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Human behavior is surprisingly variable, even when facing the
same problem under identical circumstances. A prominent exam-
ple is risky decision making. Economic theories struggle to explain
why humans are so inconsistent. Resting-state studies suggest
that ongoing endogenous fluctuations in brain activity can influ-
ence low-level perceptual and motor processes, but it remains
unknownwhether endogenous fluctuations also influence high-level
cognitive processes including decision making. Here, using real-time
functional magnetic resonance imaging, we tested whether risky
decision making is influenced by endogenous fluctuations in blood
oxygenation level-dependent (BOLD) activity in the dopaminergic
midbrain, encompassing ventral tegmental area and substantia
nigra. We show that low prestimulus brain activity leads to increased
risky choice in humans. Using computational modeling, we show
that increased risk taking is explained by enhanced phasic responses
to offers in a decision network. Our findings demonstrate that
endogenous brain activity provides a physiological basis for variabil-
ity in complex human behavior.

behavioral variability | intrinsic brain fluctuations | dopaminergic
midbrain | risky decision making | real-time fMRI

Human behavior is inherently variable. Even when facing the
same task repeatedly, humans often act in inconsistent ways.

This observation led the English poet Horace Smith to suggest that
“inconsistency is the only thing in which men are consistent.” In-
consistencies in value-based decision making often violate the tenets
of rational economic theory. Many economic models explain this
variability by injecting stochasticity into subjective preferences (1).
The human brain shows substantial regional activity fluctua-

tions in the absence of external stimulation (i.e., resting state) (2, 3).
The functional role of these fluctuations is not well understood.
Endogenous fluctuations endure when participants perform
externally imposed tasks and can explain neural variability in task-
evoked responses (4). Studies investigating low-level cognitive
processes have shown that endogenous fluctuations also influence
how stimuli are processed. Endogenous fluctuations in task-
relevant areas influence perception of auditory (5) and somato-
sensory stimuli (6) and can influence the force exerted during
simple motor actions, such as button presses (7). However, it re-
mains unknown whether intrinsic fluctuations also affect complex
cognitive processes, such as decision making, and whether vari-
ability in prestimulus brain activity can predict future decisions.
In this study, we hypothesized that endogenous fluctuations in

areas implicated in decision making would explain variability in
choice. In particular, we hypothesized that endogenous fluctua-
tions in the dopaminergic midbrain, encompassing substantia
nigra and ventral tegmental area (SN/VTA), play a key role in
decision making under risk. SN/VTA contains the largest as-
sembly of dopamine neurons in the human brain and is centrally
involved in decision making (8, 9). Modulating dopamine neu-
rotransmission can increase risk taking (10–12), and dopamine
dysfunction is strongly linked to problem gambling and impul-
sive behaviors (13). Although it is not possible to directly assess
dopaminergic activity using functional MRI (fMRI), dopamine-

related quantities such as reward prediction errors (14) are ob-
served in BOLD activity within the SN/VTA (15, 16).
To test our hypothesis, we developed a real-time fMRI

framework to trigger presentation of options based on intrinsic
fluctuations of BOLD activity (17, 18) (Fig. 1 and SI Appendix,
Fig. S1). We developed an algorithm that detected epochs of
very high and very low activity, providing a trigger to probe
subjects with a matched set of choices between a safe and a risky
option in these 2 background brain states (Methods) (11, 12). The
risky option comprised equal probabilities of a prize (£6, £9, or
£12) or £0. The value of the safe option was always lower than
the potential prize from the risky option and varied systemati-
cally around each subject’s economic indifference point, the offer
for which a subject chooses safe and risky options in equal pro-
portion. Safe option values were determined from prescanning
decisions from an extensive choice set (Methods).

Results
Endogenous Fluctuations in SN/VTA BOLD Activity Modulate Risk
Taking. We first asked how the 2 modes of endogenous SN/VTA
activity (low and high) influenced choice behavior. On average,
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subjects chose the risky option more when prestimulus SN/VTA
activity was low compared to when it was high [low activity,
59.6 ± 1.5% (mean ± SEM); high activity, 56.2 ± 1.8%; t(42) = 3.83,
P < 0.001; Fig. 2A]. This effect of greater risk taking following low
compared to high activity was present in 30 of 43 subjects (Fig. 2B).
Post hoc off-line control analyses suggest that this relationship is
unaffected by the precise timing of option presentation or degree of
smoothing and is specific to SN/VTA with no effect in other de-
cision or control areas (SI Appendix, Fig. S2).

A Computational Mechanism for the Effect of Endogenous Fluctuations
on Risk Taking. We next examined how endogenous fluctuations in
SN/VTA BOLD activity influenced risk taking and tested whether
the effect was specific to a certain set of offers. We computed the
difference between the average return for risky and safe options and
identified a main effect of this value difference, indicating that in-
creased value for risky relative to safe options was associated with
an increased propensity to choose the risky option [F(2.822, 118.505) =
107.580, P < 0.001; Fig. 2C]. We found a main effect of endogenous
fluctuations in SN/VTA activity on risk taking [F(1,42) = 14.356,
P < 0.001; Fig. 2C] but no interaction with value difference
[F(3.113, 130.749) = 0.127, P = 0.95], indicating that low SN/VTA
activity is associated with greater risk taking irrespective of how
much risky and safe options differed in value. We also found no
interaction between risky option value (i.e., £6, £9, or £12) and
activity [F(1.957, 82.208) = 0.493, P = 0.61], further supporting an as-
sociation between low endogenous SN/VTA activity and a value-
independent increase in risk taking.
We next asked whether endogenous SN/VTA BOLD activity

influenced option valuation in a manner consistent with standard
economic models. Model comparison revealed that a parametric
model based on prospect theory (19) provided a good de-
scription of behavior (pseudo-R2 = 0.44 ± 0.15) but was out-
performed by a model (20, 21) that included a gambling bias
parameter (pseudo-R2 = 0.55 ± 0.12; Methods and SI Appendix,
Table S1). Changes in this gambling bias parameter κ shift the
sigmoidal decision function in standard models, capturing a
propensity to take risks irrespective of offer value. This gambling
bias parameter was significantly higher in low compared to high
activity conditions [t(30) = 2.21, P = 0.04]. No differences were
observed for other model parameters [risk aversion α: t(30) = −0.5,
P = 0.62; inverse temperature μ: t(30) = 0.13, P = 0.9; Fig. 2D].
This finding suggests that endogenous SN/VTA activity does not

impact the valuation process in a value-dependent way, but in-
stead influences a more general decision process that does not
depend on the relative values of available options.
Variability (i.e., SD) in SN/VTA BOLD activity was uncor-

related with the difference in risk taking between low and high
activity across subjects (Spearman ρ = −0.19, P = 0.29). By de-
sign, all subjects were offered a set of options in the real-time
fMRI task such that each should gamble one-half of the time on
average. However, the percentage of risky choices was negatively
correlated with the difference in risk taking between low and
high SN/VTA activity (Spearman ρ = −0.46, P = 0.002). This
means that the decisions of people who gamble less than pre-
dicted by prospect theory are more susceptible to endogenous
SN/VTA fluctuations.
Dopamine activity is known to influence behavior in multiple

ways. For example, high tonic dopamine is proposed to mediate
an enhanced motivational vigor (22, 23), leading to faster re-
action times. We reasoned that if endogenous SN/VTA BOLD
fluctuations reflect changes in tonic dopamine, subjects should
choose more quickly when endogenous activity is high. Matching
this prediction, we found faster reaction times in high (1.67 ± 0.05
s) compared to low (1.72 ± 0.05 s) activity conditions [t(42) = 3.13,
P = 0.003; SI Appendix, Fig. S3], consistent with an influence of
tonic dopamine on endogenous SN/VTA BOLD activity. We
conducted an additional multiple linear regression and predicted
reaction times based on SN/VTA BOLD activity, choice to
safe or risky option, and the absolute value of the difference in
option subjective values, an index of choice difficulty. Even when
controlling for these variables, reaction times were still signifi-
cantly related to SN/VTA BOLD activity [t(42) = 3.08, P = 0.004].

Endogenous Fluctuations Affect Phasic Responses During Choice. We
next asked how endogenous SN/VTA BOLD fluctuations shifts
preferences in risky decision making as described in our com-
putational model. Given a known association between baseline
activity and task-evoked responses (4), we hypothesized that
endogenous SN/VTA BOLD fluctuations impact risk taking
through an influence on the expression of phasic task-evoked
activity known to represent choice-relevant information (14).
We examined task-evoked SN/VTA responses and found that

phasic responses to offer presentation were significantly increased
in low compared to high prestimulus activity (Fig. 3A; P < 0.01,
cluster-extent permutation test, height threshold t = 2, 5,000
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Fig. 1. Schematic of real-time fMRI setup. BOLD activity from anatomically defined SN/VTA is extracted and denoised (removing movement, breathing, and
pulsatile artifacts) in real time. The overlay on the sagittal image indicates intersecting coverage across all subjects in the study. Endogenous activity reflecting
a low/high background activity state (exceeding a 15th/85th percentile cutoff) triggered presentation of a trial with a choice between a safe option (here,
£2.8 guaranteed reward) and a risky option (here, £0 or £6 with equal probability). To ensure similar rates of risk taking across individuals, safe options varied
around each subject’s indifference point, which was determined prior to scanning. This design allowed us to efficiently and selectively probe subjects with identical
options during very low and very high endogenous SN/VTA activity. Any difference in behavior can therefore be attributed to endogenous SN/VTA activity.
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permutations). We next examined task-evoked responses in ven-
tral striatum (VS) and ventromedial prefrontal cortex (vmPFC),
regions that receive dense dopaminergic innervation (24, 25) and
express strong functional connectivity with the SN/VTA (SI Appen-
dix, Fig. S4). We found the same effect as in SN/VTA with low
endogenous SN/VTA BOLD activity leading to larger phasic
task-evoked responses in both VS (P < 0.01, cluster-extent per-
mutation; Fig. 3B) and vmPFC (P < 0.01; SI Appendix, Fig. S5A).
Consistent with previous studies (26), we also found that phasic
BOLD responses in VS and vmPFC reflected the subjective
values of options (SI Appendix, Fig. S6).
We reasoned that if task-evoked responses play a critical role in

translating endogenous fluctuations into risky choice, then subjects
with stronger effects of endogenous SN/VTA BOLD fluctuations
on task-evoked responses should show a greater difference in risk
taking in low compared to high activity conditions. We found this
to be the case, with larger effects of endogenous SN/VTA fluc-
tuations on task-evoked SN/VTA responses predicting larger in-
creases in the gambling bias parameter κ (r = 0.39, P = 0.03; Fig.
3C). This effect was specific to phasic SN/VTA responses as there
was no such effect in decision and control areas (all P > 0.1).
Last, we investigated the relative contributions of both en-

dogenous SN/VTA BOLD fluctuations and task-evoked re-
sponses to risk taking using multilevel mediation analyses (27).
We found that SN/VTA BOLD activity significantly impacted
task-evoked response in both SN/VTA and VS (Fig. 3D and SI
Appendix, Fig. S5 and Table S2). Task-evoked SN/VTA re-
sponses modulated risk taking, but task-evoked VS responses
influenced risk taking only indirectly through their impact on
task-evoked SN/VTA responses (SI Appendix, Fig. S5). These
results show that endogenous SN/VTA BOLD fluctuations shape
decision making through their influence on task-evoked responses
to offers in a decision network.

Discussion
The brain expresses substantial ongoing activity in the absence of
external stimulation. Although many studies capitalize on this
fact and have described this “resting state” (2), little is known
about the function of spontaneous fluctuations and whether it
carries relevance for higher-order cognition. We show that en-
dogenous fluctuations in the dopaminergic midbrain have direct
behavioral relevance in modulating a preference for risky de-
cision making in humans. Using a framework to study the in-
fluence of intrinsic fluctuations on behavior, we find greater risk
taking when choice options are presented against a background
of low compared to high SN/VTA BOLD activity. Our findings
highlight that the endogenous state of a network relevant for
behavior is critical for determining which actions are taken.
We show that endogenous SN/VTA BOLD activity influences

risky decisions via modulation of phasic task-evoked responses to
potential rewards. Our results are consistent with findings that im-
pulsive behavior is linked to phasic dopamine release (13, 28) and to
levodopa administration (11, 12), assumed to increase phasic do-
pamine (29). Low prestimulus activity and levodopa administration
may both exert their effects on risk taking by boosting task-evoked
phasic responses, which in turn promote risk-taking behavior.
Reward-predicting cues elicit phasic responses in midbrain do-

pamine neurons (30). In rodents, optogenetic manipulation of SN
dopamine neurons boosts striatal dopamine release and biases ac-
tion selection (31). Optogenetic stimulation of striatal D2-receptor
neurons modulates risk preferences (32). Attenuation of prechoice
phasic dopamine via electrical stimulation of the lateral habenula
reduces preference for risk in rodents (33). Our study builds on
these results by identifying a possible link between prestimulus brain
activity, phasic responses to stimuli, and subsequent risky choice.
The functional role of these endogenous fluctuations remains

unclear, but they might form a reference point relative to which
potential offers are evaluated. While standard models of economic
decision making often treat preferences as independent of a ra-
tional agent’s current state, real-world behavior often reflects
comparison against a reference point that can change over time
(34), sometimes substantially changing the subjective value of an
offer (35). If endogenous SN/VTA BOLD activity reflects slow
dopaminergic fluctuations, proposed to index environmental re-
ward rate (22, 23) or reward anticipation (36), then these fluctu-
ations could represent a reference point against which potential
rewards are compared during decision making (37, 38). Potential
rewards presented on a background of low activity could lead to
enhanced task-evoked responses linked to greater risk taking (33).
Endogenous fluctuations may constitute an evolutionarily

conserved principle that enables the brain to introduce variability
across a wide variety of processes including perception (5, 6) and
motor action (7). Neural variability has been hypothesized to
reflect the dynamic range of potential responses to environ-
mental stimuli, allowing the brain to flexibly transition between
states in response to changing task demands (39). It could also
reduce susceptibility to becoming entrenched in specific behav-
ioral repertoires (40) and promote exploration in dynamic en-
vironments that are a common feature of the natural world (41).
One possible source of variability that could relate to our re-

sults is D2/D3 autoreceptor availability in the SN/VTA. Lower
autoreceptor availability is associated with greater dopamine re-
lease following amphetamine administration and greater trait
impulsivity (13). The link we find between risk taking and phasic
responses is also consistent with the finding that phasic dopamine
during gambling tasks is greater in pathological gamblers (28).
One limitation of our study is that BOLD activity is an indirect

measure of local neuronal activity thought to consist of an ensemble
of signals including afferent and recurrent inputs (42). Phasic and
tonic dopamine release may contribute to fluctuations in SN/VTA
BOLD activity, while optogenetic stimulation of dopamine neurons
in VTA is sufficient to elicit BOLD activity in VTA (43). However,
SN/VTA BOLD activity may also reflect activity in other cell types
including glutamatergic (44) and GABAergic neurons that act to
inhibit dopamine neurons when reward is expected (45). Reduced
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Fig. 2. Endogenous fluctuations in SN/VTA BOLD activity modulate value-
independent influences on choice. (A) Subjects (n = 43) gambled more when
options were presented against a background of low compared to high en-
dogenous SN/VTA activity. (B) This effect of greater risk taking for low than high
activity was consistent across subjects. (C) The activity-induced shift in risk taking
was independent of value with low endogenous activity leading to increased risk
taking irrespective of option value. Differences in objective value between risky
and safe options were divided into bins of equal sizes for each subject. (D) Choices
were fitted to a parametric decision model based on prospect theory with the best-
fitting model including a gambling bias parameter that was higher when endog-
enous activitywas low. Positive gambling bias parameters reflects a tendency to take
risks irrespective of option value. *P < 0.05 and ***P < 0.001. Data aremean± SEM.
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GABAergic activity could also be associated with greater phasic
dopamine release and provide an alternate explanation for greater
risk taking when prestimulus SN/VTA BOLD activity is low.
Previous studies have shown that dopamine release in VS, as

measured using positron emission tomography, is linked to
reward-related SN/VTA BOLD activity (46). While we have
focused on the SN/VTA, the extent to which BOLD activity in
the downstream VS responds to a cue is tightly coupled to SN/
VTA BOLD activity. Future studies might extend these findings
with direct striatal recordings that assess the relationship be-
tween spontaneous fluctuations and risk taking.
Our effect is consistent across individuals, albeit modest in

terms of effect size (on average, a 3.4% increase in the number
of risky options chosen). We would predict a larger effect size
with direct electrophysiological recordings, since fMRI mea-
surements are inherently noisy at several levels (47). However,
given the many factors that contribute to risky decision making, it
would be surprising if the state of the brain when options are
presented had a large effect on the probability of risky decisions,
especially in the absence of any environmental changes.
The effect size is comparable in size to previous studies. For

example, a standard clinical dose of 150 mg of levodopa in-
creased risk taking by only 5% on average (12) and natural aging
leads to a comparable decrease in risk taking, which we surmised
may reflect age-related dopaminergic decline estimated at 5–10%
per decade (48). It is also noteworthy that the effect of low
prestimulus SN/VTA activity on risk taking is particularly large
in relative terms for unattractive gambles. The probability that
individuals choose the least attractive gambles (chosen less than
20% of the time) is much greater under low than high prestimulus
activity (18.7% vs. 15.4%), a 21% relative increase. In contrast, the
probability that individuals choose the most attractive gambles
(chosen more than 80% of the time) is only 5% greater under low
than high prestimulus activity in relative terms. Our findings may
be particularly relevant to understanding pathological gamblers,
who may take risks that others would generally avoid.
Our key finding is that variability in higher-order cognition can

emerge out of a neurophysiologically well-defined process. While
risk preferences are thought of as personality traits determined

partly by genetic variation (49), we show that the expression of
risk preferences reflects in part individual susceptibility to en-
dogenous fluctuations. Neural variability may change with task
experience, consistent with reductions in neural variability during
skill learning (50) and the impact of endogenous fluctuations
may be largest in novel environments. Aberrant endogenous
fluctuations might also play a role in disorders where there is
excessive behavioral variability or risk taking, such as attention
deficit hyperactivity disorder (51) and pathological gambling
(28). Accounting for the influence of endogenous neural fluc-
tuations on behavior is critical for understanding the neurobio-
logical processes underlying cognition in health and disorder.

Methods
Subjects. Forty-nine healthy, young adults (age 25.2 ± 4.2; mean ± SD) were
recruited through the University College London (UCL) Psychology Subject Da-
tabase. Subjects were screened to ensure no history of neurological or psychiatric
disorders. Six subjects were excluded from analyses: 3 subjects because of ex-
cessive number of missed trials (>20) and 3 due to frequent large head move-
ments (>3 mm). A total of 43 subjects (group 1: 10 females, 2 males; group 2: 21
females, 10 males) were included. Subjects in both groups went through iden-
tical procedures with the only difference being that the range of values for the
safe options, drawn around each subject’s indifference points, was wider for
group 2 than group 1, allowing us to better distinguish between competing
computational models (Procedure). The study was approved by the UCL research
ethics committee, and all subjects gave written informed consent.

Procedure.Our study protocol spanned 2 sessions∼24 h apart. On the first day,we
assessed gambling behavior and collected structural brain scans. These scans were
used to define individualized anatomical masks of the dopaminergic midbrain for
use in the following session. On the second day, decision making was reassessed
before subjects participated in the real-time fMRI experiment reported.
Day 1.

Probabilistic gambling task. Subjects first played a probabilistic gambling
task consisting of 180 trials. On each trial, subjects chose between a certain
monetary amount and a gamble with equal probabilities of 2 outcomes.
There were 3 gamble options available: £0 and £6, £9, or £12. The certain
amounts were determined using 12 divisors (0.82, 0.87, 0.93, 1, 1.1, 1.23, 1.4,
1.6, 1.9, 2.25, 2.75, and 3.5) on the expected value of the gambles, chosen to
accommodate a wide range of risk sensitivity. Take, for example, a fraction
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Fig. 3. Endogenous fluctuations modulate risk tak-
ing via task-evoked responses. (A and B) Endogenous
fluctuations lead to distinct task-evoked response
patterns with greater BOLD responses in SN/VTA and
VS when offers are presented against a background
of low endogenous SN/VTA activity. Percent signal
change was calculated relative to the 2 volumes
following stimulus onset to correct for differences in
starting baseline. The green horizontal line indicates
statistical significance (P < 0.01). (C) The effect of
endogenous SN/VTA activity on risk taking is associ-
ated with phasic task-evoked SN/VTA responses.
Subjects with a larger difference in task-evoked re-
sponses between low and high activity conditions
had larger differences in gambling bias parameter κ
(r = 0.39; P = 0.03). (D) Mediation analysis shows task-
evoked VS responses mediate the influence of en-
dogenous SN/VTA fluctuations on risk taking through
their influence on task-evoked SN/VTA responses, in-
dicating the effect of endogenous SN/VTA fluctuations
on behavior is under the influence of reciprocal
dynamics between SN/VTA and VS.
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of 3.5 and a gamble between £0 and £6. The expected value of a £0 or £6
gamble is £3 (0.5 × £0 + 0.5 × £6), which divided by 3.5 gives a certain
amount of £0.86. There were 12 certain amounts for each gamble option in
total, and each trial was repeated 5 times in a randomized sequence.

Structural scans. Multiparameter maps were acquired for each subject (52).
The magnetization-transfer (MT) saturation image was used for the drawing
of the region of interest (ROI) (SN/VTA) due to its ability to delineate gray
and white matter in subcortical/brainstem regions, in line with preceding
studies (16, 53).
Day 2. Prior to the real-time fMRI session, subjects completed a shorter version
of the probabilistic gambling task consisting of 108 trials to recalibrate the
subjects’ indifference points. The only difference between this task and the
task on day 1 was that each trial was repeated 3 instead of 5 times.

Probabilistic gambling task inside the MRI scanner. Choice behavior across
both days was fitted to a prospect theory-based parametric decision model
that has been used in past studies (12, 19) to describe decision making under
risk. The expected utility of the certain options and gambles were de-
termined using the following equations:

Ugamble = 0.5
�
Vgain

�α,

Ucertain = ðVcertainÞα,

where Vgain is the value of the potential gain from a gamble and Vcertain is
the value of the certain option. α alters the degree of curvature of the utility
function and represents the degree of risk aversion. When presented with
an option where the expected values for the certain gain and the gamble
are equal, a subject with α = 1 would be risk-neutral and indifferent be-
tween the 2, a risk-seeking individual with α > 1 would choose the gamble
more often, and a risk-averse individual with α < 1 would choose the certain
gain more often. The probability of selecting a gamble was determined by
the following softmax rule:

Pgamble =
1

1+ e−μðUgamble−UcertainÞ   ,

where the degree of stochasticity in choice behavior is captured by the inverse
temperature parameter μ. When μ is low, subjects are more likely to choose
randomly between safe and risky options irrespective of their subjective
values. When μ is high, subjects increasingly choose the action leading to the
highest expected reward. Expected utilities for the certain option were
sampled evenly (5 bins) between Pgamble = 0.3 and 0.7 for each gamble level
for the first group of subjects, and Pgamble = 0.1 and 0.9 for the second group
of subjects. These utilities were then converted back to objective values and
used as the safe options in the real-time fMRI session. The real-time fMRI
task consisted of 90 trials in total with 30 trials for each gamble level (£0 and
£6, £9, or £12) of which 15 trials were allocated to the low baseline condition
and 15 trials allocated to the high baseline condition according to criteria
defined in the following section.

Real-Time fMRI.
Software and preprocessing of images. Real-time preprocessing of the functional
data was performed using Turbo-BrainVoyager (TBV) (Brain Innovation) and
custom scripts. Time courses for every voxel within the SN/VTA ROI were
extracted from smoothed and realigned images (6-mm full width at half-
maximum) and exported using TBV. Exported data were then corrected for
additional noise sources (movement and physiological noise; see below). Phys-
iological noise arising from breathing and pulsatile artifacts (SI Appendix) were
incrementally regressed out in real time from the exported time courses using a
custom-made MATLAB (MathWorks) toolbox. The ensuing filtered time courses
were then analyzed to detect endogenous fluctuations.
Quantifying the level of BOLD activity. We used a sliding window approach to
quantify endogenous activation of the SN/VTA over the course of the ex-
periment. This measure not only takes scanner-induced and other slow signal
drifts (e.g., due to a warming of the gradient coils) into consideration but is
also robust to outlier activations and can account for changes in the variance
of the signal over time. A normal cumulative distribution functionwas used to
quantify the distribution of BOLD signal within an ongoing sliding window
consisting of 69 volumes (∼2 min). The mean of the most recent 2 volumes
was compared to the previous 69 volumes over the progression of the entire
experiment. The distribution of the sliding window was updated with each
new volume acquired. Thresholds for the trials were set below the 15th per-
centile for low baseline trials and above the 85th percentile for high baseline
trials. When BOLD activity exceeded the thresholds, a trial was immediately
presented. There was a minimum intertrial interval of 20 s to allow the he-
modynamic response for each trial to return close to baseline. If threshold

criteria were not met by 55 s, a trial was presented and categorized as low or
high depending on whether it was lower or higher than the mean of the
preceding baseline, respectively. This procedure was applied to the 15.1 ±
5.8% (mean ± SD) of trials that did not reach the threshold criteria.
Image acquisition.MRI data were acquired at the Wellcome Centre for Human
Neuroimaging at UCL, using a Siemens Trio 3-tesla scanner equipped with a 32-
channel head coil. A partial-volume 2D echo-planar imaging (EPI) sequence that
was optimized for striatal, medial prefrontal, and brainstem regions was selected
for the functional images. Each volume consistedof 25 sliceswith 2.5-mm isotropic
voxels (repetition time, 1.75 s; echo time, 30 ms; slice tilt, −30°). At the beginning
of each functional session, 10 EPI volumes were acquired with the 10th volume
selected as the template used to coregister the ROI. Field maps with 3-mm iso-
tropic voxels (whole-brain coverage) were also acquired to correct the EPIs for
any inhomogeneity in magnetic field strength. Subsequently, the first 6 volumes
of each run were discarded to allow for T1 saturation effects. Sequence settings
were identical across subjects (e.g., no variation in tilt angle) and no slices were
discarded. Overlapping coverage across all subjects is indicated in Fig. 1. Struc-
tural images were also acquired for all subjects (see SI Appendix for full details).
ROI definition and transformation. Bright areas in MT-contrast images have been
shown to be coextensive with the SN as delineated histologically by tyrosine hy-
droxylase immunohistochemistry, which stains dopaminergic neurons (54) that are
the key component of SN/VTA. Leveraging upon this, SN/VTA ROIs were
hand-drawn for each individual in MRIcron (55) using MT-weighted struc-
tural images. In accordance with procedures outlined previously (56), medial
and lateral boundaries of the SN/VTA ROI were defined based on the change
in contrast between its bright gray color and the dark gray color of the
adjacent cerebral peduncle and interpeduncular fossa. Lower and upper
boundaries of the ROI were selected as the slices preceding the ones where
the intensity of SN/VTA was indistinguishable from surrounding tissue, to-
taling between 6 and 9 slices contingent on individual SN/VTA size differ-
ences. To prepare the hand-drawn SN/VTA ROI for use in TBV, it needs to be
coregistered and transformed to the space and resolution of the EPIs. Cor-
egistration was carried out using a single EPI volume as the reference image,
and the individual-specific T1-weighted image as the source image. Fol-
lowing this, the EPI voxels corresponding to each ROI voxel were indexed
based on Euclidean distance calculated in native space. Since the coordinate
space in TBV differs from more common ones such as the Montreal Neu-
rological Institute (MNI) space, coordinates for the ROI were transformed
before use in TBV. This series of coregistration and transformations was
executed using custom MATLAB scripts available on GitHub (https://
github.com/tuhauser/rtfMRI).

Off-Line Analyses. Images were preprocessed using standard procedures in
SPM 12 (Wellcome Centre for Human Neuroimaging, UCL; SI Appendix). The
mediation analysis (SI Appendix) presented here tests whether baseline SN/
VTA BOLD activity influences the magnitude of task-evoked responses in SN/
VTA [VS/vmPFC] (path a), whether task-evoked responses in SN/VTA [VS/
vmPFC] are correlated with choice controlling for SN/VTA baseline (path b),
whether the relationship between SN/VTA baseline and risk taking is re-
duced after controlling for task-evoked responses (path c′), and finally a test
of mediation. A mediator can be interpreted as an indirect pathway through
a brain region that links endogenous fluctuations in SN/VTA baseline activity
with choice, whereby this relationship would be reduced or abolished if the
mediator is disrupted. To further understand how task-evoked responses in
VS mediates baseline SN/VTA BOLD activity and choice despite the absence
of a direct link between VS and choice, we conducted an additional analysis
using task-evoked responses in VS to predict choice using task-evoked re-
sponses in SN/VTA as a mediating variable.

Computational Modeling.
Parametric decision model based on prospect theory. Details of this model are
provided above (Procedure, Day 2). This model provided a good fit for choice
behavior in both low- and high-activity conditions with an average pseudo-R2

of 0.44 (SD, 0.15). For the real-time fMRI analysis, we compared this standard
model to 3 alternative models including the one below and conducted a model
comparison.
Parametric decision model based on prospect theory with gambling bias. To ac-
count for the possibility of a shift in indifference points leading to a dif-
ference in tendencies to choose gambles, the softmax rule in the parametric
prospect theory model included an additional parameter, κ, such that:

Pgamble =
1

1+ e−μðUgamble−Ucertain+κÞ.

κ here represents a gambling bias that is additive to the expected utilities.
This model provided the best fit out of all of the models tested with a
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pseudo-R2 of 0.55 (SD, 0.12). Model comparison based on Bayesian in-
formation criterion confirmed the fit and revealed that this model fitted the
data best (see SI Appendix, SI Methods for alternative models, and SI Ap-
pendix, Table S1). Larger effects of endogenous SN/VTA fluctuations on
task-evoked SN/VTA responses (as measured using the average of an epoch
corresponding to 5.25 to 10.5 s in Fig. 3A) correlated with larger increases
in gambling bias parameter.
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