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Abstract

The parallel structure is one of the basic system architectures found in process networks. In order to achieve robust control of
complex process networks, it is necessary to formulate control strategies that specifically accommodate the characteristics of such
parallel systems. In this paper, the competitive coupling and competitive constraints in parallel systems are initially defined. A
novel robust distributed model predictive control algorithm is then developed for such parallel systems which deals explicitly with
competitive couplings, competitive constraints and uncertainties. The Lyapunov Method is used for the theoretical analysis which
produces tractable linear matrix inequalities (LMI). Two simulation studies and an experimental trial are provided to validate the
effectiveness of the proposed approach. These consider control of 40 user and 100 user gas boiler heating systems as well as control
of two continuous stirred tank reactors (CSTRs) which are connected in parallel.
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1. Introduction

Modern industrial chemical plants consist of many process units arranged in a complex structure which produces
a process network [1]. Such a process network will contain many subsystems interacting with each other through
mass and energy interconnections [2]. Depending on the structure of the process interactions, process networks can
be divided into two forms: series structure encompassing the multistage extraction process [3] and the multistage flow
control system [4]; parallel structure, where examples are the process of ethanol production [5] and the gas boiler
heating system [6]. Series structure is characterised by each subsystem being connected in series [7] so that the output
of the former subsystem is the input of the latter subsystem [8, 9, 10]. In a parallel structure, all subsystems are
connected on the same bus and the input and output of each subsystem is related to the other subsystems.

The series configuration has been extensively studied in the process control domain [11, 12]. In this case the
input of each subsystem is only coupled with the immediately preceding subsystem [13]. There are many publications
which consider the control of series systems [14]. Methods discussed include state feedback control [15], active
disturbance rejection control [16] as well as model predictive control (MPC) [17]. MPC is widely recognized as a
practical control approach to yield high performance for series systems [18, 19, 20], where all the information is
gathered into one model predictive controller to effect global optimization and ensure high control performance [21].
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However, with the development of modern industry, the size of the series system is increasing, resulting in a need to
control ever greater numbers of parameters. A centralized control structure leads to the requirement for large-scale
online computation which results in increasing requirements for dedicated, centralised computer infrastructure. The
availability of lower cost computational devices has resulted in the development of distributed MPC (DMPC) for the
control of series systems [22]. The distributed control paradigm is promising as simple controllers result which can
communicate and cooperate with each another to achieve improved control performance and operational efficiency
[23]. For the series system, DMPC solves the optimization problem by iterative computing and rolling optimization
and can handle constraint problems flexibly [24]. There is a vast literature on control of series systems using DMPC
[25], including work on distributed model predictive control based on domain optimization[26], distributed decoupling
model predictive control [27], Nash optimization based DMPC [28] and dynamic coordination based DMPC [29].

In process networks, a parallel system covers that case where all subsystems are connected in parallel. The
inputs are obtained from the same bus while the corresponding outputs converge to another bus. Each subsystem is
competing with the other subsystems because of resource limitations and there are couplings between information,
mass and energy among the subsystems. These couplings and constraints in the parallel system architecture are
different to those in a series system. It is necessary to clearly describe the couplings and constraints within a parallel
system before embarking on a control design.

The competitive couplings and constraints are initially defined to describe the characteristics of the parallel system.
Assume that two subsystems, for example, are paralleled in the same bus. It is obvious that the sum of the inputs of
the two subsystems must be less than or equal to the total input of the whole system. When the sum of the inputs of
two subsystems is equal to the total input of the whole system (this is the most common case in practice [30]), if the
input of one subsystem increases, the input to the other subsystem must reduce. If the outputs of each subsystem are
also connected in parallel, the outputs have the same characteristics. The system will not achieve the control objective
and may even become unstable if the couplings and constraints are not addressed appropriately. This kind of coupling
is called competitive coupling, and this constraint is a key consideration of this paper.

The dynamic characteristics of parallel and series systems are distinct. The existing DMPC methods for series
systems cannot be directly applied to parallel systems. The literature specifically on DMPC for parallel systems
is not extensive. Many of the control problems relating to parallel systems are solved by general DMPC algorithms
[31]. However, the competitive couplings and competitive constraints of parallel systems are special and have not been
considered by general DMPC explicitly. Hence, the design of the general DMPC lacks pertinence to the characteristics
of the parallel system. If the DMPC algorithm for general systems is applied to a parallel system directly, there will
be considerable computation and even degraded control performance.

Modelling error cannot be avoided in practice and it is important to consider uncertainty within the parallel system
architecture in process networks. Several robust control methodologies have been used in process networks to address
problems of system uncertainty and disturbances [32, 33]. A robust control method offers an effective solution [34]
and a number of researchers have explored control approaches for series systems, such as sensitivity-based robust
state feedback control [35], robust control of linear discrete-time series systems with local and global constraints [36].
However, there is very little literature on parallel systems which are extensively used in practice.

The purpose of this paper is to develop a novel iterative online algorithm for RDMPC, which explicitly deals with
competitive coupling, competitive constraints and uncertainties within a parallel system. A linear matrix inequality
(LMI) based RDMPC algorithm has been developed. It will be shown that the proposed iterative algorithm can be
formulated so as to guarantee stability and to achieve the desired control objectives. Two challenging issues are
considered in this paper: (1) Define the competitive coupling and competitive constraint, find the balance between
the various subsystems of the competition, solve the competitive problem within a parallel system; (2) By using the
Lyapunov stability theory and LMIs, the explicit RDMPC algorithm is designed for parallel systems and a sufficient
condition is given for the existence of the control law. After addressing these two issues, stability of the resulting
closed-loop system is analyzed. A step by step control algorithm is given to illustrate the usability. Finally, the
effectiveness and performance are validated by extensive simulation results and an experimental trial.

The paper is organized as follows. Section 2 sees the parallel system problem being formulated and assumptions
and definitions are given. In Section 3 the RDMPC algorithm is proposed and its robust stability is addressed. The
results of simulation testing and an experimental trial are demonstrated in Section 4 in order to validate the proposed
approach. Finally, some conclusions are drawn in Section 5.
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Figure 1: Parallel structure in process networks.

Figure 2: Series structure in process networks.

2. Problem formulation

The parallel and series structures in process networks are shown diagrammatically in Figures 1 and 2, respectively.
The differences in the structural form between the two systems are clear. In the series system, the input of each

subsystem is only coupled with the former subsystems [36] but with the parallel system each subsystem is coupled to
all the other subsystems via the input and output. Considering uncertainties, the state equation of the ith subsystem of
a parallel structure system with N subsystems can be written as:

xi(k + 1) = (Ai + ∆Ai)xi(k) + (Bi + ∆Bi)ui(k) +

N∑
j=1, j,i

λ ji
T (xi(k) − ρ jix j(k))(A j + ∆A j)x j(k))

+

N∑
j=1, j,i

δ ji
T (ui(k) − σ jiu j(k))(B j + ∆B j)u j(k)

yi(k) = xi(k) (1)

where xi(k) ∈ Rn, ui(k) ∈ Rr and yi(k) ∈ Rn are respectively the state, input and output of the ith subsystem, σ ji ∈ Rr×r,
ρ ji ∈ Rn×n, i, j = 1, · · · ,N, j , i are weighting matrices representing the competitive strength of the input and output
respectively, N denotes the number of subsystems. All elements of these matrices are positive. δ ji ∈ Rr, λ ji ∈ Rn,
i, j = 1, · · · ,N, j , i are weighting vectors of the competitive coupling of the input and output respectively where
all elements in the vectors are positive. It is assumed that the inputs and outputs are not directly related, and the
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observation matrix equals the identity matrix (yi(k) = xi(k)). Ai ∈ Rn×n, Bi ∈ Rn×r are known constant matrices,
∆Ai ∈ Rn×n, ∆Bi ∈ Rn×r are uncertainties of the ith subsystem and ∆A j ∈ Rn×n, ∆B j ∈ Rn×r are uncertainties of the jth
subsystem, with the following form: [

∆Ai ∆Bi

]
= DiFi

[
Ei1 Ei2

]
[

∆A j ∆B j

]
= D jF j

[
E j1 E j2

]
(2)

where Fi, F j ∈ Rl×m are unknown real valued bounded functions and Fi
T Fi ≤ Ii, F j

T F j ≤ I j, Ii, I j are the identity
matrices with appropriate dimensions, Di,D j ∈ Rn×l, Ei1, E j1 ∈ Rm×n, Ei2, E j2 ∈ Rm×r are known constant matrices.

Definition 1. For the ith subsystem of a parallel system, define

cI
i (k) =

N∑
j=1, j,i

δ ji
T (ui(k) − σ jiu j(k))(B j + ∆B j)u j(k) (3)

and

cO
i (k) =

N∑
j=1, j,i

λ ji
T (xi(k) − ρ jix j(k))(A j + ∆A j)x j(k) (4)

as the competitive couplings.

In (3) and (4), cI
i (k) and cO

i (k) denote the competitive couplings of the input and output, respectively.

Definition 2. The system with competitive coupling must satisfy
∑
‖ui(k)‖ ≤ ‖u(k)‖, δ ji

T (ui(k) − σ jiu j(k)) > 0 and
λ ji

T (xi(k) − ρ jix j(k)) > 0, where u(k) is the total input, i, j = 1, · · · ,N, j , i. These constraints are called competitive
constraints.

Remark 1. In the system (1), the detailed couplings are given in Definition 1. When u j(k) in a parallel system
increases, ui(k) has to reduce correspondingly because of the limited total input. The degree of reduction of the input
ui(k) is affected by the weighting of the competitive strength σ ji and the weighting of the competitive coupling δ ji. As
for the output, the output of each subsystem is competing and when y j(k) increases, yi(k) must reduce.

Let R j = δ ji
T (ui(k) − σ jiu j(k)), Q j = λ ji

T (xi(k) − ρ jix j(k)), which are the weight coefficients. Note that, in this
paper xi(k) and x j(k) are assumed measurable. In the calculation, xi(k) and x j(k), ui(k) and u j(k) can be obtained. δ ji,
σ ji in R j and λ ji, ρ ji in Q j are constants that can be modeled. Thus R j and Q j can be calculated at time k. Then, the
model of the ith subsystem can be rewritten as:

xi(k + 1) = (Ai + ∆Ai)xi(k) + (Bi + ∆Bi)ui(k) +

N∑
j=1, j,i

Q j(A j + ∆A j)x j(k))

+

N∑
j=1, j,i

R j(B j + ∆B j)u j(k)

yi(k) = xi(k) (5)

In (1), all elements are significant. Note that the general DMPC algorithm can be used to control parallel systems.
However, if the competitive couplings and competitive constraints are not considered appropriately in the controller
design, the control performance cannot be guaranteed.

For (5), the structure of the state feedback control is:

ui(k + τ |k ) = Kixi(k + τ |k ) (6)
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where Ki ∈ Rr×n is the state feedback gain matrix, k > 0, τ > 0 is the τth predicted step. ui(k + τ |k ) is the predictive
control at k + τ computed by the optimization problem at time k.

Considering the competitive constraints, the performance index [18] is:

min
Ki

max
Ki(k+τ|k )

Ji(k) (7)

such that

ui,min ≤ ui(k) ≤ ui,max∑
‖ui(k)‖ ≤ ‖u(k)‖

δ ji
T (ui(k) − σ jiu j(k)) > 0

λ ji
T (xi(k) − ρ jix j(k)) > 0 (8)

where

Ji(k) =

∞∑
k=0

xT
i (k)Hi1xi(k) + uT

i (k)Hi2ui(k) +

N∑
j=1, j,i

[
xT

j (k)H j1x j(k) + uT
j (k)H j2u j(k)

] (9)

where Hi1 ∈ Rn×n, Hi2 ∈ Rr×r, H j1 ∈ Rn×n, H j2 ∈ Rr×r are weighted symmetric positive definite matrices.
N∑

j=1, j,i
xT

j (k)

H j1x j(k) is the influence of the jth subsystem’s output on the ith subsystem, while
N∑

j=1, j,i
uT

j (k)H j2u j(k) corresponds to

that of the input.
The following assumptions are given:

Assumption 1. Each (Ai, Bi) is stabilizable and xi is measurable.

Assumption 2. The controllers are synchronous.

Assumption 3. The controllers communicate only once within a sampling time interval.

These assumptions are not restrictive. Assumption 1 is a common requirement. Assumption 2 is not unduly strong
because in process control systems the sampling interval is typically long when compared to the computational time.
Assumption 3 is appropriate because single information exchange within a sampling time interval is consistent with
minimizing the amount of data exchange via the network. The sampling time is k, xi(k) = xi(k |k ) denotes the value of
the state measurement at the kth sampling instant [37]. At the time k, ui(k) can be obtained, which shows the control
input sequence can be obtained according to the performance index (9). At the time period [k, (k + 1)], the closed loop
equation is given by:

xi(k + 1) = (Ai + ∆Ai + BiKi + ∆BiKi)xi(k) +

N∑
j=1, j,i

[Q j(A j + ∆A j) + R j(B jK j + ∆B jK j)]x j(k) (10)

The control objective is to design a robust distributed model predictive state feedback controller for the parallel
system with uncertainty (5) and to solve the optimization problem (7) in the presence of the competitive couplings (3),
(4) and competitive constraints (8) in order to determine a robust distributed model predictive control law (6) at every
sampling time so that the uncertain parallel system meets the feasibility condition and achieves asymptotic stability.

Remark 2. Although ui(k) can be obtained by the proposed approach and general DMPC [38] at sampling time k,
it is found that large computation times and slow convergence exist in the general DMPC implementation due to the
Jacobian iteration in solving the optimal problem (7). Consequently, to speed up convergence in the optimization
problem (7), the successive iteration method [26] is used in this paper. This is applied to the solution of (7) for each
subsystem to calculate a weighted average value between the current and previous iterate solutions. The details will
be presented and the examples will show that the robust DMPC proposed in this paper can reduce the computation
time and speed up convergence for parallel system architectures.
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3. Robust distributed model predictive control for parallel systems

3.1. Robust DMPC algorithm
In order to develop the on-line algorithm to achieve robust DMPC for parallel systems, the optimization problem

(7-9) must be transformed into a solvable problem. It is assumed that there exists a quadratic function V(xi(k))
making J(xi(k)) ≤ V(xi(k)) [18]. The infinite time domain “min-max” optimization problem is then transformed into
a solvable finite time “min” optimization problem.

Consider the following quadratic Lyapunov function:

V(xi(k)) = xT
i (k)Pi1xi(k) + uT

i (k)Pi2ui(k) +

0∑
ξ=−d1

xT
i (k + ξ)Ri1xi(k + ξ) +

0∑
ξ=−d2

uT
i (k + ξ)Ri2ui(k + ξ)

+

N∑
j=1, j,i

 0∑
ξ=−d3

xT
j (k + ξ)R j1x j(k + ξ) +

0∑
ξ=−d4

uT
j (k + ξ)R j2u j(k + ξ)

 (11)

where Pi1 = Pi1
T ∈ Rn×n, Pi2 = Pi2

T ∈ Rr×r, Ri1 ∈ Rn×n, Ri2 ∈ Rr×r, R j1 ∈ Rn×n, R j2 ∈ Rr×r and all of them are positive
definite matrices. d1, d2, d3 and d4 are positive numbers, d1 denotes the predictive length of xi(k), d2 denotes the
predictive length of ui(k), d3 denotes the predictive length of x j(k) and d4 denotes the predictive length of u j(k).

At each sampling time k, xi(k) = xi(k |k ), suppose V(xi(k+τ |k )) satisfies the following inequality for all xi(k+τ |k),
ui(k + τ |k) [37]:

∆V(xi(k + τ |k )) ≤ −[xi
T (k + τ |k )Pi1xi(k + τ |k ) + ui

T (k + τ |k )Pi2ui(k + τ |k )] (12)

To make the robust performance objective function bounded, it must have V(xi(∞ |k )) = 0 as xi(∞ |k ) = 0 [37].
Consider ui(k) = Kixi(k) and J(xi(k)) ≤ V(xi(k)):

∞∑
k=0

xT
i (k)(Hi1 + KT

i Hi2Ki)xi(k) +

N∑
j=1, j,i

[
xT

j (k)(H j1 + KT
j H j2K j)x j(k)

]
≤ xT

i (k)(Pi1 + KT
i Pi2Ki)xi(k)

+

0∑
ξ=−d1

xT
i (k + ξ)Ri1xi(k + ξ) +

0∑
ξ=−d2

xT
i (k + ξ)KT

i Ri2Kixi(k + ξ)

+

N∑
j=1, j,i

 0∑
ξ=−d3

xT
j (k + ξ)R j1x j(k + ξ) +

0∑
ξ=−d4

xT
j (k + ξ)KT

j R j2K jx j(k + ξ)

 (13)

The optimization of performance index J(xi(k)) can be transformed to the minimization of min
Ki

V(xi(k)):

V(xi(k)) = xT
i (k)Pi1xi(k) + uT

i (k)Pi2ui(k) +

0∑
ξ=−d1

xT
i (k + ξ)Ri1xi(k + ξ) +

0∑
ξ=−d2

uT
i (k + ξ)Ri2ui(k + ξ)

+

N∑
j=1, j,i

 0∑
ξ=−d3

xT
j (k + ξ)R j1x j(k + ξ) +

0∑
ξ=−d4

uT
j (k + ξ)R j2u j(k + ξ)

 (14)

Thus, the optimization problem, min
Ki

max
Ki(k+τ|k )

Ji(k), is transformed into a solvable finite time “min” optimization

problem (14). The explicit expression of the control law is given by Theorem 1.

Lemma 1. [39] Assume that matrices Ȳ, D̄ have appropriate dimension, and Ȳ is a symmetric matrix, then

Ȳ + D̄F̄ + F̄T D̄T < 0

for all matrices under the condition F̄T F̄ ≤ I , if and only if there is a constant ε > 0, Ȳ + εD̄D̄T + ε−1 < 0.
6
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Theorem 1. For (5), under Assumptions 1-3, the state feedback gain matrix Ki can be solved by minimizing (14) with
constraints (17-18):

Ki = (Xi2S iXi2
T +

N∑
j=1, j,i

X j2S jX j2
T )−T

YT
i (Xi1WiXi1

T +

N∑
j=1, j,i

X j1W jX j1
T )−T (15)

where Xi2, X j2 ∈ Rr×r, S i, S j ∈ Rr×r, Yi ∈ Rn×r, Xi1, X j1 ∈ Rn×n, Wi,W j ∈ Rn×n can be obtained by solving the
following optimization problem:

min
Wi,W j,Yi,S i,S j,Xi1,Xi2,X j1,X j2,Mi1,Mi2,M j1,M j2,εi,γi,ϕi

[γi + ϕi + tr(Mi1) + tr(Mi2) + tr(M j1) + tr(M j2)] (16)

such that [
γi xi

T (k)Xi1
Xi1

T xi(k) Wi

]
≥ 0

[
Mi1 Ni1
Ni1

T Xi1

]
> 0

[
Mi2 Ni2
Ni2

T Xi2

]
> 0

[
ϕi ui

T (k)Xi2
Xi2

T ui(k) S i

]
≥ 0

[
M j1 N j1
N j1

T X j1

]
> 0

[
M j2 N j2
N j2

T X j2

]
> 0 (17)

[
AM BM

* CM

]
< 0 (18)

AM =


Li 0 0 (Ei1Zi + Ei2Yi)T

* −Xi1 0 0
* * −Xi2 0
* * * *


BM =


Yi

T Yi
T Zi Zi

0 0 0 0
0 0 0 0
0 0 0 0

 CM =


−Ri

−1 0 0 0
* −X j2 0 0
* ∗ −X j1 0
* ∗ ∗ −Pi

−1


Li = AiZi

T + BiYi
T + (AiZi

T + BiYi
T )T + εiDiDi

T

Zi = Xi1WiXi1
T +

N∑
j=1, j,i

X j1W jX j1
T

Ni1Ni1
T =

0∑
ξ=−d1

xi
T (k + ξ |k )xi(k + ξ |k )

Ni2Ni2
T =

0∑
ξ=−d2

ui
T (k + ξ |k )ui(k + ξ |k )

N j1N j1
T =

0∑
ξ=−d3

x j
T (k + ξ |k )x j(k + ξ |k )

N j2N j2
T =

0∑
ξ=−d4

u j
T (k + ξ |k )u j(k + ξ |k )

where ∗ indicates a symmetrical matrix element. Mi1, Mi2, M j1, M j2, γi, εi and ϕi will be defined in the following
proof.

Proof:
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Consider the following Lyapunov function at time k:

V(xi(k)) = xT
i (k)Pi1xi(k) + uT

i (k)Pi2ui(k) +
0∑

ξ=−d1

xT
i (k + ξ)Ri1xi(k + ξ) +

0∑
ξ=−d2

uT
i (k + ξ)Ri2ui(k + ξ)

+
N∑

j=1, j,i

[
0∑

ξ=−d3

xT
j (k + ξ)R j1x j(k + ξ) +

0∑
ξ=−d4

uT
j (k + ξ)R j2u j(k + ξ)

]
(19)

Assume that the parameter γi satisfies xi
T (k)Pi1xi(k) ≤ γi. According to the Schur complement lemma,

xi
T (k)Pi1xi(k) ≤ γi is equivalent to: [

γi xi
T (k)Xi1

Xi1
T xi(k) Wi

]
≥ 0 (20)

where Wi = Pi1
−T ∈ Rn×n, Xi1 = Ri1

−1 ∈ Rn×n.
Assume that the parameter ϕi satisfies ui

T (k)Pi2ui(k) ≤ ϕi. According to the Schur complement lemma,
ui

T (k)Pi2ui(k) ≤ γi is equivalent to: [
ϕi ui

T (k)Xi2
Xi2

T ui(k) S i

]
≥ 0 (21)

where S i = Pi2
−T ∈ Rr×r, Xi2 = Ri2

−1 ∈ Rr×r.
The first cumulative item in (19) can be converted into:

0∑
ξ=−d1

xi
T (k + ξ |k )Ri1xi(k + ξ |k ) =

0∑
ξ=−d1

tr(xi
T (k + ξ |k )Xi1

−1xi(k + ξ |k ))

= tr(Ni1Ni1
T Xi1

−1) = tr(Ni1
T Xi1

−1Ni1) (22)

where Xi1 = Ri1
−1 and Ni1 is as defined above and Ni1Ni1

T =
0∑

ξ=−d1

xi
T (k + ξ |k )xi(k + ξ |k ). Assume that there is a

matrix variable Mi1 which satisfies tr(Ni1
T Xi1

−1Ni1) < tr(Mi1). According to the Schur complement lemma:[
Mi1 Ni1
Ni1

T Xi1

]
> 0 (23)

In the same way, the second cumulative item in (19) can be converted into:

0∑
ξ=−d2

ui
T (k + ξ |k )Ri2ui(k + ξ |k ) =

0∑
ξ=−d2

tr(ui
T (k + ξ |k )Xi2

−1ui(k + ξ |k ))

= tr(Ni2KiKi
T Ni2

T Xi2
−1) = tr(Ki

T Ni2
T Xi2

−1Ni2Ki) (24)

where Xi2 = Ri2
−1, Ni2 is as defined above and Ni2Ni2

T =
0∑

ξ=−d2

ui
T (k + ξ |k )ui(k + ξ |k ). Assume that there is a matrix

variable Mi2 which satisfies tr(Ki
T Ni2

T Xi2
−1Ni2Ki) < tr(Mi2). According to the Schur complement lemma:[

Mi2 Ni2
Ni2

T Xi2

]
> 0 (25)

8
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The last two cumulative items in (19) can be converted into:

0∑
ξ=−d3

(
N∑

j=1, j,i

x j
T (k + ξ |k )R j1x j(k + ξ |k )) +

0∑
ξ=−d4

(
N∑

j=1, j,i

u j
T (k + ξ |k )R j2u j(k + ξ |k ))

=

0∑
ξ=−d3

(tr(
N∑

j=1, j,i

x j
T (k + ξ |k )X j1

−1x j(k + ξ |k )) +

0∑
ξ=−d4

(tr(
N∑

j=1, j,i

u j
T (k + ξ |k )X j2

−1u j(k + ξ |k )

= tr(
N∑

j=1, j,i

N j1N j1
T X j1

−1) + tr(
N∑

j=1, j,i

N j2K jK j
T N j2

T X j2
−1)

= tr(
N∑

j=1, j,i

N j1
T X j1

−1N j1) + tr(
N∑

j=1, j,i

K j
T N j2

T X j2
−1N j2K j) (26)

where X j1 = R j1
−1, X j2 = R j2

−1. N j1N j1
T =

0∑
ξ=−d3

x j
T (k + ξ |k )x j(k + ξ |k ), N j2N j2

T =
0∑

ξ=−d4

u j
T (k + ξ |k )u j(k + ξ |k ).

Assume that there are matrix variables M j1 and M j2:

tr(
N∑

j=1, j,i

N j1
T X j1

−1N j1) < tr(M j1)

tr(
N∑

j=1, j,i

K j
T N j2

T X j2
−1N j2K j) < tr(M j2)

According to the Schur complement lemma: [
M j1 N j1
N j1

T X j1

]
> 0 (27)[

M j2 N j2
N j2

T X j2

]
> 0 (28)

Substitute (6) into (12):

∆V (xi(k + τ)) ≤ −[xT
i (k + τ)Pi1xi(k + τ) + uT

i (k + τ)Pi2ui(k + τ)] = −[xT
i (k + τ)(Pi1 + KT

i Pi2Ki)xi(k + τ)] (29)

Define:

Ωi =

 Ωi1 0 0
0 −Ri1 0
0 0 −Ri2


where

Ωi1 = (Ai + BiKi)T Pi1 + Pi1
T (Ai + BiKi) + Ri1 + Ki

T Ri2Ki + Pi1 + Ki
T Pi2Ki

Then, (29) is equivalent to:

Ωi +

 Pi1
T Di

0
0

 Fi

[
Ei1Ki 0 0

]
+

[
Ei1Ki 0 0

]T
Fi

T

 Pi1
T Di

0
0


T

≤ 0 (30)

where Ei1, Ei2, Di and Fi are defined after (1): Fi ∈ Rl×m is an unknown real valued bounded function and Fi
T Fi ≤ Ii,

Di ∈ Rn×l, Ei1 ∈ Rm×n, Ei2 ∈ Rm×r are known constant matrices. According to Lemma 1, there is an εi > 0, which
transforms the inequality into the following form:

Ωi + εi

 Pi1
T Di

0
0


 Pi1

T Di

0
0


T

+ εi
−1

[
Ei1 + Ei2Ki 0 0

]T [
Ei1 + Ei2Ki 0 0

]
< 0 (31)

9
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Then, (31) can be transformed into a linear matrix inequality and it is known by the Schur complement lemma:
Li1 0 0 (Ei1 + Ei2Ki)T

* −Ri1 0 0
* ∗ −Ri2 0
* * * −εiIi

 < 0 (32)

where:

Li1 = (Ai + BiKi)T Pi1 + Pi1
T (Ai + BiKi) + Ri1 + Ki

T Ri2Ki + Pi1 + Ki
T Pi2Ki + εiPi1

T DiDi
T Pi1

Further more, according to the Schur complement lemma:[
AL BL

∗ CL

]
< 0 (33)

where:

AL =


Li2 0 0 (Ei1 + Ei2Ki)T

∗ −Ri1 0 0
∗ ∗ −Ri2 0
∗ ∗ ∗ −εiIi


BL =


Ki

T Ki
T Ii Ii

0 0 0 0
0 0 0 0
0 0 0 0


CL =


−Pi2

−1 0 0 0
∗ −Ri2 0 0
∗ ∗ −Ri1 0
∗ ∗ ∗ −Pi1

−1


Li2 = (Ai + BiKi)T Pi1 + Pi1

T (Ai + BiKi) + εiPi1
T DiDi

T Pi1

Multiplying the transformation matrix diag{Zi, Xi1, Xi2, X j1, X j2, Ii, Ii, Ii, Ii} on both sides of (33), then, inequality
(33) is equivalent to inequality (18). The state feedback gain matrix Ki can be determined by minimizing (14). Q.E.D.

Remark 3. Theorem 1 shows that the problem of robust DMPC for a parallel system can be transformed into a finite
time “min” optimization problem under a set of linear matrix inequality constraints at each k instant. Inequality (18)
is a linear matrix inequality that can be solved by the LMI toolbox. The procedure can be summarized in the following
step by step algorithm.

Algorithm 1.
Step 1 (Initialization): At control interval k=0, set Ki=0.
Step 2 (Updating): At the beginning of control interval (k) all the controllers exchange their state measurements

and initial estimates Ki. Set iteration t=0 and Ki=Ki
(0), where t is the iteration number.

Step 3 (Iterations): While t ≤ tmax, solve N LMI problems (18) in parallel to obtain Wi
(t), W j

(t), Yi
(t), S i

(t), S j
(t),

Xi1
(t), Xi2

(t), X j1
(t), X j2

(t), Mi1
(t), Mi2

(t), M j1
(t), M j2

(t), γi
(t), εi

(t), ϕi
(t) to estimate the feedback solutions Ki

(t). Check the
convergence for a specified error tolerance ei which is defined by users for all the controllers. If K(t)

i satisfies:∥∥∥Ki
(t) − Ki

(t−1)
∥∥∥ ≤ ei,∀i ∈ {1, ...,N}

then, go to step 4. Otherwise continue to iterate, exchange the solution Ki and set t=t+1.
Step 4 (Implementation): Apply the control ui = Kixi to the corresponding subsystems. Go to the control interval

k=k+1, return to step 2 and repeat the procedure.

10
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Remark 4. Algorithm 1 computes state-feedback control laws for every subsystem and therefore full state measure-
ment is assumed. In step 2, at control interval k, the feedback solutions can be obtained in the previous interval k-1
which uses the initial estimates Ki

(0) to initialise the iteration. It should be mentioned that Xi2, Mi2, γi, ϕi
(t) and εi

are not considered in general DMPC. The method used in this study is successive iteration which can accelerate the
convergence speed for the parallel system architecture. The successive iteration is given by the following equation:
K(t+1)

i = αK̄(t+1)
i + (1 − α)K(t)

i , where α is a filter parameter to be specified by the user. K̄(t+1)
i denotes the solution

obtained at the current iteration from (18) whereas K(t+1)
i is the estimate to be used in the next iteration. α can be

chosen from values between 0 and 2. If it is chosen to be 1, the method corresponds to Jacobian iteration. Jacobian
iteration is a special case of successive iteration. The stability of the proposed approach will be analyzed in the
following subsection.

Remark 5. The prediction lengthP and control horizonM are the common parameters in DMPC which can influence
the stability and computational complexity of the problem. The stability of the system is mildly affected by the control
horizonM but heavily affected by the prediction length P. If the selection of the prediction length P is too small, the
stability and constraints may not be satisfied [9]. The computational complexity is influenced by these two parameters.
If the value of M is larger, the number of control laws which are calculated in one iteration will be greater. If P is
larger, then more information on the subsystems is needed to calculate the couplings. Larger M and P will produce
computational complexity. Usually M ≤ P. In reference [18], the ranges of the control horizon M and prediction
lengthP are given according to the sampling time T of the continuous system and dynamic response time of the system
tF: M + 1 ≤ P ≤ 2tF

T .

3.2. Robust stability analysis

Lemma 2. [40] Every feasible solution of optimization problem (18) in time k is still feasible in time N(N > k).

Theorem 2. For (5), under the state feedback control Ki which is given by Theorem 1, if the optimization problem
(14) has a feasible solution, then the closed loop system in (10) will be asymptotically stable.

Proof:
According to Lemma 2, the optimization problem (7-9) is always feasible. Then from (29), it follows that

∆V (xi(k |k )) ≤ −[xT
i (k |k )Pi1xi(k |k ) + uT

i (k)Pi2ui(k |k )] = −[xT
i (k |k )(Pi1 + KT

i Pi2Ki)xi(k |k )] (34)

Pi1 and Pi2 are weighted symmetric positive definite matrices, so that ∆V(xi(k |k )) < 0. The closed loop parallel
system is asymptotically stable. Q.E.D.

4. Simulation and implementation results

The effectiveness of the proposed approach is validated by using two simulation studies and an experimental
implementation. Firstly, a parallel gas boiler heating system is simulated. Two cases are considered corresponding
to 40 users and 100 users, respectively. The users are paralleled in one heating net in each case and the problem of
competitive coupling among the users is the problem of interest. Under the competitive constraints, the proposed
approach is used to solve the heating demand for each user. The performance of the proposed approach is compared
with general DMPC [33] and PI control. A simulation study and experimental implementation is then undertaken for
a parallel continuous stirred tank reactor (CSTR) system. Matlab simulation is firstly undertaken and the performance
is compared with general DMPC and PI control. Finally, a parallel CSTR experiment is used to further validate the
proposed approach with comparison of the classical PID control.

4.1. Gas boiler heating system

A simplified physical model of a gas boiler heating system is given in Fig. 3. The medium of heat transfer is
water. The water is heated through a heat source in the heat station before flowing out and eventually returning to the
heat station. All users are connected to the network in parallel form. Hot water is controlled for each user by a valve.
The hot water is limited. When users who are close to the heat station demand excessive hot water, it is difficult to

11
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Figure 3: Simplified physical model of gas boiler heating system.

ensure the requirements of more distant users. The gas boiler heating system thus exhibits competitive coupling. The
competitive constraint is that the total amount of hot water obtained by all users cannot exceed that provided by the
heat station.

The backwater temperature of the second network is to be controlled where the transfer function is given by:

Touti(s) =
Kni[Tmis + (Kmi + 1)]

Tmis + 1
Ui(s) +

1
Tmis + 1

T ′i (s) (35)

where Kni = ci∆TiRni, Kmi = Rmi
Rni

, Tmi = RmiCi, Rmi = 1
riS̄ i

, Rni = 1
cQ̄i

, C = M̄ic
′

i , Touti is the temperature, Q̄i is the
flow in the heating network, c is the specific heat of water, M̄i is the average mass of material inside a dwelling, c

′

i
is the average specific heat of the material inside dwelling i, ri is the heat transfer coefficient of user i, S̄ i is the heat
dissipation area, T ′i is the outdoor temperature, ∆Ti is the inlet water temperature minus the return water temperature
in the heating network and i denotes the user i.

The control objective is to raise the water temperature for each user by 10 degrees Celsius by controlling the valve
corresponding to each user under the competitive constraints. According to the collected data, the prediction model
is established. The system uses the flow of the hot water as the manipulating variable, with two-way valve opening
control, sampling period Ts = 5s and sampling lengthN = 100. The predicted length P = 25 and the control horizon
is M = 1, α = 0.95, d1 = 3, d2 = 4, d3 = 3 and d4 = 4, P11 = P21 = · · · Pi1 = · · · PN1 = 1, P12 = P22 = · · · Pi2 =

· · · PN2 = 1, R11 = R21 = · · ·Ri1 = · · ·RN1 = 1, R12 = R22 = · · ·Ri2 = · · ·RN2 = 1. The PI parameters are set according
to the the ultimate-sensitivity method as in [41]: P (Kc) is 0.8, I (Ti) is 0.5. The desired temperature is 10 degrees
Celsius.

In the first case, there are 40 subsystems (N = 40) to be controlled and simulation results are presented for the
cases of a simple PI controller, robust DMPC and general DMPC. The results for the first two subsystems and the
34th subsystem are shown in Fig. 4, Fig. 5 and Fig. 6. The integral time multiplied square error (ITSE) results for 40
users are tabulated in Table 1.

It can be seen from Fig. 4, Fig. 5 and especially Fig. 6 that for the method proposed in this paper (solid line), three
parallel users can achieve the desired temperature more rapidly than with the simple PI controller (dashed line) and
general DMPC (dotted line). The control performance of the users are identical under the proposed approach. The
computation time for the robust DMPC is 1.35 seconds while that of the general DMPC is 1.86 seconds. In Table 1,
it can be seen that the ITSE results of the proposed method compare favourably with those obtained using PI control
and general DMPC. In 88 % of cases, the proposed method provides better accuracy than general DMPC in terms of
ITSE and it is better than the PI strategy in all cases. It should be noted that for users situated furthest from the heat
station, the proposed robust DMPC yields consistently better performance. Recall that this level of performance is
achieved with a shorter computation time.

To further validate the advantages of the proposed approach, the second case with 100 users (N = 100) is now
presented and compared with the first case. The results for the first two subsystems and the 51st subsystem are shown
in Fig. 7, Fig. 8 and Fig. 9.

12



S. Zhang et al. / 00 00 (2019) 1–27 13

0 50 100 150 200 250 300 350 400 450 500

Time/s

0

5

10

15
output of user 1

General DMPC
Robust DMPC
PI controller

0 50 100 150 200 250 300 350 400 450 500

Time/s

0

5

10

co
nt

ro
l l

aw
 u

Control law of user 1

General DMPC
Robust DMPC
PI controller

Figure 4: Results for user 1 (40 user scenario).

It can be seen from Fig. 7, Fig. 8 and Fig. 9 that for the method proposed in this paper (solid line), three parallel
users achieve the desired temperature more rapidly than with the PI controller (dashed line) and general DMPC (dotted
line). In comparison with Fig. 4 and Fig. 7, Fig. 5 and Fig. 8, it can be seen that the advantages of the proposed
method are more pronounced with the increasing number of subsystems (from 40 to 100). The computation time for
the robust DMPC with 100 subsystems is 2.17 seconds while that of the general DMPC is 5.35 seconds. In Table 1
corresponding to the case of 40 subsystems, 88% of subsystems have better performance with the proposed approach
than with a general DMPC implementation. When the number of subsystems increases to 100, it can be seen from
Table 2 that 94% of subsystems exhibit better performance with the proposed approach than with general DMPC.
Comparing Table 1 and Table 2, it is again seen that when the number of subsystems increases, the advantages of the
proposed approach become more pronounced.

4.2. Parallel CSTR system simulation

A simplified physical model of a parallel CSTR system is given in Fig. 10. The reaction is an endothermic
reaction. If the temperature inside the reactor is low, it will affect the depth and conversion rate of the reaction, thus
affecting the quality of the product. In order to stabilize the temperature inside the reactor, it is necessary to heat the
jacket. The temperature of the material in the reactor can be controlled to meet the requirements of the process by
adjusting the flow rate of the heat agent flowing into the jacket. The heat agent is water, which is supplied by one
water heater. When the two CSTRs are connected in parallel, the system exhibits competitive coupling and there is a
need to consider competitive constraints. When the flow of hot water in one jacket exceeds a certain amount, the flow
of water in the second jacket must be be reduced. The heat agent flowing into the jacket must be less than or equal to
the total supply of the water heater.

In this paper, the reaction temperature is taken as the controlled variable and the water flow in the jacket is the
control variable. The control objective is to increase the temperature of the jacket from 0 degrees Celsius to 10 degrees
Celsius by manipulating the flow of water in the jacket. The transfer function is given by:

G(s) =
T̃ (s)
W(s)

=
a12b22

s2 − (a11 + a22)s + (a11a22 − a12a21)
(36)
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Figure 5: Results for user 2 (40 user scenario).
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Figure 6: Results for user 34 (40 user scenario)
.
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Figure 7: Results for user 1 (100 user scenario).
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Figure 8: Results for user 2 (100 user scenario).
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Figure 9: Results for user 51 (100 user scenario)
.

Table 1: ITSE results for 40 subsystem scenario
Subsystem RDMPC general DMPC PI Subsystem RDMPC general DMPC PI

1 5.34815 5.49415 6.24011 21 5.33744 5.80374 5.98209
2 0.04057 0.05057 0.15457 22 0.00382 0.04138 0.08541
3 1.40301 1.40301 2.02474 23 1.35636 1.40661 1.98571
4 0.01728 0.11727 0.24041 24 0.01468 0.20848 0.31989
5 0.78574 0.43774 1.02485 25 2.10511 2.17754 3.02458
6 2.33454 2.33758 3.78524 26 5.22086 5.24237 5.40254
7 0.20453 0.20341 0.31578 27 1.40015 2.04671 3.05877
8 0.25603 0.23113 0.57587 28 0.04011 0.05394 0.12057
9 0.01861 0.04618 0.10523 29 1.45364 1.75858 1.97501
10 6.40327 6.20373 7.24564 30 2.11135 2.25858 3.02136
11 0.41968 0.43561 0.50127 31 5.32402 5.43529 6.01201
12 0.04057 0.04451 0.20157 32 0.04044 0.12541 0.11015
13 1.53184 1.54024 1.98545 33 1.33306 1.44847 1.98755
14 0.01864 0.14644 0.20578 34 0.01878 0.14281 0.09751
15 2.00105 2.01153 2.42204 35 2.09829 2.14914 3.02453
16 5.37153 5.43703 5.97125 36 4.30348 4.52082 5.02374
17 0.04032 0.07473 0.10578 37 0.04015 0.04791 0.09548
18 1.31063 1.36134 1.82410 38 1.31041 1.34161 1.53211
19 0.01773 0.12793 0.20054 39 0.01707 0.03982 0.08964
20 2.14175 2.14727 3.57409 40 2.10511 2.12753 2.56871
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Table 2: ITSE results of 100 subsystem scenario
Subsystem RDMPC general DMPC PI Subsystem RDMPC general DMPC PI

1 2.58462 3.22743 3.82548 51 0.25420 1.01455 1.45120
2 1.23875 1.84501 2.86541 52 3.20158 5.04564 4.21554
3 1.35714 1.86141 2.50564 53 2.01205 3.02787 3.65412
4 1.57821 2.62154 2.71401 54 1.02571 2.05327 2.59787
5 0.93238 1.20554 1.54014 55 2.01477 2.42063 2.78942
6 1.55128 2.05485 2.72014 56 0.56797 2.05367 1.98741
7 3.58841 5.21851 5.50244 57 1.02378 1.89731 1.98712
8 2.65248 3.57814 3.88789 58 2.00127 3.02102 3.47419
9 0.12852 0.53872 0.87410 59 1.01365 2.98977 2.91428
10 1.57521 2.87413 2.97211 60 5.20122 4.01289 5.97525
11 0.56711 0.98721 1.02458 61 1.28056 3.00278 3.12891
12 4.17414 4.02283 4.52216 62 2.01271 3.89701 3.97110
13 3.54871 5.20487 5.51237 63 0.20450 1.65051 1.97458
14 0.27541 0.85777 1.03278 64 1.02450 2.02768 2.15671
15 5.65871 6.28710 6.84201 65 1.02876 2.07026 2.72106
16 0.25784 1.45204 1.78506 66 2.04947 2.05678 2.69754
17 1.52785 2.07413 2.94104 67 1.02671 1.06977 1.21024
18 1.20473 1.33610 1.58997 68 2.06710 3.97021 3.45891
19 3.27411 2.98841 3.14204 69 1.06879 1.97015 2.01678
20 1.27485 2.56741 3.01569 70 1.05741 1.98701 2.03789
21 1.28987 1.98725 2.02378 71 3.03871 3.87073 4.02384
22 1.25841 1.89661 2.02137 72 1.03541 2.04576 2.30113
23 3.25741 4.49461 4.53201 73 2.01791 3.04578 4.02368
24 1.68410 2.87101 2.54210 74 1.02687 1.68740 2.03674
25 1.28779 2.57210 3.04176 75 0.89523 1.08954 2.02136
26 1.28987 3.51007 3.81405 76 2.03714 2.98037 2.88771
27 3.31289 4.52068 4.52001 77 1.25210 1.65001 1.97752
28 2.23698 2.98522 2.99522 78 0.94841 1.68921 1.98791
29 2.98413 4.02871 4.20215 79 5.66767 7.20545 6.98751
30 2.21187 3.20157 3.59870 80 1.05689 0.96840 1.98752
31 4.36841 6.21571 6.97452 81 2.02145 3.01227 3.65420
32 0.98125 1.85013 2.02378 82 1.05967 1.97207 2.02389
33 2.62101 2.58410 2.78717 83 2.04819 2.98043 3.46576
34 0.52507 1.85540 2.01253 84 0.58321 1.51078 1.93204
35 1.89320 2.54046 2.94105 85 0.09146 0.10289 0.23574
36 6.21871 5.98720 6.87142 86 6.04567 6.02568 6.65631
37 0.89504 1.52889 1.98712 87 2.03879 3.02876 3.68717
38 1.58964 2.63201 3.02379 88 0.97852 1.32161 3.97121
39 2.58710 3.15789 3.94019 89 0.79892 1.06780 2.02367
40 1.56843 2.39741 2.97454 90 1.96469 3.03254 3.61212
41 2.58241 3.49415 3.02567 91 3.24587 3.97542 4.67948
42 1.48734 2.15963 2.84506 92 0.97812 1.78020 1.98453
43 1.85404 1.95301 2.08871 93 3.15687 3.65202 4.02398
44 2.68417 2.97420 5.02458 94 1.20146 0.98014 1.69782
45 1.35853 3.20175 2.05887 95 1.20698 2.98701 2.42040
46 5.20105 6.69871 6.87013 96 3.02136 4.20554 4.89748
47 1.25836 1.96543 2.02375 97 0.68752 2.98752 3.01581
48 1.20447 2.15401 2.12076 98 1.57207 2.05867 2.65413
49 1.25847 2.67101 2.87142 99 2.51207 3.05869 3.08796
50 3.65588 5.01254 4.87811 100 0.87941 1.01691 1.35421
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Figure 10: Simplified physical model of parallel CSTR system.

where:

a11 = −(
UAR

MCpC
−

(−∆H)MC̄AK̄E
VRCpRT̄ 2

) a21 =
UAR

MCp
a12 =

UAR

VCρCCpC

a22 = −(
W̄
VC

+
UAR

VCρCCpC
) b22 =

T̄H − T̄C

VC

Cp is the specific heat of the reactants, C̄A is the reactant concentration, M is the total mass of reactant, VR is the
volume of reactant, U is the total heat transfer coefficient, AR is the heat transfer area, T̃ is the the temperature in
reactor, ∆H is the Molar reaction heat, VC is the volume of the heat agent, T̄C is the outlet temperature of the heat
agent, ρC is the density of the heat agent, CpC is the specific heat of the heat agent, W is the flow rate of the heat agent,
T̄H is the inlet temperature of the heat agent, E is the activation energy, R is the molar gas constant, K̄ is the reaction
rate. The symbol “-” above the variables denotes a steady state value. The model is then given by:

A1 =

[
0.9600 0.0039
−0.2488 0.8902

]
, A2 =

[
0.0722 0.0002
−0.0134 0.0773

]
B1 =

[
0.0071 0.0001
−0.0009 0.0285

]
, B2 =

[
0.0097 0.0001
−0.0004 0.0783

]
σ21 =

[
0.0238 0.0412
0.1428 0.0981

]
, σ12 =

[
0.0351 0.0741
0.1024 0.0427

]
ρ21 =

[
0.0416 0.0597
0.0736 0.1328

]
, ρ12 =

[
0.0842 0.0718
0.0981 0.0889

]
δ21 =

[
0.1243 0.2004

]
, δ12 =

[
0.2181 0.1411

]
λ21 =

[
0.1024 0.0971

]
, λ12 =

[
0.0518 0.0449

]
P11 = P21 = P12 = P22 =

[
1 0
0 1

]
18
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Figure 11: The output temperature of the first CSTR for the general DMPC, robust DMPC and PI implementations

Table 3: Computation time with a variable control horizon
M computation time/s
1 2.95
2 3.96
3 5.38

,

R11 = R21 = R12 = R22 =

[
1 0
0 1

]
.

The sampling period Ts = 10s and the sampling length N = 200. The predicted length P = 20 and the control
horizon M = 1. α = 1, d1 = 3, d2 = 2, d3 = 3 and d4 = 2. The PI parameters are set: P (Kc) is 0.8, I (Ti) is 0.5. The
desired temperature is 10 degrees Celsius. The simulation results are shown from Fig. 11 to Fig. 14. To examine the
impacts with a variable control horizon, there is a test conducted when control horizons are M = 1, 2, 3, the results
are shown from Fig. 16 to Fig. 17. Table 3 shows the computation time with a variable control horizon.

The simulation results show that the robust DMPC algorithm for parallel systems within process networks can
effectively deal with problems with a rapid dynamic response. Fig. 11 and Fig. 12 show that the performance of the
proposed approach is better than the general DMPC and PI control. Fig. 13 and Fig. 14 indicate that the general DMPC
and PI control need larger control effort. The computing time for the robust DMPC is 2.95s while that of the general
DMPC is 3.72s. Fig. 15 shows the robust DMPC control action for both subsystems. This clearly demonstrates how
the competitive characteristics in parallel systems are accommodated by the proposed method: when u1 is increasing,
u2 can be seen to correspondingly decrease to accommodate the competitive coupling and competitive constraints.
Fig. 16 , Fig. 17 and Table 3 show that a larger control horizon will reduce control performance and increase the
computation time.
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Figure 12: The output temperature of the second CSTR for the general DMPC, robust DMPC and PI implementations
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Figure 13: The control signals of the first CSTR for the general DMPC, robust DMPC and PI implementations
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Figure 14: The control signals of the second CSTR system for the general DMPC, robust DMPC and PI implementa-
tions
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Figure 15: Control signal for both subsystems when controlled using the proposed robust DMPC
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Figure 16: The output temperature of the first CSTR for the RDMPC implementations with a variable control horizon
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Figure 17: The output temperature of the second CSTR for the RDMPC implementations with a variable control
horizon
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Figure 18: Experimental equipment

4.3. Parallel CSTR system experiment
The effectiveness of the robust DMPC algorithm for parallel CSTR systems has been verified by simulation.

The effectiveness will be further validated by experiment. The Process Modelling and Control Group at the China
University of Petroleum (East China) have developed an experimental rig which is shown in Fig. 18. The operation
interface of the rig is shown in Fig. 19. The four reactors, labelled R101, R102, R103, R104, can be connected
in numerous ways for controller validation and testing (series, parallel, series and parallel). The chemical reaction
is carried out after feeding. The process can implement continuous operation as well as enable measurement and
control of the flow, liquid level and temperature. V111 is the header tank which contains acetic ether and V112 is the
header tank containing sodium hydroxide. These raw materials are processed in the CSTR at the same time. Unlike
the previous simulation, this reaction is an exothermic reaction. Only two reactors are used in this experiment. The
sampling period Ts = 10s and the sampling length N = 200. The predicted length P = 20 and the control horizon
M = 1, α = 1, d1 = 3, d2 = 2, d3 = 3 and d4 = 2, P11 = P21 = P12 = P22 = 1, R11 = R21 = R12 = R22 = 1. For
reactor R101, the desired set-point is 31 degrees Celsius and for reactor R102, the desired temperature is 33 degrees
Celsius. The coolant flow in the jacket is used as the control variable. The initial temperatures of R101 and R102 are
28.1 degrees Celsius and 27.9 degrees Celsius, respectively. The robust DMPC algorithm is used for control of the
system. The temperature tracking performance is shown in Fig. 20, which further validates the proposed approach.

For comparison purposes, the same experiment is conducted using a classical PID control scheme. The PID
parameters are set according to the the ultimate-sensitivity method as in [41]: P (Kc) is 0.8, I (Ti) is 0.5, D (Td)
is 0.1. It can be seen from Fig. 22 that the controller struggles to accommodate the constraints and neither CSTR
achieves the desired set-point. Comparing Fig. 20 with Fig. 21 it is seen that the robust DMPC algorithm exhibits
significantly better performance than the PID method. The control input signals for the robust DMPC trial are shown
in Fig. 22. There is much more reactant in R101 than in R102, so that R101 requires a greater control input to keep it
stable. The variation of the control input required to reject the disturbance at time 104 can be clearly noticed. R102
contains less reactant and thus only only needs a small control input to reject the disturbance. In Fig. 20, the outputs
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Figure 19: Parallel R101 and R102.
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Figure 20: Tracking performance when the CSTR are controlled using the robust DMPC.
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Figure 21: Tracking performance when the CSTR are controlled using a classical PID scheme.
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Figure 22: The two control input signals for the robust DMPC test.
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have a significant variation at time t = 104s when an external disturbance is applied. The robust DMPC stabilises
the outputs to the set-point under the disturbance. This shows the proposed approach has good robustness to external
disturbances.

5. Conclusion

This paper has proposed an on-line algorithm to implement a robust DMPC strategy that explicitly accommodates
the characteristics of parallel systems. The main contribution of this paper can be summarized as: (1) the competitive
couplings and competitive constraints which describe the characteristics of parallel systems in process networks are
defined; (2) a robust DMPC algorithm has been designed for parallel systems. The subsystem performance takes
into account the couplings and constraints in order to achieve optimization of the whole system. The problem can be
converted into N convex problems which can be expressed as linear matrix inequalities and solved iteratively by using
the method of successive iteration to ensure fast convergence. It is also proven that if the algorithm is terminated at any
feasible intermediate iteration, robust stability is still maintained. The simulations show that the proposed approach
can achieve better performance than general DMPC and PI control for parallel systems. The results of an experimental
trial further illustrate that the proposed approach is suitable for control of parallel systems in process networks.
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