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1 Introduction

Since the pioneering work of Artzner et al. (1999), risk measures have been playing an im-

portant role in developing mathematical finance models. Most risk measures are either sub-

additive, convex, or quasiconvex, and they are considered as maps on functional analysis spaces

modeling possible sets of risks. Therefore, the financial models based on these risk measures

are heavily dependent on functional and convex analysis techniques.

The properties of a convex function, defined on a general Banach space, are related to its

sub-differential. In Rockafellar (1966), it is proved that a real valued lower semi-continuous

proper convex function, defined on a Banach space, is uniquely (up to an additive constant)

determined by its sub-differential. This highlights the importance of sub-differential sets in

convex analysis. The problem gets more complicated when the image space of the convex

function is rather a functional space as it is the case for dynamic risk measures. Nevertheless,

in either the static or dynamic case, the determination of a convex risk measure (or a convex

function in general) is normally through a representation which is closely related to the sub-

differential and continuity properties of the function.

The “continuity property” of a convex risk measure, either static or dynamic, (or in general

a convex map) could be defined in several ways. The most common definitions of this property

are continuity from above which is equivalent to Fatou property and lower semicontinuity with

respect to weak∗-topologies, for instance, see Theorem 4.33 of Föllmer and Schied (2011)

where this is discussed on an L∞-space for static risk measures that are monotone, translation

invariant, and convex. There is also continuity from below which is stronger than continuity

from above and it is equivalent to the Lebesgue property, see Corollary 4.35 of Föllmer and

Schied (2011). The same results are extended in Chapter 11 of Föllmer and Schied (2011)

to dynamic risk measures from L∞ to L∞t (for natural numbers t) which satisfy conditional

translation invariance, monotonicity, and conditional convexity. Fatou and Lebesgue property

are also discussed on bounded càdlàg processes in Assa (2011).

Theorem 3.10 of Brezis (2011) shows that strong continuity of linear operators is equivalent

to weak continuity. However, we cannot make the same conclusion about general (nonlinear)

maps such as dynamic risk measures. One of the major challenges in convex analysis, in

particular in risk measure theory, is that nonlinear maps which are strongly continuous are

not necessarily continuous with respect to weak topologies. More precisely, any weak-weak

continuous1 risk measure satisfies the strong-weak continuity assumption while the other way

1The terminology weak-weak means that domain and the range of the risk measure are equipped with weak
topologies. The other terminologies such as strong-weak or strong-strong are defined in the same fashion.
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around does not necessarily hold unless the risk measure is linear which is not of interest

neither theoretically nor practically.

Furthermore, note that strong-weak continuity does not imply strong-strong continuity

again except for linear maps. We believe that a study of dynamic risk measures from Lp into

Lp
t spaces, for integer t and 1 < p < ∞, which are convex and strong-weak continuous with

respect to the norm and weak topologies, is missing in the existing literature. The main moti-

vation of this paper is to study these risk measures and investigate their approximation using

dynamic convex risk measures which are strong-weak continuous and admit weakly compact

sub-differential sets. Although the representations and results of this work are provided for L2

and L2
t spaces, the arguments can be easily extended to Lp spaces for 1 < p < ∞. However to

simplify the notation, we concentrate on the case p = 2. Overall, there are three main purposes

to this work.

First, we provide a representation theorem for dynamic convex risk measures from the

space L2 = L2(Ω,F ,P) to L2
t = L2(Ω,F ,Ft,P), t = 0, 1, ..., n, that are continuous with re-

spect to the strong topology on L2 induced by the L2-norm, and the weak topology σ(L2
t , L

2
t )

on L2
t . Note that the representation also holds for strong-strong continuous dynamic convex

risk measures because they are strong-weak continuous as well. However, a representation of

strong-strong continuous dynamic risk measures cannot be applied here because a strong-weak

continuous map is not necessarily strong-strong continuous. In addition, we do not assume

any regularity assumptions (also called local properties) such as those in Frittelli and Maggis

(2014) though in their work, they study quasiconvex functions rather than the convex ones.

In our work, the structure of the aforementioned dynamic convex risk measures is completely

characterized using a dual representation without these regularity assumptions.

Second, we suppose that such representation is priorly given, and we investigate a mild

sufficient condition over the sub-differential under which the dynamic risk measure is strong-

weak continuous. More precisely, we show that the compactness of sub-differential with re-

spect to the product of weak topologies guarantees the strong-weak continuity of the dynamic

risk measure. In other words, compactness with respect to strong topologies is not required in

the implication of strong-weak continuity. Although the main goal is to approximate dynamic

convex risk measures which are strong-weak continuous, to the best of our knowledge, neither

this form of representation nor these sufficient conditions are yet studied. Most popular risk

measures and some new ones (either dynamic or static) can arise from our representation using

the sufficient condition. In this context, we also discuss when the essential supremum in the

representation theorem is actually attained.
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Finally, we prove that any such dynamic risk measure which is convex and strong-weak

continuous can be approximated by dynamic convex risk measures which are strong-weak

continuous and admit weakly compact sub-differential sets. In what follows, we briefly review

some related past work.

In Detlefsen and Scandolo (2005), representations of conditional convex risk measures

are explained where the risk measures are assumed to be continuous from above. They also

explain time consistency of conditional convex risk measures. Note that time consistency is

not the interest of our work, and so we refer to Cheridito et al. (2006), Cheridito and Kupper

(2011), and Riedel (2004) for discussions on this concept.

In Frittelli and Maggis (2011), a dual representation is obtained when the function is qua-

siconvex and it is lower semicontinuous with respect to a weak topology which is equivalent

to continuity from below. The results are further extended to more general spaces in Frittelli

and Maggis (2014). In Cerreia-Vioglio et al. (2011a), a dual representation is discussed for

monotone quasiconcave function on M-spaces.

The outline of the paper is as follows: Some well-known definitions and an elementary

lemma are recalled and discussed in Section 2. The main results of this paper and their proofs

are explained in Section 3. Finally, Section 4 is devoted to conclusions and future work.

2 Preliminaries

Consider a complete probability space (Ω,F ,P) equipped with a filtration {Ft}t=0,...,n, where

Fn = F and F0 = {∅,Ω}. We consider the functional spaces L2 = L2(Ω,F ,P) and L2
t =

L2(Ω,Ft,P), t = 0, 1, ..., n. The strong topology is induced by the norm ||.|| defined by ||X|| =

E[X2]
1
2 for random variables X on this probability space where E is the expectation with respect

to the probability P. Any map ρt : L2 7−→ L2
t , t = 0, 1, ..., n, is referred as a dynamic risk mea-

sure. From a financial point of view, ρt(X) for X ∈ L2, is interpreted as the (conditional) capital

requirement for the financial position X. For the rest of the paper, unless otherwise stated,

all equalities and inequalities of random variables are understood to hold P-almost surely. To

simplify the notation, most of time we drop the terminology “almost surely (a.s. for short)”

though we explicitly mention it for important formulas.

Definition 2.1. A dynamic risk measure ρt : L2 7−→ L2
t satisfies normalization, conditional

translation invariance, monotonicity, and conditional convexity if the following conditions hold

respectively:

• Normalization: ρt(0) = 0, for all t,
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• Conditional cash (or translation) invariance: for all t, X ∈ L2, and Y ∈ L2
t , ρt(X + Y) =

ρt(X) − Y,

• Monotonicity: i f X ≤ Y, for X and Y in L2 then ρt(X) ≥ ρt(Y) for all t,

• Conditional convexity: ρt(λX +(1−λ)Y) ≤ λρt(X)+(1−λ)ρt(Y), for all t, X ∈ L2, Y ∈ L2,

λ ∈ L2
t , and 0 ≤ λ ≤ 1.

Remark 2.1. It is important to note that neither monotonicity nor conditional cash invariance

are assumed in the results of this work, and therefore dynamic risk measures ρt are not to be

necessarily regular, i.e. the equation ρt(1AX + 1AcY) = 1Aρt(X) + 1Acρt(Y) does not necessarily

hold for X, Y in L2 and A in Ft.

In the context of non dynamic risk measures, El Karoui and Ravanelli (2009) show that the

cash invariance property does not hold in the presence of stochastic interest rates, and there-

fore, they study convex risk measures under cash sub-invariance axiom (cash sub-additivity)

instead. However, cash sub-invariance would lead to another problem. Under this axiom, di-

versification principal is not satisfied unless quasiconvex risk measures are used, see Cerreia-

Vioglio et al. (2011b).

The problem of diversification and stochastic interest rates can still occur in the dynamic

case. In what follows, in order to avoid the above diversification and interest rate problems,

we do not assume cash invariance axiom in any of the results. In addition, we do not use mono-

tonicity as well. For instance, monotonicity does not hold for variance or standard deviation.

Similar to non-dynamic risk measures, the structure of the dynamic risk measure ρt is

closely related to the properties of its sub-differential set that is defined in the next elementary

lemma which we mention for the sake of completeness.

Lemma 2.1. The sub-differential set ∆ of the dynamic risk measure ρt, defined by{
(z, k) ∈ L2 × L2

t , ρt(y) ≥ E
[
zy | Ft

]
+ k, ∀y ∈ L2

}
,

is convex2 and closed with respect to product topologiesσ
(
L2, L2

)
×σ

(
L2

t , L2
t

)
, whereσ(L2, L2)

and σ
(
L2

t , L2
t

)
are respectively the weak topologies on L2 and L2

t .

Proof. The convexity of ∆ is obvious and due to this property, in order to prove the claim, it is

enough to show that ∆ is strong×strong closed.3 Suppose that (zn, kn) ∈ ∆ and (zn, kn)
s
−→ (z, k)

where
s
−→ represents the strong convergence and (z, k) ∈ L2 × L2

t . We show that (z, k) ∈ ∆.
2Here, the convexity means that if (z1, k1) ∈ ∆ and (z2, k2) ∈ ∆ then (λ(z1, k1) + (1 − λ)(z2, k2)) ∈ ∆ for all

0 ≤ λ ≤ 1, λ ∈ R.
3This can be proved using Hahan-Banach separating hyperplanes theorem.
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Since ‖zn − z‖ −→ 0; by Theorem 4.9 of Brezis (2011), there exists a subsequence
{
znk

}∞
k=1 ⊂

{zn} and h ∈ L2 such that znk −→ z, a.s., and |znk | ≤ h, a.s., ∀k ≥ 1, on L2. Now by using

Lebesgue dominated convergence theorem for conditional expectation, we have

E
[
yznk | Ft

]
−→ E

[
yz | Ft

]
, a.s., ∀ y ∈ L2.

On the other hand, ∀ y ∈ L2, ρt(y) ≥ E
[
yzn | Ft

]
+ kn a.s., and we also have that kn

s
−→ k in L2,

hence
∥∥∥knk − k

∥∥∥ −→ 0. Therefore, there is a subsequent
{
knk j

}
⊂

{
knk

}
such that

{
knk j

}
−→ k a.s.

and E[yznk j
| Ft] −→ E

[
yz | Ft

]
, which leads to ρt(y) ≥ E

[
yz

]
+ k, a.s.. This shows that ∆ is

strong×strong closed, and so it is week×weak closed as well. �

Representation of dynamic risk measures is expressed by the essential supremum of a fam-

ily of random variables. Though it is not always the case, it is of interest that this family is

directed upward. We call a family of random variables directed upward if for the maximum

of any two members of this family, there is a third member of the family which bounds them

from the above. Then by Theorem A.33 of Föllmer and Schied (2011) the essential supremum

of this family can be approximated by an increasing sequence of the members of the family.

This theorem has been used a few times in the next section.

3 The main results

In the next proposition, we provide a representation of a dynamic risk measure that is strong-

weak continuous and convex. Note that the representation of the proposition is still valid for

strong-strong continuous dynamic risk measures as this concludes strong-weak continuity of

the measure.

Proposition 3.1. Suppose that ρt : L2 7−→ L2
t is a normalized dynamic risk measure that

satisfies convexity and is strong-weak continuous with respect to the norm topology on L2 and

weak topology σ
(
L2

t , L2
t

)
on L2

t . Then ρt admits the following representation:

ρt(y) = ess sup {E[zy | Ft] + k; (z, k) ∈ ∆}, (1)

where ∆ =
{
(z, k) ∈ L2 × L2

t ; ρt(y) ≥ E
[
zy | Ft

]
+ k, ∀y ∈ L2

}
is convex and closed with respect

to product topology σ
(
L2, L2

)
× σ

(
L2

t , L2
t

)
.

Proof. Define the function f : L2 7−→ R by f (y) = E
[
ρt(y)

]
. Since ρt is strong-weak continuous

then it is easy to show that f is also continuous with respect to the norm topology on L2 and
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strong topology on R. In addition, due to the convexity of ρt, function f is also convex, and by

Lemma A.1 in the appendix, we can write

f (y) = sup {E[zy] + k; (z, k) ∈ ∆′} , (2)

where

∆′ =
{
(z, k) ∈ L2 × R, f (y) ≥ E

[
zy

]
+ k, ∀y ∈ L2

}
.

Suppose that (z, k) ∈ ∆′, and for each t ≥ 0, we define the random variable:

kt = ess inf
y∈L2

{
ρt(y) − E

[
zy | Ft

]
; k ≤ ρt(y) − E

[
zy | Ft

]}
.

Note that k ≤ 0 therefore, the random variable y = 0 satisfies the equation k ≤ ρt(y)−E
[
zy | Ft

]
,

and so the essential infimum is not taken over an empty set. By Theorem A.33 of Föllmer and

Schied (2011), kt is a well-defined random variable as it is Ft - measurable.

In addition, for a fixed k, we have k ≤ kt ≤ 0, almost surely. As a result, for each element

(z, k) in ∆′, we can construct kt ∈ L2
t such that E [kt] ≥ k and (z, kt) ∈ ∆, so from equation (2),

we have

f (y) = sup
{
E

[
E

[
zy | Ft

]]
+ k; (z, k) ∈ ∆′

}
= sup

{
E

[
E

[
zy | Ft

]
+ k

]
; (z, k) ∈ ∆

}
≤ E

[
ess sup

{
E

[
zy | Ft

]
+ k; (z, k) ∈ ∆

}]
.

Therefore, we obtain the following inequality

E
[
ρt(y)

]
≤ E

[
ess sup

{
E

[
zy | Ft

]
+ k; (z, k) ∈ ∆

}]
. (3)

Also from the definition of ∆, it is obvious that ρt(y) ≥ ess sup
{
E

[
zy | Ft

]
+ k; (z, k) ∈ ∆

}
,

hence

E
[
ρt(y) − ess sup

{
E

[
zy | Ft

]
+ k; (z, k) ∈ ∆

}]
= 0. (4)

From equation (4), we obtain the required representation

ρt(y) = ess sup{E[zy | Ft] + k; (z, k) ∈ ∆}, almost surely.

By Lemma 2.1, the set ∆ is convex and closed with respect to σ
(
L2, L2

)
× σ

(
L2

t , L2
t

)
-

topology. This completes the proof.

�
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Proposition 3.1 is similar to Theorem 1 of Zowe (1975) where a general duality theorem

is provided for convex maps that are defined on topological vector spaces. However, the proof

of Proposition 3.1 is made independently, and the proposition is more general in the sense

that it is valid for convex maps that are strong-weak continuous rather than just strong-strong

continuous. In addition, Proposition 3.1 specifies the sub-differential of the convex map (here,

the dynamic risk measure).

Similar static risk measures (i.e. for ρ : L2 7−→ R ) to (1) are applied in Balbás et al. (2010)

where they used these real valued risk measures to minimize risk functions using saddle point

conditions. The next proposition is somehow the converse of Proposition 3.1 where we show

that a weak×weak compactness of the sub-differential leads to the strong-weak continuity of

the dynamic risk measure.

Proposition 3.2. Assume that ρt : L2 7−→ L2
t is a dynamic risk measure that admits the follow-

ing representation

ρt(y) = ess sup
{
E

[
zy | Ft

]
+ k; (z, k) ∈ ∆

}
,

where ∆ ⊂
{
(z, k) ∈ L2 × L2

t ; ρt(y) ≥ E
[
zy | Ft

]
+ k, ∀y ∈ L2

}
is a compact set under the prod-

uct topology σ
(
L2, L2

)
× σ

(
L2

t , L2
t

)
. Then the dynamic risk measure ρt is strong-weak contin-

uous.

Proof. The function ρt is convex because, any α ∈ L2
t is Ft- measurable, and for all y and w in

L2, we have:

ρt (αy + (1 − α)w) = ess sup
{
αE

[
zy|Ft

]
+ (1 − α)E [zw | Ft] + k, (z, k) ∈ ∆

}
≤ αρt(y) + (1 − α)ρt(w).

In order to show the strong-weak continuity of ρt, it is enough to show that ϕ◦ρt : L2 7−→ R

is strong-strong continuous for all ϕ in the dual space of L2
t , denoted by (L2

t )∗. But
(
L2

t

)∗
= L2

t ,

hence any such φ corresponds to an element y∗ ∈ L2
t such that

ϕ (ρt (yn)) =

ˆ
ρt (yn) y∗dP = E

[
ρt (yn) y∗

]
.

Therefore, if we define the function f : L2 7−→ R by f (y) = E
[
ρt(y)y∗

]
, for an arbitrary

fixed y∗ ∈ L2
t , in order to prove our claim, it is enough to show the continuity of this function

with respect to the norm topology and strong topology on R. Furthermore, without any loss

in generality, one can assume that y∗ ≥ 0, because for a general y∗, the decomposition y∗ =

(y∗)+ − (y∗)− can be applied where (y∗)+ = max(y∗, 0) and (y∗)− = max(−y∗, 0) are both non-

negative. With this decomposition, then (y∗)+ + (y∗)− = |y∗|, ‖(y∗)+‖ ≤ ‖y∗‖, ‖(y∗)−‖ ≤ ‖y∗‖, and
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f (y) = g(y)− h(y), where g and h are given by g(y) = E[ρt(y)(y∗)+], h(y) = E[ρt(y)(y∗)−]. If one

proves that functions g and h are continuous, then so is f .

It is obvious that f is convex, so we only need to show that it is continuous at zero4.

Therefore, we suppose that yn
s
−→ 0 and we show that f (yn) −→ f (0) in the strong topology

of R. In what follows, it is important to note that ∆ is a weak × weak compact set, so its

projection on L2 or L2
t , such as

{
z ∈ L2; (z, k) ∈ ∆ for some k ∈ L2

t

}
, is weakly compact and

hence bounded.

Note that the set
{
E

[
zy | Ft

]
+ k; (z, k) ∈ ∆

}
is not necessarily directed upwards, and there-

fore, we cannot simply approximate ρt(y) by a monotone sequence of the elements of this set.

We fix this problem through a different approximation of ρt(y) and its sub-differential. The rest

of the proof is divided into four steps.

Step 1: For a fixed m and y ∈ L2, define ψ(y) = limm−→∞ ρ
(m)
t (y), where the limit is taken

pointwise on the probability space,

ρ(m)
t (y) = ess sup

(z,k)∈∆0

E[|zy|1{|z|≤m}|Ft],

∆0 =
{
(z, k) ∈ L2 × L0

t ; ρt(y) ≥ E
[
zy | Ft

]
+ k, ∀y ∈ L2

}
,

and L0
t denotes the space of Ft-measurable random variables. Each ρ(m)

t (y) is Ft-measurable

and so is ψ(y). For a fixed m, y, we have E[|zy|1{|z|≤m} | Ft] ≤ ess sup(z,k)∈∆0
E[|zy|1{|z|≤m} | Ft],

for all (z, k) ∈ ∆; by taking the limit as m goes to infinity and using monotone convergence

theorem, we get E[|zy| | Ft] ≤ ψ(y). Therefore, we obtain

ess sup
(z,k)∈∆

E[|zy| | Ft] ≤ ψ(y). (5)

Step 2: We show that for a fixed m, the set

A =
{
E[|zy|1{|z|≤m}|Ft]; (z, k) ∈ ∆0, for some k ∈ L0

t

}
,

is directed upward. Consider the event A =
{
E[|z1| |y|1{|z1 |≤m} | Ft] ≥ E[|z2| |y|1{|z2 |≤m} | Ft]

}
, for

some k1 and k2, such that (z1, k1) and (z2, k2) are in ∆0. Define z = |z1|1|z1 |≤m1A + |z2|1|z2 |≤m1Ac .

Then, we observe that A ∈ Ft and

E[|zy|1{|z|≤m} | Ft] ≥ max(E[|z1y|1{|z1 |≤m} | Ft],E[|z2y|1{|z2 |≤m} | Ft]).

Note that by the definition of z, we have z = z1{|z|≤m}.

4It can be proved that the continuity of a proper convex function on normed spaces is equivalent to its continuity
at origin.
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On the other hand, for i = 1, 2, we have ρt(y) ≥ E[ziy|Ft] + ki for all y ∈ L2. Therefore, we

obtain

1Aρt(y) ≥ E[|z1|y1{|z1 |≤m}1A|Ft] + (k
′

1)1A,

1Acρt(y) ≥ E[|z2|y1{|z2 |≤m}1Ac |Ft] + (k
′

2)1Ac ,

where k
′

i = ess infy∈L2{E[ziy1A|Ft] − E[|zi|y1{|zi |≤m}1A|Ft] + ki} for i = 1, 2. Hence, it is possible

to construct a K ∈ L0
t such that ρt(y) ≥ E[zy|Ft] + K which means that (z,K) ∈ ∆0. This proves

thatA is directed upward.

Step 3: From definition of ρ(m)
t in Step 1, and by Step 2, there exists a sequence {Zmi}i≥1 ⊂ L2

such that (Zmi ,Kmi) ∈ L2 × L0
t and we have the pointwise convergence

ρ(m)
t (y) = lim

i−→∞
E[|zmiy|1{|Zmi |≤m} | Ft], i.e. ψ(y) = lim

m−→∞
lim

i−→∞
E[|zmiy|1{|Zmi |≤m} | Ft].

Now, suppose that y∗ ∈ L2
t and y∗ ≥ 0, then ψ(y)y∗ = limm−→∞ limi−→∞ E[|zmiy|y

∗1{|Zmi |≤m} |

Ft], since y∗ is Ft measurable. By Fatou’s lemma we obtain

E[ψ(y)y∗] ≤ lim inf || Zmi || || y || || y
∗ || .

Since ∆ is weakly compact then lim inf || Zmi || < ∞ and therefore, lim||y||−→0 E[ψ(y)y∗] ≤ 0. On

the other hand, by equation (5) and definition of ρt(y), we obtain ρt(y) ≤ ψ(y) + ρt(0). Since

y∗ ≥ 0, this leads to lim||y||−→0 E[ρt(y)y∗] ≤ f (0), i.e.,

lim
||y||−→0

f (y) ≤ f (0). (6)

Step 4: For simplicity let ∆
′

=
{
(z, k) ∈ L2 × L2

t ; ρt(y) ≥ E
[
zy | Ft

]
+ k, ∀y ∈ L2

}
. Suppose

that (z, k) ∈ ∆
′

is fixed then for all y ∈ L2, ρt(y) ≥ E[zy | Ft] + k. Therefore for any y∗ ≥ 0 in L2,

we obtain E[ρt(y)y∗] ≥ E[zyy∗] + E[ky∗]; lim||y||−→0 | E[zyy∗] |≤ lim||y||−→0 || z || || y || || y∗ ||= 0.

Hence for all k ∈ L2
t such that (z, k) ∈ ∆

′

, we get

lim
||y||−→0

E[ρt(y)y∗] ≥ lim
||y||−→0

E[ky∗] = E[ky∗]. (7)

Similar to Step 2 and in fact much easier, one can show that {k; (z, k) ∈ ∆
′

} is directed

upward. Hence, there is an increasing sequence {kn}n≥1 ⊂ L2
t such that (zn, kn) ∈ ∆

′

for some

{zn}n≥1 ⊂ L2, and kn −→ ess sup{k; (z, k) ∈ ∆
′

}. Therefore, by monotone convergence theorem,

limn−→0 E[kny∗] = E[ess sup{k; (z, k) ∈ ∆
′

}y∗], but ess sup{k; (z, k) ∈ ∆
′

} ≥ ess sup{k; (z, k) ∈ ∆}

(because ∆ ⊂ ∆
′

) so limn−→0 E[kny∗] ≥ f (0) = E[ess sup{k; (z, k) ∈ ∆}y∗]. Also, equation (7)

holds for all k such that (z, k) ∈ ∆
′

for some z. In particular, one can take the sequence {kn}n≥1.

Hence, lim||y||−→0 E[ρt(y)y∗] ≥ limn−→0 E[kny∗] ≥ f (0), or lim||y||−→0 f (y) ≥ f (0). This together

with equation (6), leads to lim||y||−→0 f (y) = f (0) which shows that f is strongly continuous at

origin with respect to the norm topology. This completes the proof. �
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The representation of Proposition 3.2 can be used to create risk measures that are strong-

weak continuous, and despite its simplicity, many interesting risk measures are still covered.

For example, in the non-dynamic case, i.e., for t = 0, all the following risk measures are spe-

cial case of this representation: down side semi-deviations, CVaR, Wang’s distortion measure,

the absolute deviation, and the standard deviation. Proposition 3.2 can be used to create the

dynamic version of these risk measures. Now, we investigate when the essential supremum in

Proposition 3.2 is actually attained.

Lemma 3.1. Assume that ρt : L2 7−→ L2
t admits the following representation

ρt(y) = ess sup
{
E

[
zy | Ft

]
+ k; (z, k) ∈ ∆

}
, ρt(0) = 0,

where ∆ ⊂ L2 × L2
t is a convex compact set under the topology σ

(
L2, L2

)
× σ

(
L2

t , L2
t

)
. We

further assume that the set
{
E

[
zy | Ft

]
+ k; (z, k) ∈ ∆

}
is directed upwards. Then the essential

supremum is attained, i.e., there is an element (z∗, k∗) ∈ ∆ such that ρt(y) = E[z∗y|Ft] + k∗,

almost surely.5

Proof. Since the set
{
E

[
zy | Ft

]
+ k; (z, k) ∈ ∆

}
is directed upwards, there exists a sequence

{(zn, kn)}∞n=1 in ∆ such that E
[
zny | Ft

]
+kn ≤ E

[
zn+1y | Ft

]
+kn+1 and ρt(y) = limn→∞ E

[
zny | Ft

]
+

kn.

Define the projection φ1 : L2 × L2
t 7−→ L2 by φ(x, y) = x. Then φ1(∆) is compact with

respect to the weak topology σ(L2, L2) and hence it is strongly bounded. Since L2 is a reflexive

space, by Theorem 3.18 of Brezis (2011), there is a subsequence {zn j} that converges weakly

to an element z in L2. By considering this subsequence, we still have the convergence ρt(y) =

lim j→∞ E
[
zn jy | Ft

]
+ kn j .

Similarly by projection on the space L2
t , we can construct a subsequence {kn ji

} of {kn j} that

converges weakly to an element k in L2 with respect to the weak topology σ(L2
t , L

2
t ). Since {n ji}

is a subsequence of {n j}, we have both the weak zn ji
−→ z and the strong convergence

ρt(y) = lim
i→∞
E

[
zn ji

y | Ft

]
+ kn ji

. (8)

Note that L2 × L2
t is a Hausdorff space, and ∆ is compact with respect to the product topol-

ogy σ(L2, L2) × σ(L2
t , L

2
t ), so ∆ is also closed with respect to this topology. Because of the

convergence (zn ji
, kn ji

) −→ (z, k) in topology σ(L2, L2) × σ(L2
t , L

2
t ), we obtain (z, k) ∈ ∆. Now

we show that ρt(y) = E[zy|Ft] + k.
5Note that if the image space of ρt is a subspace of real numbers then this is rather a trivial result from

functional analysis facts.
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For every i, E[z jiy|Ft]+kn ji
∈ L2

t , therefore for a fixed y ∈ L2, by equation (8) and monotone

convergence theorem we obtain

E[ρt(y)] = lim
i→∞
E

[
zn ji

y
]

+ E[kn ji
].

However, both zn ji
and kn ji

approaches weakly to z and k respectively, hence E[zn ji
y] −→ E[zy]

and E[kn ji
] −→ E[k] which leads to E[ρt(y)] = E

[
zy

]
+ E[k] or E[ρt(y) − E

[
zy|Ft

]
− k] = 0. On

the other hand, by the definition of essential supremum, ρt(y) ≥ E
[
zy|Ft

]
+ k, hence ρt(y) =

E
[
zy|Ft

]
+ k, almost surely. �

In view of the above lemma, the next interesting question is whether or not we can approxi-

mate a continuous dynamic risk measure with continuous risk measures that admit weak×weak

compact sub-differentials as this with the additional assumption “directed upward” guarantees

that the essential supremum can be approximated. The following theorem answers this ques-

tion.

Theorem 3.1. Suppose that ρt : L2 7−→ L2
t is a dynamic risk measure which is convex and

strong-weak continuous. Then, there is a sequence of dynamic risk measures ρ(n)
t : L2 7−→ L2

t ,

with σ
(
L2, L2

)
× σ

(
L2

t , L2
t

)
compact sub-differential sets, which are convex and strong-weak

continuous such that ρ(n)
t (y) converges to ρt(y) almost surely for all y ∈ L2.

Proof. Without any loss in generality, we can assume that ρt(0) = 0, otherwise, one can con-

sider ψ(y) = ρt(y) − ρt(0). First, we construct the sequence of ρ(n)
t (y) for y ∈ L2. From Proposi-

tion 3.1, we have the following representation for ρt(y):

ρt(y) = ess sup {E[zy | Ft] + kt; (z, kt) ∈ ∆},

where ∆ =
{
(z, k) ∈ L2 × L2

t , ρt(y) ≥ E
[
zy | Ft

]
+ k, ∀y ∈ L2

}
is convex and closed with respect

to product topologies σ
(
L2, L2

)
× σ

(
L2

t , L2
t

)
. For each n ≥ 1, define

ρ(n)
t (y) = ess sup

{
E[zy | Ft] + kt; (z, kt) ∈ ∆ ∩ (B̄n(L2) × B̄n(L2

t ))
}
, (9)

where B̄n(L2) and B̄n(L2
t ) are respectively the closures of open balls of radius n > 0 in L2 and

L2
t spaces. Since L2 and L2

t are reflexive Banach spaces, then ∆ ∩ (B̄n(L2) × B̄n(L2
t )) is compact

under the product topology σ
(
L2, L2

)
× σ

(
L2

t , L2
t

)
.

For any y ∈ L2, we can assume that ρ(n)
t (y) ∈ L2

t , for all n ≥ 1. This is because one can take

n sufficiently large such that E[z∗y | Ft] + k∗t ≤ ρ
(n)
t (y) ≤ ρt(y) for some (z∗, k∗) ∈ L2 × L2

t . Now

note that since

∆ ∩ (B̄n(L2) × B̄n(L2
t )) ⊂

{
(z, k) ∈ L2 × L2

t , ρ
(n)
t (y) ≥ E

[
zy | Ft

]
+ k, ∀y ∈ L2

}
,
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by Proposition 3.2, ρ(n)
t is strong-weak continuous.

Finally, we show the convergence. There is a sequence {φi}i≥1, defined by φi = E[ziy|Ft]+ki,

(zi, ki) ∈ ∆ such that max1≤i≤n(φi) converges to ρt(y) as n goes to infinity6. For the rest of the

argument, we consider a fixed element ω ∈ Ω, since {ρ(n)
t (y)}n≥1 is increasing, one can find a

strictly increasing subsequence {ni}i≥1 such that max1≤ j≤ni(φ j) ≤ ρ(ni)
t (y) for all i ≥ 1. On the

other hand, ρ(n)
t (y) ≤ ρt(y) for all y and n ≥ 1. This proves that ρ(n)

t (y) −→ ρt(y) almost surely

as n −→ ∞. �

Suppose that we are analyzing a convex risk measure problem in which the risk measure is

strong-weak continuous. Proposition 3.1 provides a representation of such a risk measure with

a sub-differential set ∆ that is closed with respect to the product of weak topologies. Then by

Theorem 3.1 one can assume that ∆ is compact with respect to the product of weak topologies

in the sense that it is possible to approximate the risk measure with a sequence of risk measures

that admit compact sub-differential sets.

4 Conclusion

A representation of dynamic risk measures that are convex and strong-strong or strong-weak

continuous is provided. It is also proved that if a risk measure satisfies such representation

with a weak×weak compact sub-differential then it is strong-weak continuous. We then further

discuss a sufficient condition under which the optimal value in the representation theorem is

actually attained. Finally, an approximation procedure is carried out for those convex risk

measures that are strong-weak continuous, but they do not necessarily admit a weak×weak

compact sub-differential set.
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A Appendix

Consider a Banach space Y with its dual space Z. As usual, the scalar product of y ∈ Y and z ∈ Z

is defined and represented by z(y) and 〈y, z〉, respectively. A real valued function ρ : Y 7−→ R

is said to be convex if

ρ (λy1 + (1 − λ) y2) ≤ λρ (y1) + (1 − λ) ρ (y2) ,

holds for every y1, y2 ∈ Y and every 0 ≤ λ ≤ 1.

Lemma A.1. Suppose that ρ, ρ(0) = 0, is convex and continuous with respect to the topology

induced by the norm of the space. Consider the sub-differential set

∂ = {(z, k) ∈ Z × R; 〈y, z〉 + k ≤ ρ (y) ∀y ∈ Y} ,

then ∂ is convex and closed with respect to the product topology of σ (Z,Y) and the strong

topology on R. Furthermore, for every y ∈ Y, the following representation holds:

ρ (y) = sup {〈y, z〉 + k; (z, k) ∈ ∂} .

Proof. It is easy to see that ∂ is convex and closed with respect to the aforementioned topol-

ogy. The inequality ρ (y) ≥ sup {〈y, z〉 + k; (z, k) ∈ ∂} is obvious too, so let us prove the op-

posite inequality. Consider y0 ∈ Y and ε > 0, it is sufficient to prove that ρ (y0) − ε ≤

sup {〈y, z〉 + k; (z, k) ∈ ∂}. It is obvious that (y0, ρ (y0) − ε) < A, where

A = {(y, r) ∈ Y × R; r ≥ ρ (y)} .
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Since ρ is convex and continuous, then the set A is closed and convex. In addition A is non-

empty as ρ(0) = 0, and therefore, the Hahn-Banach Separation Theorem proves the existence

of a non-null element (z0, k) ∈ Z × R such that 〈y, z0〉 + rk ≥ 〈y0, z0〉 + k (ρ (y0) − ε) , for every

(y, r) ∈ A.

Note that k ≥ 0, otherwise the latter inequality could not hold if r → ∞. Moreover, k = 0

is not possible either, since 〈y, z0〉 ≥ 〈y0, z0〉 for every y ∈ Y would lead to z0 = 0 which is

against the fact that (z0, k) , (0, 0). Thus, taking z0/k instead of z0, and denoting it by z0 again,

we have that 〈y, z0〉 + r ≥ 〈y0, z0〉 + (ρ (y0) − ε) , holds for every (y, r) ∈ A. In particular, for

r = ρ(y), the inequality 〈y, z0〉 + ρ (y) ≥ 〈y0, z0〉 + (ρ (y0) − ε), holds for every y ∈ Y , and

therefore ρ (y) ≥ − 〈y, z0〉 + 〈y0, z0〉 + (ρ (y0) − ε), which shows that (−z0, 〈y0, z0〉 + ρ (y0) − ε)

belongs to ∂. This implies that

sup {〈y0, z〉 + k; (z, k) ∈ ∂} ≥ − 〈y0, z0〉 + 〈y0, z0〉 + ρ (y0) − ε = ρ (y0) − ε.

�
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