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A B S T R A C T
HLA matching at an allelic-level resolution for volunteer unrelated donor (VUD) hematopoietic cell transplanta-
tion (HCT) results in improved survival and fewer post-transplant complications. Limitations in typing technolo-
gies used for the hyperpolymorphic HLA genes have meant that variations outside of the antigen recognition
domain (ARD) have not been previously characterized in HCT. Our aim was to explore the extent of diversity out-
side of the ARD and determine the impact of this diversity on transplant outcome. Eight hundred ninety-one
VUD-HCT donors and their recipients transplanted for a hematologic malignancy in the United Kingdom were ret-
rospectively HLA typed at an ultra-high resolution (UHR) for HLA-A, -B, -C, -DRB1, -DQB1, and -DPB1 using next-
generation sequencing technology. Matching was determined at full gene level for HLA class I and at a coding
DNA sequence level for HLA class II genes. The HLA matching status changed in 29.1% of pairs after UHR HLA typ-
ing. The 12/12 UHR HLA matched patients had significantly improved 5-year overall survival when compared
with those believed to be 12/12 HLA matches based on their original HLA typing but were found to be mismatched
after UHR HLA typing (54.8% versus 30.1%, P = .022). Survival was also significantly better in 12/12 UHR HLA-
matched patients when compared with those with any degree of mismatch at this level of resolution (55.1% ver-
sus 40.1%, P = .005). This study shows that better HLA matching, found when typing is done at UHR that includes
exons outside of the ARD, introns, and untranslated regions, can significantly improve outcomes for recipients of
a VUD-HCT for a hematologic malignancy and should be prospectively performed at donor selection.

© 2019 American Society for Blood and Marrow Transplantation. This is an open access article under the CC BY-
NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Key Words:

Unrelated donor hematopoietic
cell transplantation
Ultra-high resolution HLA typing
HLA matching
Survival
Next-generation sequencing
gments on page 449.
uests: Steven G. E. Marsh, Anthony Nolan
al, London NW3 2QG UK.
l.ac.uk (S.G.E. Marsh).

12.768
for Blood and Marrow Transplantation. This is an open access article under the CC BY-NC-ND license.
s/by-nc-nd/4.0/)
INTRODUCTION
Allogeneic hematopoietic cell transplantation (HCT) pro-

vides a curative treatment option for individuals with hemato-
logic diseases. Recipients and donors are considered to be
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compatible or “well matched” if they share a high degree of
genetic similarity at their HLA loci. Historically, HCT was limited
to using HLA-identical related donors. Improved knowledge of
the transplant process and therapeutic drug development, cou-
pled with increased resolution of HLA typing and a significantly
larger pool of volunteer unrelated donors (VUDs) worldwide,
has meant that HCT with a VUD now offers comparable survival
[1,2]. Current HCT activity shows that the use of VUDs as a
source of stem cells is greater than related donors [3,4].

The gold standard for HLA matching between recipients
and VUDs has changed little in the last 10 years, with either an
8/8 or 10/10 HLA allelic match (HLA-A, -B, -C, -DRB1, and
-DQB1 matched) as the preferred option [5,6]. Matching at
HLA-DQB1 has been shown to have significant advantages
[6,7], but the benefit of matching has been controversial histor-
ically. Although matching for HLA-DPB1 has been shown to be
beneficial [8,9], the existence of a recombination hotspot
between the HLA-DQB1 and -DPB1 loci means that allelic
matching for HLA-DPB1 is challenging [10]. Consequently, sev-
eral models of permissive HLA-DPB1 mismatching have been
proposed [7-9,11,12]. Despite the use of 10/10-matched, HLA-
DPB1 permissively (mis)matched donors, the incidence of
transplant complications such as graft-versus-host disease
(GVHD) and disease relapse remain significant and are associ-
ated with worse outcomes [6,13]. Secondary donor factors
such as younger donor age [2,6,13] and cytomegalovirus
(CMV) matching, either in combination with HLA matching [6]
or independently [2], have been correlated with improved out-
comes.

Despite data showing the beneficial impact of allelic-level
HLA matching [5], limitations in technology and capacity and
the hyperpolymorphic nature of HLA genes have often pre-
vented histocompatibility typing laboratories from achieving
this level of resolution [14]. Many high-throughput methodolo-
gies have focused solely on exons of the gene that encode the
antigen recognition domain (ARD) because of the assumption
that these functionally relevant regions are the most important
regions to match for HCT. Indeed, studies suggest that diversity
outside of the ARD is limited in well-matched VUD-HCT pairs
[15].

As the number of HLA alleles identified has increased, so
has the number of ambiguous combinations of alleles that can-
not be resolved by typing strategies that only include the ARD
[16,17]. The ideal HLA typing paradigm has always been to
provide fully phased sequence-level typing that covered the
entire gene [18]. The advent of next-generation sequencing
(NGS) and third-generation sequencing technologies has
brought this paradigm closer to reality by providing the possi-
bility to characterize full HLA gene sequences in both a
research and clinical setting. Although many HLA typing labo-
ratories have moved to using NGS methods to enable refined
HLA typing results, the impact of ultra-high resolution (UHR)
HLA typing on HCT outcome has not been studied. The aim of
this study was to identify for the first time the impact of better
matching through HLA typing data at UHR, as achieved by
Single Molecule Real-Time DNA sequencing, on the outcome of
VUD-HCT.

METHODS
Patient Cohort

The cohort in this study is part of a large retrospective study consisting of
VUD�recipient HCT pairs transplanted between 1996 and 2011. The study
comprised 891 adult and pediatric patients with hematologic malignancies
from 32 UK allogeneic centers (Table 1).

Clinical outcome data were collected as part of a collaboration with the
British Society of Blood and Marrow Transplantation. Primary outcomes
included overall survival (OS), nonrelapse mortality (NRM), disease relapse,
and acute GVHD (aGVHD). Reporting of chronic GVHD follow-up data were
insufficient to perform this analysis.

Ethical Approval
Ethical approval for this study was granted from the National Research

Ethics Service (application number MREC 01/8/31; www.myresearchproject.
org.uk) and is a registered study with the Integrated Research Application
System (project ID: 168991). Written consent was sought from all partici-
pants before donation or transplant.

HLA Typing
Methods of DNA-based HLA typing used previously included sequence

specific oligonucleotide probing, Sanger sequencing-based typing, and refer-
ence strand-mediated conformational analysis [19]. Typing strategies mainly
included exons that encoded the ARD.

Retrospective UHR HLA typing of the cohort was performed for the 6 clas-
sic HLA loci using Pacific Biosciences Single Molecule Real-Time sequencing
(Menlo Park, CA, USA), as described previously [18,20,21]. Patients were only
eligible for further clinical analyses when complete UHR HLA typing was
available for both patient and donor samples. HLA typing results were ana-
lyzed blind and subsequently compared with previous typing data. All dis-
crepancies from previous typing were investigated. Matching between
donors and recipients was determined at a genomic level for HLA class I loci
(ie, definitive allelic matching) and at a coding DNA sequence (CDS) level for
HLA class II loci, including all exons that encode the expressed extracellular
domains of the mature protein.

Models of HLA Matching
It is generally accepted that 12/12 HLA-matched patients have a better

outcome prognosis than those who are less well matched. Therefore, an aim
was to compare the outcome of this group of patients after UHR HLA typing
once it was known how many pairs remained a 12/12 UHR HLA match and
how many that were now found to be mismatched. Additionally, we aimed
to show how outcome differed for these 12/12 UHR HLA-matched patients in
comparison with any degree of mismatch as identified with this typing strat-
egy. Finally, we aimed to show whether noncoding variation alone or mis-
matching of non-ARD exons had an impact on patient outcome.

To determine if there were viable alternatives to a 12/12 UHR HLA match,
we chose to test the HLA-DPB1 T cell epitope (TCE) model of permissible mis-
matching in this data set. Additionally, outcome analyses included the com-
bined impact of UHR HLA matching and CMV matching using a model
described previously [6]. Here, recipients and donors with the same CMV
serostatus were considered to be matched (recipient and donor both CMV
seropositive or both CMV seronegative). Any other combination was consid-
ered to be CMVmismatched.

Statistical Methods
Probability curves for OS were calculated by the Kaplan-Meier method

and compared using the log-rank test. Outcomes with competing events (dis-
ease relapse and NRM) were determined using the cumulative incidence
function with Gray's test used for comparisons of groups [22]. Proportions of
patients with aGVHD (Glucksberg criteria) [23] were compared with the chi-
squared test. HLA-matching variables were adjusted for known prognostic
variables in multivariate analyses using Cox regression, Fine and Gray, or
logistic regression analysis as appropriate. All statistical tests were 2-sided,
and significance was determined when P � .05. Multivariate analyses
included variables where univariate analysis outcomes were P � .2. Analyses
were performed using SPSS version 24 (SPSS, Inc., Chicago, IL) or R version
3.4.2 [24].

RESULTS
Impact of UHR 12/12 HLA Matching on HCT Outcome

The previously assigned HLA matching status changed in
29.1% of pairs after UHR HLA typing (Supplementary Table S1).
Previously unknown variation was identified in 24.8% of pairs
(n = 221), most commonly due to the existence of intron and/
or UTR polymorphisms (n = 161; Supplementary Table S2)
and/or novel variants that were not detected previously due to
limitations of the methodology used or the location of the
polymorphism (n = 104).

The 5-year OS of the cohort was 41% (95% confidence inter-
val [CI], 38 to 45). The presence of previously undiscovered
mismatch(es) was associated with significantly lower OS com-
pared with those that were matched (5-year OS: 30.1% [95% CI,
14 to 54] versus 54.8% [95% CI, 42 to 67]; P = .022) (Figure 1A).
Furthermore, UHR 12/12 HLA-matched patients (n = 81) also
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Table 1
Study Cohort Characteristics (N = 891)

Variable 12/12 UHR HLA
Match(n = 81)

12/12 CDS HLA
Match(n = 13)

All Other Mismatches
(n = 797)

P All Mismatches
(n = 810)

P (12/12 UHR HLA
Match vs. All Other
Mismatches)

Median donor age, yr
(range)

33.4 (20.4-53.0) 41.2 (22.6-53.5) 34.8 (19.0-58.9) .13 34.8 (19.0-58.9) .054

Median recipient age, yr
(range)

43.2 (3.4-70.5) 42.7 (2.7-58.1) 40.8 (1.1-71.9) .39 40.9 (1.1-71.9) .22

1-18 yr 9 (11.1) 3 (23.1) 141 (17.7) 144 (17.8)
>18 yr 72 (88.9) 10 (76.9) 656 (82.3) 666 (82.2)

Patient age, yr
<40 36 (44.4) 6 (46.2) 386 (48.4) .78 392 (48.4) .50
>40 45 (55.6) 7 (53.8) 411 (51.6) 418 (51.6)

Donor age, yr
<30 34 (42.0) 4 (30.8) 236 (29.6) 240 (29.6)
>30 47 (58.0) 9 (69.2) 553 (69.4) .08 562 (69.4) .02
Missing 0 0 8 (1.0) 8 (1.0)

Sex, male
Recipients 49 (60.5) 6 (46.2) 496 (62.2) .48 502 (62.0) .79
Donors 70 (86.4) 10 (76.9) 644 (80.8) .43 654 (80.7) .21

Recipient�donor sex
Sex matched 48 (59.2) 7 (53.8) 505 (63.4) 512 (63.2)
Male/female 6 (7.4) 1 (7.7) 72 (9.0) .72 73 (9.0) .52
Female/male 27 (33.4) 5 (38.5) 220 (27.6) 225 (27.8)

Disease
AML 19 (23.4) 2 (15.4) 203 (25.5) 205 (25.3)
ALL 6 (7.4) 5 (38.4) 153 (19.2) 158 (19.5)
CML 14 (17.3) 2 (15.4) 101 (12.7) .11 103 (12.7) .02
MDS 20 (24.7) 2 (15.4) 131 (16.4) 133 (16.4)
NHL 11 (13.6) 0 88 (11.0) 88 (10.9)
Other 11 (13.6) 2 (15.4) 121 (15.2) 123 (15.2)

CMV serostatus
Donor

Negative 67 (82.7) 8 (61.5) 600 (75.3) 608 (75.1)
Positive 14 (17.3) 5 (38.5) 196 (24.6) .16 201 (24.8) .13
Missing 0 0 1 (0.1) 1 (0.1)

Recipient
Negative 52 (64.2) 8 (61.5) 472 (59.2) 480 (59.4)
Positive 26 (32.1) 5 (38.5) 297 (37.3) .66 302 (37.2) .36
Missing 3 (3.7) 0 28 (3.5) 28 (3.4)

Recipient�donor CMV status 51 (63.0) 6 (46.2) 415 (52.1)
Negative/negative 1 (1.2) 2 (15.4) 56 (7.0) .22 421 (52.0)
Negative/positive 13 (16.0) 2 (15.4) 164 (20.6) 58 (7.2) .10
Positive/negative 13 (16.0) 3 (23.0) 133 (16.7) 166 (20.5)
Positive/positive 3 (3.8) 0 29 (3.6) 136 (16.8)
Missing .13 29 (3.6)
————

Matched 64 (82.1) 9 (69.2) 548 (71.4) 557 (71.3)
Mismatched 14 (17.9) 4 (30.8) 220 (28.6) 224 (28.7) .04

Disease risk: European Society for Blood and Marrow Transplantation score
Good 41 (50.6) 5 (38.5) 360 (45.2) 365 (45.1)
Intermediate 30 (37.0) 5 (38.5) 290 (36.4) .69 295 (36.4) .34
Poor 8 (9.9) 2 (15.4) 125 (15.7) 127(15.7)
Missing 2 (2.5) 1 (7.6) 22 (2.7) 23 (2.8)

Stem cell source
Bone marrow 35 (43.2) 7 (53.8) 360 (45.1) 367 (45.3)
Peripheral blood stem cell 46 (56.8) 6 (46.2) 430 (53.9) .76 436 (53.8) .67
Missing — — 7 (.9) 7 (.9)

Conditioning regimen
Myeloablative 34 (42.0) 11 (84.6) 412 (51.7) 423 (52.2)
Reduced intensity 47 (58.0) 2 (15.4) 366 (45.9) .011 368 (45.4) .05
Missing 0 0 19 (2.4) 19 (2.3)

T cell depletion (Campath)
Yes 66 (81.5) 9 (69.0) 650 (81.0) 659 (81.3)
No 4 (5.0) 1 (8.0) 45 (6.0) .87 46 (5.7) .79
Missing 11 (13.5) 3 (23.0) 102 (13.0) 105 (13.0)

Era
1996-1999 10 (12.3) 1 (7.7) 86 (10.8) 87 (10.7)
2000-2003 21 (25.9) 4 (30.8) 284 (35.6) .41 288 (35.6) .13
2004-2007 22 (27.2) 4 (30.8) 237 (29.7) 241 (29.8)
2008-2011 28 (34.6) 4 (30.8) 190 (23.8) 194 (24.0)

Previous autografts
0 71 (87.7) 12 (92.3) 677 (84.9) .62 689 (85.1) .53
�1 10 (12.3) 1 (7.7) 120 (15.1) 121 (14.9)

Values are n (%) unless otherwise defined. AML indicates acute myeloid leukemia; ALL, acute lymphoblastic leukemia; CML, chronic myeloid leukemia; MDS, myelo-
dysplastic syndrome; NHL, non-Hodgkin lymphoma; CDS, coding DNA sequence.
Numbers in italics represent significant p values (<0.05).
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Figure 1. The impact of UHR HLA matching status as achieved with NGS on OS. (A) A comparison of previously identified 12/12-matched patients when
stratified into those who remain 12/12 HLA matched (n = 76) and those found to be HLA mismatched (n = 23). (B) A comparison of UHR 12/12 HLA-matched
patients (n = 81; includes 76 patients previously believed to be 12/12 matched and an additional 5 pairs previously believed to be less well matched but
identified as 12/12 matched after UHR HLA typing) and those with any degree of HLA mismatching as identified by NGS (n = 810). (C) The impact of noncod-
ing variation on transplant outcome. The 12/12 UHR HLA-matched pairs have significantly higher survival probabilities than patients who received either a
12/12 CDS match (ie, where there is the presence of only intronic or untranslated region mismatches) or any other HLA mismatch.

The numbers above the x-axis denote the number of patients at risk at each time point.
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had significantly higher 5-year OS (55.1%; 95% CI, 43 to 67)
than those with any degree of mismatching (n = 810; 40.1%;
95% CI, 37 to 44; P = .005) (Figure 1B).

Impact of Noncoding Variation on HCT Outcome
HLA mismatched pairs (n = 810) were divided into those

where the mismatches only differed in the introns and
untranslated regions of the HLA genes, and thus were 12/
12 CDS HLA matches, and those where coding mismatches
were observed (all other mismatches) (Figure 1C). The
number of pairs with only noncoding differences were low
(n = 13). Five-year OS was significantly higher in 12/12 UHR
HLA-matched patients (n = 81; 55.1%; 95% CI, 43 to 67) than
in those receiving either a 12/12 CDS HLA match (n = 13;
46.2%; 95% CI, 23 to 71) or any other mismatched donor
(n = 797; 40.0%; 95% CI, 37 to 44; P = .02). Unfortunately,
the number of patients who were only mismatched in non-
ARD exons (ie. matched for the ARD, introns, and untrans-
lated regions) were too low to allow for outcome analysis
to be performed (n = 3).
Implementing HLA-DPB1 TCE Models
Patients identified as 10/10 UHR HLA matched (n = 523)

were coded as being 12/12 HLA matched (n = 81), permissively
mismatched for their DP-TCE (TCEM; n = 231), or nonpermis-
sively mismatched (TCED; n = 211) [11] (for details on how
TCE matching status changed with UHR HLA typing, see Sup-
plementary Table S3). Individuals with a 12/12 UHR HLAmatch
had the best survival (5-year OS: 55.1%; 95% CI, 43 to 67),
whereas the 10/10 UHR-matched TCED group did significantly
worse (31.5%; 95% CI, 25 to 39; P < .0001) (Figure 2A). There



Figure 2. The impact of UHR HLA typing and HLA-DPB1 TCE matching on transplant outcome. (A) The 12/12 UHR HLA-matched patients have significantly higher OS
than 10/10 TCEM and 10/10 TCED patients. (B) Inferior survival is due to increased probabilities of NRM. (C) Adjusted curves showing UHR HLA matching and CMV
matching on OS. The numbers above the x-axis denote the number of patients at risk at each time point.
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was no significant difference in OS between 12/12 and 10/10
UHR TCEM pairs (P = .13).

The probability of 1-year NRM for the whole cohort was
20.4% (95% CI, 17 to 24), whereas grades II to IV aGVHD was
observed in 27.7% of cases. Nonpermissive DP-TCE mismatch-
ing was also correlated with an increase in 1-year NRM
(Figure 2B). Recipients receiving a 10/10 TCED graft had a trend
for higher NRM than 10/10 TCEM or 12/12 matched patients
(25.7% [95% CI, 20 to 33], 17.3% [95% CI, 13 to 23], and 16.8%
[95% CI, 9 to 26], respectively; P = .051). An increased risk of
grades II to IV aGVHD was observed with increasing levels of
HLA mismatching. Patients receiving a 12/12 UHR HLA-
matched graft had the lowest risk of grades II to IV aGVHD
(15.8%), whereas an almost 2-fold increase was associated
with DP-TCE mismatching (26.4% and 29.4% for TCEM and
TCED patients, respectively; P = .068). No significant differences
in disease relapse between the 3 groups were observed
(P = .73).

When compared with 12/12 HLA-matched patients, the
detrimental effect of being 10/10 UHR HLA-matched TCED per-
sisted in multivariate analysis of OS (hazard ratio, 1.98; 95% CI,
1.3 to 2.9; P = .001) (Table 2). Covariables included in this
analysis were patient age, transplantation era, European Soci-
ety for Blood and Marrow Transplantation risk score, and
recipient�donor CMV matching status. Nonpermissive DP-TCE
mismatching was correlated with a trend for increased risks of
NRM (hazard ratio, 1.75; 95% CI, .92 to 3.3; P = .091) and signifi-
cantly higher risks of grades II to IV aGVHD (odds ratio, 2.37;
95% CI, 1.1 to 4.9; P = .018) when compared with 12/12 HLA-
matched patients. A trend for increased aGVHD was observed
for patients with a TCEM donor (relative risk, 1.98; 95% CI, .97
to 4.0; P = .059). Covariables for these analyses included patient
age and reduced-intensity conditioning (NRM only), era (NRM
and aGVHD), and donor age (aGVHD).

Impact of UHR HLA Typing and CMVMatching
Because we have previously shown the beneficial impact of

considering both HLA and CMV matching on UD-HCT outcome
[6], we investigated the impact of CMV matching when UHR
HLA matching was considered. Significant differences in 5-year
survival probabilities were observed with the best outcome in
12/12 UHR HLA-matched, CMV-matched patients (group A:
62.0%; 95% CI, 48 to 74) and worst in 10/10 UHR HLA-matched,
TCED, CMV-mismatched patients (group F: 17.5%; 95% CI, 9 to



Table 2
Multivariate Analysis of OS, NRM, and aGVHD

OS NRM aGVHD Grades II-IV

No. of Cases Relative Risk (95% CI) P No. of Cases Relative Risk (95% CI) P No. of Cases Odds Ratio (95% CI) P

HLA matching status
12/12 76 1.0 77 1.0 76 1.0
10/10 + TCEM 219 1.28 (.8-1.9) .24 221 1.13 (.6-2.2) .72 159 1.98 (.97-4.0) .059
10/10 + TCED 192 1.98 (1.3-2.9) .001 201 1.75 (.92-3.3) .091 155 2.37 (1.1-4.9) .018

Patient age
<40 yr 217 1.0 224 1.0 — — —

>40 yr 270 1.43 (1.09-1.8) .009 275 1.83 (1.1-3.1) .019
Era

1996-1999 38 1.0 36 1.0 34 1.0
2000-2003 161 1.15 (.6-1.9) .57 158 .85 (.4-1.9) .69 159 .35 (.16-.79) .011
2004-2007 140 .79 (.4-1.3) .39 159 .75 (.4-1.7) .49 154 .43 (.19-.97) .041
2008-2011 148 .89 (.5-1.5) .69 146 .87 (.4-2.0) .74 143 .39 (.17-.93) .033

European Society for Blood and Marrow Transplantation risk score
Good 230 1.0
Intermediate 183 1.38 (1.0-1.8) .018 — — — — — —

Poor 74 1.29 (.8-1.8) .17
Patient�donor CMV matching status

Matched 372 1.0 — — — — — —

Mismatched 115 1.38 (1.05-1.8) .019
Conditioning

Myeloablative — — — 241 1.0 234 1.0
Reduced intensity 258 .61 (.4-.98) .036 257 .64 (.4-.98) .044

Donor age
<30 yr — — — — — — 167 1.0
>30 yr 324 1.75 (1.1-2.8) .018

Bold type was used to denote significant P values (<0.05).
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31; overall P < .001). These correlations persisted after adjust-
ment in multivariate analysis. The greatest associations were
observed between 12/12 HLA-matched, CMV-matched
patients (group A) and either 10/10 HLA-matched, TCED, CMV-
matched (group C) or CMV-mismatched (group F) patients.
When compared with the use of a group A donor, patients had
a significantly increased risk of mortality with a group C (rela-
tive risk, 2.03; 95% CI, 1.02 to 3.30; P = .004) or a group F donor
(relative risk, 3.25; 95% CI, 1.90 to 5.55; P < .0001) (Figure 2C).

DISCUSSION
NGS and third-generation sequencing technologies have

changed the landscape for HLA typing laboratories, allowing
for full gene characterization in a manner that is viable for use
in a routine clinical typing laboratory, and thus is becoming
current practice. Differences between the technologies are
minimal. Both technologies allow for more of the HLA gene to
be sequenced, with introns and untranslated regions included
routinely. NGS technologies are limited by short read lengths,
resulting in ambiguous HLA typing data. For example, any 2
alleles that differ only at regions further apart than the maxi-
mum read length of the technology cannot be phased and will
result in HLA typing ambiguity or miscalled alleles. Conversely,
third-generation sequencing technologies have the ability to
generate long reads sequenced in isolation and thus generate
fully phased sequences that reduce the potential for ambiguity
and/or miscalled alleles. In our opinion the current optimal
typing technology is Pacific Biosciences Single Molecule Real-
Time DNA sequencing, which has the ability to sequence indi-
vidual molecules of double-stranded DNA of up to 10 kilobase
pairs at the high level of accuracy required for HLA typing

This study shows for the first time that polymorphism in
previously uncharacterized regions of the classic HLA genes
affects VUD-HCT outcomes. HLA matching at UHR as achieved
by single-molecule real-time sequencing results in superior OS
because of reduced NRM and aGVHD risks. Additionally, we
confirm our previous findings that HLA and CMV matching can
be used together to further refine the prediction of outcome
risks.

At the start of this project we had hoped to identify the
impact of noncoding variation and mismatching of non-ARD
exons on VUD-HCT outcome; however, we identified limited
numbers of pairs with each of these types of mismatch. The
number of patients who were mismatched at a noncoding level
only were too low for impactful clinical analysis in this cohort,
but it was observed that outcomes were similar for CDS HLA-
mismatched pairs and those with any other UHR HLA mis-
match. Further studies on larger cohorts of individuals are
needed to confirm our findings and to enable more complex
analyses that may help elucidate if there are differences in
patient outcomes when 12/12 UHR HLA-matched, 12/12 CDS-
matched, or UHR ARD-matched donors are used.

A possible explanation for the significant survival benefit
conferred by a 12/12 UHR HLA match is that typing methods
that consider the additional regions of the gene are acting as
markers for demonstrating haplotype compatibility. The bene-
ficial impact of MHC haplotype matching on the outcome of
VUD-HCT has been shown previously [25,26]. In these studies
MHC haplotypes were determined either by physical separa-
tion using a probe-based DNA capture method and resequenc-
ing of the HLA genes at medium/high resolution or inferred by
the screening of a panel of MHC-located, non-HLA single nucle-
otide polymorphisms. Both studies showed increased GVHD
with haplotype mismatching, although the impact on OS was
negligible. We suggest that matching at a 12/12 UHR level is a
step toward achieving a degree of compatibility closer to an
MHC haplotype match and thus may be associated with
improved survival prognoses, as observed in this study. Fur-
ther studies are required to test this hypothesis.

Several studies have shown an increased risk of disease
relapse with increased levels of matching between VUD-HCT
recipients and donors, possibly because a degree of genetic
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disparity is required to initiate graft-versus-leukemia
responses [8,9,12,27-29]. In particular, recipients of MHC hap-
lotype matched transplants were identified as having a signifi-
cantly reduced risk of grades III to IV aGVHD but also a
significantly higher risk of disease relapse [25]. Surprisingly no
significant differences in relapse risk were observed between
the 3 groups in this study (P = .73). It is possible that although
allele and haplotype matching was inferred in the VUD-HCT
pairs included in the MHC haplotype analysis studies from
medium-/high-resolution HLA typing data, the level of matching
achieved with UHR analysis of these HLA types would have
revealed additional differences that suggested the definition of
“matched” was inaccurate. The data from this study may sug-
gest that true MHC haplotype matching, as defined by UHR HLA
typing, may achieve a balance of reducing GVHD responses but
retaining the graft-versus-leukemia effect, although this
requires confirmation in additional data sets.

This study confirms the significant impact of HLA-DPB1
matching on VUD-HCT outcome. The model of DPB1 matching
described in this study has been shown to improve outcome pre-
viously, with 12/12 HLA-matched and 10/10 TCEM patients hav-
ing better OS and NRM in a large cohort of VUD-HCT pairs [8].
Although outcome prognoses were significantly improved in
this earlier study, the difference in risk between the 3 groups
was low (hazard ratios of 1.0, .96, and 1.15 for 10/10 TCEM, 12/
12 matched, and 10/10 TCED patients, respectively), which is in
contrast to the differences described in our study (hazard ratios
of 1.28, 1.0, and 1.98 for the 3 groups, respectively; overall 15%
difference in OS at 5 years between the 3 groups). Reanalysis of
the 891 patients included in this study according to this HLA/DP-
TCE model using our original intermediate-/high-resolution HLA
typing data demonstrated OS probabilities similar to those
reported by Fleischhauer et al. [8] (data not shown). The larger
differences observed with UHRHLA typing suggest that this level
of typing may provide more power to discriminate between DP-
TCE groups, could help to further refine the DP-TCE algorithms,
and strengthen the argument for including HLA-DPB1 in VUD
selection strategies.

The data presented here also build on our previous findings
that HLA and CMV matching should be jointly considered
when selecting VUDs [6]. The patients included in this analysis
were all defined as UHR 10/10 HLA matches, which according
to the current gold standard is the best possible VUD option
for patients. However, we were able to demonstrate up to 45%
difference in OS probabilities with the inclusion of CMV sero-
logic data. As with DP-TCE matching, the use of UHR HLA
matching combined with CMV matching status allowed a
more refined stratification of donors and could provide a novel
matching model for VUD-HCT. Because patients in this cohort
were transplanted before the recent move toward using youn-
ger VUDs, we were unable to include donor age into our analy-
ses, but we hypothesize that survival probabilities will be
additionally affected by the use of younger donors [2,6,13].

A limitation of the typing strategy used here is that full
gene sequencing was not performed for HLA class II genes. The
decision to use an extended sequencing protocol that included
all exons encoding the extracellular domains of the mature
protein was due to the lack of available and reliable reference
sequences for the HLA class II genes when establishing the typ-
ing and analysis protocols. It will be important to determine
the impact of definitive HLA class II allele typing on VUD-HCT
outcome. We hypothesize that matching at a definitive HLA
class I and II allele level will result in further survival advan-
tages, possibly because of the ability to further predict MHC
haplotype matches. A full-length HLA class II typing strategy is
in development and once completed will be used to retype
and reanalyze this cohort [30].

It will be important to consider how UHR HLA typing affects
the outcome of VUD-HCTs that include other methods of T cell
depletion and T cell�replete transplants. Additionally, we did
not have sufficient 9/10 HLA-matched pairs to determine the
impact of UHR HLA typing and DP-TCE matching on their out-
come prognoses. Alternative means of determining permissive
HLA-DPB1 mismatching according to expression levels have
been proposed [31] but are not tested here to avoid further
complicating these matching algorithms. Future studies will
endeavor to determine the impact of HLA-DPB1 expression
status on this cohort. A final limitation of this study is the
absence of chronic GVHD analyses, resulting from limited
patient outcome reporting. Further and larger studies are
required to elucidate these observations.

In conclusion, our study demonstrates for the first time the
importance of UHR HLA typing as achieved with NGS on the
outcome of VUD-HCT. Based on these findings, we propose
that 12/12 UHR HLA-matched, CMV-matched donors be pref-
erentially selected for recipients with a hematologic malig-
nancy undergoing VUD-HCT and that HLA-DPB1 TCED donors
should be avoided where possible. The benefit of this approach
could be particularly advantageous for patients with a choice
of many donors. At this time we are unable to make recom-
mendations on donor selection for patients �9/10 UHR-
matched donor; in such cases we would suggest that time to
transplant should be considered and that current guidelines
for donor selection should be followed. We also suggest that
increasing the number of donors selected at the point of confir-
matory or verification typing will consequently increase the
probability of identifying 12/12 or 10/10 TCEM donors.
Although this will increase the initial costs of VUD-HCT, the
reduced risk of post-transplant complications coupled with
the potential for improved patient well-being should not be
overlooked. The onus is now on unrelated donor registries to
provide UHR HLA typing on their donors prospectively at the
time of donor search and that clinical HLA typing laboratories
should be able to type and match patients and donors at this
level of resolution, thus becoming the new standard of care for
patients.
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