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Abstract
This paper proposes a framework for classifying motion sequences, by extending the
framework of Grassmann discriminant analysis (GDA). A problem of GDA is that
its discriminant space is not necessarily optimal. This limitation becomes even more
prominent when utilizing the subspace representation of randomized time warping
(RTW). RTW is a sequence representation that can e�ectively model a motion’s tempo-
ral information by a low-dimensional subspace, simplifying the problem of comparing
two sequences to that of comparing two subspaces. The key idea of the proposed
enhanced GDA is projecting class subspaces onto a generalized di�erence subspace
before mapping them on a Grassmann manifold. The GDS projection can remove
overlapping components of the subspaces in the vector space, nearly orthogonalizing
them. Consequently, a dictionary of orthogonalized class subspaces produces a set
of more discriminant data points in the Grassmann manifold, in comparison with the
original set. This set of data points can further enhance the discriminant ability of
GDA. We demonstrate the validity of the proposed framework, RTW+eGDA, through
experiments on motion recognition using the publicly available Cambridge gesture,
KTH action, and UCF sports datasets.

Keywords: enhanced GDA, randomized time warping, motion recognition
2010 MSC: 00-01, 99-00

1. Introduction

This paper proposes a method for characterizing and classifying motion image
sequences, focusing on hand gestures and human actions. We extend the framework of
Grassmann discriminant analysis (GDA) [1] to work more e�ectively in the application
of motion recognition. The problem of GDA that we address in this paper is that5

GDA’s discriminant space is not necessarily optimal. This limitation becomes even
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more prominent when representing motion sequences by the randomized time warping
(RTW) [2] subspace representation.

Randomized time warping (RTW) is an e�ective generalization of dynamic time
warping (DTW) [3], which is one of the most widely used methods for motion analysis.10

The core idea of DTW is to compare two sequences by searching for the best alignment
of their sequential patterns; this is performed by optimizing a warping function with
dynamic programming. In contrast to DTW, RTW has a compact representation and
does not need dynamic programming, thus providing a fast and light algorithm. It
converts the problem of comparing two sequences to comparing two low-dimensional15

subspaces, called sequence hypothesis (hypo) subspaces. This problem can in turn be
solved by measuring the canonical angles between them. The mutual subspace method
(MSM) [4] is well known as a fundamental classification method using canonical angles,
which has been used along with RTW.

Comparison of hypo subspaces has also been performed by introducing the Grass-20

mann manifold formulation, which simplifies the complicated procedure of the mutual
subspace method using canonical angles. The Grassmann manifold, symbolized as
G(m,D), is defined as a set of m-dimensional linear subspaces of RD [5]. In this
framework, a subspace-based method is regarded as a simple classification method on
a Grassmann manifold, where each single subspace is treated as a point, and thereby,25

each motion video is represented by a point in the manifold. Various types of classi-
fication methods have been constructed on a Grassmann manifold, such as Grassmann
discriminant analysis (GDA) [1], Bayesian classifier on the Grassmann manifold [6], or
learning on the manifold [7] . Among them, in particular, RTW formulation has been
used along with GDA [2], which has been known as one of the useful tools for image30

set classification [8, 9]. GDA can be easily conducted as a kernel discriminant analysis
through the kernel trick with a Grassmann kernel [10, 11].

Although it has been useful to combine RTW with GDA, some issues arise from
this representation:

• same-class actions may have vary large variations, while semantically di�erent35

actions may have similar movements, making di�erent action subspaces closer
to each other, causing overlap among them in the worst case;

• although GDA is capable of finding the most discriminant directions in a manifold
with respect to the given data points on the manifold, it cannot operate the
corresponding original subspaces in the vector space. Hence, if subspaces were40

not well separated in vector space, the corresponding data points on the induced
manifold are also not adequately separated, in such a way that GDA may not be
able to separate them.

To address those problems, the key idea proposed in this paper is to project hypo
subspaces onto a generalized di�erence subspace (GDS) [12], before mapping each45

class subspace on a Grassmann manifold. GDS is a general concept that represents
di�erence among multiple class subspaces, which forms a discriminative space. GDS
projection works e�ectively as a powerful feature extraction for subspace-based methods
such as subspace method [13] and mutual subspace method (MSM) [4], as it can
enlarge the angles among class subspaces toward the orthogonal status. These subspace50
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Figure 1: Conceptual diagram of the proposed method. A set of TE features is extracted by randomly
sampling images from an image sequence. Next, a hypo subspace is generated by applying PCA to the
set. For each image sequence, a hypo subspace is generated in this way. Finally, the hypo subspaces are
orthogonalized by projecting them onto the GDS, and then are projected onto the Grassmann Manifold.

methods conduct the classification by using the canonical angles between an input
vector/subspace and each reference class subspace. A MSM with GDS projection is
called constrained MSM (CMSM) [14]. GDS has also been extended recently, such
as by adding regularization [15] and for di�erent applications, i.e. high-dimensional
spectral data [16]. The idea of using GDS for motion recognition has been motivated55

by previous preliminary work in [17, 18] and this paper contains more in-depth analysis
with extensive and comprehensive experiments.

It is worth mentioning that other methods have extended the MSM formulation to
produce discriminative features. A remarkable example is the discriminative canonical
correlation (DCC) [19]. DCC has been motivated in that the structural similarity60

between class subspaces is measured by the canonical angles between them. Di�erent
from CMSM, DCC iteratively computes a discriminative subspace using the Fisher
discriminant analysis (FDA) as an objective function to further improves its class
separability. Although its exceptional results, DCC’s computational time is usually
costly. GDS, on the other hand, requires only an SVD computation, which is very65

e�cient in modern implementations.
Figure 1 shows the conceptual diagram of the proposed method. A set of TE

features is extracted by randomly sampling images from an image sequence. Next, a
hypo subspace is generated by applying PCA to the set. For each image sequence, a hypo
subspace is generated in this way. Finally, the relationship among hypo subspaces comes70

close to the orthogonal status by projecting them onto the GDS, and then the projected
subspaces are mapped onto the Grassmann Manifold. The reason for performing GDS
projections before mapping each subspace with the Grassmann kernel is that GDS
can operate the hypo subspaces directly in the vector space. Concretely, when some
data overlaps among multiple classes, GDA’s vector representation cannot necessarily75

distinguish these data, even if they are projected onto the optimal discriminant space
found by GDA. In contrast, GDS can remove overlapping components of the subspaces in
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the vector space, nearly orthogonalizing them, and as a result creating more discriminant
data points for GDA.

As GDS has the function of removing common features among class subspaces,80

providing more discriminative sample for GDA, it is expected that GDS projection
can solve the overlap problem and further enhance the representation of the RTW
hypo subspaces on the Grassmann manifold. The validity of our proposed method is
demonstrated through experiments with the Cambridge gesture [20], KTH action [21]
and UCF sports [22, 23] datasets.85

In summary, the main contribution of our method is to provide a simple and prac-
tical means for further enhancing the performance of GDA, which has been widely
used in various applications. In particular, we introduce GDS projection to the GDA
formulation to enhance RTW+GDA by alleviating the problems regarding TE feature
generation for RTW.90

The rest of the paper is organized as follows. In Sec. 2, we elaborate on the basic
idea that leads to our proposed method for classifying motion, explained in detail in
Sec. 3. In Sec. 4, we conduct experiments on motion recognition using three public
datasets. Sec. 5 concludes the paper.

2. Basic Idea for Enhancing GDA95

Our key idea for enhancing Grassmann discriminant analysis (GDA) with hypo
subspaces is to project hypo subspaces onto a generalized di�erence subspace (GDS)
before applying GDA to them. In the following, we describe more deeply the problem
mentioned in Sec.1 and the mechanism which induces the e�ective function to address
it.100
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Figure 2: Conceptual diagram of the detailed intuition behind RTW. Two sequences of images of di�erent
hand gesture classes (e.g. moving hand left and right) are processed through RTW: the frames are vectorized,
and a set of TE features is generated by randomly sampling frames and concatenating. In the middle, two
examples of TE feature are examined, one vector from each set, which are very close to each other.
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First, we discuss the intuition of RTW and the advantage of utilizing hypo subspaces
as a representation for sequences. The core idea of RTW is to generate a set of time
warped patterns, called time elastic (TE) features, through repeated random subsam-
pling, while preserving the original temporal order. This mechanism can be regarded as
a simultaneous search for the most similar warped patterns from a number of randomly105

obtained candidates, in contrast to the ine�cient search performed by DTW. As the cost
of comparing two sets of TE features increases dramatically as the number of features
increase, the comparison is conducted using a subspace based method, in which each
set of TE features is represented as a hypo subspace. In summary, a hypo subspace is
a compact representation for sequences as it is independent of sequence length, while110

the canonical angles o�er a simple tool to calculate the most similar warped patterns
between two sequences.

In the following we elaborate on the problem of overlapping hypo subspaces. The
reason for proximity in the TE feature space is that some frames lead to similar variables.
In practice this may have various reasons: 1) some sampled frames may be motionless115

and composed of similar texture; 2) or their movement is similar in direction; 3) or
important moving parts are occluded. Figure 2 shows a conceptual diagram of the
detailed intuition behind RTW. Two sequences of images of di�erent hand gesture
classes (e.g. moving hand left and right) are processed through RTW: each frame x

c
l

is vectorized, where l denotes frame number and c the class in this example, either 1120

or 2. In this simple example, a set of TE features is generated by repeating Z times
the process of sampling 2 frames from 5 frames and concatenating the 2 frames. A
TE feature is denoted as s

c
z , where z = 1, . . . , Z . The center of Fig. 2 shows the case

1), where two examples of TE features are very close to each other. As a result, when
the hypo subspaces of the two sets are generated by applying PCA to each set, they are125

more likely to overlap.
In applications with real unconstrained data, the probability that concatenated

frames present a significative amount of correlation becomes high given various con-
ditions, such as: slow motion speed, specially when the action contains moments of
idleness or interruptions; and small appearance changes, specially when the moving130

target object is far from camera, or some parts are occluded. In many cases, more than
one of these factors cause TE features to be close to each other.

To solve this problem, one could think a naive approach of calculating the similarities
between frames and then removing similar frames between sets; however, the random
sampling of RTW is by itself a statistical technique to avoid the need to compare135

individual frames, as this is not a scalable operation in terms of complexity. In this
sense, a desirable solution needs to consider a subspace representation, rather than
analyzing the individual TE features or their frames.

Now, we explain the definition and mechanism of GDS and how GDS projection can
be harnessed for solving the aforementioned problem. GDS is defined as a subspace,140

which represents a “di�erence” among multiple class subspaces [12]. GDS is a further
extension of di�erence subspace (DS) for two class subspaces, which is a natural
generalization of a di�erence vector of two vectors.

Given C(�2) m-dimensional class subspaces, {Pc}Cc=1, a generalized di�erence
subspace (GDS), H, can be defined as the subspace produced by removing the principal145

component subspace (PCS) of all the class subspaces from the sum subspace, S , of those

5



subspaces. This definition of GDS leads GDS projection to the function of automatically
removing overlap among class subspaces, which can alleviate the problem. It is worth
noting here that we consider removing the overlapping components of the data, not the
data themselves. The details of the process of GDS projection will be explained in150

Sec. 3.3. On the other hand, we should note that GDA cannot necessarily distinguish
data belonging to overlap region, even by projecting them onto its optimal discriminant
space.

Besides, GDS projection has the function of orthogonalizing class subspaces by
enlarging the canonical angles among class subspaces. Although GDA also has a similar155

function, the mechanisms of both are quite di�erent. GDA works on a Grassmann
manifold, while GDS projection works in the original high dimensional vector space
before being mapped onto the Grassmann manifold. Based on this di�erence, we expect
di�erent e�ects from GDS and GDA to learn a discriminant space where the classes
are as separated as possible.160

In terms of computational complexity, GDS has an advantage over GDA as its
complexity is linearly proportional to the number of training subspaces N and cubic
with respect to the dimension of the subspaces m. In contrast, the complexity of GDA is
quadratically proportional to the number of training subspaces N and cubic with respect
to the subspace dimension m. Therefore, the proposed eGDA’s complexity e�ectively165

maintains the same order of complexity as GDA. Table 1 shows the complexity of each
method.

Table 1: Computational complexity of GDA, GDA and the proposed eGDA.
Method Complexity
GDS (N + C + 1)O(m3)

GDA (N + N (N+1)
2 + 1)O(m3)

eGDA (N + N (N+1)
2 + C + 2)O(m3)

3. Algorithm of the Proposed Method

We first describe the representation by RTW to generate a hypo subspace; then we
explain how to generate a GDS and use its projection to enhance GDA. The step-by-170

step training and testing algorithms of the proposed method are shown in Algorithms 1
and 2, respectively.

3.1. Motion Sequence Representation by RTW

In our method, an image with the size w ⇥ h is represented by a d(= w ⇥ h)-
dimensional vector x 2 Rd . Consider Nc training ordered sequences {xi,cl }L

c
i

l=1 for175

each c-th class (c = 1, . . . ,C), where i = 1, . . . Nc indicate the indices of sequences of
the c-th class, and l = 1, . . . , Lc

i are the indices of individual images of a sequence.
Consider also an ordered sequence of Lin input images {xinl }Lin

l=1 . For example, each of
these sequences represent a body motion or hand gesture captured by video.
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Algorithm 1: Learning algorithm of the proposed method

input
:

training ordered sequences {xi,cl }L
c
i

l=1, with class label c

for c = 1, . . . ,C do
for i = 1, . . . ,Nc do

{si,cz }Zz=1  TE({xi,cl }L
c
i

l=1) // 1: obtain TE features

R
c
i  1

Z

ÕZ
z=1 s

i,c
z s

i,c>
z // 2: calculate set covariance

matrix
Y

c
i  EVD(Rc

i ) // 3: apply eigendecomposition
end
R
c  1

Nc

ÕNc

i=1 R
c
i // 4: calculate class covariance matrix

Mc  EVD(Rc) // 5: apply eigendecomposition
end
P,H  EVD(

ÕC
c=1 McM

>
c ) // 6: obtain GDS and principal

subspace

foreach Y
c
i do eY c

i  H
>
Y

c
i // 7: project all subspaces onto the

GDS
for q = 1, . . . ,N do

for w = 1, . . . ,N do
[Strain]wq  kp(eYq,eYw) // 8: generate similarity matrix

end
end
↵⇤  max↵ Ra(↵) // 9: solve LDA problem

Ftrain  ↵⇤
>
Strain // 10: compute training coefficients

return Ftrain,H,↵⇤ // return dictionary, GDS and GDA
projection operators

An d ⇥ k dimensional TE feature vector s = [y>1 y>2 . . . y
>
k ]> is created by180

randomly selecting k images from a sequence {xi,cl }L
c
i

l=1, such that y>1 y>2 . . . y
>
k 2

{xi,cl }L
c
i

l=1, t(y1) < . . . < t(yk), where t(·) denotes the original order of the image.
Let this procedure of random selection be repeated Z times, such that we obtain

s1, . . . , sZ . Subsequently, an auto-correlation matrix R
c
i , which corresponds to the set

of the TE feature vectors, can be computed as:

R
c
i =

1
Z

Z’
z=1

s
i,c
z s

i,c>
z . (1)

This procedure corresponds to steps 1 and 2 in Algorithms 1 and 2.

3.2. Subspace Representation

We utilize the principal component analysis (PCA) by computing the eigenvectors185

of each matrix R
c
i to construct m-dimensional subspaces Y c

i . The orthonormal basis
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Algorithm 2: Input evaluation algorithm of the proposed method
input
:

pattern set with L
0 input images {xin}

{sinz }Zz=1  TE({xin}) // 1: obtain TE features

Rin  1
Z

ÕZ
z=1 s

in
z s

in>
z // 2: calculate set covariance matrix

X  EVD(Rin) // 3: apply eigendecompositioneX  H
>
X // 4: project subspace onto the GDS

for q = 1, . . . ,N do
[Stest ]q  kp(eYq, eX) // 5: generate similarity matrix

end
Ftest  ↵⇤

>
Stest // 6: compute test coefficients

pred(xin) NN(Ftrain,Ftest ) // 7: perform 1-NN classification
return pred(xin) // return a class prediction

of each subspace are obtained as the eigenvectors corresponding to the m largest eigen-
values. In the following, each m-dimensional subspace Y c

i is represented by the matrix
Y

c
i 2 Rkd⇥m, which has the corresponding orthonormal basis as its column vectors. A

set of TE features generated from a sequence contains various possible warped patterns190

in time, each of which corresponds to one hypothesis. In this sense, the subspace
generated from a set of TE features is called a sequence hypothesis (hypo) subspace. In
Algorithms 1 and 2, the generation of hypo subspaces corresponds to step 3.

3.3. Projection onto Generalized Di�erence Subspace

In order to utilize the feature extraction function of GDS e�ectively, we introduce
the global class subspaces Mc , which is denoted by a matrix Mc 2 Rkd⇥dm , which
represents compactly all the subspaces belonging to the same class c. The orthogonal
basis of Mc can be obtained as the eigenvectors corresponding to the dm largest
eigenvalues of the auto-correlation matrix:

R
c =

1
Nc

Nc’
i=1

R
c
i =

1
ZNc

Nc’
i=1

Z’
z=1

s
i,c
z s

i,c>
z . (2)

Next, to generate a GDS, we calculate the total sum matrix, S, which is defined as:

S =

C’
c=1

dm’
j=1
�c

j�
c>
j , (3)

where�c
j is a basis of the dm-dimensional Mc . The orthogonal basis of the GDS can195

be obtained as dh eigenvectors, {di}dhi=1 corresponding to the dh smallest eigenvalues of
the sum matrix S. The subspaces Y c

i are projected onto the GDS and their projections
are denoted by {eY c

i }
Nc

i=1 2 Rdh⇥m. The input subspace of X is also projected onto
the GDS and its projection is denoted by eX . In Algorithm 1 the generation of class
subspaces and the GDS corresponds to steps 4 to 6, while projection of subspaces is200

step 7. In Algorithm 2, only projection is performed, corresponding to step 4.
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3.4. Enhancing Grassmann Discriminant Analysis

Now, we outline the algorithm of GDA and how we utilize GDS projection to
enhance its discrimination capability.

The essence of GDA lies in the concept of the Grassmann manifold G(m, d), defined205

as the set of m-dimensional linear subspaces of Rd . It is an m(d � m)-dimensional
compact Riemannian manifold and can be derived as a quotient space of orthogonal
groupsG(m, d) = O(d)/O(m)⇥O(d�m), whereO(m) is the group of m⇥m orthonormal
matrices. The Grassmann manifold can be embedded in a reproducing kernel Hilbert
space by the use of a Grassmann kernel. In this case, the most popular kernel is210

the projection kernel kp , which can be defined as kp(Y1,Y2) =
Õm

i=1 cos2 ✓i . We
can measure the distance between two points on a Grassmann manifold by using this
projection kernel [10].

Basically, GDA is conducted as kernel LDA with the Grassmann kernels. We first
outline the algorithm of linear discriminant analysis (LDA) [24]. Let x1, . . . , xN be the215

data vectors and y1, . . . , yN (yi 2 1, . . . ,C) be the class labels. Each class c has Nc

number of samples. Let µc =
1
Nc

Õ
i |yi=c xi be the mean of class c, and µ = 1

N

Õ
i xi

be the overall mean. LDA searches for the discriminant direction w which maximizes
the Rayleigh quotient Ra(w) = w 0Sbw/w 0Sww where Sb and Sw are the between-class
and within-class covariance matrices respectively:220

Sb =
1
N

C’
c=1

Nc(µc � µ)(µc � µ)>, (4)

Sw =
1
N

C’
c=1

’
i |yi=c

(xi � µc)(xi � µc)>. (5)

The optimal w is obtained from the largest eigenvector of S�1
w Sb . Since S

�1
w Sb has

rank C � 1, there are C � 1 optima W = [w1, . . . ,wC�1]. By projecting data onto the
space spanned by W , we achieve dimensionality reduction and feature extraction of
data onto the most discriminant subspace.

Kernel LDA [25, 26, 27] can be formulated by using the kernel trick as follows. Let225

� : Rd ! F be a non-linear map from the input space Rd to a feature space F , and
� = [�1, . . . ,�N ] be the feature matrix of the mapped training points �i . Assuming w
is a linear combination of those feature vectors, w = �↵, we can use the kernel trick
and rewrite the Rayleigh quotient in terms of ↵ as:

Ra(↵) = ↵>�>Sb�↵

↵>�>Sw�↵
=

=
↵>K (V � eN e

>
N/N)K↵

↵>(K (IN � V )K + �2IN )↵
=

=
↵>⌃b↵

↵>(⌃w + �2IN )↵
, (6)

where K is the kernel matrix, eN is a vector of ones that has length N , V is a block-230

diagonal matrix whose c-th block is the matrix eNc e
>
Nc

/Nc , and ⌃b = K (V �

9



Tag Class Example

A flat/left

B flat/right

C flat/contract

D spread/left

E spread/right

F spread/contract

G v-shape/left

H v-shape/right

I v-shape/contract

Figure 3: Examples of Cambridge hand gestures.

Class Example

boxing

handclapping

handwaving

jogging

running

walking

Figure 4: Examples of KTH actions.

eN e
>
N/N)K . In our framework, the kernel matrix, K , is calculated as the similarity

matrix between training subspaces, where each element can be written in terms of the
projection kernel as kp(eYq,eYw), where q is a row and w is a column of K . The term
�2

IN is used for regularizing the covariance matrix ⌃w = K (IN �V )K . It is composed235

of the covariance shrinkage factor �2 > 0, and the identity matrix IN of size N . The
set of optimal vectors ↵ are computed from the eigenvectors of (⌃w + �2

IN )�1⌃b . We
apply the GDA algorithm to the projected subspaces eY c

i . The GDA corresponds to
steps 8 to 10 in Algorithm 1, and steps 5 to 7 in Algorithm 2.

4. Experiments240

In this section, we discuss the validity of the proposed method through hand gesture
and human action recognition tasks.

4.1. Experiment with Cambridge Hand Dataset

We conducted two types of experiments with the Cambridge hand gesture dataset
[20]. This dataset contains 9 classes of hand gesture videos, each in 5 illumination245

scenarios, and 20 sample videos for each of the scenarios and classes. The number of
frames of each video ranges from 37 to 119. In addition, in the experiments, all the
images were resized to 12⇥16 pixels, and the grayscale pixel values compose the image
features. As a result, an original feature vector xi,cl had dimension 12 ⇥ 16 (d = 192).
The number of selected frames k to build one TE feature is fixed at k = 15, and as250

a result the dimension of a TE feature vector s
i,c
z is d ⇥ k = 192 ⇥ 15 = 2880. The

number of TE features for each set is fixed to be Z = 100. Figure 3 shows examples of
this dataset.

In the first experiment, we performed a qualitative experiment to aid in the visual-
ization of the proposed method mechanism. We utilized three classes of hand gestures255

from the Cambridge dataset: flat/contract (C), spread/right (E) and spread/contract (F).
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Figure 5: Results of the Cambridge Hand Dataset Experiment. The vertical axis refers to the average
accuracy of all sets, for each of the methods in the horizontal axis. An error bar represents a method’s
standard deviation.

The normal illumination setting (set 5) was used for training, and the illumination set-
ting of set 1 was used for testing. The parameters were set up in the following manner:
dimension of hypo subspaces m was set to 7; dimension of class subspaces dm was set
to 50 ; and dimension of principal subspace dp to 5.260

In the second experiment, following the same setup as [2], we quantitatively
compared our RTW+eGDA with the conventional methods: RTW+GDA, Kim and
Cipolla [19], Lui [28] and Hankel [29]. These methods were selected as baselines due
to their applications in motion representation and recognition. In Kim and Cipolla [19],
the image sets of motions are described as linear subspaces, where a discriminative sub-265

space is created in order to improve the feature extraction ability of the method. Lui [28]
represents the image-sets of motions as a factorized tensor, where the geometry of the
tensor space is extracted and compactly represented. Finally, in Hankel [29], image-sets
of motions are described as autocorrelation matrices computed from Hankel trajectory
matrices. In this approach, a discriminative subspace similar to [19] is employed to270

extract more useful features.
We used the 20 sequences in the normal illumination setting (Set 5) for training,

and the remaining sequences in other illumination settings (Sets 1 to 4) for testing.
The parameters were varied in the following manner: dimension of hypo subspaces m

was varied from 5 to 7; dimension of class subspaces dm was varied from 30 to 90 in275

increments of 20; and dimension of principal subspace dp was varied from 5 to 30 in
increments of 5. The results reported here are the best among the parameter settings.

The results of the quantitative evaluation can be seen in Figure 5. The vertical axis
refers to the average accuracy of all sets. The error bars represent the method’s standard
deviation. We also conducted a t-test between RTW+eGDA and RTW+GDA with 4280

samples and significance level ↵ = 0.05. From the test results, we can conclude with
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Figure 6: Results of the KTH Action dataset experiment. The vertical axis refers to the average accuracy
of all 10 folds, for each of the methods in the horizontal axis. An error bar represents a method’s standard
deviation.

more than 95% confidence (p = 0.0377) that the proposed method performed better
than the conventional method by using GDA.

4.2. Experiment with KTH Action Dataset

We also conducted experiments using the KTH action dataset [21]. Figure 4 shows285

examples of this database’s 6 classes of actions, namely: boxing, hand clapping, hand
waving, running, jogging, and walking. The dataset contains actions performed by 25
subjects in videos, filmed under 4 di�erent shooting conditions: outdoors, outdoors
with variation of zooming, outdoors with di�erent clothes, and indoors.There are 4
sample videos for each of the conditions and classes. The number of frames of each290

video ranges from 37 to 119. In addition, in the experiments, all the images were resized
to 16 ⇥ 16 pixels. In total there are 2391 sequences of actions.

In the first experiment, we performed a qualitative assessment. For each of the
6 classes, 10 subjects were randomly selected for training, and 15 for testing. The
parameters were set up in the following manner: dimension of hypo subspaces m was295

set to 19; dimension of class subspaces dm was set to 50 ; dimension of principal
subspace dp to 20; the number of selected frames k to build one TE feature is fixed at
k = 5, and the number of TE features for each set is fixed to be Z = 500.

Figure 6 shows the results of the KTH Action Dataset Experiment. To quantitatively
confirm the e�ectiveness of the orthogonalization of RTW class subspaces by GDS300

projection, we measured the Fisher criterion (class separability degree) among all the
classes. The performance is higher as the separability degree approaches 1.0. Table 2
shows the experimental results. We can see that the separability degree of GDA is
further improved by GDS projection.
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Figure 7: Scatter points of three cambridge hand gesture classes by using RTW combined with (a) conventional

GDA; (c) eGDA; (e) FK+NN; and scatter points of two KTH action classes by using RTW combined with

(b) Conventional GDA; (d) eGDA; (f) FK+NN.

14

Figure 7: Scatter points of three Cambridge hand gesture classes by using RTW combined with (a) conven-
tional GDA and (c) eGDA; and scatter points of two KTH action classes by using RTW combined with (b)
conventional GDA and (d) eGDA.

Figure 7 shows scatter plots of the generated points corresponding to the test sub-305

spaces, which were generated from the 20 test sequences in each class. In this figure,
(a) depicts the result of the combination of RTW and conventional GDA (RTW+GDA),
and (c) shows the proposed method, RTW and the enhanced GDA (RTW+eGDA). The
figure suggests that by using the proposed method, reduction of the distance between
subspaces of the same class can be achieved. The scatter plots given by the Cambridge310

gesture dataset classes C (flat/contract), E (spread/right) and F (spread/contract) re-
veals visually that RTW+eGDA is able to produce higher discriminative features than
RTW+GDA.

Figure 7 shows scatter plots of the generated points corresponding to the test sub-

Table 2: Separability of RTW+GDA and RTW+eGDA in the first experiment using the KTH dataset.
Method Separability
RTW+GDA 0.23
RTW+eGDA 0.45
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Figure 8: Confusion matrices of the (a) RTW+GDA in the Cambridge hand gesture experiment and (b)
RTW+GDA in the KTH action experiment; (c) RTW+eGDA in the Cambridge hand gesture experiment and
(d) RTW+eGDA in the KTH action experiment. The percentage in parentheses refers to the average accuracy
of each method.

spaces of two classes: handwaving and running, as an example where two classes315

are comparatively well separated even by a two-dimensional discriminant space. In
this figure, (b) depicts the result of the combination of RTW and conventional GDA
(RTW+GDA), and (d) shows the proposed method, RTW and the enhanced GDA
(RTW+eGDA).

In KTH dataset, the chosen classes for this plot have high overlap. We can observe320

that both RTW+GDA and RTW+eGDA produced very similar patterns. One obser-
vation regarding both investigated datasets is that in the Cambridge dataset temporal
information plays an important role. On the other hand, in KTH dataset, temporal
information seems to play a weaker role, since some classes (e.g. boxing, handclapping
and hand waving) consist of iterations of the same action unit.325

We graphically demonstrate that RTW+GDA and RTW+eGDA are well-suited for
motion representation, even when dealing with complicated datasets containing clut-
tered and non-uniform backgrounds. These results encourage us to make another
experiment and show the importance of combining RTW and eGDA for motion repre-
sentation.330

Figure 8 shows the confusion matrix of RTW+GDA (a) and RTW+eGDA (c). The
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Figure 9: Parameter behavior of RTW+eGDA on the KTH action dataset.

vertical classes refer to predictions, while the horizontal classes refer to the ground
truth. Each number represents the percentage of predictions attributed to a class in
relation to their true class. The percentages between parenthesis in each matrix label
refer to the average accuracy of the method.335

Both RTW+GDA and RTW+eGDA provided e�cient results at separating di�cult
classes in Cambridge dataset. For instance, the methods demonstrated high accu-
racy in overlapping classes such as A (flat/left), B (flat/right), D (spread/left) and E
(spread/right). In the case of employing linear subspaces, where the intrinsic low di-
mension representation has high level of similarity, such results may weaken. When340

employing RTW, the temporal coherence between the ordered patterns is e�ciently
attained, producing very competitive results.

The class with the worst result was F (spread/contract). One of the reasons that can
cause such a class to have a low accuracy compared to other classes is that this gesture
has a very large number of structures in common with the other classes. Besides, when345
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GDS is employed, such common structures could be removed automatically.
In the second experiment, we quantitatively compared the methods by a 10-fold

cross validation scheme, where in each fold, 10 subjects from the 25 were randomly
selected for training. For each sequence, we used the bounding box from [30] to
do segmentation between actions and resize each original frame to a 16 ⇥ 16 pixels350

grayscale image. We used the raw pixel values with additional information of the height
and width of the bounding box of the subject, resulting in a 258-dimensional vector for
each frame.

We compared the combination of RTW and conventional GDA (RTW+GDA) with
RTW and the enhanced GDA (RTW+eGDA). The number of selected frames k to build355

one TE feature is fixed at k = 5, and the number of TE features for each set is fixed to
be Z = 500. The parameters were varied in the following manner: dimension of hypo
subspaces m was varied from 5 to 20 in increments of 2; dimension of class subspaces
dm was varied from 30 to 90 in increments of 20; and dimension of principal subspace
dp was varied from 5 to 30 in increments of 5. Figure 9 shows the parameter behavior360

of RTW+eGDA on the KTH action dataset.
The results can be seen in Fig. 6. The vertical axis refers to the average accuracy

of all 10 folds, for each method in the horizontal axis. The error bars represent the
method’s standard deviation. We again conducted a t-test between RTW+eGDA and
RTW+GDA, this time with 10 samples and significance level ↵ = 0.05. From the test365

results, we can conclude with more than 95% confidence (p = 0.007) that the proposed
method performed better than the conventional method by using GDA.

Figure 8 shows the confusion matrix of RTW+GDA (b), and RTW+eGDA (d). The
vertical classes refer to predictions, while the horizontal classes refer to the ground
truth. Each number represents the percentage of predictions attributed to a class in370

relation to their true class. The percentages between parenthesis in each matrix label
refer to the average accuracy of the method.

From the confusion matrix of KTH dataset, we can observe that RTW+GDA and
RTW+eGDA achieved competitive results, where RTW+eGDA substantially outper-
forms RTW+GDA in boxing, clapping and walking classes and achieved similar results375

in the remaining classes. In overall, RTW+eGDA outperforms RTW+GDA, justifying
the applications of the proposed method.

The results obtained by RTW+eGDA for the classes running and jogging did not
outperform RTW+GDA. This may be due to the limitations of representation based on
linear subspaces. Specifically, the cause could be that the overlap rate between the two380

classes’ distributions is very large, as linear subspaces are insu�cient to represent the
complicated boundary between these classes. In this particular case, the principal sub-
space may contain a substantial amount of data from both classes and when it is removed
from the sum subspace, most of the representative information from both classes is also
removed, leading to a degradation of both subspace classes, where its projections no385

longer can represent its semantics. We expect that the introduction of nonlinear kernels
composited with Grassmann kernels would largely suppress misclassification due to
this severe model overlap.

To elucidate on the e�ect of the introduced parameters on the proposed method’s
performance, we have performed an additional evaluation. Fig. 9 shows a bar plot390

of accuracy of the proposed RTW+eGDA, when fixing the dimension of principal
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subspace dp to 5, and varying both the dimension of hypo subspaces m and dimension
of class subspaces dm. In this dataset, 11 dimensional models have performed better,
and small dimension m tends to induce a performance degradation due to a poor model
representation. According to Fig. 9, the class subspace dimension dm seems to depend395

on the dimension of hypo subspaces m. However, when m = 11, dm is more invariant
to small changes, so that no much emphasis needs to be put in searching an optimal
value. Regarding dimension of the principal subspace, small values are usually best,
to avoid losing substantial information that may be contained on the removed principal
components.400

4.3. Experiment with UCF Sports Dataset

We conducted a third experiment using the UCF sports dataset [22, 23]. The pur-
pose of this experiment is twofold: to shed light on RTW+eGDA’s potential with
more challenging data; and to anticipate its behavior when using more sophisticated
features. This experiment contrasts with the previous ones, which focused on assess-405

ing RTW+eGDA under the simplest scenario, by using raw images, elucidating its
usefulness as a simple and practical means for further enhancing RTW+GDA.

The UCF sports dataset contains a total of 150 sequences of subjects performing
sports, with 10 classes, namely: diving, golf swing, kicking, lifting, riding horse,
running, skateboarding, swing-bench, swing-side, and walking. The number of frames410

of each video ranges from 50 to 70. The action bounding box has been extracted,
using annotations provided. Then, each cropped image was resized to a 38 ⇥ 24 pixels
grayscale image, resulting in a 912-dimensional vector for each frame.

We quantitatively compared the methods by a leave-one-out cross-validation scheme
(LOOCV), a standard experiment setting for this data. That means 150 repetitions of415

learning, with one video as query and the remaining 149 videos as reference data.
To anticipate RTW+eGDA’s potential when combined with feature extractors, we

utilized pre-processing of each video frame by two features: a histogram of gra-
dients (HOG), the combinations with which are named as HOG+RTW+GDA and
HOG+RTW+eGDA; and convolutional neural network (CNN) features extracted from420

the last fully-connected layer of the AlexNet [31], the combinations with which we refer
to as AlexNet+RTW+GDA/eGDA. The AlexNet was pre-trained on more than a million
images from the ImageNet database [32], and has not been fine-tuned or equipped with
mechanisms to represent the time components of the video data. We compared the
above frameworks with RTW+GDA and RTW+eGDA.425

In addition, we compare RTW+eGDA to a number of conventional methods that
are relevant to the approach taken in the proposed method: 1) Motion extraction
methods: robust non-linear knowledge transfer model (R-NKTM) and dense trajec-
tory based method (DT), that have been recently proposed [33]. Namely, we com-
pare 4 variants: trajectory DT, trajectory R-NKTM, HOG+HOF+MBH+Traj. DT430

and HOG+HOF+MBH+Traj. R-NKTM. Note that these methods are more elaborate
in their feature extraction, especially the latter two that use an intricate combination
of video descriptors HOG+HOF+MBH+Traj [34]. In contrast, our proposed method
here uses only HOG and no feature fusion. 2) Methods for classification of image
sets: Grassmann/subspace learning methods include discriminative canonical correla-435

tions (DCC) [19], constrained mutual subspace method (CMSM) [14], Grassmannian
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graph-Embedding discriminant analysis (GGDA) [35] and projection metric learning
(PML) [36]. We also compare a covariance-based method named covariance discrimi-
nant learning (CDL) [37]. We evaluate the performance of each method utilizing raw
images, HOG and AlexNet features.440

Regarding RTW parameters, the number of selected frames k to build one TE feature
is fixed at k = 3, and the number of TE features for each set is fixed to be Z = 60. The
HOG parameters were set as follows: number of bins is fixed at 9, the cell size at 5,
and the block size at 3. The GDA and eGDA parameters were varied in the following
manner: dimension of hypo subspaces m was varied from 8 to 14 in increments of 2;445

dimension of class subspaces dm was varied either 40 or 50; and dimension of principal
subspace dp was varied from 1 to 8.

The results can be seen in Table 3. Both GDA and eGDA perform better with
HOG and CNN features, indicating that using more discriminative features instead
of raw images can improve them. It also can be noted that the performance gap be-450

tween RTW+eGDA and RTW+GDA increased when using HOG. When compared
to the conventional methods in this experiment, our method is competitive, with
HOG+RTW+eGDA and AlexNet+RTW+eGDA achieving better results than methods
using trajectory features and the baseline subspace-based based methods. These results
demonstrate a potential for extensions and broad utility of the proposed method indepen-455

dent on the type of feature. In addition, our method would benefit from pre-trained deep
neural networks, such as DenseNet and ResNet50. This potential is corroborated by the
results shown by [38], which indicate that a subspace of deep features can be useful to
represent image sets. Although the two methods based on a complicated combination of
four types of features (HOG, HOF, MBH and trajectories) over-performed the proposed460

method, this result was expected to some extent, since these methods combine various
types of motion analysis features intricately to obtain high performances.

RTW+eGDA overperforms CDL when using HOG features while the reverse hap-
pens when using AlexNet features. To verify if either method is overperforming the
other meaningfully, we conducted a paired two-sample t-test between the results of465

RTW+eGDA and CDL with significance level 0.05 . From the test results (p = 0.6187),
we cannot conclude with more than 95% confidence that both methods perform statisti-
cally significantly di�erently in this experiment. The reason for their comparable level
may be that, as said in the CDL original paper, the covariance matrix is able to capture
ordering in a set of patterns, which may work as a mechanism for representing the time470

structure like RTW. It also utilizes an LDA based classifier to predict categories. In the
following we would like to discuss their di�erences further.

To demonstrate a situation where our proposed method should be considered as
a good choice, we performed another experiment comparing the two best performing
image-set based methods CDL and RTW+eGDA. Utilizing the AlexNet deep features475

we evaluate both frameworks in a situation of small sample size (SSS). Concretely, we
have purposefully limited the number of frames available in an image sequence by a
percentage of the total number of frames, from 20% to 50%. That is, for 20%, in a video
with 100 frames, 20 frames would be used, selected by keeping one frame, skipping the
next few frames, and then repeating that process until the sequence ends. The results480

can be seen in Table 4. As shown, the performance of CDL falls significantly as fewer
frames are available. The reason is most likely that the rank of the covariance matrix
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Table 3: Results of the UCF sports experiment. Results from DT and R-NKTM are reported in [33].
Methods Accuracy (%)
trajectory DT [33] 75.20
trajectory R-NKTM [33] 76.70
HOG+HOF+MBH+Traj. DT [33] 88.20
HOG+HOF+MBH+Traj. R-NKTM [33] 88.20

Raw HOG AlexNet
DCC [19] 59.33 68.97 72.00
CMSM [14] 68.97 65.33 82.67
GGDA [35] 47.33 49.33 57.33
PML [36] 72.67 73.33 76.67
CDL [37] 70.00 76.00 86.00
RTW+GDA [2] 63.33 70.00 80.00
RTW+eGDA (proposed method) 70.00 78.00 84.67

tends to decrease causing instabilities when measuring distances, while subspaces in
that context may o�er a more robust model. Therefore, RTW+eGDA may be the method
of choice in systems where the incoming stream of image data may have the drop of485

capture speed, or simply data is corrupted or few frames are available.
Another aspect of RTW+eGDA and CDL that is worth discussing is the necessary

memory requirements to run the methods. RTW+eGDA requires memory of dk ⇥ m

elements to store a subspace corresponding to one motion sequence. CDL utilizes
d ⇥ d covariance matrices, which can be orders of magnitude higher than the memory490

required by the proposed method. For example, in the current experiment with HOG
features, dkm = 1458 ⇥ 3 ⇥ 8 = 34992, while d

2 = 14582 = 2125764, meaning that
RTW+eGDA uses only 1.6% of the memory used by CDL. Even if one exploits the
symmetry of the matrices and reconstructs them from their upper/lower triangles at
each time they are accessed in memory, one would still need d(d + 1)/2 = 1063611495

elements. Still RTW+eGDA uses only 3.3% of the memory used by CDL in this case,
without the need to reconstruct the representation for storage. Therefore, RTW+eGDA
can be one e�ective choice in mobile phones, car navigation, and embedded systems
where memory is a limited resource.

Table 4: Performances in UCF sports when a small sample size (SSS) of videos frames is available.
Frames remaining (%) 20% 30% 40% 50% 100%
AlexNet+RTW+eGDA 76.67 78.00 80.67 80.00 84.67
AlexNet+CDL 57.33 67.33 76.67 82.67 86

5. Conclusions500

In this paper we have proposed a combination of randomized time warping and
eGDA, to address more e�ectively the classification of motion sequences. Our method
may be used for various types of applications with continuous sequences, but in this
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paper we focused on the applications of hand gestures and human action classification.
The key idea of our enhanced Grassmann manifold is to project class subspaces onto505

a generalized di�erence subspace before mapping them on a Grassmann manifold.
The GDS projection can extract the di�erences between classes and generate data
points with optimized between-class separability on the manifold, which are more
desirable for GDA. The validity of our enhanced Grassmann discriminant analysis
was demonstrated through classification experiments with the Cambridge hand gesture,510

KTH action, and UCF sports datasets, where it outperformed its GDA counterpart and
showed competitiveness with state-of-art methods. From the experiments we have also
demonstrated that the proposed method can be a good choice in applications with small
sample problems and those which require lower memory.

Future works include the introduction of multiple sophisticated features such as515

dense trajectories, and the investigation of their combination in terms of subspace
representation. Besides, our framework would benefit from non-handcrafted features,
where the descriptor is learned directly from data. Therefore, an attractive research line
would be the investigation of features obtained from pre-trained deep neural networks,
such as DenseNet and ResNet50.520
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