27.7‰ respectively. While lipid abundances 

511 are low, these depleted values still indicate the possible incorporation of CH4 derived 

512 C into the membranes of these SRB providing evidence of their involvement in AOM 

513 at this site. 

514 Archaeal biomarkers are present at all depths in all three vibrocores taken in 

515 Bantry Bay. Archaea involved in AOM typically belong to three major anaerobic 

516 methanotroph (ANME) consortia (Caldwell et al., 2008). It is generally assumed that 

517 ANMEs oxidize and assimilate CH4, following which CH4-derived C is consumed by 

518 the SRB as CO2 or a partially oxidized intermediate completing the syntrophic reaction 

519 (Alperin and Hoehler, 2009). It has been suggested that C20 isoprenoids derived from 

520 archaeal ether lipids may be specific biomarkers for ANME-2 archaea whilst C40 

521 isoprenoids may be specific for the ANME-1 type (Blumenberg et al., 2004; Brocks 

522 and Pearson, 2005). The presence of these compounds within the gas-rich sediments 

523 in Bantry Bay further suggests the involvement of AOM mediated by ANME and SRB 
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524 in limiting gas release at this site. More detailed biogeochemical analysis of these 

525 sediments could shed more light on the composition of this particular microbial 

526 community with isotopic analysis determining their contribution to AOM. Due to the 

527 importance of understanding the microbial community structure at shallow gas 

528 seepage sites like Bantry Bay, a more detailed phylogenetic study of this site is 

529 recommended. 

530  

531 6. Conclusions

532

533 The upward migration of gas-rich fluids through the sediment column appears 

534 to be widespread in upper Bantry Bay, as inferred from chimney-like acoustic zones 

535 on sub-bottom profiles and confirmed by shallow SMTZs within sediment cores. 

536 Shallow SMTZs are observed both within and outwith a newly identified pockmark 

537 field, suggesting that diffuse pore fluid upwelling over wide areas is only locally 

538 accompanied by focused flow within conduits. Methanogenesis is taking place within 

539 organic-rich Quaternary sediments deposited across the upper Bay prior to and since 

540 the last deglaciation. The presence of pockmarks off Whiddy Island may be explained 

541 by enhanced gas flux from the underlying Owenberg River Fault and methanogenesis 

542 of organic-rich lacustrine sediments pre-dating the LGM that are preserved in bedrock 

543 basins.

544 Fluid flow affects not only the physical nature of the sea-floor in the bay but 

545 also the microbial ecosystem. The gas is CH4 with a predominantly biogenic signature. 

546 As CH4 flows upwards from its origin it provides a substrate for certain 

547 microorganisms to thrive in the shallower sediments above. Archaea, possibly 

548 ANMEs, are present in these shallower sediments as are SRB. The CH4 is steadily 
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549 depleted before it reaches the seafloor and SO4
2- concentrations also become depleted 

550 in the opposite direction providing a well-defined SMTZ. This is likely due to AOM 

551 carried out by these two groups of microorganisms in a syntrophic relationship, 

552 however further work is needed to confirm this pathway. This study suggests that 

553 AOM in Bantry Bay is important in limiting CH4 emissions from the seafloor 

554 preventing the potential climatic implications of a release of this powerful greenhouse 

555 gas to the atmosphere. Similar conditions have been observed in a pockmark field in 

556 Dunmanus Bay, to the east of Bantry Bay (Szpak et al. (2015)) and on the Malin Shelf 

557 off the north coast of Ireland (Szpak et al. (2012). This indicates that marine CH4 

558 production may be common around the island of Ireland. 

559 Global estimates of the contribution of CH4 from marine seepage sites are 

560 highly uncertain (Römer et al., 2014). Release of CH4 to the atmosphere has been 

561 observed in Arctic regions, areas particularly vulnerable to climate change, and these 

562 releases have been attributed to rising temperatures (Shakhova et al., 2010; Westbrook 

563 et al., 2009). As CH4 is a potent greenhouse gas, these releases serve only to increase 

564 rates of global climate change. AOM and the microbial consortia involved are 

565 important factors in the global methane cycle (Gauthier et al., 2015). For these reasons 

566 further study of these sites and their microbial ecology should be prioritised.

567
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Figure 1. (A) Map of Bantry Bay and surrounding area, location of Bantry Bay within Ireland 

(inset). (B) Bathymetric map of inner Bantry Bay showing locations of underlying faults.

Figure 2. (A) Bathymetric map of inner Bantry Bay, vibrocore locations marked with red dots. 

The pockmark field north of Whiddy Island is located within the white box. (B) Close up of 

pockmark field from (A) with the entire field highlighted by a white outline and vibrocore 

locations marked with red dots. A close up of the section of the pockmark field within the black 

dashed rectangle is also depicted (inset).

Figure 3. Sub-bottom profiles taken at the site of VC24 and VC25 vibrocores showing 

sampling locations (black line), enhanced reflectors (ER), and acoustic blanking (AB).

Figure 4. CH4 (mM) and SO4
2- (mM) profiles for each core. Green dots represent sub-sampling 

locations for lipid biomarker analysis.
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Results

Table S1. CH4 (µM) and SO4
2- (mM) data from geochemical analysis of vibrocores.

VC24 VC25 VC27
Depth 
(mbsf)

CH4 
(µM)

SO4
2- 

(mM)
Depth 
(mbsf)

CH4 
(µM)

SO4
2- 

(mM)
Depth 
(mbsf)

CH4 
(µM)

SO4
2- 

(mM)
0.01 1.5 23.9 0.17 2.5 22.1 0.02 0.9 23.9
0.19 1.8 26.8 0.37 3.8 22.5 0.38 2.6 22.2
0.47 8.6 24.2 0.56 3.0 21.3 0.79 4.5 22.5
0.89 30.5 16.9 1.00 2.5 20.9 1.11 3.8 20.8
1.13 68.9 12.6 1.30 3.6 20.8 1.42 5.5 21.2
1.55 983.5 10.0 1.63 4.2 22.4 1.85 11.2 18.9
2.12 1519.6 7.0 1.84 4.4 19.6 2.05 12.4 18.0
2.53 2409.5 7.0 2.26 4.8 18.7 2.45 31.9 16.3
2.95 2707.7 7.0 2.56 7.7 18.8 2.85 20.3 14.1
3.28 3674.9 7.0 2.90 8.5 19.6 3.13 19.9 12.7
3.56 2895.5 7.0 3.19 13.2 18.7 3.60 69.6 11.1
4.02 3146.6 7.0 3.51 13.0 16.9 4.08 964.9 7.1
4.27 2989.9 7.0 3.81 13.7 16.3 4.50 1770.4 7.1
4.52 3531.9 7.0 4.17 14.2 15.9 4.91 2697.4 7.2
4.88 2615.2 7.0 4.55 11.7 16.3 4.96 3664.2 7.3
5.16 3258.2 7.1 4.85 15.2 15.9   
5.46 3573.0 7.1 5.23 18.0 14.9   
5.74 2946.9  5.61 16.5 14.2   

   5.66 16.2 12.0    



Fig. S1. Photographs of vibrocore sections taken onboard the RV Celtic Explorer during 

research cruise CE14003. Graphical depictions of sediment type from core logs are displayed 

alongside relevant sections.


