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Abstract

We present a scalable approach to perform-
ing approximate fully Bayesian inference in
generic state space models. The proposed
method is an alternative to particle MCMC
that provides fully Bayesian inference of both
the dynamic latent states and the static pa-
rameters of the model. We build up on re-
cent advances in computational statistics that
combine variational methods with sequential
Monte Carlo sampling and we demonstrate
the advantages of performing full Bayesian in-
ference over the static parameters rather than
just performing variational EM approxima-
tions. We illustrate how our approach enables
scalable inference in multivariate stochastic
volatility models and self-exciting point pro-
cess models that allow for flexible dynamics
in the latent intensity function.

1 Introduction

We deal with generic state-space models (SSM) which
may be nonlinear and non-Gaussian. Inference for
this important and popular family of statistical mod-
els presents tremendous challenges that has prohibited
their widespread applicability. The key difficulty is that
inference on the latent process of the model depends
crucially on unknown static parameters that need to be
also estimated. While MCMC samplers are unsatisfac-
tory because they both fail to produce high dimensional,
efficiently mixing Markov chains and because they are
inappropriate for on-line inference, sequential Monte
Carlo (SMC) methods (Kantas et al. |2015|) provide
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the tools to construct successful viable implementation
strategies. In particular, particle MCMC (Andrieu
et al., 2010) utilises SMC to build generic efficient
MCMC algorithms that provide inferences for both
static parameters and latent paths. We provide a scal-
able alternative to these methods via an approximation
that combines SMC and variational inference.

We introduce a new variational distribution that un-
like recent strand of literature (Maddison et al., 2017}
Naesseth et al., 2018} [Le et al., 2018)) performs vari-
ational inference also on the static parameters of the
SSM. This is essential for various reasons. First, when
there is dependency between static and dynamic pa-
rameters posterior inference may be inaccurate if the
joint posterior density is approximated by conditioning
on fixed values of static parameters. Second, inferring
the static parameter is often the primary problem of
interest: for example, for biochemical networks and
models involving Lotka Voltera equations, we are not
interested in the population of the species per se, but
we want to infer some chemical rate constants (such as
reaction rates or predation/growth rates), which are
parameters of the transition density; in neuroscience,
Bayesian decoding of neural spike trains is often made
via a state-space representation of point processes in
which inference for static parameters is of great im-
portance. Finally, for complex dynamic systems it is
often advisable to improve model compression or inter-
pretability by encouraging sparsity and such operations
may require inference for the posterior densities of the
static parameters.

Sampling from the new variational distribution involves
running a SMC algorithm which yields an unbiased
estimate of the likelihood for a fixed static parameter
value. Importantly, we show that the SMC algorithm
constructs a computational graph that allows for op-
timisation of the variational bound using stochastic
gradient descent. We provide some empirical evidence
that variational inference on static parameters can give
better predictive performance, either out-of sample in
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the linear Gaussian state space model or in-sample
for predictive distributions in a multivariate stochastic
volatility model. We also illustrate our method by mod-
elling fairly general intensity functions in a multivariate
Hawkes process model.

2 Background

Let us begin by introducing the standard inference prob-
lem in a generic SSM, followed by a review of the SMC
approach to sample from a sequence of distributions
arising in such probabilistic structures. SSMs are char-
acterized by a latent Markov state process { X, } >0 on
R% and an observable process {Y;,},>0 on R%. We
follow the standard convention of using capital letters
for random variables and the corresponding lower case
letter to denote their values. The dynamics of the latent
states is determined, conditional on a static parameter
vector 6 € ©, by a transition probability density

Xn|(€7Xn71 = :L‘nflaYnfl = ynfl) ~ f@('|$n717yn71>7

along with an initial density Xy ~ fp(-). The obser-
vations are assumed to be conditionally iid given the
states with density given by

Yn|(0aX0:n = Z0:n, Y0in—1 = yO:n—1> ~ ge('\l’n),

for any n > 0 with the generic notation zg.,, =
(20, .eey Tp)-

We consider a Bayesian framework and assume 6 has
a prior density p(6). Consequently, for observed data
Yo: M, we perform inference using the posterior density

(0, wo.0r) = p(0, o0 |Yo: 1) < p(O)po(To.ar, yo:nr),
(1)
where the joint density of the latent states and obser-
vations given a fixed static parameter value 6 writes
as

Do (To:a1, Yo:mr) = Yo(To:ar)

M M
=fo(zo) H fo(@n|Tn-1,yn-1) ]___[ 9o (Ynlzn).  (2)

n=1 n=0

The posterior density p(6, xo.ar|yo.as) is in general in-
tractable, as is

Zo:
po(zo:m|yo:nr) = M @)

po(Yo:nr)’

where pg(yo.ar) = [ po(@o.ar, Yo: a1 )dxo:. . However, an
SMC algorithm can be used to approximate . A
brief review of how this sampling algorithm proceeds is
as follows and further details can be found in [Doucet
et al.| (2000)); [Doucet and Johansen| (2009).

SMC methods approximate pg(zo.,|yo.n) using a set of

K weighted random samples X} E = (X{,.,..., X££),
also called particles, having positive weights W,, =
W%:Ky so that p9(x0:7L|y0:n) ~ ﬁ@(xo:n‘yO:n) =
Zszl WT’f(SX(;;_n (zo.n). Here, 6 denotes the Dirac delta
function. To do so, one starts at n = 0 by sampling XX
from an importance density Mg’ (|yo), parametrized
with ¢, where ¢ can depend on the static parameters 6.
For any n > 1, we first resample an ancestor variable
Ak | that represents the "parent’ of particle X£, ac-
cording to A¥ | ~ r(:|W,,_1), where r is a categorical
distribution on {1, ..., K'} with probabilities W,,_;. We
then set W,,_1 = % and proceed by extending the path
of each particle by sampling from a transition kernel

k
XE~ M2(-|yn, Xé;{:ll). This yields an updated latent

AF .
path X§ = (X,.n~}, Xk) for which we compute the
incremental importance weight

VG(X(])Cn)
k ¢ k Aicz,—l ’
rya(XO:n—l)M" (XnIyTHXO:n—l)
We set w, (XE,) = WE_a,(XE,) as well as W =

721”’;)()2%;) ) and define
l n 0:n

O, (ngrL) =

n K
ZZ’¢ = H Zwm(X(l)c:m)v

m=0 k=1

which is an unbiased and strongly consistent estimator
of pg(Yo.n ), see(Del Moral (1996)). A pseudo-code (Algo-
rithm [1f) for this standard SMC sampler can be found
in Appendix [A] It is possible to perform the resam-
pling step only if some condition on W,,_; is satisfied,
see Algorithm [I] For simplicity, we assume that the
particles are resampled at every step. The density of
all variables generated by this SMC sampler for a fixed
static parameter value 6 is given by

K
go (i ab iy 1. 110) = why [T Mg (1yo)
k=1

M K &
a, _
' H H r(afL—1|wn—1)Mg(fo‘ynvxO:njl)v
n=1k=1

where [ is a final particle index drawn from a categorical
distribution with weights Wjs. Since Z2¢ is unbiased,
we have

E

ety o) | 207 = volwan. (@)
3 Variational bounds for state space
models using SMC samplers

Variational inference (Jordan et al., [1999; [Wainwright
and Jordan, 2008; [Blei et al., 2017)) allows Bayesian in-
ference to scale to large data sets (Hoffman et al., [2013)
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and is applicable to a wide range of models (Ranganath
et al., |2014} [Kucukelbir et al.;|2017)). It generally pos-
tulates a family of approximating distributions with
variational parameters that minimize some divergence,
most commonly the KL divergence, between the ap-
proximating distribution and the posterior. The quality
of the approximation hinges on the expressiveness of
the variational family.

Let gy () be a distribution on © with variational param-
eters 1. We aim to approximate the posterior density
(0, To.ar|Yo.ar) in with a variational distribution
that results as an appropriate marginal of auxiliary
variables arising from an SMC sampler of the form

qw,¢(9’ xéﬁh a(});I]\Zfla l) =4y (9)(]¢ ('r(l)i(h atl)iﬁfh l|9)7

(5)
defined precisely below. Note that sampling from the
extended variational distribution just means sam-
pling 8 ~ ¢, (6) and then running a particle filter using
the sampled value 0 as the static parameter.

We introduce the proposed variational bound first as a
lower bound on log p(yo:a) —KL(gy (0)|[p(8]yo:ar)). We
then show that optimizing the proposed bound means
minimizing the KL-divergence between the extended
variational distribution and an extended target
density that resembles closely the density targeted in
particle MCMC methods.

We can write p(0|yo.nr) = p(0)pe(yo.nr)/p(yo:nr)-
Hence, using the fact that the likelihood estimator
is unbiased and due to Jensen’s inequality,

— KL(qy (0)[1p(0]y0:0)) + log p(yo.ar)
=Eq, (6) 108 Py (yo:n1) 4 log p(0) — log ¢y (6)]

.
116) [ZMﬂ + log

0
=Eq,(6) [IOgE%(wLK Sk p(f) }

0:M %0 M —1> qw(a)
0. p(6)
>Eq, (0) {E%(méiﬁ,aéiﬁull@) o8 7377 + 1og 75(0)

=:L(, 9).
In particular, L(¢, ¢) is a lower bound on p(yo.nr) —

KL(qy (0)[1p(0]yo:a1))-

Remark 1 (Inference for multiple independent
time series). Instead of considering one latent process
{X?} and observable process {Y '}, we can also consider
S independent latent processes {X*}s=1,....s with corre-
sponding observable processes {Y*}4=1.. s described by
the same static parameter 8. We obtain a lower bound

on p(yo:nr) — KL(qy () [p(O1Yd.ars - Ysiar)) given by

Eq, (0)

S
0.6
S 1K sl . log 7
EHS ‘1¢(m0§11uK7“0311\4Ii1»lﬁ|9) [Z 08 2.
s=1

+ logp(0) — log qw(Q)] )

where Zi’ff’s is the estimator of pe(yg.as). Note that
we can obtain an unbiased estimate of this bound by
sampling an element s € {1, ..., S} and using S-log ZAgfé
as an estimate of fo:1 log ZAZ/’I‘?S/, thereby allowing our
method to scale to a large number of independent time
series. For ease of exposition, we formulate our results
for a single time series only.

Next, we show that the variational bound can be rep-
resented as the difference between the log-evidence
and the KL divergence between the variational dis-
tribution and an extended target density. More con-
cretely, following |[Andrieu et al.| (2010), we consider

a target density on the extended space © x X, X =
(Rdx)(M—i-l)K % {17._.7K}MK+17

1:K l) — W(9,$6:M)
: KM+1

q¢(x(1)§{\{/[’ a(l)ij\K/Ifl? l|9)

i

' bl M bl bl
Mg)(‘(EOO |y0) Hn:l T(b5171 |wn,1)M$(xn" |yn7 mO:nil)

bl
Here, we have defined b, = [ and b, = a,""" for
n=M—1,..,1,ie. bl is the index that the ancestor
of particle X{,, at generation n had. It follows, using

bt .
r(bl|w,—1) = w,"7', that the ratio between the ex-
tended target density and the variational distribution

is given by

(0, 25ihrs aginr—151)
1:K 1:K
6.0 (0, 250y aginr—151)

) KD p(0)po (b, n g your) /0 (yorar)

b! M bk v, SN
qy (H)WJIWM(? (1.00 |y0) Hn:l anll Mr?(xn ) |yn7 xO:njl)
(6)

Proposition 2 (KL divergence in extended
space). It holds that

L(,¢) = —KL(qy,¢

|7) + log p(yo:a1)-

The proof can be found in Appendix Recall that
we have introduced L(v, ¢) so that its maximisation
pushes the variational approximation of the static pa-
rameter 6 closer to its true posterior as measured by
the KL divergence. The above proposition shows that
this objective also minimizes the KL divergence be-
tween densities on an extended space that includes
multiple latent paths. To elucidate further the relation
between the variational distribution of a single latent
path and its posterior, we need to introduce a further
distribution. Consider the density under 7 of the vari-
ables generated by a SMC algorithm conditional on
a fixed latent path (z).,,,0%.,,_1). This is known as
a conditional SMC algorithm (Andrieu et al., 2010),
with distribution given by



Scalable Bayesian Learning for State Space Models using Variational Inference with SMC Samplers

L
M “bO:IW—l

Y N x%):M’ b%):M)

K aéSJ\K4—1»Z|0)

_ -
Tosmc (T, v

g (2

nl

M>
Wi 1)M¢($n |ynax0n 1

U aso/ o M
Wi My (Xo \yo) H (

n=1

where —b) ,, are the indices of all particles that are
not equal to b} ,,. We obtain the following corollary
proved in Appendix [C]

Corollary 3 (Marginal KL divergence and
marginal ELBO). The KL divergence in the extended
space s an upper bound on the KL divergence between
the marginal variational approximation and the poste-
rior, with the gap between bounds being

LK

KL (qw o0, 5”0 M,ao -1, D7 (0, xo JV[?
— KL (qwﬂﬁ(ea xO:M)||7T(9»xO:JVI)>

=E

1K
Qo.M —1s

)

qw,¢(97$é:M7bf):M)

bt —bt 1 1
KL(%(% s agr 10 o s 0o |
- —b}, —b!
Fasmo(@o ™ oy 1 105 To.a0: boar)) | -

Particularly, £ is a lower bound compared to the
standard ELBO using the marginal ¢y (8, xo.ar) with

xh.0; = To.ar as the variational distribution:

L(,¢) < =KL (qyp,6(0, z0:00)||7(0, 0:01))+Hog p(yo:ar)-

The proposed surrogate objective resembles variational
bounds with auxiliary variables (Salimans et al., 2015}
Maalge et al., [2016; Ranganath et al.l 2016) where
the gap between the two bounds is expressed by the
KL-divergence between the variational approximation
of the auxiliary variable given the latent variable of in-
terest and a so-called reverse model. Here, this reverse
model is specified by the conditional SMC algorithm.
The above corollary implies that the variational bound
is looser than the standard ELBO with the auxiliary
variables integrated out. This marginal variational dis-
tribution cannot in general be evaluated analytically.
However, we can obtain unbiased estimates of it by com-
puting the log-likelihood estimate under a conditional
SMC algorithm, resembling a particle Gibbs update.
This constitutes an extension of Proposition 1 in [Naes!
seth et al| (2018]). We present a proof in Appendix
DI

Proposition 4 (Marginal variational distribu-
tion). We have

qwaib(@) xé:M? béM) = q’l/)(e)/y@(xéM)

-1
27) ]
10,6, 5r) {( M

'E .

bl
- . 0:M—1
Fosmo(@o.nf

QoM —1

)

b

and there exists c¢(0, $) < 0o so that
KL(qy,6(0, w0.0)|P(0, 20:01]Y0:01)

<tn, 0 |52 + KL @00,

The last inequality in Proposition [ is a straightfor-
ward extension of an analogous result in the EM setting
(Naesseth et all [2018). It implies that, for fixed varia-
tional parameters 1) and ¢, the approximation becomes
more accurate for increasing K. Sampling from this
distribution can be seen as an extension of visualizing
the expected importance weighted approximation in
Importance Weighted Auto-Encoders (Cremer et al.,
2017). Since this distribution can be high-dimensional,
the preceding proposition gives an alternative to kernel-
density estimation.

Lastly, from a different angle, the variational objective
can be seen as a sequential variational-autoencoding
(VAE) bound. Indeed, as a consequence of Proposition
and equation @, we obtain immediately the following
result. We elaborate on it further in the next section.

Corollary 5 (Sequential VAE representation).
The variational bound can be written as

(’(/} (b) E‘h/z(e l (1¢($o Mo ao M 1:l19) |:
bl b
>~ log o (yalen) — log Wi
fé)( ‘xnn 117y71 1)

MO [y, a0y )H
— (M +1)log K — KL(qy(0)||p(6))-

+ log

4 Related Work

The representation in Corollary [f] allows us to con-
trast the variational bound to previously considered
sequential VAE frameworks (Chung et al., 2015 |Archer
et al., 2015; |[Fraccaro et al., 2016} Krishnan et al., 2017
Goyal et al., 2017). The introduced bound contains
the cross-entropy between the proposal distribution
and the likelihood common to sequential VAE bounds.
However, this reconstruction error is only evaluated for
surviving particles. Similarly, while a sequential VAE
framework includes a KL-divergence between the pro-
posal distribution and the prior transition probability,
the log-ratio of these two densities is only evaluated
for a surviving path. Most work using sequential VAEs
have considered observation and state transition mod-
els parametrised by neural networks, and given the
high-dimensionality of the static parameters, have con-
fined their analysis to variational EM inferences. This
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is also the case for the approaches in [Maddison et al.
(2017); |[Naesseth et al.|(2018);[Le et al.| (2018), to which
this work is most closely related. They have demon-
strated that resampling increases the variational bound
compared to a sequential IWAE (Burda et al., [2015)
approach. Rainforth et al. (2018)) demonstrated that
increasing the number of particles leads to a worse
signal to noise ratio of the gradient estimate of the pro-
posal parameters in an IWAE setting. [Le et al| (2018])
suggested to use fewer particles without resampling for
calculating the proposal gradient. A possible approach
left for future work would be to consider a different re-
sampling threshold for the proposal gradients. Finally,
the objective in this work differs from adaptive SMC
approaches optimizing the reverse KL-divergence (or
x2-divergence) between the posterior and the proposal,
cf. |Cornebise et al.| (2008); |Gu et al.| (2015).

5 Optimization of the variational
bound

The gradient of the variational bound is given by

Vo LY, 9) 1)
=Vt (Basto) [Easattyapss a0 08 237 ]])

+V, <Eqw<9> {log (Z,((?)D '

We focus on the gradient of the first expectation and
note that the gradient of the second expectation can
be estimated by standard (black-box) approaches in
variational inference, depending of course on the cho-
sen variational approximation. If for instance the
variational distribution over the static parameters is
continuously reparametrisable, one can use standard
low-variance reparametrised gradients (Kingma and
Welling 2014} |Rezende et all 2014} Titsias and Lazaro-
Gredillal 2014). This is the gradient estimator that we
use in our experiments in combination with mean-field
variational families. We assume that the proposals

.
XF ~ M2 (-|yn, xo" ") are reparametrisable, i.e. there
exists a differentiable deterministic function hg such

k
that Xk = hd,(XéZ:ll,eﬁ), with €& ~ p(-) continu-
ous and independent of ¢. Similarly, we assume that
the variational distribution of the static parameters
is reparametrisable, i.e. there exists a differentiable
deterministic function hy such that 6 = hy(n), with
1 ~ p(-) continuous and independent of ). We abbre-
viate € = ' f, & = 2K and a = a}'f_,. Using the
product rule, observe that the first gradient in is

Vs / p(n)p(€)as(ald, z)

-log ZAJGL’[Q&al(n7 a,e)

O0=hy (n),x=hg(€)

- / P()P(€)V 5 (ald, @)

-log ZAff)d(n, a,e)

O=hoy (). @=h(e)

g (1),
= Ep(mp(e)as (alhy (n)ho(e)) | Ver,o 108 2

+ V.0 log ge(alhy(n), he(€)) log Z]’c[u;(n)ﬂ '

Analogously to Maddison et al.| (2017)); |Le et al.| (2018);
Naesseth et al.| (2018) in a variational EM framework,
we have also ignored the second summand in the gra-
dient due to its high variance in our experiments. We
take Monte Carlo samples of the expectation above
and optimize the bound using Adam (Kingma and
Bay, [2014)). It is also possible to use natural gradients

(Amari, [1998), see Appendix

6 Experiments

6.1 Linear Gaussian state space models

Regularisation in a high-dimensional model.
We illustrate potential benefits of a fully Bayesian
approach in a standard linear Gaussian state space
model

fé(zn‘zn—l) = N(Axn—la Ex)v (8)
9o(Yn|zn) = N (B, Ty), (9)

with initial state distribution Xo ~ N (A%, %£2) and pa-
rameters A,%,, X0 € Ré=xde A0 ¢ Rde B ¢ Ry,
and C, %, € R4*d Naesseth et al.| (2018) have shown
in a linear Gaussian model that learning the proposal
yields a higher variational lower bound compared to
proposing from the prior and the variational bound is
close to the true log-marginal likelihood for both sparse
and dense emission matrices B. However, an EM ap-
proach might easily over-fit, unless one employs some
regularisation, such as stopping early if the variational
bound decreases on some test set. We demonstrate this
effect by re-examining one of the experiments in |[Naes-
seth et al.| (2018]), setting (d,,d,) = (10,3), M = 10
and assume that ¥, ¥0 and X, are all identity matri-
ces. Furthermore, A = 0 and (A;;) = ol*~71*! with
« = 0.42, and B has randomly generated elements with
B;; ~ N(0,1). We assume that the proposal density is

M (Tns1|Tn, Yns1) = N(@ns1|AsTn + Boyni1, So),
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and M (zo|yo) = N (20| AY + Byyo, 35), with By and
285 diagonal matrices. We perform both a variational
EM approach and a fully Bayesian approach over
the static parameters using K = 4 particles. In the
latter case, we place Normal priors B;; ~ N (0,10) and
A;; ~N(0,1). Furthermore, we suppose that a priori
>y is diagonal with variances drawn independently
from an Inverse Gamma distribution with shape
and scale parameters of 0.01 each. A mean-field

approximation for the static parameters is assumed.

We suppose that the variational distribution over
each element of A and B is a normal distribution
and the approximation over the diagonal elements
of ¥, is log-normal. For identifiability reasons, we
assume that ., X9 and A° are known. We compare
the EM and VB approach in terms of log-likelihoods
on out-of-sample data assuming training and testing
on 10 iid sequences. Figure [T] shows that in contrast
to the VB approach, the EM approach attains a
higher log-likelihood on the training data with a lower
log-likelihood on the test set as the training progresses.

=700
-760

-725 ——

////,”1//»”’//‘/7 -780
-750

-800
-775

-820
-800

-84
840 \— SMC log-likelihood estimate (EM)

SMC log-likelihood estimate (EM)
|— log-likelihood ground truth

-825
850 { § log-likelihood ground truth -860 ‘
(7 log-likelihood (EM) —— log-likelihood(EM)
_g75 |~ log-likelihood (VB samples) -880 \* log-likelihood (VB samples)
\ log-likelihood (VB mean) ‘ log-likelihood (VB mean)
00 00 a0 eo w0 o0 P 0 20 400 600 800 1000
Epochs (x10) Epochs (x10)

(a) Log-likelihood on train-(b) Log-likelihood on testing
ing data. data.

Figure 1: Log-likelihood for linear Gaussian state space
models. Log-likelihood values are computed using
Kalman filtering. The static parameters used in the VB
case are the mean of the variational distribution (VB
mean) or the samples from the variational distribution
(VB samples) as they are drawn during training.

Approximation bias in a low-dimensional
model. Variational approximations for the latent

path can yield biased estimates of the static parameters,

see [Turner and Sahani| (2011)). We illustrate that this
bias decreases for increasing K in a two-dimensional

linear Gaussian model, both in an EM and VB setting.

We therefore consider inference in a linear Gaussian

state space model with two-dimensional latent

states and one-dimensional observations. The state

transition matrix is assumed to be determined by the
A0

<O >\> . We

consider inference over \ as the static parameter and

autoregressive parameter \ with A =

fix B = (1,1) with ¥, and ¥, being identity matrices.
We simulate 30 realisations of length M = 100 each
using A = 0.9. Inference is performed with different
initialisations and learning rates over the simulated
datasets. It has been documented in such a linear
Gaussian model, see Turner and Sahani| (2011), that
Gaussian variational approximations of the latent path
that factorise over the state components underestimate
A. We observe the same effect in Figure [2a] when using
just K = 1 particle. However, increasing the number of
particles used during inference reduces this bias. Fur-
thermore, we find that point estimates of the static
parameters show some variation over different simu-
lations, while an approximate Bayesian approach can
be argued to better account for this uncertainty. The
variational distributions for 6 for each of the simula-
tions using K = 100 particles is shown in Figure
confirming that they all put significant mass on the
ground truth. Let us remark that these experiments
also complement those in , where it is
illustrated that increasing K improves learning point
estimates of the static parameters in a Gaussian model
with a one-dimensional latent state. Indeed, as shown
next, the marginal variational distribution allows not
just for dependencies in the latent states across time,
but also across different state dimensions, even if they
are independent under the proposal.

12.5
Method E :

o o 9o
© © ©
a o o

(mean) estimate
=)
@
3

= VB
s EM

Variational density

o
by
o

0.6 0.7 0.8 0.9 1.0 1.1
Autoregressive parameter

(a) Point estimate of the au-
toregressive parameter \ in
the EM case or the varia-
tional mean in the VB case
over 30 simulations for K €
{1,10, 100} particles.

(b) Variational distribution
of the autoregressive param-
eter A using K = 100 parti-
cles for each of the 30 simu-
lations.

Figure 2: Inference on the autoregressive parameter A
over 30 simulations of length M = 100. Ground truth
values are A = 0.9.

Marginal variational distribution in a low-
dimensional model. In an additional experiment,
we evaluate if the variational approximation from
Proposition [ of the latent path matches the distri-
bution of its true posterior. We consider the above
state space model over 2 time steps as in
land Sahani| (2011). Note that for given static pa-
rameters, the posterior is Gaussian. Indeed, for

(xéo),xél),xgo),xgl)), where 2!} denotes dimen-

r —
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sion ¢ of x,,, we have p(x|yo.1, A) = N (pig)y, Xa)y) with

2 1 =X 0 Yo
-1 _ 1 2 0 A _ Yo
sy = | =x 0 2 1 s Haly = iy Nk
0o —-x 1 2 Y1

assuming Xo ~ N(0, ﬁ[) is drawn from its station-

ary distribution. We visualise the posterior distribution
along with the marginal variational distribution

46 (x0:010)

l 709 B
=Y0(wg.0r)E by “Yhir—1,, [(ZM ) }
10,20, 0r)

Tosmo (To.ar ™ 28o.ar—1

in Figure [3] using K = 100 particles and 50 samples
for the expectation. We find that the approximation
mirrors the true posterior. In particular, it accounts
for explaining-away between different dimensions of the
latent state, although we have used isotropic proposals.

1

(a) Joint distribution of the (b) Joint distribution of the
latent states at the second first state component at the
time step. Top: varia- first and second time step.
tional approximation, bot-Top: variational approxima-
tom: true posterior. tion, bottom: true posterior.

Figure 3: Two-dimensional contour plots of the distri-
bution of the latent path over two time steps and two
state components. Function arguments are set to the
ground truth state values as simulated if they are not
shown.

6.2 Stochastic volatility models

To show that our method allows inference of latent
states and static parameters of higher dimensions, we
consider a multivariate stochastic volatility model,

fo(znl|zn—1) = N(p + diag(a)(zn—1 — 1), ),
90(ynl|zn) = N (0, exp(diag(zy)),

where Xo ~ N (u, X%) with 2,,, Yn, t,a € RP, and co-
variance matrix 3, € RP*P 0 = (u,a,%,,%2). This

Table 1: Average p-step predictive log-likelihoods per
observation for the stochastic volatility model with
different number of particles K and number of samples
S from the variational distribution. In the EM case,
we run S particle filters with the same optimal static
values. Mean estimates with standard deviation in
parentheses based on 100 replicates.

(S,K) = (4,50)
Method p=1 p=2
EM 9.697 (0.008) 9.716 (0.008)
VB 9.707 (0.011) 9.728 (0.015)

(S, K) = (20, 100)

Method p=1 p=2
EM 9.690 (0.003) 9.713 (0.003)
VB 9.701 (0.004) 9.727 (0.005)

model has been considered in |Guarniero et al.| (2017)
using particle MCMC methods under the restriction
that ¥, is band-diagonal to reduce the number of pa-
rameters. It is also more general than that entertained
in Naesseth et al.| (2018) with ¥, assumed diagonal, see
also|Chib et al|(2009)) for a review on stochastic volatil-
ity models. We consider a fully Bayesian treatment as
in (Guarniero et al| (2017), applied to the same data
set of 90 monthly returns (9/2008 to 2/2016) of 20 ex-
change rates with respect to the US dollar as reported
by the Federal Reserve System. The specification of
the prior and variational forms of the static parameters
are explained in Appendix [F] We consider proposals of
the form

My (zps1lYnt1s20) = N(p + diag(a) (z, — p), 5%),

where ¥ is diagonal and using K = 50 particles. Den-
sities of the variational approximation that correspond
to the GBP exchange rate can be found in Appendix [F}
Figure[4] which are largely similar to those obtained in
(Guarniero et al.l [2017). Furthermore, we approximate
the one- and two-step predictive distributions

K

k,s )

S
1
p(ym+1’|90:m) ~ g Z W?ifm,s(;an’j_pp@s (ym+p|Xm+p
s=1k

1 k=1

for p € {1,2},where 01, ...,05 ~ gy (0), Zle W,fl’séxfn
is the approximation of py_(Zm|yo.m) by the parti-
cle filter and X? ~ py_(zF*|X5_ |, Y%) with V5 ~
po. (Y55 | XE5) for n = m + 1,...,m + p simulated from
the generative model. The predictive distributions are
evaluated using a log scoring rule (Gneiting and Raftery]
[2007; |Geweke and Amisano, 2010) to arrive at the pre-
dictive log-likelihoods in Table [I} The full variational
approach attains higher predictive log-likelihoods.
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6.3 Non-linear stochastic Hawkes processes

There has been an increasing interest in modelling
asynchronous sequential data using point processes in
various domains, including social networks (Linderman
and Adams, [2014; [Wang et al.l [2017)), finance (Bacry|
et al., |2015)), and electronic health (Lian et al.l [2015)).
Recent work (Du et al., [2016; Mei and Eisner, 2017
Xiao et al., [2017bjal) have advocated the use of neural
networks in a black-box treatment of point process
dynamics.

We illustrate that our approach allows scalable prob-
abilistic inference for continuous-time event data
{T,, Cr}n>0s T < Tyy1, where T, is the time when
the n-th event occurs and C,, € {1,..., D} is an addi-
tional discrete mark associated with the event. We
consider describing such a realisation as a D-variate
point process with intensities A\, = hg(u + Z{il =h),
driven by B continuous time processes

=)= Z BpAb e T 16 ) (Ty),  t>0,

n>1

and a non-negative monotone function hy. More-
over, u, A, € RP and #® > 0. Importantly, we al-
low A% to depend on C,,, and the i-th component
of A% describes by how much the n-th event excites,
if (A%)® > 0, or inhibits, if (42)! < 0, subsequent
events of type ¢. It is possible to view the dynam-
ics as a discrete-time SSM; the essential idea being
that Zb is piecewise-deterministic between events, see
Appendix [G] for details along with related work on
Hawkes point processes (Hawkes, [1971a)). Let us de-
fine the discrete-time latent process X, 11 = (Zy, An)
with Z,, = Z7,, A, = vec(AL, ..., AP). Standard the-
ory about point processes, see |Daley and Vere-Jones
(2003)), implies that the observation density is given by
9o (tn, Cnlzn—1) = A{" exp (7 > ff,t,l )\ids), where
our model specification yields A\, as a deterministic func-
tion between T,,_1 and T, given Z,_1. Similar to |Mei
and Eisner| (2017), we set hg(y) = v softplus(y/v) =
vlog(1 + exp(y/v)) as a scaled softplus function with
v a static parameter. Next, we specify the dynamics of
A,,. We take the arguable most simple model, assum-
ing fﬂ(an|an717 Zn—1, Cn) = N(Zd ad(scnda Zd Ugécnd)
with aq,...,ap € REP and o?,...,0% positive diag-
onal matrices, while remarking in passing that our
approach allows readily for extensions that could in-
clude temporal dynamics between successive inten-
sity jumps or intensity jumps instantaneously corre-
lated across different marks and time scales. Due
to the piecewise deterministic decay of =, note that
Z07b [ Ab = e B (Tu=Tu-1) zb 4 BbAb 5o the
state transition of the process X is fully specified.

We apply our model to 20 days of high-frequency finan-
cial data for the BUND futures contract. The data is

Table 2: Prediction metric for different Hawkes process
models on the test set of around 206k events. The
stochastic Hawkes model is trained with 20 particles
and uses K € {20,80} particles during testing.

Method Error rate
next mark
Linear Hawkes 43.3 %
Non-linear Hawkes 40.9 %
Non-linear stochastic Hawkes (K =20) 40.0%
Non-linear stochastic Hawkes (K = 80) 39.3%

available as part of the tick library (Bacry et al., 2017)
with 4 event types: (i) mid-price up moves, (i) mid-
price down moves, (iii) buyer-initiated trades leaving
the mid-price unchanged and (iv) seller-initiated trades
not changing the mid. We train our model on 15 days
and evaluate how well it predicts the type of the next
event on out of sample data from the remaining 5 days.
Table [2| reports better predictive performance of the
proposed model in comparison with two benchmark
models. First, a linear Hawkes process model estimated
using maximum likelihood. Second, to illustrate that
improved predictions might not be just explained due
to inhibitory effects, we also compare against a non-
linear Hawkes model. The latter can be seen, and has
been implemented, as a limiting case of our generative
model letting 02 — 0, with inference thus performed
using stochastic gradient descent of the negative log-
likelihood. Predictions are Monte Carlo samples of the
next event realisation from the generative model. Fur-
ther details including assumptions on the variational
distributions and the predictive performance using a
smaller training set are given in Appendix [H]

7 Conclusion

This paper has explored an inference approach that
merges the scalability of variational methods with SMC
sampling. We would like to emphasize that our ap-
proach is completely complementary to many recent
advances in variational inference that can be used to
parametrize g, (#). For instance, one can consider more
expressive variational families (Rezende and Mohamed)
2015} |[Kingma et al., 2016} [Salimans et al., 2015 |[Maalge
et al.l |2016; Ranganath et al., |2016)). Similarly, our
Bayesian approach naturally allows us to incorporate
prior knowledge. For instance, one could place sparsity-
inducing priors and impose corresponding variational
approximations (Ingraham and Marks|, 2017; |Ghosh
and Doshi-Velez|, 2017} |Louizos et al.l 2017). Applying
such variational approximations to more expressive au-
toregressive models would be an interesting avenue to
explore in future work.
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