
Credit Risk Modeling under Jump Processes and
under a Risk Measure-Based Approach

Ramin Okhrati

A Thesis
In the Department

of
Mathematics and Statistics

Presented in Partial Fulfillment of the Requirements
For the Degree of Doctor of Philosophy at

Concordia University
Montreal, Quebec, Canada

July, 2011
c©Ramin Okhrati, 2011



CONCORDIA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Ramin Okhrati

Entitled: Credit Risk Modeling under Jump Processes and
under a Risk Measure-Based Approach

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Mathematics)
complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

Approved by Chair
Approved byProf. K. Argheyd

Approved by External Examiner
Approved byProf. G. Gauthier

Approved by External to Program
Approved byDr. N. Gospodinov

Approved by Examiner
Approved byDr. C. Hyndman

Approved by Examiner
Approved byDr. X. Zhou

Approved by Thesis Co-Supervisor
Approved byProf. A. Balbás

Approved by Thesis Co-Supervisor
Approved byProf. J. Garrido

Approved by
Approved by Dr. J. Garrido, Graduate Program Director

July 25, 2011

Dr. B. Lewis, Dean
Faculty of Arts and Science



ABSTRACT

Credit Risk Modeling under Jump Processes and under a Risk Measure-

Based Approach

Ramin Okhrati, Ph.D.

Concordia University, 2011

Having a precise idea of how information is used is a key element in studying credit

risk models. This concept plays an important role in structural and reduced form

models and most recently in information based models. In this thesis the relationship

between these models and the idea of information, more specifically through filtration

expansions, is studied in depth. Special attention is given to the study of intensity

processes under different types of filtration expansions.

Credit derivatives are path dependent financial products. Therefore their analysis

is based on the history of the underlying risky process. If the underlying process is

allowed to have jumps, then this analysis is more challenging. This explains why,

normally, risk management techniques for these products assume that the underlying

process is continuous, the derivative is path independent, or the probability measure is
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risk neutral. In our model, in the context of a locally risk-minimization approach, the

problems of pricing and hedging of defaultable claims are discussed without imposing

any of the above assumptions.

The impact of risk measures in financial markets can no longer be ignored. Consid-

ering this, a methodological procedure based on risk measures is developed to gauge

the credit quality of defaultable bonds in real bond markets. Through this process a

new type of indicator is introduced that can be useful to detect inconsistencies in bond

markets. This can be helpful in market integration applications.
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Introduction to Credit Risk

The 2008 bankruptcies of several major investment banks such as Lehman Brothers,

have raised interest for credit risk models to the point of becoming an important part in

the theory of finance. Credit risk is the risk associated with the possible financial losses

of a derivative caused by unexpected changes in the credit quality of the counterparty’s

issuer to meet its obligations. The derivative can be a bond, a loan, an installment

debt or even more complicated products depending on the counterparty’s agrement

that defines it.

Bonds form a common type of credit derivatives. Bonds that are issued by gov-

ernments are usually considered risk free, but those issued by financial firms are more

likely to be defaulted. One credit derivative that played an important role in the recent

bankruptcies is the credit default swap (CDS). A major part of the losses of the giant

insurance company, AIG, were caused by the CDS’s it wrote on its own company and

also on Lehman Brothers Holdings Inc..

In a CDS a protection seller insures a protection buyer against a well specified

credit event and in return the protection buyers pay periodic payments (known as

credit spreads) to the insurer. The credit event is not necessarily a bankruptcy and it
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depends on how the counterparties define it. It can be a specific level that a firm’s value

crosses. Depending on the definition of the credit event, a CDS may be terminated

before maturity. In that case the protection seller is required to make a promised

payment (settled in cash), to deliver the debt owed (settled physically) or to realize

other types of settlements. For investors who seek protection, CDS’s are very useful

and simple tools to transfer the risk from one party to the other. For a motivating

economical explanation of these concepts we refer to the first four chapters of Wagner

(2008).

In this thesis, we study credit risk by using two different approaches. In each one,

because of the complexity in the theory, we focus on special credit derivatives. The

extension to more complicated derivatives, like the above CDS’s will be interesting for

future work.

In the first approach, we use semimartingale theory to analyze the credit risk of

defaultable claims. The motivation behind the work comes from a classical actuarial

model that will be explained in Chapter 5. Since the historical behavior of asset prices

resembles the sample paths of pure jump processes, special attention has been paid to

study credit risk under jump processes. A pricing and hedging analysis is carried out

for defaultable claims, which are simple types of CDS. Apart from credit risk, there

are theoretical interesting results as well.

In the second approach, we use risk measures to study credit risk. In contrast to

the first one, we do not use stochastic processes. The main ingredient of this approach
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is random variables. Here defaultable bonds are credit sensitive derivatives analyzed

using risk measures.

In the following chapters, these two approaches are explained and developed in

detail. Chapters 1 to 5 discuss the first approach and Chapter 6 is devoted to the second

one. Please note the different inputs and tools used in each of these two cases. In the

first approach, we use stochastic processes and semimartingale theory, while random

variables and optimization theory are applied for the second approach. Because of this,

we are not able to directly link the two, though both approaches will be dealing with

credit risk. In fact, the reader can read each one independently from the other one.

The rest of this thesis is organized as follow.

In Chapter 2, structural models and reduced form models are reviewed. Information

based models are explained in Chapter 3. In this chapter, the idea of information in

credit risk models is developed. We try to bring most of the current models under

one framework by considering three different types of filtration expansions. Also the

properties of intensity and its connections to the empirical observations are explained.

In Chapter 4, it is assumed that the firm’s value process is given by St = u +

µ+Bt +
∑Nt

i=1 Yi, where Bt is a Brownian motion and
∑Nt

i=1 Yi is a compound Poisson

process. In working with reduced form models under this process, the structure of the

intensity is an important issue. We apply the method of Guo, Jarrow and Zeng (2009)

and discuss the structure of the intensity associated with this process. Having the

intensity in this case, then we discuss the intensity for a general Lévy process. Finally,
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we will observe that in the presence of jumps the intensity cannot be zero, which will

guarantee non-zero short spreads.

In Chapter 5, we focus on the hedging of defaultable claims. The locally risk-

minimizing approach, a method for managing the risk of general contingent payoffs, is

explained. Martingale techniques, in addition to the idea of intensity in reduced form

models, are applied to analyze the structure of defaultable claims. Then we use the

locally risk-minimizing approach to study the hedging of these defaultable claims.

Note that the theory of locally risk-minimizing is already applied to study default-

able markets, but in most of financial models the continuity of the underlying process

is a crucial assumption. Our main contribution is to challenge this assumption in

Chapter 5. Beside this, a few theoretical results are also obtained in this chapter.

In Section 5.8, we explain pricing tools and the estimation of the distribution of

the default time. Although finding the distribution of the default time is not our main

goal, some of our results can be applied to this purpose.

In Chapter 6, we explain the second approach to study credit risk that is using risk

measures to study credit risk. However, we would like to mention that our work goes

beyond that and analyzing credit risk will be only one of the outcomes. Especially, a

new indicator based on risk measures is introduced and developed that can be used to

measure inconsistencies in the bond market.

Chapter 7 gives some conclusions and discusses future work.
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Chapter 1

Credit Risk and Stochastic
Processes

In the context of stochastic processes, many tools and methods have been developed to

model credit risk. Basically these models fall under two general categories; structural

models and reduced form models. Both are revisited in the following sections. First,

we review some basic notations.

1.1 Basic Notations

Throughout this thesis, suppose that uncertainty is modeled by a probability space

(Ω,F ,P), where Ω represents the states of the world and P is a probability measure on

the σ-algebra F that determines the likelihood of its events. It is normally assumed

that the probability space is equipped by a filtration (Ft)0≤t<∞ which is an increasing

sequence of σ-algebras such that Ft ⊂ F for all 0 ≤ t < ∞. A typical filtration

(Ft)0≤t<∞ is represented by F. The equipped probability space is shown by (Ω,F ,F,P).

Depending on the context, different types of filtration are considered. However the σ-

5



algebra F is fixed and assumed to be rich enough to cover all the filtrations.

Without further assumptions, all the upcoming filtered probability spaces are as-

sumed to satisfy the usual hypothesis (or usual conditions). This means that the

following conditions are met

• The probability space (Ω,F ,P) is complete.

• For all t ≥ 0, the σ-algebras Ft contain all the sets in F of zero probability.

• The filtration F is right continuous. That is, for every t ≥ 0 the σ-algebra
⋂
s>t Fs

is equal to Ft.

The evolution of a typical firm’s asset value is given by a càdlàg stochastic process

X = (Xt)t≥0 that is adapted to some filtration. As we proceed, further notations will

be introduced.

1.2 Introduction and Review of the Literature

The first paper that introduced credit risk goes back to the work of Merton (1974). His

work is the foundation of structural models. In Merton (1974), default can happen only

at the maturity time. Later this model was extended by Black and Cox (1976) that

allows for default to happen at any time prior to the maturity. In this kind of model

the default time of a loan is given by a stopping time; it is the first passage time of the

firm’s assets below a barrier. Economically, structural models are interesting because

they give an interpretation for the default time, but their drawback is that they are not
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consistent with the market observations. In these models it is assumed that the market

value of the firm is observable which normally leads to the predictability of the default

time, especially when this market value is modeled by a continuous process. It means

that the investors would be aware of the probable default time in advance, leading

to zero short credit spreads. Zero short credit spreads indicate no risk of default is

contributed in a small period of time. It turns out that these short spreads are always

non-zero on the market.

On the other hand, the reduced form models; pioneered by the works of Artzner

and Delbaen (1995) or Jarrow and Turnbull (1995), use a different approach to model

credit risk. In these models the probability of default is given by a relation in terms

of either the so called intensity process or hazard process. Here the default time is

totally inaccessible, which means that it is not predictable at all. Investors will never

be aware of the default time.

By contrast with structural models, these reduced form models yield non-zero short

spreads and also more useful formulas for pricing credit derivatives. So far, reduced

form models have been divided into two categories; intensity based models and hazard

process models. In intensity based models, the main focus is on the structure of the

default indicator process that is N = (Nt)t≥0 and Nt = 1{T ≤t}, where the default time

T is a stopping time under a given filtration F = (Ft)t≥0, which can be considered as

the whole information available to investors on the market.

On the other hand, hazard process models are based on the conditional default
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probability under a given filtration i.e. P(T ≤ t|Gt), where the filtration G = (Gt)t≥0

can be viewed as a limited amount of information available to investors. More details

on these two categories can be found in Jeanblanc and LeCam (2007).

While reduced form models are tractable, generally they do not use or determine

a default model of the firm. It means that contrary to structural models, here it is

not economically clear why default happens. On the other hand, although structural

models are economically appealing, they do not provide explanations for empirical ob-

servations such as non-zero short spreads. Attempting to resolve these problems can

lead to a link between the structural and reduced form approaches. These models

have been studied in many directions, while keeping the same framework. Their draw-

backs have been resolved in different ways. One of these ways is using the concept of

information in credit risk models.

The basic idea, to fill the gap between these two major models, is to introduce

different levels of information in the model. This new prospect has been proposed to

try unifying these different credit risk models. The drawbacks of the structural models

can be addressed through this new idea.

Perhaps among the first papers to introduce the concept of information in the model

is that of Duffie and Lando (2001). They assume that investors just have periodic access

to the accounting data, at deterministic times t1, t2, t3, .... By assuming a geometric

Brownian motion they find that under full information F = (Ft)t≥0, for the default

time T , and for all t ≥ 0 we have limh↓0
P(t<T ≤t+h|Ft)

h
= 0, while under the periodic
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information G = (Gt)t≥0, limh↓0
P(t<T ≤t+h|Ft)

h
= λit (i for intensity), where λit is almost

surely non-zero. These results imply that under full information, credit spreads go to

zero as one decreases the maturity time, while under imperfect information it is still

non-zero.

Giesecke (2004a) introduces both structural and reduced form models comprehen-

sively, and then tries to unify both models under incomplete information. He also

investigates dependent default and calibration of data.

Giesecke and Goldberg (2004) introduce the I2 model. In this model, the default

time is defined as the first hitting time to a barrier. In their model investors are

allowed to observe the firm’s value evolution process X = (Xt)t≥0, which is assumed to

be continuous, but they cannot observe the firm’s default barrier. They assume that

this default barrier is a random variable with a given distribution.

Giesecke (2006) describes and categorizes different available types of information.

In his paper it is shown that under complete information and a predictable default time,

the short spreads are zero. Then he studies the case of incomplete information and

obtains a pricing rule, though not a very explicit one. Also in this paper the relation

between intensity and information is presented. Overall, the conclusion is as follows:

with the continuity assumption of the firm’s value evolution process, we can recover

the structural models under complete information, and as the level of the information

decreases the model changes to a reduced form one.

In the previous mentioned works, the analysis is done for a continuous firm’s value
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process. One of the first papers that studies credit risk with a jump process is Zhou

(2001). He considers the process

dXt

Xt

= (µ− λv)dt+ σdBt + (Π− 1) dNt, t ≥ 0,

where B is a standard Brownian motion, Π the jump amplitude with expected value v+

1, and N is an homogeneous Poisson process with intensity λ. Under some assumptions

he obtains a pricing rule for a bond, and also he shows that the short credit spreads

are non-zero. In the presence of jumps the structure of credit risk models is more

complicated.

In contributions that deal with the concept of information, traditionally there are

two levels of information; the market information as the incomplete information and

the manager’s information as the complete information. In the presence of jumps and

complete information one could still expect non-zero short spreads. It seems that in

this case, the structure of the default indicator function, as well as the intensity (please

be careful that this is not meant to be the intensity of the Poisson process), need more

attention. Guo, Jarrow and Zeng (2009) directly study the structure of the intensity

under different filtration assumptions including delayed and incomplete filtrations.

Another important issue in credit risk modeling which has not been studied exten-

sively yet is the hedging of credit derivatives. A preliminary example in Jeanblanc and

LeCam (2007) shows that even when working with simple continuous processes like

Brownian motion, a complete hedge may still not be reached. Their example shows
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that complete hedging is possible under the structural model, but under the reduced

form model the market would be incomplete due to a delay in the information (incom-

plete information). In this case a mean-variance approach may be applicable. This

example also highlights the fact that hedging in reduced form models should be done

in an incomplete market.

Schweizer (1999) provides a good survey of hedging approaches in incomplete mar-

kets. In his article two quadratic hedging approaches, a locally risk-minimizing ap-

proach and a mean-variance hedging approach are introduced for the case where the

firm’s value process is a semimartingale.

Elouerkhaoui (2007) uses a simple structure of intensity in reduced form models

and applies quadratic hedging approaches to obtain the hedging strategy.

Although we are interested in hedging using the structure of intensity based models,

other methods are available; Cherubini and Luciano (2003) use copulas for pricing and

hedging credit derivatives.

In our work, we mainly focus on the hedging of defaultable claims. We use the

theory of local risk-minimization and assume that the underlying process is a bounded

variation Lévy process, for which none of the above methods lead to a practical solution.

Our work studies a structural model, in the sense that we use the whole market

information, represented by the filtration generated by the underlying process. How-

ever, we use an analysis like that of reduced form models and especially intensity based

models. This is clarified more extensively in Chapters 2, 3, and 4.
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Martingale techniques and the idea of intensity in reduced form models are applied

to analyze the structure of defaultable claims. In Chapter 5, a Dynkin-type formula is

obtained through our analysis for the defaultable processes
(
g(t,Xt)1{τ>t}

)
t≥0

, under

certain conditions. This enables us to use compensator techniques for these types of

processes.

Note that here the underlying process has jumps, the payoff is path dependent, and

the probability measure is not necessarily a martingale measure. In addition we do not

use any type of Girsanov’s theorem.

We also study the structure of the default indicator process
(
1{τ>t}

)
t≥0

and finite

horizon ruin time in Section 5.8. For pricing in credit risk models, the distribution of

the default time is needed under the risk neutral measure, i.e P(T ≤ t). In the above

mentioned work, this has not been an issue of interest and whenever needed the tool

is borrowed from other theories. This problem is solved numerically in some cases.

One important family of jump processes is that of Lévy processes. For spectrally

negative Lévy processes, the Laplace transform of the default time (finite horizon ruin

time), defined by τ d = inf{t > 0;Xt < d}, for d a constant, is known, see for example

Chiu and Yin (2005). Also, the Laplace transform of the distribution of the default

time is known for jump diffusion processes with exponential jump size distributions,

see Kou and Wang (2003).

In our work we would like to use general Lévy processes, technical problems force

us to consider finite variation Lévy processes. Generalization of the results will be kept

12



for future work.

The credit derivatives that will be considered are defaultable claims of the form

H1{τ>T}, where T is the maturity, H ∈ L2 an FT -measurable random variable, and

τ = τ 0 = inf{t > 0;Xt < 0}. For simplicity a single firm will be considered.

13



Chapter 2

Default Event and Credit Risk
Models

2.1 Structural Models

In the previous section, we briefly explained the main idea and features of structural

models. To understand these models, now we discuss Merton’s Model in detail. This

approach was pioneered by Merton (1974) and it was the foundation of credit risk

structural models.

Consider the simple case where in addition to the asset X, the firm is also financed

by a zero coupon bond with maturity of T that pays F units to bondholders (investors)

if XT ≥ F , otherwise they receive XT . Therefore it is assumed that in case of financial

distresses, bondholders have absolute priority with respect to shareholders. Hence the

payoff of the bond is min(XT , F ). This can be considered as a credit derivative with

the above credit event defined at time T based on the firm’s asset value. By a simple

decomposition we have

min(XT , F ) = F −max(0, F −XT ).

14



Note that max(0, XT −F ) is the value of the equity at time T , because if XT ≥ F , the

firm pays F amount to bond investors and equity holders receive XT − F . If XT < F

then the firm is bankrupt and the equity is worthless. Since bond holders have priority,

they receive XT and equity holders get nothing.

This product is analyzed by noting that the right-hand side of the above equation

can be considered as the payoff of a portfolio composed of a risk-free bank account and

a vanilla option. For example, under the absence of arbitrage assumption, the price of

this bond is equal to the value of the portfolio at time zero. If Xt is a Brownian motion

based process (for example a geometric Brownian motion), Black-Scholes formula can

be used to price this product.

The above model can be extended in some ways. In Merton’s model, the firm

defaults only at time T . On the other hand, Black and Cox (1976) suggest that the

firm may default at any time before T . This is modeled by defining the default time

as

τD = inf{t;Xt < D}, (2.1)

which is the first passage time of the asset process below the barrier D. In Definition

(2.1), D could be a constant, a random variable or even a random process. The barrier

D can be interpreted as the total amount of liabilities or a level of the firm’s assets

value for which the management of the firm decides to liquidate the assets if their value

falls below D. In the case when D = 0, throughout this thesis we use the notation τ

for τ 0 = inf{t;Xt < 0}.
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In analyzing the above model, it is assumed that the asset process X and the

barrier D are observable by investors. Suppose that the filtration FX,D =
(
FX,Dt

)
t≥0

is generated by X and D. This filtration could be viewed as the available information

to the investors or modelers. Therefore, we are assuming that investors have complete

access to the asset process and accounting data of the firm including liabilities D. This

is possible only if the firm’s accounting data are announced publicly or modelers are

firm holders, which may not be true. Normally firm holders are not that willing to

spread out information of the firm to other investors, and hence investors outside the

firm have partial access to the firm’s accounting data. Even beyond that, firm holders

may be banned from investing in bond markets by insider’s legislations. Therefore the

asymmetry of information between management and investors must be considered.

Respecting the above filtration FX,D, τD is a stopping time. It can be shown easily

that if X is a continuous process then the stopping time τD is predictable (see Definition

A.2 of the Appendix A.1). For example one can define τD+ 1
n := inf{t;Xt ≤ D + 1

n
},

for n ≥ 1. Then {τD+ 1
n}∞n=1 is an increasing sequence of stopping times such that for

every n, τD+ 1
n < τD on τD > 0, and limn→∞ τ

D+ 1
n = τD, almost surely.

The predictability of the default time τD has some impact on credit risk modeling.

To study these effects, we first define (short) credit spread.

Let T be a general stopping time (not necessarily in the form of (2.1)) with respect

to a filtration F. Assume that the stopping time T models the credit event. Suppose

that yc is the yield at time t, t < T , and t < T on a credit risky, zero coupon bond
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with a unit face value issued by a private corporation. Assuming that the recovery rate

is zero, this means that yc satisfies the following equation

e−
∫ T
t rsdsP[T > T |Ft] = e−yc(T−t), (2.2)

where rs in the above is the deterministic interest rate, and the probability measure P

can be risk-neutral. Note that in case of a random interest rate and a non-zero recovery

process R, the left hand-side of (2.2) should be replaced by the following

E
[
e−

∫ T
t rsds(1{τ>T} +Rτ1{τ≤T})|Ft

]
.

Here it is assumed thatR is zero and the interest rate is deterministic. An equivalent

form of the formula (2.2) is

yc −
∫ T
t
rsds

T − t
= − lnP[T > T |Ft]

T − t
.

The second term on the left-hand side of the above equation is the yield at time t of a

risk-free zero coupon bond with a unit face value (the risk-free bond can be considered

as the one issued by government), and the term on the right-hand side is the difference

between the risky yield and the risk-free one. This difference is called the credit spread

of the risky bond at time t, and it is denoted by S(t, T ). In other words, the credit

spread at any time t < T , t < T is defined as the excess yield demanded by the

investors in order to be willing to buy a private corporate bond over a risk free one.

Short credit spreads are defined as

lim
T↓t

S(t, T ) = lim
T↓t
− lnP[T > T |Ft]

T − t
, (2.3)
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whenever this limit exists. Short credit spreads are interpreted the same as credit

spreads but for very short periods of times. The following result of Giesecke (2006) im-

plies that under the predictability assumption of the default time, short credit spreads

are zero.

Proposition 2.1. Assume that F is any filtration representing the information avail-

able for investors. Let T be any F-predictable stopping time that represents the default

time of the firm. Further suppose that for all t < T , limn→∞ P[T ≤ t + 2−n|Ft] = 0.

Then

lim
n→∞

∑
ti∈Zn

S(ti, 2
−n)1{ti<t≤ti+1} = 0, (2.4)

almost surely P×Leb, where Zn = {k2−n|k = 0, 1, ...}, n ≥ 1, and Leb is the Lebesgue

measure.

Remark 2.1. The above proposition is almost the same as the original one in Giesecke

(2006). We point out that the assumption limn→∞ P[T ≤ t+2−n|Ft] = 0 is redundant as

it can be concluded by using Lebesgue’s dominated convergence theorem for conditional

expectation and the assumption that t < T . Here we give a simpler proof using the

definition of conditional expectation and Lebesgue’s dominated convergence theorem.

This type of proof can be used in other similar problems. The details are shown below.

We start by assuming that T is a random time (not necessarily a stopping time, see

A.1 for the definition of a random time). The definition of conditional expectation
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gives ∫
C

E[1{T ≤t+2−n}|Ft] dP =

∫
C

1{T ≤t+2−n} dP, for all C in Ft. (2.5)

Define Xn = E[1{T ≤t+2−n}|Ft], then {Xn}n≥1 is a positive decreasing sequence of Ft-

measurable random variables. By adjusting the monotone convergence theorem we have

lim
n→∞

∫
C

E[1{T ≤t+2−n}|Ft] dP =

∫
C

lim
n→∞

E[1{T ≤t+2−n}|Ft] dP. (2.6)

Now we take the limit of both sides of (2.5), and use the monotone convergence theorem

one more time on the right-hand side. Then by comparing to (2.6), we get

∫
C

lim
n→∞

E[1{T ≤t+2−n}|Ft] dP =

∫
C

lim
n→∞

1{T ≤t+2−n} dP =

∫
C

1{T ≤t} dP.

Therefore by the definition of conditional expectation we obtain

∫
C

lim
n→∞

E[1{T ≤t+2−n}|Ft] dP =

∫
C

E[1{T ≤t}|Ft] dP.

Since limn→∞ E[1{T ≤t+2−n}|Ft] is an Ft-measurable random variable, the uniqueness of

the definition of conditional expectation gives limn→∞ E[1{T ≤t+2−n}|Ft] = E[1{T ≤t}|Ft].

If T is an F stopping time, then limn→∞ E[1{T ≤t+2−n}|Ft] = 1{T ≤t}. Hence for all t < T

we get limn→∞ E[1{T ≤t+2−n}|Ft] = 0.

The predictability of the default time leads to the following two conclusions.

First by the above proposition, the short credit spreads are zero. This means that

on short periods of time corporate bonds behave like risk-free bonds. Hence in short

periods of time, buyers of a credit risky bond should not require an excess yield over
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the risk free yield. In the context of CDSs, that act as insurance contracts to protect

buyers by paying a unit amount of currency in case of default, zero short credit spreads

should imply that insurers do not demand for any premium in short terms, and insureds

are protected for free.

Second if the default time of the company is predictable, by definition of predictabil-

ity, there is an announcing sequence of stopping times and so investors will be aware of

the upcoming default in advance. This causes a continuous convergence of bond prices

to the default contingent one.

None of the above conclusions are empirically supported. For non-zero short credit

spreads we refer to Sarig and Warga (1989), and for discontinuity of credit risky bond

prices near the default time, please check Duffie, Pedersen and Singleton (2003). For

more discussions and some numerical examples, we refer to Giesecke (2006).

The above problems can be addressed in two different directions.

In the first one that has been studied broadly and will be slightly reviewed in the

following two sections, is related to an access of information. As mentioned earlier,

structural models assume a symmetrical access of information between investors and

the firm’s management, this is to make the default time observable and hence pre-

dictable.

In the second direction, the problems are addressed by assuming that the evolution

of the firm’s asset value is modeled by a jump process, which is a reasonable assump-

tion. Here, even under the assumption of having complete information on the asset
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process, the default time is not necessarily predictable. As we argued, the short credit

spreads can be non-zero as well. In our work, we focus more in this direction. Further

discussions and references will follow in the upcoming sections.

Note that the definition of structural models can slightly vary from an article to

another. There is not yet a unified agreement on what is called a structural model.

What is introduced here can be called the classical structural approach.

2.2 Reduced Form Models

Reduced form models go back to Artzner and Delbaen (1995), and Duffie and Singleton

(1999). These models, instead of focusing on the credit default, assume that the default

time is given exogenously by a default rate (or a hazard process) which should be

specified using a probability of default and market prices. For example, Jarrow and

Turnbull (1995) assume that the default time is modeled by the first jump time of a

Poisson process.

As it can be seen in this example, the main problem with these models is that they

do not explain why firms default. They do not have the appealing default framework

of structural models, but they can give more tractable pricing formulas and realistic

results, such as non-zero short credit spreads. Although the hazard process approach

is normally categorized under reduced form models, in this section, we mainly focus

on the intensity based approach. Since different levels of information are considered in

the hazard process approach, we believe it is more appropriate to study it in Chapter
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3. Here is a thorough discussion of intensity based models. We start by defining the

intensity.

2.2.1 Intensity: Definitions and Properties

Consider the indicator process N = (Nt)t≥0, Nt = 1{T ≤t}, where T represents the

default time of a firm. Assume that T is a stopping time with respect to a filtration

F = (Ft)t≥0, representing all the information available to investors. For example, it

can be filtration FX,D considered in Section 2.1. Then by Doob-Meyer’s decomposition,

there exists a unique F-predictable increasing process Λ = (Λt)t≥0 such that the process

(Nt − Λt)t≥0 is a uniformly integrable F-martingale . The process Λ is called the

compensator of the process N. Notice that Λt = Λt∧T for all t ≥ 0. This is because

that by Theorem 18 in Protter (2004), the process (Nt∧T − Λt∧T )t≥0 is also a uniformly

integrable F-martingale. Since the process N is stopped at T (which means Nt = Nt∧T ,

for all t ≥ 0), the uniqueness of Doob-Meyer’s decomposition implies that Λt = Λt∧T

for all t ≥ 0.

An interesting relation exists between the stopping time T and Λt.

Theorem 2.1. Assume that N, T , and F are as above. Then T is a totally inaccessible

stooping time (or informally a complete surprise) if and only if Λ is almost surely a

continuous process.

The “if” part of this theorem can be proved by a simple contradiction argument,

together with Doob’s optional sampling theorem. For a proof of the “only if part”,

22



we refer to Theorem 20, Chapter III of Protter (2004).

For a precise definition of a totally inaccessible scoping time see Definition A.3.

Totally inaccessible stopping times are useful tools to model the timing of unpredictable

events. Since default times of firms are usually surprising events, it is normal to model

them by totally inaccessible stopping times.

In an intensity based approach, it is assumed that the compensator Λ is almost

surely absolutely continuous with respect to the Lebesgue measure. Hence under this

assumption, we have Λt =
∫ t

0
λiudu where the process λi = (λit)t≥0 is the Radon-

Nikodym derivative
(
dΛt
dt

)
t≥0

and can be interpreted as the instantaneous likelihood

of default and the letter “i” stands for the word “intensity”. The reason behind this

interpretation is due to the Laplacian approximation method that will be explored in

Chapter 4. We call λi the intensity of the default model or simply just intensity.

In what follows, two notions of intensity in a general framework are defined. In

these definitions two levels of information (filtration) are provided. In the next section,

where we work with different levels of information, these general definitions are needed.

However, in the context of the intensity based approach, the notion of intensity is a

special case of the following definition. This is explained in the second point of the

next remark.

Definition 2.1. Assume that T is a random time that is not necessarily a stopping

time with respect to a filtration G = (Gt)t≥0, where G is the sub-filtration of F and T

is a stopping time with respect to F. Assume that there exists a bounded, nonnegative
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G-adapted process λi = (λit)t≥0 such that (Nt − Λt)t≥0 is an F-martingale, where Nt =

1{T ≤t} and

Λt =

∫ t

0

λisds, t ≥ 0.

Then the process λi is called the intensity of the default model (T ,G).

Remark 2.2. Regarding this definition, the following points are worth noting:

1. The above definition is borrowed from Giesecke (2006) with a minor modification.

Giesecke’s λi is assumed to be G-predictable. The main reason for this change is

explained in the remark following Proposition 3.2.

2. In intensity based models, explained in this section, it is assumed that there is

only one filtration in the model. Therefore the above definition must be applied

when G = F. In the general case, we have an information based model and to

make T a stopping time with respect to the filtration F, the filtration G must be

extended appropriately. In this context, the filtration G is called the reference

filtration.

3. Suppose that F = G, for example in intensity based models. Since Λ in the above

definition is an F-predictable process, Proposition 3.13 of Jacod and Shiryaev

(1987) implies that one may choose λi to be F-predictable as well. This is impor-

tant in some applications, for other results or for the uniqueness of the intensity

that we investigate later.
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4. In most cases, the intensity λi is a G-adapted, càdlàg process, therefore to get a

predictable version (in fact a càglàd process) one can take λit− as the intensity,

where λit− = lims→t− λ
i
s. Notice that

∫ t
0
λisds =

∫ t
0
λis−ds. All the intensities in

this thesis are càdlàg processes, so if we ever need a predictable version we do

as above. Especially, this is important when we find the hedging strategies in

Chapter 5, as these must be predictable. The proof of uniqueness for the intensity

in the class of càglàd processes (if it exists) is very simple.

5. If λi is a G-predictable intensity, then it must vanish after the stopping time T .

The proof of this statement is fairly simple for a G-adapted càglàd (or càdlàg)

process. For a predictable intensity, one can use a monotone class argument.

6. For all non-negative F-predictable processes X, we have that E[
∫∞

0
Xs dNs] =

E[
∫∞

0
Xsλ

i
s ds]. This is a direct application of Theorem 3.17 in Jacod and Shiryaev

(1987), because N− Λ is an F-martingale.

7. The intensity in Definition 2.1 is not unique, to see an example we refer to Theo-

rem 10, Section 3, Chapter II of Brémaud (1981). If we force the G-predictability

assumption on the intensity, the previous identity in point 6 above and the same

lines of proof as Theorem 12, Section 4, Chapter II of Brémaud (1981) establish

the uniqueness of the intensity.

In Chapter 4, the existence and other properties of λi are explained. We remind

the reader that we use the same terminology as the Poisson process. Depending on the
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context, it will be clear whether we are referring to the intensity of the Poisson process.

When there is a possibility of confusion, we write the terminology in full detail for the

Poisson process. Therefore unless otherwise stated, the word “intensity” refers to the

intensity in Definition 2.1.

Although in this section we use Definition 2.1 (when G = F) as the notion of

intensity, there is another concept of intensity in the context of hazard processes.

Since we are dealing with intensities now, it is a good time to mention it here. These

concepts are applied in some credit risk models based on hazard processes. First we

define the hazard process.

Definition 2.2. For a reference filtration G and a random time T as in Definition

2.1, the hazard process Γ is defined as Γt = − lnGt, assuming that Gt = P(T > t|Gt)

is non-zero for all t ≥ 0.

Remark 2.3. In some literature, the process Γ is also called integrated hazard process.

Since G = (Gt)t≥0 is non-zero in the above definition, T can not be a stopping time

with respect to G. This can be easily verified by noticing that if T is a stopping time

with respect to G then Gt = E[1{T >t}|Gt] = 1{T >t}.

The intensity based hazard is defined as follows.

Definition 2.3. Assume that T is a random time in a reference filtration G and λh be

a bounded, nonnegative G-adapted process. Then λh is called the intensity based hazard
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of the default model (T ,G) if

Γt = − lnP(T > t|Gt) =

∫ t

0

λhsds,

almost surely for all t ≥ 0. The letter “h” stands for the word “hazard”.

In the above definition, the G-predictability of λh is linked to the G-predictability

of Γ (and so the survival process G). If λh is G-predictable then by Proposition 3.5

of Jacod and Shiryaev (1987), Γ is also G-predictable. On the other hand, if Γ is a

G-predictable process then by Proposition 3.13 of Jacod and Shiryaev (1987), one may

choose λh to be G-predictable as well.

The uniqueness of the intensity based hazard is more complicated. Suppose that λh

is a G-predictable intensity based hazard. Under an appropriate filtration expansion

F of G and T , it can be proved that on {T > t}, λh is also an intensity in the sense

of Definition 2.1, (see Proposition 3.1). Then based on point (7) of Remark 2.2, on

{T > t}, the intensity λh is uniquely determined.

In the literature, both Definitions 2.1 and 2.3 of intensity are used. To distinguish

them, we call the second one intensity based hazard. In the next section, we see how

these two types of intensity are related. In this section, and in the thesis, in general we

mainly focus on Definition 2.1 when G = F. We end this subsection by providing some

examples in order to understand the idea of the intensity in this sense of Definition

2.1.

Example 2.1. Assume that N = (Nt)t≥0 is a homogeneous Poisson process with a
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constant intensity λ and the first jump time T . Let F be the natural filtration generated

by N . It is easy to check that the process (Nt − λt)t≥0 is an F-martingale. Now, using

Doob’s optional sampling theorem (or direct calculations) and some manipulations, we

conclude that (Nt∧T − λ(t ∧ T ))t≥0 is a uniformly integrable F-martingale. Since T

is the first jump time of N , NT = 1 and Nt = 0 for all t < T . From the identity

Nt∧T = Nt1{T >t}+NT 1{T ≤t}, we get Nt∧T = 1{T ≤t}. So the process N = (Nt)t≥0, Nt =

1{T ≤t} is the homogeneous Poisson process stopped at its first jump time T , and the

process
(
Nt −

∫ t
0
λ1{T ≥s}ds

)
t≥0

is a uniformly integrable F-martingale. If a predictable

intensity is required, since λ1{T ≥s} is an F-predictable process, the uniqueness of the

intensity (see point 7 of Remark 2.2) gives that λit = λ1{T ≥t} for all t ≥ 0. Notice

that Λt =
∫ t

0
λ1{T ≥s}ds =

∫ t
0
λ1{T >s}ds, so λ1{T >s} is also an intensity, but it is not

necessarily predictable. Then by using this martingale or just by noticing that T is the

first jump time of N , we get the probability of default

P(T ≤ T ) = 1− e−λT = 1− e−
∫ T
0 λ du.

The above argument can be easily extended to the following example.

Example 2.2. Suppose that N = (Nt)t≥0 is a non-homogeneous Poisson process with

deterministic intensity λ(t) and first jump time T . Then similarly to the previous

example, one can show that the indicator process N = (Nt)t≥0 is a non-homogeneous

Poisson process stopped at its first jump time T , and the predictable intensity process

λi is equal to
(
λ(t)1{T ≥t}

)
t≥0

. It is easy to show that the probability of default is given
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by

P(T ≤ T ) = 1− e−
∫ T
0 λ(u) du.

By applying the law of iterated expectations, similar relations can be proved for a

Cox process with the stochastic intensity λS (S for stochastic). Then λi is equal to(
λSt 1{T ≥t}

)
t≥0

, and here the probability of default is given by

P(T ≤ T ) = 1− E
[
e−

∫ T
0 λSu du

]
.

2.2.2 Intensity Based Pricing Rules

As mentioned before, one of the features of reduced form models (especially the hazard

process models) is their tractable pricing formulas for defaultable securities (claims).

Roughly speaking it means that a defaultable security can be priced as a risk-free

security just by adjusting the risk-free discount rate; see Duffie and Singleton (1999)

or Giesecke (2004b) for discussions about this. Although this is mentioned in the

literature frequently, we warn the reader that other than the simple cases like Example

2.1, in general the intensity based pricing approach leads to calculating an auxiliary

jump process which is not easy to handle.

Let H be an FT -measurable random variable, and to simplify the notation it is

assumed that the interest rate is zero which in turn implies that the discount factor is

one. Then the price of the defaultable claim H1{T >T} is given by Duffie, Schroder and

Skiadas (1996),

E[H1{T >T}|Ft] = 1{T >t}
(
Wt − E[∆WT 1{T ≤T}|Ft]

)
, (2.7)
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where ∆WT = WT −WT − and

Wt = e−ΛtE[He−ΛT |Ft].

The left-hand side of Equation (2.7) is the price of the defaultable security. Unfortu-

nately, even in simple cases the auxiliary process W is not easy to handle and not even

necessarily continuous at the default time T . To see the calculations in a simple case

when λi is a constant λ which means that T has the exponential distribution, we refer

to Jeanblanc and LeCam (2007). In the special case when ∆WT = 0, the price of the

general defaultable claim H1{T >T} at time t is equal to

E[HeΛt−ΛT |Ft].

If there is an intensity then the above formula reduces to

E[He−
∫ T
t λisds|Ft].

In the presence of a non-zero interest rate r = (rs)s≥0, the last formula gives

E[H1{T >T}|Ft] = E[He−
∫ T
t (rs+λis)ds|Ft]. (2.8)

Therefore the price of this defaultable claim can be computed as a default free one,

just by adjusting the discount factor r into an effective one r+λi. However one should

keep in mind that this is true if the process W is continuous at the default time T .

This special case is treated in Giesecke (2006).

Remark 2.4. Equation (2.7) is obtained under the physical measure P. The proof of

this result has nothing to do with the underlying probability measure. The absence of
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arbitrage guarantees the existence of a risk neutral probability measure. In financial

modeling, a risk neutral probability measure is chosen to price derivatives and it has a

large impact on pricing. However, in an incomplete market, this probability measure is

not unique and it is selected based on the model and risk management criteria.

We shortly revisit the pricing rules (especially in the intensity based hazard ap-

proach) in the next chapter. Since in this thesis, our pricing method is different

than those of intensity based pricing rules, we do not emphasize these approaches

any further. For more details, we refer the reader to Jeanblanc and LeCam (2007) and

references therein.

2.2.3 Credit Spreads in Intensity Based Models

Unlike structural models, in intensity based models the default time is a complete

surprise for the investors (because of the continuity of the compensator Λ, see Theorem

2.1), hence it cannot be anticipated by a sequence of stopping times. This means that

even for very short periods of time there is a chance of default and so non-zero short

spreads are charged by the insurer for bearing that risk in short terms. This is consistent

with empirical results.

In the intensity based models explained above, the absolute continuity of Λ with

respect to the Lebesgue measure is the main assumption. Giesecke (2006) explains

the case when the absolute continuity does not necessarily hold. Çetin, Umut, Jar-

row, Protter and Yildirim (2002) give a model in which investors have access only to
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information on the sign of the process. In their paper, a Brownian motion is used as

an underlying process, and investors are informed if the balance sheet is negative or

positive, but not necessarily of its absolute value.
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Chapter 3

Information Based Models

Although the models mentioned in Sections 2.1 and 2.2 look quiet different, they have

one thing in common, a unique flow of information is considered. Despite this, in

information based models, different levels of information are considered. The main

intuition behind information based models is that normally those who are closer to the

management’s board of a firm have more information than market investors (or bond

investors).

3.1 Information Levels and Reference Filtration

Obviously for a financial product, different levels of information should produce differ-

ent prices, and in fact as we see below this is also theoretically supported. For example

in an extreme scenario, a security contract could be worthless in the view of managers

who are aware of the upcoming default, but still in demand for market investors. In

other words, bond investors might not have as much information as equity holders. Be-

cause of this, information based models some times are called incomplete information

33



models.

Mathematically, each level of information is modeled by a specific filtration. For

example if investors are able to observe the firm’s accounting data (or mathematically

the underlying process X) and the credit event T , but not the default barrier D, then

an appropriate filtration is the one generated by X = (Xt)0≤t≤T and T , where again

T is the maturity of the derivative written on the underlying process. This model is

considered in Giesecke and Goldberg (2004a).

The model of Duffie and Lando (2001) that was mentioned before is also an informa-

tion based model since two different levels of information are considered. Furthermore,

the models of Sections 2.1 and 2.2 can be represented as information based models. In

fact, this is one of the ways of unifying classical structural and intensity based models.

In terms of information, both models use the same level of information. What makes

them different is how they model the credit event. In structural models, the default

event is made endogenously through an economical definition of default, while in inten-

sity based models it is given exogenously by an intensity. Note that the default time

T of the firm can be a stopping time with respect to one level of information, while

it is just a random time with respect to the other filtration. Giesecke (2006) explains

different levels of information.

Information based models start by introducing a reference filtration G = (Gt)t≥0

representing the market information available to market investors. The filtration G

excludes the default time T , even if the later is also observable by market investors.
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For example in Giesecke and Goldberg (2004a) mentioned before, the appropriate σ-

algebra Gt is generated by (Xu)0≤u≤t. Assuming that investors can observe the default

barrier D and receive periodic noisy reports (Re)tk = Xtk +Ytk , for k ≥ 1, deterministic

times t1 < t2 < ..., and independent noise random variables Ytk , yields the model of

Duffie and Lando (2001). In this model, for tn ≤ t < tn+1, the reference filtration G is

equal to

Gt = σ(Ret1 , Ret2 , ..., Retn ; 0 ≤ s ≤ t). (3.1)

We call this the periodic-noisy filtration.

3.2 Filtration Expansions

As we already saw, depending on the model, the default time T is not necessarily

a G-stopping time. Since we are analyzing a credit event represented by a default

time T , technically it is necessary to work in a filtration for which T is a stopping

time. It is worth noting that this is not just a technical assumption because at the

time of a bankruptcy or default, investors on the market will be informed. Therefore

by considering G as the appropriate filtration for investors, we automatically have

assumed that they cannot observe the default event. Hence the investors filtration

F = (Ft)t≥0 must be an appropriate expansion of the reference filtration G that makes

T a stopping time.

In practice, making T a stopping time means that investors can be made aware of

the default time. Because there is more than one way of expanding a filtration, this is
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where different approaches based on different expansion methods come into play. First

we explain these filtration expansions. There are three main methods of expanding the

reference filtration G in credit risk models. These are explained below.

The first type is called progressive filtration expansion and is defined as

Ft = {B ∈ F∞; for some Bt ∈ Gt, B ∩ {t < T } = Bt ∩ {t < T }}, (3.2)

where F∞ = G∞ ∨ σ(T ) and G∞ =
∨∞
t=0 Gt. An instant problem appears with the

expanded filtration F. On the event {T ≤ t} it must include the whole information of

the reference filtration G. Mathematically we have the following

G∞ ∩ {T ≤ t} ⊂ Ft.

Obviously accepting this filtration expansion requires the progressive knowledge of the

reference filtration for investors, at least partially (on the event {T ≤ t}) or completely,

depending on how it is defined in the model.

The second type is called minimal filtration expansion and is defined very intuitively

as the minimal expansion of the reference filtration G that makes T a stopping time

Ft = Gt ∨ σ({T ≤ s; s ≤ t}).

In contrast with the progressive filtration expansion, it does not require information up

to infinity and makes T a stopping time. A very useful and simple observation is that

the minimal filtration expansion is a subset of the progressive filtration expansion.

Now, after having introduced these two filtrations, we can give an answer to the

following interesting question.
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Remark 3.1. In both Definitions 2.1 and 2.3, λi and λh are allowed to be G-predictable

processes. But what changes if we let them be F-predictable? If λi and λh are G-

predictable then obviously they are F-predictable also. Now assume that these two in-

tensities are F-predictable and F is any filtration expansion of G and T , such that it

is a subset of the progressive filtration expansion of G and T . Since the minimal fil-

tration expansion is a subset of the progressive filtration expansion, as a special case,

the expanded filtration F can be either one of the two. By Lemma 1 in Jeulin and Yor

(1978), there are G-predictable processes λ̃i and λ̃h, such that λ̃it1{T ≥t} = λit1{T ≥t} and

λ̃ht 1{T ≥t} = λht 1{T ≥t}. Therefore under the above filtration expansion assumptions, λi

in Definitions 2.1, can be considered as a G-predictable process and in Definition 2.3,

when T > t the same conclusion can be made for λh.

The third type of filtration expansion used in credit risk modeling is slightly newer

and more general. It was introduced by Guo and Zeng (2008). This includes the

minimal and progressive filtration expansions as special cases. It is defined as any

filtration F that satisfies the following

Gt ∩ {t < T } = Ft ∩ {t < T }, for all t ≥ 0. (3.3)

To understand the role of these filtration expansions, we explain some models re-

lated to each. We start by the progressive filtration expansion.
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3.3 Progressive Filtration Expansion

Giesecke (2006) uses the progressive filtration expansion to study different levels of

information. Some of his results are general and do not rely on a specific filtration

expansion. Under the progressive filtration expansion, he obtains a fairly general pric-

ing rule. This is the same formula that was obtained in Equation (2.8). Also he gives

a good interpretation of intensity based hazards. Proposition 5.10 in Giesecke (2006)

shows that if the intensities based hazards are right continuous then they are in fact

the short credit spreads (2.3). We will explain this in more detail at the end of this

section.

A good question to bring up at this point is what is the reason to use a progressive

filtration expansion while we know realistically it is not true? The reason behind this

choice is a technical result due to Jeulin and Yor (1978) (see Theorem A.1 in the

Appendix) that provides a compensator of the process N = (Nt)t≥0, Nt = 1{T ≤t} in

the progressive filtration expansion of G and T . However, a recent corollary of Guo

and Zeng (2008) shows that the consistency of the compensator holds under different

filtration expansions. This means that the compensator of N is the same under the

progressive and minimal filtration expansions. Regarding this extension of Jeulin-Yor’s

theorem, some of the results in Giesecke (2006) can be improved. Here, we mention

one of them.

Under the progressive filtration expansion, Giesecke (2006) explains the relation
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between the intensity based hazard and the intensity in Definition 2.1. In his proof he

uses Jeulin-Yor’s theorem. By using the extended version of Jeulin-Yor’s theorem, and

minor modifications of the proof of Proposition 5.8 in Giesecke (2006), we can get the

following improved version.

Proposition 3.1. Assume that F is any filtration expansion of the reference filtration

G and T that satisfies (3.3) (this includes the minimal and progressive filtration ex-

pansions as special cases). If λh is an intensity based hazard, in Definition 2.3, which

is càdlàg, càglàd, or G-predictable then λit = λht 1{T >t}, t ≥ 0, is an intensity in the

sense of Definition 2.1. Moreover, if λh is G-predictable then the predictable version

of λi, i.e. λit = λht 1{T ≥t} is unique and G-predictable. On the other hand, if λi is the

intensity in the sense of Definition 2.1 which is càdlàg, càglàd, or G-predictable, and

if the compensator of Γ is given by 1− Γ, then on T > t, λi is also an intensity based

hazard, i.e. 1{T >t}P(T > t|G) = 1{T >t}e
−

∫ t
t λ

i
s ds, t ≥ 0. Moreover, in this case, if λi is

G-predictable then on the event {T > t}, λh is unique and G-predictable.

3.4 Minimal Filtration Expansion: The First

Approach

Next we focus on the minimal filtration expansion. In this context, normally there

are two approaches to analyze credit derivatives. The first approach investigates the

existence of the intensity in the sense of Definition 2.1. Then this intensity is used to

analyze credit derivatives that reduces to pricing risky assets.
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Duffie and Lando (2001) use the periodic-noisy filtration (3.1) as the reference

filtration and obtain an intensity used for pricing. In their model, Xt = eZt , where

Zt = Z0 +mt+σBt, and the periodic-noisy reports are produced by (Re)tk = Xtk +Ytk ,

where Yt is a Gaussian process independent of X. The default time T is considered to

be τ d = inf{t;Xt < d} for some constant d. They use Laplacian approximation (that

is explained in the next chapter) and calculate intensities λi,

λit =
1

2
σ2∂f

∂x
(t, d),

where f(t, .) is the conditional density of the conditional distribution of Xt given Ft

(the minimal expansion of Gt), and ∂f
∂x

(t, d) is the partial derivative of f(t, x) respect

to x, evaluated at x = d. First, they had proved that this conditional distribution has

a continuously differentiable conditional density.

Guo, Jarrow and Zeng (2009) introduce a delayed filtration. Roughly saying, a

delayed filtration is a subset of FXt−δ, for some δ > 0 and FXt is the natural filtration

generated by the underlying asset process X. Hence it is assumed that as time passes,

eventually investors get full information. Then the minimal filtration expansion of this

delayed filtration is used to obtain intensities of general one-dimensional, continuous

Markov processes, regime-switching models and jump diffusion processes. As the struc-

ture of intensities and the exact definitions are complicated, for more explanations we

refer the reader to the original paper.

Therefore there are appealing results that give closed forms of intensities in the
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minimal filtration expansion. However, as it was explained in the previous section,

pricing the credit risky products is not an easy task due to the existence of the auxiliary

jump process in (2.7). So in terms of pricing rules based on (2.7), there may not be

sufficient motivations to obtain intensities. But at the end of this section, we explain

a real interpretation of intensities that makes intensities useful tools to study in credit

risk.

Theorem 13 of Guo, Jarrow and Zeng (2009) discloses the significance of informa-

tion in pricing credit risky assets. It shows how the level of information effects the

price. Now we explain this beautiful result. Assume that we want to price the credit

risky asset with the payoff 1{τD>T}, where τD = inf{t > 0;Xt ∈ D}, X is a gen-

eral and multi-dimensional Markov process under a risk-neutral measure Q, D ⊂ E,

and E is the state space of X. The process X represents the underlying asset pro-

cess. Let FXt = σ(Xu; 0 ≤ u ≤ t) be the natural filtration of X and {tk}∞k=0 a strictly

increasing sequence of non-negative real numbers converges to infinity with t0 = 0.

This sequence is showing the periodic dates on which investors are informed about the

firm’s asset value. Therefore for tk ≤ t < tk+1, the reference filtration Gt is generated

by {Xt1 , Xt2 , ..., Xtk}. By assuming that investors are able to observe the default, the

available information for investors is modeled by the minimal expansion of the reference

filtration G and the default time τD and it is denoted by F. Under these assumptions,

we have the following theorem of Guo, Jarrow and Zeng (2009).

41



Theorem 3.1. For tk ≤ t < tk+1, we have

EQ[1{τD>T}|Ft] =
EQ[τD > T |FXtk ]
EQ[τD > t|FXtk ]

1{τD>t}.

In the above theorem EQ[τD > T |Ft] represents the price of the security at time t

from the point of view of the investors, and EQ[τD > T |FXt ] is the price under full infor-

mation. The interesting point is as tk ↑ t, the price of the security under the investor’s

(partial) information approaches the price of the security under management’s (full)

information. This makes sense because as tk approaches t the investors information

gets updated.

3.5 Minimal Filtration Expansion: The Second

Approach

The second approach in the context of minimal filtration expansion is related to the

hazard processes. Despite the first approach, here there is a more efficient pricing rule.

Assume that H is a GT -measurable random variable and P(T > t|Gt) is non-zero for

all t ≥ 0. A direct application of Corollary A.1 in the Appendix A.2 gives

E[H1{T >T}|Ft] = 1{T >t}
E[H1{T >T}|Gt]

E[1{T >t}|Gt]
. (3.4)

Now we show that E[H1{T >T}|Gt] = E[He−ΓT |Gt]. It is enough to prove that∫
C

E[H1{T >T}|Gt]dP =

∫
C

E[He−ΓT |Gt]dP, for all C ∈ Gt.

From the definition of conditional expectation we have∫
C

E[H1{T >T}|Gt]dP =

∫
C

H1{T >T}dP, (3.5)
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∫
C

E[He−ΓT |Gt]dP =

∫
C

He−ΓT dP. (3.6)

On the other hand, by using the law of iterated expectations we get

∫
C

H1{T >T} dP = E[H1C1{T >T}]

= E
[
E[H1C1{T >T}|GT ]

]
= E

[
H1CE[1{T >T}|GT ]

]
= E[H1Ce

−ΓT ] =

∫
C

He−ΓT dP,

where we have used the definition of hazard process. Hence the left-hand side of

Equations (3.5) and (3.6) must be equal

∫
C

E[H1{T >T}|Gt]dP =

∫
C

E[He−ΓT |Gt]dP.

The uniqueness of the definition of conditional expectation implies that

E[H1{T >T}|Gt] = E[He−ΓT |Gt]. (3.7)

From Equations (3.4), (3.7) and the definition of hazard process we get the following

rule for the price of the defaultable claim H1{T >T},

E[H1{T >T}|Ft] = 1{T >t}e
ΓtE[He−ΓT |Gt]. (3.8)

As in Equation (2.7), please note that the above expectation is obtained under a

physical measure. Now if we assume that H is a discounted payoff and the underlying

probability measure is risk neutral, Equation (3.8) gives a rule to price this payoff.
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Comparing to the pricing rule in (2.7), the pricing rule in (3.8) is more applicable in

the sense that it does not involve an auxiliary jump process. But in general, calculating

the conditional expectation E[He−ΓT |Gt] is not an easy task.

However, to obtain intensities in this approach one must use additional assumptions,

either on the hazard process or on the filtration enlargements. For example in Elliott,

Jeanblanc and Yor (2000), it is assumed that Γ is continuous and increasing. Then an

explicit form of the intensity in the sense of Definition 2.1 is obtained. To adapt their

work to our setting, we let the reference filtration G be FB, where FB is the completed

natural filtration of the Brownian motion B. Then assume that T is any random time

that is not a stopping time with respect to G. If the hazard process Γ is continuous

and increasing, then under the minimal filtration expansion of G and T , they prove

that

λit = 1{T >t}Γ
′

t,

where Γ
′
t is the derivative of Γ with respect to t. Notice that since in this case Γ is

monotone, then it is differentiable almost everywhere.

The above assumptions on Γ are closely related to the so called H-hypothesis,

that states that martingales in the reference filtration remain also martingales in the

extended one. When this hypothesis does not hold, the situation is even more com-

plicated. In this case, the stronger assumption of the H′-hypothesis is needed that

states that semimartingales in the reference filtration remain semimartingales in the

extended one. For more details we refer to Jeanblanc and LeCam (2007).
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3.6 Filtration Expansion: The Third Type

The third type of the filtration expansion in (3.3) is a more general one introduced

by Guo and Zeng (2008) and includes all the minimal and progressive filtration ex-

pansions and most of the intensities mentioned above. Instead of assumptions on the

hazard process and filtration enlargements, in this paper the notion of “local jumping

filtration” is introduced. Under a few assumptions, they give a fairly general formula

to calculate the intensity under a strong Markov process.

3.7 Interpretation of Intensities

Finally we close this section by giving a realistic interpretation of the intensities men-

tioned before. Obtaining intensities (either hazard based or in the sense of Definition

2.1) are not just useful for pricing matters. Since intuitively intensities are instanta-

neous likelihoods of default, it is not surprising that they can be used as measures for

short credit spreads. Giesecke (2006) proves that in the case of progressive filtration

expansions, the intensities based hazard are in fact short credit spreads. Hence, they

can be interpreted as the excess yields demanded by the investors for holding the credit

risky assets over the risk free ones in very short periods of time. In the proof, Theorem

14 in Protter (2004, Chapter VI) is used. Here, we improve this result for a more

general type of filtration expansion including the progressive one. In our proof, we use

Corollary A.1 in the Appendix A.2.
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Proposition 3.2. Assume that F is any filtration expansion of the reference filtration

G and T such that F is the subset of the progressive filtration expansion of G and T .

Suppose that λh is the intensity based hazard of the default model (T ,G) that is right

continuous. Then for each t < T , the limit, limT↓t
P(T ≤T |Ft)

T−t exists and we have

lim
T↓t

S(t, T ) = λht .

Proof. By applying Corollary A.1 and since T is an F-stopping time, we have,

1{T >t} lim
T↓t

P(T ≤ T |Ft) = lim
T↓t

1{T >t}
P(t < T ≤ T |Gt)

P(T > t|Gt)
.

Notice that

P(t < T ≤ T |Gt)

P(T > t|Gt)
= 1− P(T > T |Gt)

P(T > t|Gt)
,

and the definition of the intensity based hazard gives the following

P(T > T |Gt) = E [P(T > T |GT )|Gt] = E[e−
∫ T
0 λhs ds|Gt].

Therefore we obtain

lim
T↓t

1{T >t}
P(t < T ≤ T |Gt)

P(T > t|Gt)
= E[1− e−

∫ T
t λhs ds|Gt].

The rest of the proof is the same calculations as Giesecke (2006), to complete it we
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mention them here. On {T > t} we have,

lim
T↓t

P(T ≤ T |Ft)
T − t

= lim
T↓t

1

T − t
E
[∫ T

t

λhsds+ o
(∫ T

t

λhsds
)∣∣∣Gt

]
(3.9)

= lim
T↓t

1

T − t
E
[∫ T

t

λhsds|Gt

]
+ lim

T↓t

o(T − t)
T − t

(3.10)

= lim
T↓t

1

T − t
E
[∫ T

t

λhsds|Gt

]
(3.11)

= E
[
lim
T↓t

1

T − t

∫ T

t

λhsds|Gt

]
(3.12)

= E[λht+|Gt] = λht .

Equation (3.9) is by Taylor’s expansion. In Equations (3.10) and (3.11) the almost

sure boundness of λh is used. Equation (3.12) is obtained by using the definition of

conditional expectation and Lebesgue’s dominated convergence theorem for conditional

expectation. In the last line we use the assumptions that λh is right continuous and

also adapted. Therefore for each T > t, the limit limT↓t
P(T ≤T |Ft)

T−t exists.

Finally by using Taylor’s expansion of ln in (2.3), one can easily prove that (or see

Proposition 3.1 in Giesecke (2006))

lim
T↓t

S(t, T ) = lim
T↓t

P(T ≤ T |Ft)
T − t

,

and the result follows.

Remark 3.2. This generalizes Proposition 5.10 in Giesecke (2006). It also covers the

minimal filtration expansion as it is a subset of the progressive filtration expansion.

In Proposition 5.10 of Giesecke (2006) corresponding to the above proposition, λh

is both right continuous and predictable. In fact, in Giesecke (2006) predictability is
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assumed in the definition of intensity. If we further assume that λh has also left-hand

side limits, Proposition 2.24 of Jacod and Shiryaev (1987) implies that ∆λhT = 0, al-

most surely on {T <∞} for all totally inaccessible stopping times T . If the intensity

is a continuous process, for example as Duffie and Lando (2001), then ∆λh = 0, almost

surely. But as it was already mentioned a few times, shocks in markets normally occur

unexpectedly, which is best modeled by totally inaccessible stopping times. Therefore

in simple words, if the left-hand side limits of λh exists, Proposition 5.10 in Giesecke

(2006) states that short credit spreads are not sensitive with respect to unpredictable

shocks (or simply jumps) in the markets. This is hard to accept. The existence of left-

hand side limits for the intensity is a reasonable assumption, because it is a bounded

process by the definition of intensity. So far, we have never met an intensity with-

out left-hand limits, and all the intensities in this thesis are càdlàg and satisfy this

condition.

A similar result holds for an intensity in the sense of Definition 2.1. We have the

following proposition.

Proposition 3.3. Assume that F is any filtration expansion of the reference filtration

G and T such that Definition 2.1 is satisfied. Suppose that λi is the intensity in the

sense of Definition 2.1 for the default model (T ,G). Also assume that the intensity is

right continuous. Then for each t < T , the limit, limT↓t
P(T ≤T |Ft)

T−t exists and we have

lim
T↓t

S(t, T ) = λit.
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Proof. Since T is an F-stopping time, we have,

1{T >t} lim
T↓t

P(T ≤ T |Ft)
T − t

= lim
T↓t

P(t < T ≤ T |Ft)
T − t

= lim
T↓t

E
[∫ T

t
λisds|Ft

]
T − t

= E

[
lim
T↓t

∫ T
t
λisds

T − t
|Ft

]
= E[λit+|Ft] = λit.

Where the second equation is due to the definition of compensator and the third equa-

tion is obtained by using Lebesgue’s dominated convergence theorem for conditional

expectations.

Now same as Proposition 3.2, since limT↓t S(t, T ) = limT↓t
P(T ≤T |Ft)

T−t , the result

follows.

The next section mainly investigates the existence and calculation of intensity in

the sense of Definition 2.1 for a special type of jump processes.
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Chapter 4

Intensity: Existence and
Calculation

4.1 Introduction

As we saw in Chapters 2 and 3, the intensity is a key element in credit risk model-

ing, especially in the intensity based approach. We explained some properties of this

process. However, two questions are yet unanswered. Does the intensity exist in any

default model, and if yes, how to calculate it? Unfortunately the current answers to

these questions are not very satisfactory.

Throughout this chapter it is assumed that the completed filtered probability space

(Ω,F , (Ft)t≥0 ,P) satisfies the usual hypotheses. Regarding Chapter 3, here it is as-

sumed that F = G. Hence, there is only one filtration in the model and full information

is available. Also it is assumed that the default time T is a stopping time with respect

to F. In this section, unless otherwise specified, the word “intensity” refers to the

intensity based on Definition 2.1.

This section describes the methods to calculate the intensity and observing the
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technical problems that are brought up in the calculation process.

By Theorem 2.1, the total inaccessibility of the stopping time T is a necessary

condition for the existence of the intensity, but it is not sufficient. Giesecke (2006)

gives an example where the stopping time T is totally inaccessible but there is no

intensity. As far as we know, the most recent work to calculate intensity is given by

Guo and Zeng (2008). Under some technical conditions, they provide a procedure

to obtain the intensity. However, in this section, we discuss two different approaches

based on the following formula

λit = lim
h↓0

P(t < T ≤ t+ h)|Ft)
h

, for all t ≥ 0, (4.1)

where the limit is taken pointwise almost surely. We will see that this formula is not

always correct. Still, the reason to stick to this method is that is intuitive as it is the

classical definition of the intensity in (4.1). We illustrate these approaches in the case

when the underlying asset process follows a jump diffusion process.

4.2 Methods

Since calculating the intensity also leads to obtaining the compensator of the process

N =
(
1{T ≤t}

)
t≥0

, any result to calculate the compensator of this process should be

helpful. Perhaps the most well known one is Meyer’s Laplacian approximation, see

Meyer (1966) for the proof.

Theorem 4.1. (Meyer’s Laplacian Approximation) Let X be a potential of Class D
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and X = M − Λ be its Doob-Meyer decomposition. Define

Λh
t =

∫ t
0
E[Xs −Xs+h|Fs] ds

h
. (4.2)

Then for any stopping time T , limh↓0 Λh
T → ΛT , where the convergence is taken in

the sense of the weak topology σ(L1, L∞). Furthermore, if Λ is continuous, then the

convergence is in L1.

Please see Definitions A.6 and A.5 of Appendix A for Class D and potential pro-

cesses. Some characteristics of Class D of supermartingales are explained in Section

5.6.

Remark 4.1. Note that Theorem 4.1 cannot be directly used for the process X = N,

because the process N is not a potential. But, one can apply this theorem on the process

X =
(
1{T >t}

)
t≥0

which is a potential. Then by observing that 1{T ≤t} = 1−1{T >t}, for all

t ≥ 0, the compensator of N can be obtained. More precisely, if
(

1{T >t} +
∫ t

0
λis ds

)
t≥0

is a martingale, then
(

1{T ≤t} −
∫ t

0
λis ds

)
t≥0

is also a martingale. In other words, in

this case the intensity of the process N is equal to λi.

For now assume that Theorem 4.1 is applicable for the process
(
1{T >t}

)
t≥0

. Then

it seems that this theorem together with the intuitive definition of intensity in (4.1),

give an easy solution to calculate the intensity. However, this leads to some problems.

The process X =
(
1{T >t}

)
t≥0

is a potential of Class D and its Doob-Meyer de-

composition exists. If the compensator Λ of
(
1{T >t}

)
t≥0

is not continuous then the

convergence in Theorem 4.1 is in the weak sense. Therefore Λh
t is weakly approaching
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to Λt and so, even if limh↓0
P(t<T ≤t+h)|Ft)

h
exists, there is no guarantee that the equality∫ t

0
(limh↓0

P(s<T ≤s+h)|Fs)
h

)ds = Λt holds. A simple example for which limh↓0
P(t<T ≤t+h)|Ft)

h

exists, but this equality does not hold, is given by Guo, Jarrow and Zeng (2009).

Suppose that the compensator Λ is a continuous process, then the convergence in

Theorem 4.1 is in the strong sense of L1. Further assume that the limit in (4.1) exists

pointwise almost surely, then by Lebesgue’s dominated convergence theorem limh↓0 Λh
t

also exists pointwise almost surely, say Λ
′
t, then for any sequence hn approaching 0 we

have ∫
|Λ′t − Λt| dP =

∫
lim
n→∞

|Λhn
t − Λt| dP ≤ lim

n→∞

∫
|Λhn

t − Λt| dP,

by Fatou’s lemma. Since Λhn
t is approaching Λt in L1, a simple implication shows that

Λ
′
t = Λt almost surely. One more time we apply Lebesgue’s dominated convergence

theorem to get

Λt = lim
h↓0

Λh
t =

∫ t

0

lim
h↓0

P(s < T ≤ s+ h|Fs)
h

ds. (4.3)

So in the case of the continuous compensator, the intuitive definition of intensity in

(4.1) is correct. Just as a reminder, please note that by Theorem 2.1, the continuity of

Λ is equivalent to the total inaccessibility of T .

In summary, the above discussion shows that regardless of the continuity of the

compensator, if the limit in Theorem 4.1 is in the strong sense of L1, then the intuitive

definition of intensity given by (4.1) is true. A critical question then is if in Meyer’s

Laplacian approximation, regardless of the continuity of Λ, we have strong convergence

in L1? The answer to this question is “no”. A paper by Dellacherie and Doleans-Dade
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(1970) is devoted to constructing a counterexample.

Finally, please notice that even if the intensity is given by Equation (4.1), substantial

work still must be done to calculate the limit.

A parallel approach to Meyer’s Laplacian approximation is given by the following

result known as Aven’s Theorem. It provides sufficient conditions under which the

intensity is given by formula (4.1), see Aven (1985) for the proof.

Theorem 4.2. (Aven) Let (Nt)t≥0 be a counting process, assuming that E[Nt] < ∞

for all t. Finally, let {hn}n≥1 be a sequence which decreases to zero, and for each n, let

(Y t
n)t≥0 be a measurable version of the process

(
E
[
Nt+hn −Nt|Ft

]
hn

)
t≥0

. Assume that

the following statements hold with (λit)t≥0 and (yt)t≥0 being non-negative measurable

processes:

1. For each t ≥ 0, limn→∞ Y
t
n = λit, almost surely,

2. For each t ≥ 0, there exists an n0 = n0(t) such that for almost all ω

|Y n
s (ω)− λis(ω)| ≤ ys(ω), s ≤ t, n ≥ n0,

3.
∫ t

0
ysds <∞, almost surely for 0 ≤ t <∞.

Then
(
Nt −

∫ t
0
λisds

)
t≥0

is an Ft-martingale, i.e. the process
(∫ t

0
λisds

)
t≥0

is the com-

pensator of (Nt)t≥0 .

Applying the above theorem for the special counting process N =
(
1{T ≤t}

)
t≥0

, gives

a procedure to calculate the intensity λit based on the intuitive formula (4.1). In this
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theorem, the main problem is finding the dominating non-negative measurable process

(ys)s≥0.

As mentioned in the last section, non-zero short spreads are one of the main advan-

tages of reduced form models, but these models suffer from the lack of an appropriate

definition of the firm’s default model. In what follows, by accepting the economical

definition of default, we investigate the intensity of a Brownian motion with drift per-

turbed by a compound Poisson process in the context of intensity based models. The

idea follows the same approach of Guo, Jarrow and Zeng (2009), based on formula

(4.1).

Hereafter, whenever we say that “on the event A, Expression1 = Expression2”, it

means that

1A Expression1 = 1A Expression2.

Proposition 4.1. Let X be a Brownian motion with drift perturbed by a compound

Poisson process

Xt = u+ µt+Bt +
Nt∑
i=1

Yi, for all t ≥ 0

where N = (Nt)t≥0 is a homogenous Poisson process with intensity λ, Bt is a standard

Brownian motion and the Yi are i.i.d. with density fY on R. Assume that FX is the

natural filtration generated by X. Define the default time by

τ = inf{t;Xt < 0},

and let {Ti}i≥1 be the arrival times of the Poisson process N . Then on the event

55



{τ > t, Tn ≤ t < Tn+1}, limh↓0
P[t<τ≤t+h|FXt ]

h
, is equal to

λ

∫ ∞
−∞

Φ(−Xt − y)fY (y) dy, (4.4)

where Φ is the standard normal distribution function

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2 dt.

Proof. For each t, Tn ≤ t < Tn+1, we define the σ-algebra

Gt = σ ({T1, ...Tn, Y1, ..., Yn, BT1 , ...BTn}, {Bs;Tn ≤ s ≤ t}) .

We also let A = {τ > t, Tn ≤ t < Tn+1}. Since for any t, the equality Gt ∩A = FXt ∩A

holds, by Lemma A.3 the Appendix, on A we have

P(τ > t+ h|FXt ) =
P(τ > t+ h, Tn ≤ t < Tn+1|Gt)

P(τ > t, Tn ≤ t < Tn+1|Gt)
,

and

P(t < τ ≤ t+ h|FXt ) = 1− P(τ > t+ h|FXt )

= 1− P(τ > t+ h, Tn ≤ t < Tn+1|Gt)

P(τ > t, Tn ≤ t < Tn+1|Gt)
.

(4.5)

The next step is to evaluate the numerator and denominator of the expression in

Equation (4.5).

To do this, first we calculate the expression

P(τ > t, Tn ≤ t < Tn+1|Gt).

56



It is easy to see that the event {τ > t, Tn ≤ t < Tn+1} is equivalent to the intersection

of the two events

A1 =
n−1⋂
j=0

{
inf (u+ µs+Bs + Zj)Tj≤s<Tj+1

> 0
}
,

and

A2 =
{

inf (u+ µs+Bs + Zn)Tn≤s<t > 0
}
,

where Zj =
∑j

i=1 Yi for any j ≥ 1. The events A2 and {Tn ≤ t} are Gt-measurable.

Therefore, it turns out that

P(τ > t, Tn ≤ t < Tn+1|Gt) = X E[A1 ∩ (Tn+1 > t)|Gt], (4.6)

where X = 1A21{Tn≤t}.

Notice that Tn+1 is the sum of Tn and a Gt-independent random variable exponentially

distributed with mean 1
λ
. Then by Lemma A.2 of the Appendix and some manipula-

tions one can get

P(τ > t, Tn ≤ t < Tn+1|Gt) = X P(A1|Gt) e
−λ(t−Tn). (4.7)

Let h be a positive real number, then

P(τ > t+ h, Tn ≤ t < Tn+1|Gt)

P(τ > t, Tn ≤ t < Tn+1|Gt)
= I + II + III, (4.8)

where I = P(τ>t+h,Tn≤t<t+h<Tn+1|Gt)
P(τ>t,Tn≤t<Tn+1|Gt) , II = P(τ>t+h,Tn≤t<Tn+1≤t+h<Tn+2|Gt)

P(τ>t,Tn≤t<Tn+1|Gt) , and III =

P[τ>t+h,Tn≤t<Tn+1<Tn+2≤t+h|Gt]
P[τ>t,Tn≤t<Tn+1|Gt] . Now we determine each term separately.
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Calculating I: We need the numerator in I, say I∗ = P(τ > t+h, Tn ≤ t < t+h <

Tn+1|Gt). Let A∗ = {Tn ≤ t < t+ h < Tn+1}, then we have

{τ > t+ h} ∩ A∗ = A1 ∩ A2 ∩ { inf
t≤s<t+h

(Xs) > 0} ∩ A∗.

Therefore I∗ is equal to

I∗ = XP
(
A1 ∩ { inf

t≤s<t+h
Xs > 0} ∩ {t+ h < Tn+1}|Gt

)
, (4.9)

then by noticing that Xt is Gt-measurable, given Gt, the event inside the above condi-

tional probability is equivalent to

n−1⋂
j=1

{ inf
Tj≤s<Tj+1

(Xs −X0) > −u} ∩ { inf
t≤s<t+h

(Xs −Xt) > −xt} ∩ {T > t+ h− tn},

where tn and xt respectively stand for Tn and Xt given Gt, and T is a random variable

exponentially distributed and independent of Gt with mean 1
λ
. Notice that for t ≤ s <

t+h and on the event A∗, we have Xs−Xt = µ(s− t)+Bs−Bt. This is a process with

continuous sample paths and hence in the second term of the above event s is allowed

to be equal to t + h. Given Gt, these three events are independent of each other, and

for t ≤ s < t + h, Xs − Xt is also independent of Gt. Hence, in Equation (4.9) the

second and the third terms inside the conditional probability are independent of A1

and Gt.

By applying Lemma A.2 of the Appendix, on the event A, the numerator I∗ becomes

Xϕ
(
h, µ,−(u+ µt+Bt + Zn)

)
e−λ(t+h−Tn), (4.10)
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where X = 1A21{Tn≤t},

ϕ(a, b, c) = P( inf
0≤s≤a

(bs+Ws) > c), (4.11)

and W is a standard Brownian motion independent of X. Since we are on the event

A, this can be written as

I∗ = Xϕ(h, µ,−Xt)e
−λ(t+h−Tn). (4.12)

From Equations (4.7) and (4.12), we obtain I on the event A,

I = e−λhϕ(h, µ,−Xt). (4.13)

Calculating II: Now we need the numerator in II, say

II∗ = P
(
τ > t+ h, Tn ≤ t < Tn+1 ≤ t+ h < Tn+2|Gt

)
.

To help writing formulas denote by A∗∗ the following event

A∗∗ = {τ > t+ h, Tn ≤ t < Tn+1 ≤ t+ h < Tn+2|Gt}.

Unfortunately calculating II∗ is not as straightforward as I∗. First, we start by condi-

tioning on Tn+1, Yn+1, and BTn+1 , then

II∗ =

∫ ∞
0

∫
R

∫
R
ζ P(Tn+1 ∈ dtn+1, Yn+1 ∈ dyn+1, BTn+1 ∈ dwn+1|Gt), (4.14)

where ζh is equal to

ζh = P(A∗∗|Gt, Tn+1 = tn+1, Yn+1 = yn+1, BTn+1 = wn+1).
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The hard part is calculating ζh. Notice that on the event {Tn ≤ t < Tn+1 ≤ t+ h} we

have

{τ > t+ h} = A1 ∩ A2 ∩ { inf
t≤s<Tn+1

Xs > 0} ∩ { inf
Tn+1≤s<t+h

Xs > 0},

using this identity, Fubini’s theorem, Lemma A.2 of the Appendix properly and the

independent increments property of the process, after some tedious calculations we get

ζh = XP(A1|Gt)1{tn+1≤t+h}

× ϕ(t+ h− tn+1, µ,−u− µtn+1 − wn+1 − Zn − yn+1)

× ϕ∗(t, tn+1, µ,−Xt, wn+1 −Bt)e
−λ(t+h−tn+1),

(4.15)

where the function ϕ is defined in (4.11) and the function ϕ∗ is given by

ϕ∗(a, b, c, d, e) = P( inf
a≤v<b

(c(v − a) +Wv −Wa) > d
∣∣ Wb −Wa = e).

On the other hand, by similar but simpler calculations one can show that P(Tn+1 ∈

dtn+1, Yn+1 ∈ dyn+1, BTn+1 ∈ dwn+1|Gt) is equal to

λe−λ(tn+1−Tn)Φ
′
(wn+1 −Bt + t− tn+1)fY (yn+1) dwn+1 dyn+1 dtn+1, (4.16)

the function Φ
′
is the derivative of the standard normal distribution function. By using

Equations (4.14), (4.15), and (4.16), we get the following form of II∗ :

II∗ = XP(A1|Gt)λ e
−λ(t+h−Tn)

∫ t+h

t

∫ ∞
−∞

∫ ∞
−∞

ζ∗hfY (y) dw dy ds,

where ζ∗h is equal to

ϕ(t+ h− s, µ,−u− µs− w − Zn − y)ϕ∗(t, s, µ,−Xt, w −Bt)Φ
′
(w −Bt + t− s).

60



Note that we have changed the integral variables. For example, instead of wn+1, we

have used w. Together with the denominator of II, which is (4.7), on the event A, we

get

II = λe−λh
∫ t+h

t

∫ ∞
−∞

∫ ∞
−∞

ζ∗hfY (y) dw dy ds, (4.17)

Calculating III: Finally we need the numerator in III, say

III∗ = P
(
τ > t+ h, Tn ≤ t < Tn+1 < Tn+2 ≤ t+ h|Gt

)
.

Similarly to the previous calculation, by conditioning on Tn+1, Tn+2, Yn+1,Yn+2, BTn+1

and BTn+2 , one can get an expression for III∗. This expression is more complicated

than in II. It is not presented here because, as we see below, it does not affect the final

result.

By (4.13) and l’Hopital’s rule, on the event A, we have

lim
h↓0

1− I
h

= lim
h↓0

λe−λhϕ(h, µ,−Xt)− lim
h↓0

e−λh
∂ϕ

∂h
(h, µ,−Xt)

= λ1{Xt>0} = λ

(4.18)

where the second equality is obtained by ϕ(0, b, c) = 1{c<0} and limh↓0
∂ϕ
∂h

(h, µ,−Xt) =

0.

Then by (4.17) and l’Hopital’s rule, on the event A, we have

lim
h↓0

II
h

= λ
(

lim
h↓0

∫ ∞
−∞

∫ ∞
−∞

ζ∗∗h fY (y) dw dy

+ lim
h↓0

∫ t+h

t

∫ ∞
−∞

∫ ∞
−∞

∂ζ∗h
∂h

fY (y) dw dy ds
)
,

where ζ∗∗h is equal to

ϕ(0, µ,−u− µ(t+ h)− w − Zn − y) ϕ∗(t, t+ h, µ,−Xt, w −Bt) Φ
′
(w −Bt − h).
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Note that ϕ(0, b, c) = 1{c<0}, and on the event A we have

lim
h↓0

ϕ(0, µ,−u− µ(t+ h)− w − Zn − y) = 1{w>−Xt−y+Bt},

and

lim
h↓0

ϕ∗(t, t+ h, µ,−Xt, w −Bt) = 1{Xt>0} = 1.

Using these equations and some manipulations we get the following

lim
h↓0

II
h

= λ

(
1−

∫ ∞
−∞

Φ(−Xt − y)fY (y) dy

)
. (4.19)

In calculating III∗, we end up with six multiple integrals, by proper conditioning, the

first integral is over [t, t+ h] (first by conditioning on Tn+2) and the second one is over

[t, tn+2] (by conditioning a second time on Tn+1). Similarly to case II, by applying the

l’Hopital’s rule and taking the limit one can show that

lim
h↓0

III
h

= 0. (4.20)

Finally by (4.5), (4.8),(4.18), (4.19), and (4.20) on Λ we get

lim
h↓0

P
(
t < τ ≤ t+ h|Ft

)
h

= λ

∫ ∞
−∞

Φ(−Xt − y)fY (y) dy.

.

Corollary 4.1. Let X be a compound Poisson process with drift

Xt = u+ µt+
Nt∑
i=1

Yi, for all t ≥ 0
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where N = (Nt)t≥0 is a homogenous Poisson process with intensity λ and the Yi are

i.i.d. with an absolutely continuous distribution function FY on R. Assume that FX is

the natural filtration generated by X. Define the default time by

τ = inf{t;Xt ≤ 0},

then on the event {τ > t, Tn ≤ t < Tn+1}, limh↓0
P
(
t<τ≤t+h|FXt

)
h

, is equal to

λ
(
FY (−Xt)

)
. (4.21)

Proof. This can be proved by exactly the same steps as for Proposition 4.1 or else we

can directly conclude just by noticing that for a normally distributed random variable

with zero mean and zero variance, the distribution function Φ is the Heaviside step

function Φ(x) = 1{x≥0}.

Now we discuss whether formula (4.4) is an intensity. As explained before, if the

stopping time τ is totally inaccessible, then formula (4.4) is an intensity in the sense

of Definition 2.1 for the default model (τ,F). However, the default can happen in two

fashions.

The first one can be caused by a sudden jump of the underlying process X, while

the second one is driven by a continuous crossing of the horizontal access. In Example

2.1, we proved that the first jump time of a Poisson process is a totally inaccessible

stopping time. Since all the jump times of the process X coincide with the jump times

of the Poisson process N , and because of the independent increments of the process, it
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is expected that all the jump times of the process X are totally inaccessible stopping

times.

On the other hand, in Section 2.1, it is proved that a continuous crossing of the

horizontal access is a predictable stopping time. So it seems that τ has two parts, one

predictable and one totally inaccessible. More precisely, we have the following beautiful

theorem of Meyer, but before stating this theorem we define the following notation.

Definition 4.1. Assume that in the probability space (Ω,F , (Ft)t≥0 ,P), the random

time T is a stopping time. Then for any A ∈ FT , we define

TA(ω) =

{
T (ω), if ω ∈ A,
∞, if ω 6∈ A.

Under the assumptions of the above definition, it is easy to prove that TA is a

stopping time and T = TA ∧ TAc .

Theorem 4.3. (Meyer’s Previsibility Theorem) Let X be a (strong) Markov Feller

process for the probability Pv, where the distribution of X0 is given by v, and with its

natural completed filtration Fv. Let T be a stopping time with Pv(T > 0) = 1. Let

A = {ω;XT (ω) 6= XT −(ω) and T (ω) < ∞}. Then T = TA ∧ TAc, where the stopping

times TA and TAc are respectively totally inaccessible and predictable.

Since Lévy processes are examples of Strong Markov Feller processes, Theorem 4.3

shows that all the jump times of a Lévy process are totally inaccessible stopping times.

It also proves that the stopping time τ is not totally inaccessible, because the set A in
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the above theorem does not cover the whole set Ω almost surely . Therefore we can

not apply Theorem 4.1 to conclude that formula (4.4) is an intensity in the sense of

Definition 2.1. What we can conclude is the following.

Proposition 4.2. Let X be the following process

Xt = u+ µt+
Nt∑
i=1

Yi, for all t ≥ 0

where Nt is a homogenous Poisson process with intensity λ, the Yi are i.i.d. with an

absolutely continuous distribution function FY on R and µ > 0. Define the default time

by

τ = inf{t;Xt < 0},

then the intensity of the default model (τ,FX) in the sense of Definition 2.1 is equal to

λit = λ
(
FY (−Xt)

)
1{τ>t}. (4.22)

Note that since µ > 0, the process crosses the barrier only through a sudden

jump and therefore τ is a totally inaccessible stopping time. We obtained Proposition

4.2 in our own way using the Laplacian approximation method, but a more general

version of this proposition that includes pure jump Lévy processes is proved in Guo

and Zeng (2008) by a completely different method using a compensation formula. We

have not tried to further generalize the above proposition, though we believe that the

generalization by using the Laplacian approximation is possible.

So by Theorem 4.1, the best we can get is Proposition 4.2. However this does not

mean that formula (4.4) can not be an intensity. In fact, one may use Aven’s Theorem
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4.2 and prove that it is the real intensity. The difficult part is finding the dominating

process (ys)s≥0. Since we work on pure jump processes, we will not discuss this any

further. We just like to point out that Aven’s theorem can be powerful in the sense

that it does not require totally inaccessibility of the stopping time τ .

The Lévy-Itô decomposition shows that every Lévy process can be approximated

to an arbitrary level of precision by a jump-diffusion process. This point of view says

that the intensity of every Lévy process is non-zero and it is an appropriate limit of

the above form.

By Proposition 3.3 the intensities λit in Proposition 4.2 are short credit spreads.

Therefore an important conclusion of this section is that if even complete information

is available, the short credit spreads are not necessarily zero.
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Chapter 5

Hedging of Defaultable Claims

5.1 Introduction

Throughout this chapter it is assumed that (Ω,F , (Ft)t≥0 ,P) is a filtered probability

space that satisfies the usual hypotheses and the filtration (Ft)t≥0 is generated by the

underlying process.

In this chapter we study financial products with actual payoffs in the form of

F (XT )1{τ>T}, (5.1)

where τ = inf{t;Xt < 0}, X0 > 0, F : R → R, is a real valued function, and T > 0

is the maturity or expiration of the security. These payoffs are both path-dependent

(even non-Markovian type) and due to the default indicator process, credit sensitive.

Since the life time of this product is [0, T ], the process (F (Xt))t≥0 or the underlying

process the process X = (Xt)0≤t<∞ can be sent to a “cemetery state” at time T .

If F is non-negative then it reflects the fact that the payoff function of the contract

is non-negative at maturity. This security pays F (XT ) if there is no default in [0, T ]
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and zero otherwise. A defaultable zero-coupon bond is a special case of this security

by letting F (x) = c, on R for a constant c. It would be much better if we could let

the function F = F (x) be multivariate. However, this choice makes the analysis more

complicated.Later we see that the function F = F (x) is the boundary condition of a

partial integro differential equation (PIDE).

If it is necessary, one can assume that τ < ∞ almost surely. Since the maturity

is a deterministic fixed time T , this assumption for instance can be reached if the

underlying process X = (Xt)0≤t<∞ is sent to the cemetery state zero for t > T .

The main idea behind this work is how the riskiness of a bond issued by an insurance

company can be managed. This bond can be considered as a special defaultable claim

for the company. Since the evolution of a risky asset (especially in insurance models)

resembles the sample paths of a pure jump process with finite variation, we are mostly

interested in this type of process. Especially we focus on finite variation Lévy processes.

However we let the processes to have infinite activities which means that the integral of

the Lévy measures over the whole real line can be infinite. Please see Geman (2002) for

some motivations on how these processes model the dynamic of the stock prices better

than the diffusions or jump-diffusion models. Beside, there are also some technical

reasons behind this choice. Because of these technical problems, finally we focus on

these special type of Lévy process to model the underlying risky asset. As we move

on, these technical problems are explained. Anyway, some of the concepts are even

applicable to semimartingales.
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Apart from the theoretical concerns in this chapter, the main effort is to obtain

answers to two interesting questions.

The first question is, given a payoff F (XT ) as above, how can the riskiness of the

defaultable security F (XT )1{τ>T} be managed? Clearly, the risk originates from a

credit event, and we are basically speaking of credit risk. This question is answered by

analyzing the structure of the security and finding its optimal hedging strategy. The

idea of optimality is explained in Section 5.4. We see that for a general payoff, it is

not possible to eliminate the credit risk completely. The best hedging is achieved by

minimizing this risk in a suitable way.

Knowing that in general it is not possible to eliminate the intrinsic risk completely,

the second question is whether it is possible to design a customized payoff F (XT )

specifically, to make the product completely risk free. A simpler version of this question

is what kind of function F = F (x) allows for the existence of a perfect hedge. This

will result in a risk-free defaultable claim. Considering this risk-free security as a

criterion, the riskiness of other defaultable products can be compared to it. In the

context of jump-diffusion processes, Kunita (2010) answers a similar question for path

independent payoffs.

In this chapter, all the involved processes belong to the class of semimartingales, see

Definition A.8 of the Appendix. The symbol X typically refers to a semimartingale,

unless otherwise stated. Although this class of processes is very abstract, there are

many advantages in using semimartingale theory. In particular, semimartingales cover
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a wide variety of processes (even non-Markovian ones) and most importantly they are

closed under many mathematical operations. For example if X is a Lévy process,

(g(t,Xt))t≥0 is not necessarily a Lévy process, even for a very smooth function g =

g(t, x). But this holds true for the class of semimartingales, if g = g(t, x) is a C1,2

function.

It is assumed that the market is made of only two assets. The first one is a risk-free

asset. Henceforth, all our value processes are discounted at this risk-free asset rate.

Therefore, the value of the risk-free asset is 1 at all times. Depending on the payoff of

the contract, this assumption might cause some practical issues. This assumption (or

supposing that the interest is zero) does not cause any loss of generality in our theory,

but in more complex models, payoffs, and for implementation matters, one must be

cautious about it.

As an example, assume that we want to price a contingent path dependent claim

with the payoff given by max{Xt1 , Xt2 , ..., Xtn}. Here, the process X is the underlying

risky asset and {t1, t2, ..., tn} are deterministic time spots in the time interval [0, T ]

where T is the maturity of the contract. Under a risk-neutral measure, the time t

value of this contingent claim is equal to

Pt = E
[
e−

∫ T
t rs ds max{Xt1 , Xt2 , ..., Xtn}|Ft

]
.

However, if we instead consider the discounted values X∗t = e−
∫ t
0 rs dsXt, it is not general

enough to capture the above formula.
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In our model, to get more practical results, we assume that the risky asset is modeled

by a finite variation Lévy process that satisfies certain conditions. It is also supposed

that the market is frictionless. The outline of this chapter is as follows.

Quadratic variation and conditional quadratic variation are explained in Sections

5.2 and 5.3. These are two essential tools in our analysis. Section 5.4 reviews lo-

cal risk-minimization hedging. In Section 5.5, we obtain the predictable part of the

semimartingale
(
g(t,Xt)1{τ>t}

)
t≥0

. The hedging strategies are obtained in Section 5.7.

Finally in Section 5.8, we have a look at the estimation of the distribution of the default

time and pricing tools.

5.2 Quadratic Variation and Conditional

Quadratic Variation

In this section we introduce two objects that play an important role in our analysis. We

suppose that the processes X and Y in this section are semimartingales, see Definition

A.8. The class of semimartingales is denoted by S . More explicit results can be

found under additional assumptions. In the next section, we focus on square-integrable

martingales.

For a process X in S , the quadratic variation and the conditional quadratic vari-

ation are two new processes, respectively denoted by [X,X] (or [X]) and 〈X,X〉 (or

〈X〉). For two processes X and Y , the notations [X, Y ] and 〈X, Y 〉, respectively, stand

for the quadratic covariation and the conditional quadratic covariation. We present
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their precise definitions, but let us first explain why these are important.

These processes appear in stochastic modeling, both in the theory and in appli-

cations, for instance in the context of stochastic integration or in hedging problems.

Normally obtaining hedging strategies reduces to solving a projection problem which

involves either quadratic covariation or conditional quadratic covariation. We will see

this for the financial product analyzed in this work.

The quadratic variation has an explicit definition, so for any semimartingale pro-

cess it has its own form. On the other hand, as far as we know, there is no general

constructive way to find the conditional quadratic variation. If the underlying process

is continuous then these two can be equal (as we see later), but except for this special

case, they can be different and financially have different interpretations.

Definition 5.1. Let X be a semimartingale. The quadratic variation of X is a process

denoted by [X,X] = ([X,X]t)t≥0 and defined by

[X,X]t = X2 − 2

∫ t

0

Xs− dXs,

where X− is the left-hand side limit of X, and it is assumed that X0− = 0.

Notice that since X is a semimartingale and X− is a cág process, the integral∫
X− dX is well defined, see Chapter I, Section 4d of Jacod and Shiryaev (1987). In

fact as we see in what follows, this integral can be approximated by a Riemann type

series. This gives us also a more intuitive definition of quadratic variation.
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Definition 5.2. The sequence (T nm)m,n≥0 of stopping times is called an adapted subdi-

vision Riemann sequence if for a fixed n ≥ 1, T n0 = 0, supm≥0 T
n
m <∞, T nm < T nm+1 on

the set {T nm <∞} and

sup
m≥0

(
T nm+1 ∧ t− T nm ∧ t

)
,

converges to zero as n→∞, almost surely for all t ≥ 0.

Proposition 5.1. Let X be a semimartingale and Y be a cád or cág process. Then

the limit, as n→∞, of ∑
m≥1

YTnm

(
XTnm+1∧t −XTnm∧t

)
,

is
∫ t

0
Ys− dXs, in measure, uniformly on every compact interval.

To see a proof of this proposition, we refer to Proposition 4.44 of Jacod and Shiryaev

(1987). Using this proposition one can prove the following important theorem, see

Theorem 4.47 of Jacod and Shiryaev (1987).

Theorem 5.1. For any adapted subdivision Riemann sequence (T nm)m,n≥0, the process

X2
0 +

∑
m≥1

(
XTnm+1∧t −XTnm∧t

)2

,

converges to the process [X,X], in measure, uniformly on every compact interval.

It is easy to prove that the process [X,X] is cádlág, non-decreasing, adapted,

[X,X]0 = X2
0 , and ∆[X,X] = (∆X)2, for example see Theorem 4.47 of Jacod and

Shiryaev (1987). Here for a process Y , the process ∆Y is defined as ∆Y = Y − Y−.

The process [X,X] is also denoted by [X].
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The quadratic covariation of X and Y can be defined by the polarization property

[X, Y ] =
1

2
([X + Y,X + Y ]− [X,X]− [Y, Y ]).

The quadratic covariation is also called the bracket process of X and Y . The process

[X, Y ] is a finite variation process satisfying ∆[X, Y ] = ∆X∆Y , see Theorem 4.47 of

Jacod and Shiryaev (1987). It is also easy to show that [X, Y ]0 = X0Y0. From these

definitions, one can obtain the following product (or integration by parts) formula for

two semimartingales X and Y

XY =

∫
X− dY +

∫
Y− dX + [X, Y ]. (5.2)

Again note that by the explanations following Definition 5.1, the integrals are well

defined. This formula can be rewritten as

XtYt =

∫ t

0

Xs− dYs +

∫ t

0

Ys− dXs + [X, Y ]t, t ≥ 0.

Using Proposition 5.1, one can approximate the above integrals and prove that the

process

X0Y0 +
∑
m

(
YTnm+1∧t − YTnm∧t

)(
XTnm+1∧t −XTnm∧t

)
,

converges to the process [X, Y ], in measure, uniformly on every compact interval.

Regarding the quadratic covariation, we have the following useful properties, see

Proposition 4.49 of Jacod and Shiryaev (1987). In what follows, the symbol V refers

to the class of finite variation processes.

Proposition 5.2. Let X ∈ S and Y ∈ V then
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(a) [X, Y ] =
∫

∆X dY and XY =
∫
Y− dX +

∫
X dY ,

(b) If Y is predictable, then [X, Y ] =
∫

∆Y dX and XY =
∫
Y dX +

∫
X− dY ,

(c) If Y is predictable and X is a local martingale, then [X, Y ] is a local martingale,

(d) If Y or X is continuous, then [X, Y ] = 0.

In contrast to the quadratic variation, the conditional quadratic variation does not

always exist. Its existence conditions and some related properties of quadratic variation

and conditional quadratic variation can be found in Chapter III, Section 5 of Protter

(2004). To define conditional quadratic variation, we need the following definition.

Definition 5.3. A finite variation process Λ (i.e. Λ ∈ V ) with Λ0 = 0 is of integrable

variation if its expected total variation is finite which means that E[V ar (Λ)∞] < ∞.

The class of integrable variation processes is denoted by A .

Note that in the above definition V ar (Λ)∞ is the total variation of the process Λ

over [0,∞].

Lemma 5.1. Let Λ belongs to Aloc, see Definition A.4 of the Appendix. Then there

exists a unique finite variation predictable process Λ̃, with Λ̃0 = 0 such that Λ− Λ̃ is a

local martingale. This process is called the compensator of Λ.

If [X,X] is a locally integrable variation process, then it satisfies all the condi-

tions of Lemma 5.1. Hence, the compensator of [X,X] exists, and it is called the
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conditional quadratic variation of X, denoted by 〈X,X〉 or 〈X〉. It is also commonly

called the angle process. Since [X,X] is a non-decreasing process, it belongs to V and

V ar ([X,X])t = [X,X]t, where V ar([X,X]) is the total variation of [X,X] over [0, t].

Therefore [X,X] ∈ Aloc if [X,X] is predictable and locally integrable.

Remark 5.1. If X is a continuous process then ∆X = X−X− = 0. As we saw above,

it can be proved that ∆[X,X] = (∆X)2. Therefore if X is continuous, then [X,X] is

also a continuous process. This means that [X,X] is a predictable process so if it is

locally integrable, its compensator is equal to itself i.e. [X,X] = 〈X,X〉.

To define the conditional quadratic covariation 〈X, Y 〉 for two semimartingales X

and Y , there are two ways. The first method is by using polarization.

If X and Y are two semimartingales such that 〈X,X〉, 〈Y, Y 〉 and 〈X + Y,X + Y 〉

all exist, then 〈X, Y 〉 can be defined by

〈X, Y 〉 =
1

2
(〈X + Y,X + Y 〉 − 〈X,X〉 − 〈Y, Y 〉) . (5.3)

Remark 5.2. Note that for semimartingales X and Y , [X, Y ] always exists but not

necessarily 〈X, Y 〉.

The second method is based on Lemma 5.1. The bracket process [X, Y ] of two semi-

martingales has paths of finite variation on compacts, and it is also a semimartingale,

see Chapter II, Section 6, Corollary 1 of Protter (2004). Further assume that [X, Y ]

belongs to Aloc. Now by using Lemma 5.1, the conditional quadratic covariation 〈X, Y 〉
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can be defined as the compensator of [X, Y ]. We shall call this the modified version

of conditional quadratic covariation. It reduces to the same notion as the previous

definition, if 〈X + Y,X + Y 〉, 〈X,X〉, and 〈Y, Y 〉 all exist. Also if X and Y are both

square-integrable, then the modified version of 〈X, Y 〉 is the same as the one in the

context of square-integrable martingales, see Section 5.3.

The situation for square-integrable martingales is less complicated and it is ex-

plained in the next section. To motivate the following example we briefly mention one

fundamental result. Meyer showed that for a square-integrable martingale X there

exists a unique increasing process Λ such that

E[(Xt −Xs)
2|Fs] = E[Λt|Fs]− Λs, almost surely for all t > s ≥ 0,

see Meyer (1962, 1963). The next section shows that the process Λ is in fact the

quadratic variation of X, that is [X] as in Definition 5.8. Using this point and the

properties of Brownian motion, we have the following.

Example 5.1. Assume that (Bt)t≥0 is a Brownian motion, then [B,B]t = t, for all

t ≥ 0. Since Brownian motion is a continuous process we also have 〈B,B〉t = t for all

t ≥ 0.

The above example shows that finding equivalent forms of the (conditional) quadratic

(covariation) variation even for a simple process like Brownian motion is not an easy

task. The properties of the quadratic variation process are very important in finding

these equivalent forms.
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As pointed out, the process [X,X] is non-decreasing with right continuous paths.

Therefore together with the property ∆[X,X] = (∆X)2, one can decompose [X,X]

path by path into its continuous part and its pure jump part

[X,X]t = [X,X]ct +
∑

0≤s≤t

(∆Xs)
2, for all t ≥ 0,

where [X,X]c denotes the path by path continuous part of [X,X]. Similarly the path

by path continuous part of [X, Y ] can be defined. A semimartingale is called a quadratic

pure jump process if [X,X]c = 0.

The following theorem that can be found in Protter (2004) (Chapter II, Section 6,

Theorem 28), is useful in calculating quadratic covariations.

Theorem 5.2. Let X be a quadratic pure jump semimartingale. Then for any semi-

martingale Y we have

[X, Y ]t = X0Y0 +
∑

0<s≤t

∆Xs∆Ys, for all t ≥ 0.

Example 5.2. Assume that Ut = u+µt+
∑Nt

i=0 Yi is a compound Poisson process plus a

drift, then by a direct calculation using Riemann approximations, or using the previous

theorem (if one already accepts that the process U is a quadratic pure jump semimartin-

gale), we have that [U,U ]t = u2 +
∑Nt

i=1 Y
2
i =

∑
0≤s≤t,∆Us 6=0 |∆Us|

2. To calculate the

conditional quadratic covariation we note that the process [U,U ]t − λ
∫ t

0

∫∞
0
y2FY1(dy)

is an FU -martingale, where FY1 is the distribution Y1. Now the uniqueness in Lemma

5.1 implies that 〈U,U〉t = λ
∫ t

0

∫∞
0
y2FY1(dy).
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The above example can be generalized.

Example 5.3. Assume that X is a Lévy process with characteristic triplet (σ2, v, γ),

then by using the linearity of the bracket process, the above example, and similar cal-

culations one can show that

[X,X]t = X2
0 + σ2t+

∑
0≤s≤t,∆Xs 6=0

|∆Xs|2 ,

or equivalently

[X,X]t = X2
0 + σ2t+

∫ ∫
[0,t]×R

y2JX(ds dy),

where, JX is the jump measure of the process X. By compensating the jump measure

and through similar arguments as in the last example, we have that

〈X,X〉 = σ2t+

∫ t

0

∫
R
y2 v(dy) ds.

In the next section, we focus on the properties of the conditional quadratic variation

in the context of square-integrable martingales. In this case, there are more satisfactory

results concerning the conditional quadratic variation.

Beside this, we have two more purposes in the next section. First, square-integrable

martingales are exactly defined, as the literature on this topic is not consistent. To an-

swer our second question, square-integrable martingales are needed. Second, Corollary

5.2 and Proposition 5.4 are two important results of the next section that we will use

and revisit later.
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5.3 Conditional Quadratic Variation and

Square-Integrable Martingales

We start by two abstract definitions that will be used later.

Definition 5.4. A filtration F is called quasi left continuous if for every predictable

stopping time T one has FT = FT − , the σ-algebra FT − is given in Definition A.9 of

the Appendix.

Definition 5.5. A process X is called quasi left continuous if for every increasing

sequence of stopping times (Tn)n≥1 such that Tn ↑ T , we have XTn → XT almost surely

on {T <∞}.

The following discussion and series of results are mostly taken from either Protter

(2004), Jacod and Shiryaev (1987), or Kunita and Watanabe (1967).

Let T be a predictable stopping time, and let (Sn)n≥1 be a non-decreasing sequence

of stopping time announcing T with limn→∞ Sn = T . Then it can be shown that

we have FT − =
∨
n FSn , see Chapter III, Section 2, Theorem 5 of Protter (2004).

Now if F is a quasi left continuous filtration then the previous definition implies that

FT =
∨
n FSn (a filtration with this property is said to have no times of discontinuity).

Let us formally define square-integrable martingales and the notation.

Definition 5.6. The set M2 of square-integrable martingales is the set of all right

continuous, real valued processes X, adapted to the family (Ft)t≥0 such that E[X2
t ] <∞
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(in this case we say that Xt ∈ L2(Ω,Ft,P)), for all t ≥ 0 and E[Xt|Fs] = Xs, for all

t ≥ s ≥ 0.

For quasi left continuous square-integrable processes we have the following lemma,

see Kunita and Watanabe (1967).

Lemma 5.2. Suppose that X ∈M2 and we have at least one of the following conditions

• {X,F} is continuous,

• F has no times of discontinuity,

then the process X is quasi left continuous process.

Although the above definition of square-integrable martingales seems intuitive, in

the literature (for example in Jacod and Shiryaev (1987)) they are defined differently.

To distinguish between the two we use the terminology “L2-martingales”. The class of

L2-martingales is denoted by M2.

Definition 5.7. The set M2 of L2-martingales is the set of all right continuous, real

valued processes X, adapted to the family (Ft)t≥0, such that supt≥0 E[X2
t ] < ∞ and

E[Xt|Fs] = Xs, for all t ≥ s ≥ 0.

Obviously M2 ⊂ M2, but in general they are not equal. In the following lemma

we prove the equality for a special important case, that we use later.

Lemma 5.3. Assume that X ∈ M2 is a square-integrable martingale on [0, T ], for

0 ≤ T <∞, then X ∈M2 on this interval.
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Proof. Since X = (Xt)0≤t≤T is a martingale, by Jensens’s inequality |X| = (|X|t)t≥0 is

a sub-martingale (because the bracket function | · | is convex). Therefore;

|Xt| ≤ E [|XT | |Ft] , for all t ≤ T .

By assumption XT ∈ L2(Ω,FT ,P), hence by Jensens’s inequality for the convex func-

tion ψ : R→ R, defined by ψ(x) =

{
x2, x ≥ 0;
0, x < 0,

(E[|XT | |Ft])2 ≤ E[X2
T |Ft].

From the two previous inequalities, we obtain |Xt|2 ≤ E[X2
T |Ft]. Now by taking expec-

tation from both sides of this inequality, we get E[X2
t ] ≤ E[X2

T ]. Since the right-hand

side does not depend on t and XT ∈ L2(Ω,FT ,P), the result follows.

The equality between these two sets of martingales is important in many aspects.

For instance, it allows us to use Doob’s inequality for a square-integrable martingale on

a finite interval. Or, as another example, it is true thatM2 ⊂M, whereM is the class

of uniformly integrable martingales. This is a direct conclusion of Chapter I, Section

2, Theorem 11 of Protter (2004). Hence, on finite intervals every square-integrable

martingale is also uniformly integrable.

From now on, in working on a finite interval, we do not distinguish the two classes

M2 andM2 and we use the notationM2 for both sets. Now we present the definition

of the conditional quadratic covariation for square-integrable martingales. For the

existence and uniqueness we refer the reader respectively to Meyer (1962) and Meyer

(1963).
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Definition 5.8. Let X, Y belong to M2, then there exists a unique 〈X, Y 〉 ∈ U (up to

an equivalence class) such that

E[(Xt −Xs)(Yt − Ys)|Fs] = E[〈X, Y 〉t − 〈X, Y 〉s|Fs], almost surely, (5.4)

for every t ≥ s,, where

U = {Λ1
t − Λ2

t ; Λi
t ∈ U+, i = 1, 2}, (5.5)

and U+is the set of all natural increasing processes Λ (i.e. increasing processes with

the property that Px (ΛT 6= ΛT −) = 0, for all totally inaccessible stopping time T and

x ∈ R) such that E(Λt) <∞, for every t ≥ 0.

Combining these definitions and results we have the following corollary.

Corollary 5.1. Let X, Y ∈ M2 under the filtration F that is the natural completed

filtration of a Lévy process. Then 〈X, Y 〉 as defined above is continuous.

Proof. The existence of 〈X, Y 〉 is guaranteed by the above definition. The natural

completed filtration of a Lévy process has no time of discontinuity. Therefore by

Lemma 5.2 both X and Y are quasi left continuous process. Now the corollary follows

from Theorem 1.2 of Kunita and Watanabe (1967).

Definition 5.9. Let X, Y ∈M2 then X is orthogonal to Y if and only if 〈X, Y 〉 = 0.

Meyer defined that X, Y ∈M2 are orthogonal, if XY = (XtYt)t≥0 is a martingale.

Since E[(Xt−Xs)(Yt− Ys)|Fs] = E[XtYt|Fs]−XsYs then it comes out that 〈X, Y 〉 = 0
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if and only if XY is a martingale. There is a weaker notion of orthogonality for two

martingales X and Y that is defined by E[XtYt] = 0, for every t ≥ 0. To differentiate

between the two, the first one is called strong orthogonality.

Definition 5.10. Two martingales X and Y are called strongly orthogonal to each

other if XY is a martingale.

It is worth mentioning that for X, Y ∈ M2, there are other equivalent definitions

of [X, Y ] and 〈X, Y 〉. We shortly present these definitions and refer the reader to He,

Wang and Yan (1992) for more details.

Definition 5.11. Let X, Y ∈ M2 then [X, Y ] and 〈X, Y 〉 are respectively the unique

adapted process and unique predictable processes, both with integrable variation, such

that XY − [X, Y ] ∈ M0, ∆[X, Y ] = ∆X∆Y , and XY − 〈X, Y 〉 ∈ M0, where M0 is

the collection of all uniformly integrable martingales which are null at zero.

Using the previous definitions, one can get the following properties, see He, Wang

and Yan (1992).

Lemma 5.4. Let X, Y ∈M2 then

1. 〈X, Y 〉 = 1
2

(
〈X + Y 〉 − 〈X〉 − 〈Y 〉

)
,

2. [X, Y ]t = X0Y0 + 〈Xc, Y c〉t +
∑

s≤t ∆Xs∆Ys, t ≥ 0,

where Xc and Y c are the continuous martingale parts of X and Y , respectively.

3. if X0Y0 = 0 then the following assertions are equivalent
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• X is strongly orthogonal to Y ,

• [X, Y ] ∈M0,

• 〈X, Y 〉 = 0.

By Definition 5.11, one observes that for L2-martingales, the modified version of

conditional quadratic variation coincides with the one here. Inspired by this, one can

prove the following lemma, by a localization argument; to see the details we refer to

Proposition 4.50 of Jacod and Shiryaev (1987).

Lemma 5.5. If X, Y belong to M2
loc, then [X, Y ] belongs to Aloc and its compensator

is 〈X, Y 〉 (i.e. [X, Y ] − 〈X, Y 〉 is a local martingale). If moreover X, Y ∈ M2, then

XY − [X, Y ] belongs to M.

One of the fundamental results in the theory of stochastic calculus is the following,

see Proposition 4.50 of Jacod and Shiryaev (1987) for the proof.

Proposition 5.3. Assume that X is a local L2-martingale (or just a local martingale).

Then X = X0 almost surely if and only if [X,X] = 0.

Surprisingly in the case of L2-martingales, the previous result holds for the angle

brackets as well, a result that we use later.

Corollary 5.2. Suppose that X ∈ M2
loc then X = X0 almost surely if and only if

〈X,X〉 = 0.

85



Proof. Assume that X ∈ M2
loc and 〈X,X〉 = 0. With no loss in generality we can

suppose that X0 = 0. By Lemma 5.5, we have both, that [X,X] belongs to Aloc and

[X,X] is a local martingale. But as we saw in the explanations following Definition

5.1, the process [X,X] is a finite valued increasing process and therefore [X,X] ≥

[X,X]0 = (X0)2. Hence [X,X] is a non-negative local martingale. By a localization

argument, we can show that [X,X] = 0, almost surely. The details are as follows. Since

[X,X] is a local martingale, there exists a sequence of stopping times {Tn}n≥1 such

that Tn →∞, almost surely, and [X,X]Tn is a martingale for all n ≥ 1. Here, [X,X]Tn

is a new process stopped at Tn defined by [X,X]Tnt = [X,X]t∧Tn , for all t ≥ 0. Since

the process [X,X]Tn is a martingale, E
[
[X,X]t∧Tn

]
= 0, for all t ≥ 0, and because it

is non-negative, we have that [X,X]t∧Tn = 0, almost surely, for all t ≥ 0. Therefore

for all n ≥ 1, there exists a set An subset of Ω such that P(An) = 0, and if ω does not

belong to An, then [X,X]t∧Tn(ω)(ω) = 0. Now take A =
⋃∞
n=1An, P(A) = 0 and if ω is

not in A, then for all n ≥ 1 we have [X,X]t∧Tn(ω)(ω) = 0. Since {Tn}n≥1 is approaching

infinity almost surely, there is a set A
′
, such that if ω is not in A

′
, then Tn(ω) → ∞.

Now let A
′′

= A ∪A′ , then P(A
′′
) = 0. If ω is not in A

′′
, then ω is not in A and so for

all n, [X,X]t∧Tn(ω)(ω) = 0. Since ω is not in A
′
, then by taking Tn(ω) → ∞, we get

[X,X]t(ω) = 0, for all ω 6∈ A′′ . Therefore [X,X] = 0 almost surely. Now by the above

proposition we get that X = 0 almost surely.

Remark 5.3. In the above proof, we actually proved the fact that a non-negative local

martingale is almost surely zero. Localization arguments like these can be applied to
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all types of these proofs. An alternative proof of this corollary is by noticing that since

〈X,X〉 = 0, the process X is orthogonal to itself. Now the result follows from part (a),

Lemma 4.13 of Jacod and Shiryaev (1987).

Remark 5.4. Remember that since we are working on the finite interval [0, T ], square-

integrable martingales and L2-martingales are the same. Most importantly, the modified

versions of conditional quadratic variation for martingales coincide with the ones in

this chapter.

The next proposition is the main result that will be generalized in what follows; see

Kunita and Watanabe (1967) for more details.

Proposition 5.4. Let X and Y be elements of M2, then there exist unique Y
′ ∈ L(X)

and Y strongly orthogonal to all elements in L(X) such that Y = Y
′
+Y

′′
, where L(X)

is the set of all
∫
φdX for predictable processes φ. In fact φ is the Radon-Nikodym

derivative of 〈X, Y 〉 with respect to 〈X〉, i.e. φ = d〈X,Y 〉
d〈X〉 .

This last proposition gives a good idea of how a hedging process in an incomplete

market could be represented. In this proposition Y acts as the payoff. If the market

is complete then Y is in the space L(X) and there is no second term. But normally

the markets are incomplete. The best can be done is projecting the payoff to the space

L(X). In any case, there is an intrinsic risk carried by the second term which affects the

hedging. A decomposition of a payoff, as in this proposition, leads to the predictable

hedging process φ. These are explained further in the next section.
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5.4 Local Risk-Minimization Hedging

It is a well known result that the Black-Scholes model is a complete model. This means

that first the market is free of arbitrage and second there is only one unique way to

hedge the payoff of a contingent claim. Mathematically, the arbitrage-free assumption

means that there is at least one risk neutral measure, and the completeness of the

model is equivalent to the uniqueness of this measure. The completeness property fails

in most discontinuous models, i.e., when the underlying process is a jump process. It

should be noted that in any case, the arbitrage-free assumption leads to at least one

risk neutral measure. Under this assumption, it is guaranteed that there is always at

least one way to price the contingent claim.

In an incomplete market, the risk of financial products can be managed in differ-

ent ways. Super hedging, utility maximization, and quadratic hedging are common

methods to hedge the risk of securities. Quadratic hedging by itself is divided into two

categories, one is mean-variance hedging and the other one is locally risk-minimizing

hedging. There is no unique agreement between scholars on which one is the best

approach. Depending on the problem each method has its own advantages and disad-

vantages. For the type of product that interests us, we use a local risk-minimization

approach. This section explains in detail how this method can control the risk. But

first a critical question, why do we use locally risk-minimizing approach?

Let start comparing locally risk-minimizing approach with a very simple type of
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hedging namely delta hedging. Delta hedging is one of the simplest types of hedging

approaches that is quite used in real markets. Despite simplicity, under some circum-

stances, it can be actually a useful type of management. If a model uses a continuous

process to model the underlying risky asset, then delta hedging can outperform most of

the hedging managements including locally risk-minimizing approach. This is because,

it gives the same level of protection with lower costs and of course without requiring

any complex technicality. But if the model assumes that there are shocks and jumps

in markets and so uses a jump process to model firm’s asset values, then locally risk-

minimizing approach outperforms the delta hedging. If the payoff is credit sensitive

then the performance of delta hedging gets even worse.

Another common method is super hedging. In super hedging due to the nature

of the management, normally the cost of the strategies are too high. This is mainly

because of the conservative measurements that this type of management considers.

Especially this gets worse when the payoff is path dependent. Also this method leads

to non-linear pricing rules. For more details see, Chapter 10 of Cont and Tankov

(2004).

The third common type of hedging approaches is utility maximization approach.

This approach requires a good knowledge of the utility function and the probability

measure. Even if the probability measure is determined, the model is unstable and

non-robust under different types of utility functions. Another problem is the non-

linearity of the pricing rules respect with the most utility functions used. The only
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utility function that provide a linear pricing rules is U(x) = −x2 which corresponds to

quadratic hedging, see Chapter 10 of Cont and Tankov (2004) for more details.

As mentioned earlier quadratic hedging are divided into two categories, mean-

variance hedging locally risk-minimizing hedging. Mean-variance hedging control the

risk globally while locally risk-minimizing approach do the same job locally. Hence, it

is not surprising that the former is self-financing and the later is not. However, since

in the credit sensitive derivatives there is a chance of default at any time, we believe

that locally risk-minimizing is a good approach in the sense that it provide a better

protection in exchange for upcoming costs. In this approach it is guaranteed that obli-

gations in the maturity time will be fulfilled. However, this is just a typical argument

and it might be opposed. As it was mentioned before, one cannot entirely reject an

approach in the favor of the other one.

Locally risk-minimizing hedging emerged in the development of the concept of risk-

minimization. Since in an incomplete market a perfect hedge is not always possible,

a good hedging strategy is the one that minimizes the risk. Föllmer and Sondermann

(1986) are among the first to have dealt with this problem. Here we explain quadratic

hedging with an emphasis on local risk-minimization. For further details, we refer the

reader to Schweizer (1999) and Pham (1999). In these two papers, the reader can find

a thorough discussion of quadratic hedging as well as many good references. For any

undefined notation, please see Jacod and Shiryaev (1987). To explain these concepts

we first need to establish some definitions and notation.
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Assume that a contingent claim on the security X has maturity T and payoff H at

time T . We use the notation H for a general payoff. We stress the fact that H could

be a path-dependent payoff, but the execution time is T . However, as we explained by

an example in Section 5.1, this is rather a theoretical assumption, and when it comes

to real implementations, one has to be very careful about it. There are two critical

questions associated with any payoff, its price and its replicating strategy.

A usual way to reduce the risk for a given payoff H is to hedge it dynamically using

a (replicating) strategy. As mentioned in Section 5.1, it is assumed that there are only

two assets available to hedge, hence our portfolio consists of a risk-free asset and a risky

one. So a portfolio is represented by a vector process φ = (θ, η), where the processes

θ = (θt)0≤t≤T and η = (ηt)0≤t≤T are respectively the quantities of the shares invested

in the risky asset and risk-free one that we need to hold at time t. The process θ must

be predictable (because of the nature of a strategy) while η is just adapted.

At any time t, the value process of this portfolio is defined intuitively by V (φ) =

(Vt(φ))0≤t≤T , where Vt(φ) = θtXt + ηt. Remember that due to the conventions men-

tioned in Section 5.1, the value of the risk-free asset is always equal to 1. Following

the strategy φ, the cumulative gain, resulting from trading the underlying security X

up to time t is equal to
∫ t

0
θudXu. In any market, holding a strategy incurs a cost. For

any strategy φ, the cost process C(φ) = (Ct(φ))0≤t≤T is defined by

Ct(φ) = Vt(φ)−
∫ t

0

θudXu, for all 0 ≤ t ≤ T,
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with C0(φ) = V0(φ) = v0, where v0 is the initial capital required to initiate the hedging

process. A favorite special case is a constant cost process.

The strategy φ leading to a constant cost process, is called self-financing. This

terminology was first introduced by Harrison and Pliska (1981). In this case we say

that the portfolio or strategy is self-financing. This is equivalent of saying that the

value process is given by

Vt(φ) = v0 +

∫ t

0

θudXu, for all 0 ≤ t ≤ T.

Remark 5.5. In the above definitions, one has to be careful about the integral term.

For a random process X and a predictable process θ, the integral
∫
θdX is an abstract

object that needs to be well defined. We discussed this following the Definition 5.1, when

θ is a càg (continue à gauche) or càd (continue à droite) process. All the underlying

processes X in this thesis are semimartingales. For a careful study of integrals of

predictable processes with respect to semimartingales, we refer the reader to Protter

(2004) or Dellacherie and Meyer (1982). For a predictable process θ, if we have nice

integrability conditions, for example E[θ2
t ] <∞, for all 0 ≤ t ≤ T , then it follows that

the integral
∫
θdX is well defined.

Given a payoff H ∈ FT , it is called attainable if there is a self-financing portfolio

φ such that VT (φ) = H, P−almost surely. Therefore, if H ∈ FT is attainable we have

H = v0 +
∫ T

0
θudXu, for some predictable process θ. In this case (under no arbitrage

opportunity assumptions), the price of this payoff is equal to v0, and the replicating
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portfolio is constituted by θ. If all the payoffs of a market are attainable, we say that

it is a complete market, otherwise it is called an incomplete market.

Except in the case when the market is complete, in general, a payoff H is not

attainable. For instance, in our work, due to the jumps in the underlying process and

to the credit default risk, obviously the payoff F (XT )1{τ>T} is not attainable. This

is proved rigorously later. We remind the reader that assuming a complete market is

a rather theoretical assumption, but in reality, securities are priced and analyzed in

incomplete markets.

Assume then that the market is incomplete. Still a useful way to reduce the risk

for a given payoff H is to hedge it dynamically using a replicating strategy. Even

in an incomplete market, there may be some claims that are still attainable. By

definition, the incompleteness of a market implies that not all claims are necessarily

attainable. For a general payoff H (maybe non-attainable) in an incomplete market,

there is either a self-financing portfolio or an admissible portfolio (i.e. VT (φ) = H) to

hedge, but most probably both do not hold simultaneously. If we prefer a self-financing

portfolio in order to hedge H, we speak of mean-variance hedging. If we rather select

an admissible portfolio to hedge H, we are in the context of (local) risk-minimization.

Which of these methods is better, is not a simple question to answer. Mean-variance

hedging controls the risk globally over the interval [0, T ], but local risk-minimization

achieves this job by controlling risk locally over time at the expense of having a non

self-financing portfolio. In a quick comparison one could say that because of the self-
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financing property, mean-variance hedging is more interesting.

On the other hand, local risk-minimization approaches are more tractable and they

lead to better analytical results. Schweizer, Heath and Platen (2001) provide a com-

prehensive study and comparison of both approaches. As already mentioned, here we

use the method of local risk-minimization. First we briefly explain the development of

this concept.

In what follows, the precise definition of an RM-strategy (Risk-Management strat-

egy) is provided. In Schweizer (1999), RM stands for risk-minimizing, but since not all

RM-strategies are risk-minimizing, we prefer to use risk-management. Depending on

the approaches, minor modifications of this definition are needed. Here we use we the

definition from Schweizer (1999) or Pham (1999).

The development of this methodology starts by assuming that X is a (local) martin-

gale. So we first suppose thatX is a (local) martingale. Before stating the definition, we

introduce the class of L2(X). This is the space of all real valued predictable processes

θ such that E
[ ∫ T

0
θ2
u d[X]u

]
< ∞, where the process [X] is the quadratic variation of

X.

Definition 5.12. An RM-strategy is any pair φ = (θ, η) where θ = (θt)0≤t≤T belongs

to L2(X) and η = (ηt)0≤t≤T is a real-valued adapted process such that the value process

V (φ) = θX + η is right continuous and square-integrable.

Lemma 2.1 of Schweizer (1999) shows that the process
∫
θ dX is well defined (in
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fact a local martingale). Hence the cost process can be defined for an RM-strategy.

The strategy φ = (θ, η) determines dynamically a portfolio in order to hedge the

security. Therefore, θt and ηt are respectively the quantities of the risky asset and

risk-free one that we need to hold at time t.

If a claim is not attainable, especially in an incomplete market, the cost process is

no longer constant. In this case the risk control is done by a suitable minimization of

the following risk process R(φ) = (Rt(φ))0≤t≤T , where

Rt(φ) = E[(CT (φ)− Ct(φ))2|Ft], for all 0 ≤ t ≤ T. (5.6)

Obviously a zero risk process is equivalent to a self-financing strategy.

If X is a local martingale under P, it can be proved that the cost process associated

to the RM-strategy is a martingale (see Lemma 2.1 of Schweizer, 1999), even though

the claim may not be attainable. In this case, when the cost process is a martingale,

the RM-strategy is called mean-self-financing and it was introduced by Föllmer and

Sondermann (1986).

Now having established the previous definitions, we are in a position to formally

define the concept of a risk-minimization strategy. When a payoff is non attainable,

one should look for a strategy that minimizes the risk process. This is the idea of

Föllmer and Sondermann (1986).

Definition 5.13. A RM-strategy φ is called risk-minimizing if for any RM-strategy φ̃
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with VT (φ̃) = VT (φ), P−almost surely, we have

Rt(φ) ≤ Rt(φ̃), P− almost surely,

for every t ∈ [0, T ].

The above definition intuitively says that among all the RM-strategies, the one with

the smallest risk, is the best one.

Having clarified the concept of risk-minimization in the (local) martingale case X,

the next questions are: (1) given any claim H, is there a risk-minimization strategy,

and if so, (2) how to obtain it? The answer to the latter is less satisfactory than to the

former. At the end of this section, we briefly mention a well known method to calculate

risk-minimization strategies. As for the existence result, under mild conditions on the

underlying process, necessary and sufficient conditions are known.

The risk-minimization strategy problem in the martingale case (that means when

X is a martingale) was solved by Föllmer and Sondermann (1986). The generalization

to the local martingale case is done by Schweizer (1999). Under the assumption that

X is a local P− martingale, the risk-minimization problem is solved by the so called

Galtchouk-Kunita-Watanabe (GKW) decomposition. To solve the problem explicitly,

the existence of a GKW decomposition of the claim is assumed. This is an existence

result and in general there is no satisfactory procedure to obtain this decomposition.

The best case is for a continuous local martingale. The reader is referred to Schweizer

(1999) for a detailed study of the problem in this case. We just mention the following
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remark.

Remark 5.6. When X is a local martingale, the mean-variance hedging and risk-

minimization hedging lead to the same hedging strategies though different portfolios.

Unfortunately the generalization of risk-minimization to the semimartingale case

is not straightforward. There are technical and compatibility problems. For a non-

martingale process, Schweizer (1988) provides an example of an attainable claim that

does not admit a risk-minimization strategy.

The extension is possible by putting more restrictive conditions on the underlying

process and the hedging strategies as well. In order to make this extension, we must

pay more attention to the local properties of the problem.

As for the role of X, it has to satisfy some certain conditions. It is assumed that

on [0, T ], the process X can be decomposed as X = X0 +M +A, where the process M

is in M2
loc and A is a predictable process that belongs to V . We further assume that

both processes M and A are null at zero. The class of all X that satisfy this property

is denoted by S2
loc(P). Notice that X is a special semimartingale. If M is in M2, then

this class is denoted by S2(P).

Definition 5.14. The process X in S2
loc(P) satisfies the structure condition if the fol-

lowing hold:

• The process A is absolutely continuous with respect to 〈M〉, where 〈M〉 is the

conditional quadratic variation of M .
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• For all t ∈ [0, T ], At =
∫ t

0
ζsd〈M〉s, where ζ is a predictable process such that the

mean-variance trade-off process K̃ =
(
K̃t

)
0≤t≤T

, K̃t =
∫ t

0
ζ2
sd〈M〉s is P-almost

surely finite.

From now on, we use the abbreviations MVT for mean-variance trade-off and SC

for structure condition. In the next section we see that our underlying asset process in

this thesis satisfies the SC condition.

To present the exact definition of local risk-minimization we follow a series of defini-

tions, for more explanations see Schweizer (1991) or Schweizer (1999). Like the process

X, better integrability conditions on the strategies φ are required. First we introduce

a new class of processes.

Definition 5.15. An L2-strategy is a RM-strategy φ = (θ, η) that satisfies the following

conditions

• The process θ belongs to L(X) where L(X) is the set of all predictable processes

v such that the E
[
|
∫
v dX|

]
<∞.

• The process
∫
θ dX is in S2(P).

• The process η is a real valued adapted process such that the value process V (φ) =

θX + η is right-continuous and square-integrable that means Vt(φ) ∈ L2(Ω,Ft,P)

for each t ∈ [0, T ].

The set of all processes θ that satisfies the first condition of the above definition is

denoted by ΘS.

98



The idea of local risk-minimization is that a good strategy still may not be globally

risk-minimizing in terms of Definition 5.13, but at least locally, small perturbations of

the portfolio should not give a better strategy to minimize the risk.

Definition 5.16. A small perturbation is an L2-strategy, ∆ = (δ, ε) such that δ is

bounded, the variation of
∫
δdA is bounded (uniformly in t and ω) and δT = εT = 0.

For any sub-interval (s, t] of [0, T ], we then define the small perturbation

∆|(s,t] = (δ1(s,t], ε1[s,t)).

Finally, we are now ready to present the exact definition of a local risk-minimizing

strategy. The notion of local risk-minimization was first introduced by Schweizer

(1991).

Definition 5.17. For an L2-strategy φ, a small perturbation ∆, and a partition p of

[0, T ], we set

rp(φ,∆) =
∑

ti,ti+1∈p

Rti(φ+ ∆|(ti,ti+1])−Rti(φ)

E[〈M〉ti+1
− 〈M〉ti |Fti ]

1(ti,ti+1],

where Rt(φ) is given in (5.6) and 〈M〉 in Definition 5.11. Then φ is called locally

risk-minimizing if

lim
n→∞

rpn(φ,∆) ≥ 0, P× 〈M〉 − almost surely on Ω× [0, T ],

for every small perturbation ∆ and every increasing sequence p of partitions tending to

the identity.
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Although intuitively clear, working with the above definition, in the context of

martingale theory is cumbersome. Rather, we prefer a more tractable definition. For-

tunately under the assumptions that X satisfies SC, A is continuous, and K̃T belongs

to L1(Ω,FT ,P), the notion of local risk-minimization is equivalent to a more acceptable

and familiar one given below, see Schweizer (1999).

Definition 5.18. Let H ∈ L2(Ω,FT ,P) be a contingent claim. An L2-strategy φ with

VT (φ) = H, P−almost surely is called pseudo-locally risk-minimizing or pseudo-optimal

for H if φ is mean-self-financing and the martingale C(φ) (the cost process) is strongly

orthogonal to M .

The following lemma gives a necessary and sufficient condition for the existence

of a pseudo-locally risk-minimizing strategy, see Föllmer and Schweizer (1991) for the

proof.

Lemma 5.6. A contingent claim H ∈ L2(Ω,FT ,P) admits a pseudo-optimal L2-

strategy φ with VT (φ) = H, P−almost surely, if and only if H can be represented

as

H = H0 +

∫ T

0

ξHu dXu + LHT , P− almost surely, (5.7)

with H0 ∈ L2(Ω,F0,P), ξH ∈ ΘS and LH ∈M2
0(P) strongly P− orthogonal to M . The

strategy φ and the cost process C are then given by

θt = ξHt , for all 0 ≤ t ≤ T,
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and

Ct(φ) = H0 + LHt , for all 0 ≤ t ≤ T.

Its value process is

Vt(φ) = Ct(φ) +

∫ t

0

vudXu = H0 +

∫ t

0

ξHu dXu + LHt , for all 0 ≤ t ≤ T,

so that η is also determined by the above description.

As mentioned before, under appropriate assumptions on X, local risk-minimization

is same as pseudo-locally risk-minimizing. Hence, this lemma gives a necessary and

sufficient condition for the existence of a local risk-minimization strategy.

Remark 5.7. The decomposition in (5.7) is called the Föllmer-Schweizer (FS) decom-

position of H. It is proved that FS decomposition exists if the mean-variance trade-off

process K̃ is bounded uniformly in t and ω, see Monat and Stricker (1995).

Although the existence of local risk-minimization is proved by the previous lemma,

it completely depends on the decomposition in (5.7). However, in some special cases

there are constructive ways of finding the strategies explicitly. To our knowledge, the

best is done for processes with continuous sample paths, especially diffusion processes.

For continuous processes, the well known method of minimal equivalent local mar-

tingale measure (MELMM) is applicable, but even in this case, the final answer depends

on finding the GKW decomposition, which is not known in general. Fortunately, for

our problem, we present a constructive way of finding these hedging strategies that
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has the advantage of not using the complexity of MELMM. In the next section we

study the structure of
(
g(t,Xt)1{τ>t}

)
0≤t≤T , this is an essential step toward finding FS

decomposition.

5.5 The Compensator of
(
g(t,Xt)1{τ>t}

)
t≥0

Itô formula is an important tool in analyzing financial problems. Itô formula (or

Dynkin formula) can be applied to find the compensator of the process (g(t,Xt))t≥0

for a C1,2 function g = g(t, x). By using the optional sampling theorem one can

actually do further and find the compensator of the process (g(t ∧ τ,Xt∧τ ))t≥0. A

simple manipulation shows that for all t ≥ 0 we have that

g(t ∧ τ,Xt∧τ ) = g(t,Xt)1{τ>t} + g(τ,Xτ )1{τ≤t}.

Itô formula cannot be applied to find the compensators of the individual processes

defined by the terms in the right-hand side of the above equation. Since we are working

with defaultable processes, it is essential to know the compensator of these processes

and especially
(
g(t,Xt)1{τ>t}

)
t≥0

.

In Chapter 4, we introduced the notion of intensity for the indicator process N =

(Nt)t≥0 where Nt = 1{τ≤t}. Remember that the intensity of this process leads to its

compensator. In this section we introduce a similar concept for the process P = (Pt)t≥0,

where Pt = g(t,Xt)1{τ>t} and g : [0,∞) × R → R is a C1,2 function. The problem at

hand is finding the compensator of P . This could be considered as a generalization of

Chapter 4. From here on, we reserve the symbol N for the above indicator process.
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To achieve this generalization in our model, we use two methods, the method of

the Laplacian approximation (see Theorem 4.1) and another one using a compensation

formula.

5.5.1 The Laplacian approximation

The method of the Laplacian approximation can be found in the first edition of Del-

lacherie and Meyer (1982).

Assume that the process P = (Pt)t≥0 satisfies the conditions of Theorem 4.1. Then

to find the predictable part of P , we need to calculate

Λt =

∫ t

0

lim
h↓0

E[Ps+h − Ps|Fs]
h

ds.

We illustrate the procedure to calculate the above limit for the process X = U , where

U is a compound Poisson process plus a drift, i.e. Ut = u + µt +
∑Nt

i=1 Yi, for t ≥ 0.

This is similar to the proof of Proposition 4.1. In what follows, whenever we say that

“on the event A, Expression1 = Expression2”, it means that

1A Expression1 = 1A Expression2.

Since the problem is set on the interval [0, T ], we can assume that 0 ≤ t ≤ T . Let

P̃t = g(t, Ut)1{τ≤t} and A = {τ > t, Tn ≤ t < Tn+1} then on A,

E[P̃t+h − P̃t|FUt ] = E[g(t+ h, Ut+h)1{τ≤t+h} − g(t, Ut)1{τ≤t}|FUt ]

= E[g(t+ h, Ut+h)|FUt ]− E[g(t+ h, Ut+h)1{τ>t+h}|FUt ],
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for h, t ≥ 0, and t+ h ≤ T . For each t, Tn ≤ t < Tn+1, we define the σ-algebra

Gt = σ ({T1, ...Tn, Y1, ..., Yn}) .

Since for any t, the equality Gt ∩A = FUt ∩A holds, by Lemma A.3, on A we have

E[g(t+ h, Ut+h)1{τ>t+h}|FUt ] =
E[g(t+ h, Ut+h)1{τ>t+h}|Gt]

E[1A|Gt]
,

E[P̃t+h − P̃t|FUt ] = E[g(t+ h, Ut+h)|FUt ]−
E[g(t+ h, Ut+h)1{τ>t+h}1A|Gt]

E[1A|Gt]
.

In the last formula above, the numerator of the second term on the right-hand side

can be written as the sum of three terms, depending if Tn ≤ t < t + h < Tn+1, or else

Tn+1 ≤ t+h < Tn+2, or finally t+h ≥ Tn+2. The denominator can be written as P(τ >

t, Tn ≤ t < Tn+1|Gt) = XP(Tn+1 > t|Gt) = Xe−λ(t−Tn), for X = 1{Tn≤t}1
⋂n
i=1 {u+µTi+Zi>0}

and Zi =
∑i

j=1 Yj. So

E[P̃t+h − P̃t|FUt ] = E[g(t+ h, Ut+h)|FUt ]− I− II− III, (5.8)

where

I =
E[g(t+ h, Ut+h)1{τ>t+h}1{Tn≤t<t+h<Tn+1}|Gt]

E[1A|Gt]
,

II =
E[g(t+ h, Ut+h)1{τ>t+h}1{Tn≤t<Tn+1≤t+h<Tn+2}|Gt]

E[1A|Gt]
,

III =
E[g(t+ h, Ut+h)1{τ>t+h}1{Tn≤t<Tn+1<Tn+2≤t+h}|Gt]

E[1A|Gt]
.

For the first term I above, on A we have

I =
Xg(t+ h, u+ µ(t+ h) + Zn)e−λ(t+h−Tn)

Xe−λ(t−Tn)

= g(u+ µ(t+ h) + Zn, t+ h)e−λh,

(5.9)
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by conditioning on Tn+1 and Yn+1, II becomes

II =
Xλe−λ(t+h−Tn)

∫ t+h
t

∫∞
−(u+µtn+1+Zn)

ζhP(Yn+1 ∈ dyn+1)dtn+1

Xe−λ(t−Tn)
,

where ζh = g(u+ µ(t+ h) + Zn + yn+1, t+ h), hence on A we have

II = λe−λh
∫ t+h

t

∫ ∞
−(u+µtn+1+Zn)

ζhP(Yn+1 ∈ dyn+1)dtn+1, (5.10)

A similar expression can be found for III. By (5.8) to obtain limh↓0
E[P̃t+h−P̃t]

h
, first

we need the following

lim
h↓0

E[g(t+ h, Ut+h)|Ft]− I
h

= lim
h↓0

E[g(t+ h, Ut+h)− g(t, Ut)|Ft]
h

+ lim
h↓0

g(t, Ut)− I
h

.

(5.11)

Notice that the first term in the right-hand side of (5.11) is not always zero. In a

special case, it is equal to zero when g has the following property, for some function K

and constant h,

|g(t+ h, x)− g(t, y)| ≤ K(x, y)hα, for α > 1. (5.12)

For example a constant g = g(t, x) satisfies this condition. But in general the first term

of (5.11) is not zero. For a bounded function g = g(t, x), it is equal to

lim
h↓0

E[
∫ t+h
t
Ag(v, Uv)dv|FUt ]

h
= Ag(t, Ut),

where we have used the conditional version of Lebesgue’s dominated convergence the-

orem, and A is the generator of g(t, x), satisfying

Ag(t, x) =
∂g

∂t
(t, x) + µ

∂g

∂x
(t, x) + λ(

∫ ∞
−∞

g(t, x+ u)P(Y1 ∈ du)− g(t, x)). (5.13)
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Fore the moment leave the first term of (5.11) unchanged. A simple calculation shows

that

lim
h↓0

g(t, Ut)− I
h

= −µ∂g
∂x

(t, Ut)−
∂g

∂t
(t, Ut) + λg(t, Ut).

The above discussions yield to the following expressions on A,

lim
h↓0

E[g(t+ h, Ut+h)|FUt ]− I
h

= lim
h↓0

E[g(t+ h, Ut+h)− g(t, Ut)|FUt ]

h

− µ∂g
∂x

(t, Ut)−
∂g

∂t
(t, Ut) + λg(t, Ut).

Also it can be shown that

lim
h↓0

II
h

= λ

∫ ∞
−Ut

g(t, Ut + u)P[Y1 ∈ du],

and

lim
h↓0

III
h

= 0.

This finally leads us to the point where, if the first term of (5.11) is zero then

lim
h↓0

E[P̃t+h − P̃t|FUt ]

h
= −Ag(t, Ut), (5.14)

and otherwise

lim
h↓0

E[P̃t+h − P̃t|FUt ]

h
= lim

h↓0

E[g(t+ h, Ut+h)− g(t, Ut)|FUt ]

h
− Ag(t, Ut), (5.15)

where A is operator given by

Ag(t, x) = µ
∂g

∂x
(t, x) +

∂g

∂t
(t, x) + λ(

∫ ∞
−x

g(t, x+ u)P(Y1 ∈ du)− g(t, x)).
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Now from the identity

E[Pt − Pt+h|FUt ] = E[P̃t+h − P̃t|FUt ]− E[g(t+ h, Ut+h)− g(t, Ut)|FUt ],

the previous derivations lead to the following lemma.

Lemma 5.7. Suppose that
(
g(t, Ut)1{τ>t}

)
0≤t≤T satisfies the conditions of Theorem

4.1, then

g(t, Ut)1{τ>t} −
∫ t

0

Ag(s, Us)1{τ>s}ds, (5.16)

is an
{
FUt
}

0≤t≤T - martingale.

Remark 5.8. If the underlying process Ut is replaced by a Lévy process, the previous

lemma lets us conjecture that we could have the same form as in (5.16), but with a

different generator. However there are some technical problems that must be considered.

These are explained in Section 5.6.

Note that if g = g(t, x) is zero for x < 0, then the two operators A andA are actually

equal. Indeed in the expression g(t, Ut)1{τ>t} since τ > t, then Ut > 0. Therefore on

[0, T ], the domain of the function g can be restricted to [0,∞)× (0,∞)

An interesting special cases of Lemma 5.7 is for g = 1. This constant function

satisfies all the conditions of the Lemma. It provides a decomposition of the indicator

process
(
1{τ>t}

)
t≥0

that was already obtained in Corollary 4.1 and also in Guo and

Zeng (2008) but by a different method.

Here, we would like to clarify a possible confusion that may arise in working with
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the indicator process
(
1{T >t}

)
t≥0

(or
(
1{T ≤t}

)
t≥0

) for a stopping time T . First we recall

the general case of the Doob-Meyer decomposition theorem, see Protter, 2004.

Theorem 5.3. Let Z be a càdlàg supermartingale with Z0 = 0 of Class D. Then there

exists a unique, increasing, predictable process Λ with Λ0 = 0 such that Mt = Zt + Λt

is a uniformly integrable martingale.

Assume that T > 0 and T < ∞ almost surely. The indicator process
(
1{T >t}

)
t≥0

is a càdlàg supermartingale, because 1{T >t} ≤ 1{T >s} for all t ≥ s ≥ 0. To make it

compatible with the previous theorem, we define Zt = 1{T >t}− 1, hence Z0 = 0, and it

belongs to Class D. On the other hand
(
1{T ≤t}

)
t≥0

is an increasing process that starts

at zero. So it seems that the uniqueness in Theorem 5.3 provides a simple solution

Λ =
(
1{T ≤t}

)
t≥0

and then M = 0.

The only condition that we did not check and actually needs careful attention is

the predictability of the indicator process
(
1{T ≤t}

)
t≥0

. Before proceeding, we mention

a false argument that may be used to deal with this confusion. It may be thought that

since the above process is càdlàg it cannot be predictable, by definition of predictability.

We remind that a predictable σ-algebra is generated by all càg adapted processes.

Therefore a càdlàg process can not be a generator of a predictable σ-algebra, but

still it may be measurable with respect to the σ-algebra generated by all càg adapted

processes. In what follows we solve this problem under two different perspectives.

Although not stated directly in Theorem 5.3, the Doob-Meyer decomposition com-
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pletely depends on the underlying filtration. Considering different filtrations leads to

different decompositions. The first perspective is to consider different levels of infor-

mation or filtrations for the process Z, which is adapted to all filtrations.

Assume a situation when there is a lack of information. Under this assumption,

most likely the default time (or the value of the indicator process
(
1{T >t}

)
t≥0

) would

be a complete surprise for investors, or in our words, totally inaccessible or completely

unpredictable. In this case the compensator of the process Z is not trivial any more.

On the other hand, if full information (or the largest filtration) is accessible, the

predictability of the default time may also hold. In this situation the compensator

can be a trivial predictable process. A very good example is provided by Artzner

and Delbaen (1995). In their paper full information is generated by the underlying

value process, which is a Brownian motion, and incomplete information is generated

by the periodic values of the underlying process, which can be considered for example

as the quarterly releases of the firm’s data. In that case the compensator of the default

indicator process is derived to be trivial under complete information and nontrivial

under incomplete information.

In the second perspective we see that even having complete access to the information

does not guarantee in all the cases a trivial compensator for the indicator process.

Having full access to the firm’s data reduces the risk, but there might still be

some residual systematic risks, beyond the firm’s manager control. In the second

perspective, we focus on the entity of the risk coming exogenously and imposed by the
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global economic scenarios. Theoretically, if the underlying process is a Lévy process

for example, then as we saw in Theorem 4.3, the default time T = τ is neither a totally

inaccessible nor a predictable stopping time. Now the confusion can be resolved by the

following statement.

The random time T is predictable if and only if the process
(
1{T ≤t}

)
t≥0

is

predictable.

5.5.2 Finding the Compensator by Using a Compensation
Formula

Now we discuss the second approach for finding the compensator of the process P .

Lets start by a simple observation. Assume that X and X̃ belong to S such that

X − X̃ is a martingale. For example, if X is an increasing process in Aloc then by

Doob-Meyer’s decomposition there is such an increasing predictable process X̃. Since

X − X̃ is a martingale, for any locally bounded predictable process H we obtain

E[
∫ t

0
H d(X − X̃)] = 0. Assuming that E[

∫ t
0
H dX̃] <∞, we have the following

E[

∫ t

0

H dX] = E[

∫ t

0

H dX̃].

Note that since H is a locally bounded predictable process, the above integrals are well

defined, see Jacod and Shiryaev (1987).

The converse of the above observation is true under appropriate assumptions. This

can be stated in different versions. Here, we use the one that fits to our needs. Following

Brémaud (1981), we have

110



Lemma 5.8. Assume that X is a semimartingale in the probability space (Ω,F ,F,P)

such that E[
∫∞

0
Hs dXs] = E[

∫∞
0
HsIs ds] holds for all locally bounded predictable

processes H. Further suppose that I is an F-adapted process for which E[
∫ t

0
|Is| ds] <

∞ (or
∫ t

0
|Is| ds < ∞ P- almost surely for all t ≥ 0). Then the process M = (Mt)t≥0

defined by

Mt = Xt −
∫ t

0

Is ds, t ≥ 0,

is an F-martingale (resp. an F-local martingale).

In what follows, we explain a category of Lévy processes for which the second

method is applicable. This is a technical problem and the reasons for imposing it are

brought up in the proof of Theorem 5.5.

Regarding the explanations provided following the Proposition 4.1, especially The-

orem 4.3 (Meyer’s previsibility theorem), it is important to be careful how default

happens. If the underlying process is a pure jump process, then most probably, default

happens by a sudden jump of the underlying process. The following definition and

theorem guarantee that for a special type of bounded variation Lévy process, this is

really the case, see Section 7.5 of Kyprianou (2006). This is one of the reasons that we

focus on bounded variation Lévy processes.

Definition 5.19. Assume that the process X is a Lévy process such that X0 = 0

(X0 = u > 0). Let the stopping time τ+ be defined as

τ+ = inf{t > 0;Xt > x}.

111



Then X creeps over (creeps down) the level x > 0 (x = 0), when

P(Xτ+ = x) > 0 (P(Xτ = 0) > 0).

We also use creep upward and creep downward terminologies. The following theo-

rem is part (i) of Theorem 7.11 of Kyprianou (2006) that gives necessary and sufficient

conditions for a process to creep over or creep down.

Theorem 5.4. Suppose that X is a bounded variation Lévy process which is not a

compound Poisson process. Then X creeps upwards (downward) if and only if the

process X has the following Lévy-Khintchine exponent

Ψ(θ) = −iθµ+

∫
R−{0}

(1− eiθx)v(dx),

for µ > 0 (µ < 0), and v is the Lévy measure.

Notice that in this case the Lévy process X can be represented as

Xt = µt+

∫ t

0

∫
R−{0}

xJX(ds× dx), t ≥ 0. (5.17)

The first term of the above equation is the drift part and the second term is a pure

jump process where JX is the jump measure of the process X.

Theorem 5.5. Assume that X is a bounded variation Lévy process given by (5.17)

such that µ > 0. Let g : [0,∞) × R → R be a C1,2 function and suppose that both of

the expectations E[
∫ t

0

∫ −Xs
−∞ |g(s,Xs)| v(dy) ds] and E[

∫ t
0

∫ −Xs
−∞ |g(s,Xs + y)| v(dy) ds]

are finite for all t ≥ 0. Then if

E
[ ∫ t

0

∫
R

∣∣(g(s,Xs− + y)− g(s,Xs−))
∣∣ v(dy) ds

]
<∞,
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(or
∫ t

0

∫
R |(g(s,Xs− + y)− g(s,Xs−))| v(dy) ds <∞, almost surely), the process(

g(t,Xt)1{τ>t} −
∫ t

0

Ag(s,Xs)1{τ>s} ds

)
t≥0

, (5.18)

is an FX- martingale (or FX- local martingale), where

Ag(s, x) =
∂g

∂s
(s, x) + µ

∂g

∂x
(s, x)−

∫ −x
−∞

g(s, x+ y) v(dy)

+

∫ ∞
−∞

(g(s, x+ y)− g(s, x)) v(dy).

(5.19)

Proof. Because the function g is a C1,2 function, the process (g(t,Xt))t≥0 is a semi-

martingale and so by using the product formula (5.2), for t ≥ 0 we have

g(t,Xt)1{τ≤t} =

∫ t

0

1{τ<s} dg(s,Xs) +

∫ t

0

g(s−, Xs−) d1{τ≤s}

+ [g(t,Xt), 1{τ≤t}].

(5.20)

The compensator of P̃ =
(
g(t,Xt)1{τ≤t}

)
t≥0

is the sum of the compensators of each of

the three terms on the right-hand side of the above equation.

Since g is a C1,2 function (in fact for this part C1,1 is enough), by applying Itô’s

formula, we have

g(t,Xt) = g(0, X0) +

∫ t

0

∂g

∂s
(s,Xs) ds+ µ

∫ t

0

∂g

∂x
(s,Xs) ds

+

∫ t

0

∫
R
(g(s,Xs− + y)− g(s,Xs−)) JX(ds× dy).

For a proof of this, see Theorem 4.2 of Kyprianou (2006). By the compensation formula

we get

E[

∫ t

0

∫
R
Hs(g(s,Xs− + y)− g(s,Xs−)) JX(ds× dy)] =

E[

∫ t

0

∫
R
Hs(g(s,Xs− + y)− g(s,Xs−)) v(dy)ds],
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for all bounded non-negative predictable processes H. Hence by Lemma 5.8 and in-

tegrability assumptions, we have the decomposition g(t,Xt) = Mt + Λg
t , t ≥ 0, where

M is an FX- martingale (an FX- local martingale) and Λg is a finite variation process.

The process Λg is given by Λg
t =

∫ t
0
Ag(s,Xs) ds, the operator A is defined by

Ag(s, x) =
∂g

∂s
(s, x) + µ

∂g

∂x
(s, x) +

∫
R
(g(s, x+ y)− g(s, x)) v(dy),

and v is the Lévy measure of the process X. Therefore

∫ t

0

1{τ<s} dg(s,Xs) =

∫ t

0

1{τ<s} dMt +

∫ t

0

1{τ<s}Ag(s,Xs) ds,

since the first term of the right-hand side of the above is a (local) martingale the

compensator of the first term of (5.20) is given by

(∫ t

0

1{τ<s}Ag(s,Xs) ds

)
t≥0

. (5.21)

To find the compensator of the second term of (5.20), since by Theorem 5.4, the

process X does not creep downward, the stopping time τ is now totally inaccessible.

Therefore one can extend the Laplacian approximation method in Chapter 4 (because

now the compensator Λ in Theorem 4.1 is continuous), or apply the result of Guo and

Zeng (2008). From the assumption E[
∫ t

0

∫ −Xs
−∞ |g(s,Xs)| v(dy)ds] < ∞, hence and by

very minor modifications of Guo and Zeng (2008), the compensator of the second term

of (5.20) is given by

(∫ t

0

∫ −Xs
−∞

(
g(s,Xs)1{τ>s} v(dy)

)
ds

)
t≥0

. (5.22)
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The main challenge is to find the compensator of the third term of (5.20). The in-

dicator process
(
1{τ≤t}

)
t≥0

is a finite variation process. Then by part (a) of Proposition

5.2, we obtain

[g(t,Xt), 1{τ≤t}] =

∫ t

0

∆g(s,Xs) d1{τ≤s}. (5.23)

By Lemma 5.8, to obtain the compensator of the above process, we need to calculate

the following expectation

E
[∫ ∞

0

Hs d[g(s,Xs), 1{τ≤s}]

]
= E

[∫ ∞
0

Hs∆g(s,Xs) d1{τ≤s}

]
,

for an arbitrary bounded non-negative predictable process H. The calculations of this

expectation are almost the same lines as Guo and Zeng (2008), where the compensation

formula is used. From there, we obtain that E
[∫∞

0
Hs d[g(s,Xs), 1{τ≤s}]

]
is equal to

E
[∫ ∞

0

Hs1{τ>s}

∫ 0

−∞
(g(s, y)− g(s,Xs))v(dy −Xs) ds

]
,

and this expectation is finite and well defined by the integrability conditions in our

assumptions. Hence by Lemma 5.8, the compensator of [g(t,Xt), 1{τ≤t}] is given by

(∫ t

0

∫ 0

−∞
(g(s, y)− g(s,Xs))1{τ>s}v(dy −Xs) ds

)
t≥0

. (5.24)

The compensator of
(
g(t,Xt)1{τ≤t}

)
t≥0

is concluded from Equations (5.21), (5.22), and

(5.24), and it is equal to

(∫ t

0

1{τ<s}Ag(s,Xs) ds+

∫ t

0

∫ −Xs
−∞

1{τ>s}g(s,Xs)v(dy)ds

+

∫ t

0

∫ 0

−∞

(
g(s, y)− g(s,Xs)

)
1{τ>s}v(dy −Xs)ds

)
t≥0
.

115



Notice that in any of the above integrands, the strict inequality of the indicator process

can be replaced by equality, because the Lebesgue measure ds does not charge {s; s =

τ}. From the above equation and since g(t,Xt) = g(t,Xt)1{τ≤t} + g(t,Xt)1{τ>t}, after

some manipulations the compensator of g(t,Xt)1{τ>t} is equal to(∫ t

0

Ag(s,Xs)1{τ>s} ds

)
t≥0

,

where Ag(s, x) is given by (5.19).

Remark 5.9. Depending on the function g, the integrability conditions can be replaced

by simpler ones. For instance if the function g and its derivatives are bounded.

Remark 5.10. Note that the operator given by (5.19) is not the same as Dynkin’s or

Itô’s operator, and for the process U , Theorem 5.5 reduces to Lemma 5.7.

The following corollary is the result of Theorem 5.5. Although we do not use it, it

can be an interesting result in martingale theory.

Corollary 5.3. Assume that X is a bounded variation Lévy process given by (5.17)

such that µ > 0. Let g : [0,∞)×R→ R be a C1,2 function and suppose that both of the

expectations E[
∫ t

0

∫ −Xs
−∞ |g(s,Xs)| v(dy) ds] and E[

∫ t
0

∫ −Xs
−∞ |g(s,Xs + y)| v(dy) ds] are

finite. Then if E[
∫ t

0

∫
R |(g(s,Xs + y) − g(s,Xs))| v(dy) ds] < ∞ (or

∫ t
0

∫
R |(g(s,Xs +

y)−g(s,Xs))| v(dy) ds <∞, almost surely), the following process is an FX- martingale

(or FX- local martingale),(
g(τ,Xτ )1{τ≤t} −

∫ t∧τ

0

( ∫ −Xs
−∞

g(Xs + y, s)v(dy)
)
ds

)
t≥0

.
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Proof. By Theorem 5.5 and Dynkin’s formula (or Itô’s formula), both of the processes

(
g(t,Xt)1{τ>t} −

∫ t

0

Ag(s,Xs)1{τ>s} ds

)
t≥0

,

and (
g(t,Xt)−

∫ t

0

Ag(s,Xs) ds

)
t≥0

,

are martingales. Then it follows from the optional sampling theorem that the pro-

cess
(
g(t ∧ τ,Xt∧τ )−

∫ t∧τ
0
Ag(s,Xs) ds

)
t≥0

is also a martingale. A simple calculation

shows that g(τ,Xτ )1{τ≤t} = g(t ∧ τ,Xt∧τ )− g(t,Xt)1{τ>t}. We have the compensators

of both terms on the right-hand side, therefore

(
g(τ,Xτ )1{τ≤t} −

∫ t

0

(Ag(s,Xs)− Ag(s,Xs))1{τ>s} ds

)
t≥0

must be a martingale too. Now the subtractions of the two operators gives the result.

With this corollary together with Itô’s formula, under some integrability conditions

for the process X mentioned above, one can find the compensators of the processes

(g(t ∧ τ,Xt∧τ ))t≥0,
(
g(t,Xt)1{τ>t}

)
t≥0

, and
(
g(τ,Xτ )1{τ≤t}

)
t≥0

.

Although the second approach seems to be more practical, the first approach intu-

itively makes more sense as it is based on the classical definition of default rate. The

first approach together with the Lemma 5.8 can be still applicable to diffusion terms.

In other words, the first approach can help guessing the compensator and Lemma 5.8

can be used to verify it. However, if one applies Theorem 4.1 directly, then the process
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P must satisfy the Theorem conditions. The next section concentrates on sufficient

conditions on g, for which Theorem 4.1 is applicable to the process P , but is mainly

reviewing the class D of processes.

5.6 Class D of processes

There are a few conditions in Theorem 4.1 that the process P = (Pt)t≥0, Pt = g(t,Xt)

has to satisfy. The most important one is belonging to Class D. First we explain

the other conditions and then we discuss Class D of processes. As mentioned in the

introduction, since the life time of the products is the maturity T , one can assume that

τ < ∞ almost surely. We try to find a quite large family of stochastic processes that

satisfy the conditions of Theorem 4.1.

First we deal with functions g = g(t, x) that make P a supermartingale. Since the

process Ñ =
(
Ñt

)
t≥0

, Ñt = 1{τ>t} is decreasing, P is a supermartingale if (g(t,Xt))t≥0

is a supermartingale.

Assume that X is a Lévy process with Lévy triplet (σ2, v, γ). Suppose that g is a

C1,2 function. Then under appropriate integrability conditions, by Itô’s formula, we

have

g(t,Xt) = Mt + Λg
t , t ≥ 0.

The process M = (Mt)t≥0 is a martingale given by

Mt =

∫ t

0

∫ ∞
−∞

[g(s,Xs− + y)− g(s,Xs−)]J̃X(ds dy),

J̃X(ds dy) = JX(ds dy)− v(dy) ds,
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and the process Λ = (Λt)t≥0 is a continuous finite variation one given by

Λt =

∫ t

0

Ag(s,Xs) ds,

where for s > 0 and x ∈ R

A(s, x) =
∂g

∂s
(s, x) + γ

∂g

∂x
(s, x) +

σ2

2

∂2g

∂x2
(s, x)

+

∫ ∞
−∞

(
g(x+ y, s)− g(x, s)− y ∂g

∂x
(s, x)1{|y|≤1}

)
v(dy).

The integrability conditions should make all the parts well defined, for instance they

can be given by the following,

∫
|y| v(dy) <∞,

E[

∫ t

0

|∂g
∂x

(s,Xs)| ds] <∞, for all t ≥ 0,

E[

∫ t

0

∫
|g(s,Xs + y)− g(s,Xs)| ds v(dy)] <∞, for all t ≥ 0. (5.25)

Notice that the last two conditions let us to write the above martingale drift represen-

tation. These conditions are not needed to apply Itô’s formula for a Lévy process. The

C1,2 condition allows us to use Itô’s formula and depending on the process it can be

eased. A general form of Itô’s formula is still valid for convex functions, see He, Wang

and Yan (1992).

Example 5.4. Consider Xt = Ut = u + µt +
∑Nt

i=1 Yi. Suppose that g is C1,1 and

E
[∫ t

0
|(g(t, Ut + y)− g(t, Ut))|FY (dy)

]
<∞, then we have

g(t, Ut) = Mt + Λg
t , t ≥ 0.
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The process M = (Mt)t≥0 is a martingale given by

Mt =

∫ t

0

∫ ∞
−∞

[g(s, Us− + y)− g(s, Us−)] J̃X(ds dy), t ≥ 0,

J̃X(ds dy) = JX(ds dy)− λFY (dy) ds,

and the process Λg = (Λg
t )t≥0 is a continuous finite variation one given by

Λg
t =

∫ t

0

AUg(s,Xs) ds, ≥ 0,

where AUg(s, x) is equal to

∂g

∂s
(s, x) + µ

∂g

∂x
(s, x) + λ

(∫ ∞
−∞

g(s, x+ y)FY (dy)− g(s, x)

)
. (5.26)

Note that given the condition E
[∫ t

0
|(g(t, Ut + y)− g(t, Ut))|FY (dy)

]
<∞, the martin-

gale part is well defined.

In case of the process U , the following provide slightly different conditions that still

assure a decomposition as above for the process U , see Rolski et al. (1999).

1. g = g(t, x) is absolutely continuous with respect to t and g(t, x) = 0 for x ≤ 0,

2. E
[∑

n,Tn≤t |g(Tn, UTn)− g(T−n , UT−n )|
]
<∞,

3. AUg(t, x) ≤ 0 for all t ≥ 0 and x.

If Λg is decreasing, then (g(t,Xt))t≥0 is a supermartingale. To have Λ decreasing it

is sufficient to have Ag(t, x) ≤ 0 for all t ≥ 0 and x.
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The other two important conditions in Theorem 4.1 are

lim
t→∞

E[Pt] = 0

and the process P has to be in class D. If we impose some further assumptions on

g = g(t, x) then there is a simple answer for the first condition.

Lemma 5.9. Assume that g(T,XT ) ∈ L2 then limt→∞ E[Pt] = 0.

Proof. For t > T ,

E[g(T,XT )1{τ>T}] ≤ ||g(XT , T )||2
√
P[τ > t].

We know that τ <∞ almost surely, hence the result follows.

Remark 5.11. In fact the above lemma works for any Lp space, p > 1.

Answering the second condition is more challenging. We start by a simple observa-

tion.

Lemma 5.10. If for all 0 ≤ t ≤ T , g(t,Xt) ∈ L1(Ω,Ft,P) and the process (g(t,Xt))t≥0

is of class DL (see Definition A.6 of the Appendix) then P is of class D as well.

Proof. We apply the definition of class D. For x > 0 and any finite-valued stopping
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time s we have

∫
|F (s,Xs)|>x

|F (s,Xs)|d P ≤
∫
|F (s,Xs)|>x,s≤T

|F (s,Xs)|d P

+

∫
|F (s,Xs)|>x,s>T

|F (s,Xs)|d P

≤
∫
|g(s,Xs)|>x,s≤T

|g(s,Xs)|d P

+

∫
|g(T,XT )|>x

|g(T,XT )|d P

therefore

sup
s

∫
|F (s,Xs)|>x

|F (s,Xs)| d P ≤ sup
s

∫
{|g(s,Xs)|>x,s≤T}

|g(s,Xs)|d P

+

∫
|g(T,XT )|>x

|g(T,XT )|d P,

Now if we let x → ∞, the first term on the right-hand side goes to zero because

(g(t,Xt))t≥0 is assumed to be of class DL, and the second term also goes to zero

because g(T,XT ) ∈ L1(Ω,FT ,P). This show that P is of class D.

So the question is reduced to when is (g(t,Xt))t≥0 of class DL?

The first necessary condition on (g(t,Xt))t≥0 is uniform integrability on a finite

interval. In Meyer (1962), the author writes that “We have never met a right continuous

supermartingale, uniformly integrable on an interval [0, a] and not belonging to the class

D on it.” Although uniform integrability is a strong condition, unfortunately there are

examples of uniformly integrable supermartingales which are not of class D on [0,∞),

see Johnson and Helms (1963) (for class DL see the next remark). However, it is not
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difficult to prove that the following important cases all belong to class DL. For the first

three, see Meyer (1962), and for the last one see Karatzas and Shreve (1988).

Lemma 5.11. 1. Any right continuous martingale belongs to the class DL.

2. Any right continuous supermartingale which is bounded from above, belongs to

the class DL.

3. Any right continuous supermartingale, which belongs to the class DL and is uni-

formly integrable, belongs to the class D.

4. Assume that X is a right continuous supermartingale, and X = M + Λ, where

M is a martingale and Λ decreasing, then X is of class DL.

Remark 5.12. The third part of the previous lemma together with the example of

Johnson and Helms (1963) shows that there are uniformly integrable, supermartingales

that do not belong to class DL.

Remark 5.13. The third and forth part of the previous lemma show that if X is

decomposable and uniformly integrable then it belongs to class D. Meyer (1962) proves

that the converse also holds which is known as Doob-Meyer’s decomposition.

Regarding the previous discussion we present the following lemma, that gives a rel-

atively simple criteria to make P of class D. There may be more satisfactory conditions,

but this is the best we have done so far.
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Lemma 5.12. Assume that the underlying process X is a Lévy process with Lévy

triplet (σ2, v, γ). Suppose that g = g(t, x) is a C1,2 function such that the integrability

conditions (5.25) are satisfied and Ag(t, x) ≤ 0 for all t ≥ 0 and x. Then the process

(g(t,Xt))t≥0 belongs to class D.

Proof. Lemma 5.10 shows that it is enough to prove that (g(t,Xt))t≥0 is of class

DL. Since Ag(t, x) ≤ 0, the process (g(t,Xt))t≥0 is a supermartingale. We saw that

g(t,Xt) = Mt + Λg
t , for t ≥ 0, where M is a martingale and Λ is decreasing. On the

other hand part four of Lemma 5.11 shows that (g(t,Xt))t≥0 is of class DL.

Although this Lemma serves well for our purpose, we would like to mention some

more useful results. The following result shows that class D for potentials (see Defini-

tion A.5 of the Appendix) has a less complicated structure, see Meyer (1962).

Proposition 5.5. Let X be a potential then it belongs to class D if and only if for any

increasing sequence τn of stopping times, which almost surely increases to infinity, we

have limn→∞ E[Xτn ] = 0.

Using this proposition, one can show that P belongs to class D if

E
[
| sup

0≤t≤T
g(t,Xt)|

]
<∞.

Remark 5.14. If (g(t,Xt))t≥0 is bounded from above by an integrable random variable

(especially when g(t,x) is bounded by a function of t) then by the previous result it

belongs to class D.
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Remark 5.15. The uniform integrability, and therefore, belonging to class D, is re-

lated to the sample path property of the process. It can be shown that a non-negative

supermartingale X, with continuous sample paths, is uniformly integrable if and only

if limn→∞ nP[sup0≤t≤∞Xt > n] = 0.

And finally we mention the following theorem of Dellacherie and Meyer (1982).

Theorem 5.6. Let X be a positive right continuous supermartingale, and let Rn =

inf{t;Xt ≥ n}. Then X belongs to class D if and only if limn→∞ E[XRn1{Rn<∞}] = 0.

Had we imposed boundness on g from the beginning, we basically would not need

this section, as in this case one can simply prove that (g(t,Xt)1τ>t)t≥0 is of class D.

Although the boundness of g simplifies the analytical calculations, it prevents simple

cases like g(t, x) = x.

5.7 Hedging Strategies for the Defaultable Claims

In Section 5.4, we introduced the concept of local risk-minimization hedging. In this

section our goal is to obtain these hedging strategies for the credit sensitive security

with payoff (5.1)

F (XT )1{τ>T},

where τ = inf{t;Xt < 0}, F : R → R a function, and T > 0 is the maturity or

expiration of the security. If the set {t;Xt < 0} is empty, then τ =∞.

To get an idea of the risk-minimization approach that we will be using later, for
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a moment assume that the process
(
F (Xt)1{τ>t}

)
0≤t≤T is a martingale and we are in

a risk neutral world. If the function F is C2, sufficient conditions for this can be

given either by Lemma 5.7 or Theorem 5.5. Then, by Proposition 5.4, the problem

of finding the hedging strategy is reduced to find the appropriate decomposition of(
F (Xt)1{τ>t}

)
0≤t≤T . So in this setting, finding this decomposition is directly related

to obtain the conditional quadratic covariation between the underlying process X and

the process
(
F (Xt)1{τ>t}

)
0≤t≤T . In what follows by using results of Section 5.4, we

present a method to obtain local risk-minimization hedging in a more general setting

under a physical measure.

It was mentioned in Section 5.4 that if the underlying process X is a (local) mar-

tingale, local risk-minimization reduces to risk-minimization and the existence of the

hedging strategies is solved by a GKW decomposition. When the process X is a semi-

martingale then risk-minimization is no longer valid. It must be improved to local

risk-minimization and the hedging strategies are solved by the FS decomposition (5.7).

Because of the important roles of these two decompositions, we start by an historical

review of them.

The GKW decomposition is essentially the decomposition given by Proposition 5.4.

However, as we see below, square integrability is too strong a condition for the existence

of this decomposition. The FS decomposition was first introduced by Föllmer and

Schweizer (1991). They use Girsanov’s transformation and change the original physical

measure P to the so called equivalent (local) minimal martingale measure P̃ under which
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the underlying process is a martingale. They then use the GKW decomposition to find

the FS decomposition. However their approach essentially works if the underlying

process has continuous sample paths.

The existence of the FS decomposition of a square-integrable claim is proved even

for a d-dimensional semimartingale X by Schweizer (1994) assuming that the process

X satisfies SC condition and the MVT process is uniformly bounded in ω (ω belongs

to Ω) and t and has jumps strictly bounded by 1 from above. Monat and Stricker

(1994) prove the existence of the FS decomposition just by assuming that the MVT

process is uniformly bounded in ω and t. Under this condition, Monat and Stricker

(1995) further prove also the uniqueness.

Choulli, Krawczyk and Stricker (1998) find necessary and sufficient conditions for

the existence and uniqueness of the FS decomposition by introducing a new notion

of martingale. They prove that there is an FS decomposition for a square-integrable

claim under the semimartingale X = X0 + M + Λ, if first, the process E(−
∫
ζ dM)

satisfies an integrability condition and second if it is ”regular”. Please see the paper

for the definition of “regular”. Here the process E(−
∫
ζ dM) is the Doléans - Dade

exponential process (see Protter (2004)) and the process ζ is defined in Definition 5.14.

Choulli, Vandaele and Vanmaele (2010) discuss the relationship between the GKW

and FS decompositions assuming that E(−
∫
ζ dM) is strictly positive. Under this

assumption, they find an explicit form of the FS decomposition based on GKW’s

decomposition.
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In summary finding the FS decomposition practically works if there is at least one

of the following conditions:

• The process X is a (local) martingale under P.

• The process X is continuous.

• The process E(−
∫
ζ dM) is strictly positive.

• The contingent claim is not path dependent.

Unfortunately neither one of these conditions holds in our model. Even in the above

cases, the existence of GKW’s decomposition is normally assumed. We choose a dif-

ferent method to find the FS decomposition and we also avoid changing the physical

measure to find this decomposition. One advantage of this approach is that it does not

relying on the MELMM method which is one of the main constructive ways to obtain

hedging strategies. To start let us recall the GKW decomposition.

Assume that the processes X and Z belong toM2
loc on [0, T ]. Then by GKW’s de-

composition there is a predictable process ξZ and a martingale LZ , strongly orthogonal

to X, such that

Z = Z0 +

∫
ξZ dX + LZ ,

and the process ξ is given by

ξZ =
d〈Z,X〉
d〈X,X〉

. (5.27)
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The superscript Z emphasizes that the decomposition depends on the process Z. Also

it is worth mentioning that this decomposition is still valid under milder conditions.

For instance, it is enough to have the integral
∫
ξ dX well defined, Z, X, and

∫
ξ dX

as local martingales, and [Z,X] in Aloc. In M2
loc, all these conditions are satisfied.

Although formula (5.27) gives the GKW decomposition, the main task is of course

computing the conditional quadratic covariations that are involved. However, in our

setup, when we use GKW decomposition it is feasible to obtain these quantities.

The locally risk-minimizing strategy is linked to the FS decomposition. Hence,

our aim is to find the FS decomposition (5.7). To reach this goal, first in the next

theorem, we obtain a decomposition very close to the FS decomposition and, in fact,

more general. To find this decomposition we use the GKW decomposition. Then we

use this theorem to get our FS decomposition. This theorem is also used in Section

5.8. Before stating the theorem, we explain the conditions on the underlying process

X and also an assumption that is used in the theorem.

For the rest of this section assume that the process X is a bounded variation Lévy

process starting at the initial point u > 0 with Lévy triplet given by (γ, 0, v), where

v is the Lévy measure. It is also assumed that the process X never creeps downward.

Notice that X has the following representation

Xt = u+ µt+

∫
[0,t]×R−{0}

x JX(ds× dx), t ≥ 0,

where JX is the jump measure of X and the linear drift term µ is equal to γ−
∫ 1

−1
x v(dx)
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that is strictly positive. Recall that when the Lévy process X is of finite variation then∫ 1

−1
|x| v(dx) <∞. In this section it is also assumed that µ > 0. These assumptions let

us use Theorem 5.5. Finally for the reason that is explained below, we further assume

that
∫
|x|≥1
|x| v(dx) <∞. Therefore, the Lévy measure v satisfies

∫
|x| v(dx) <∞.

Since
∫
|x| v(dx) < ∞, we saw in Section 5.6 (or one can verify easily) that the

process X can be written as X = M+Λ, where M is a martingale and Λ is a continuous

finite variation process given by

Λt = µt+

∫ t

0

∫ ∞
−∞

y v(dy) ds, t ≥ 0.

Assumption 5.1. Given a convex function F = F (x), it is assumed that there is a

C1,2 function f = f(t, x) that is the solution of the following PIDE

Af(t, x) =
(AK(t, x)− xAf(t, x)− βf(t, x))∫∞

−∞ y
2 v(dy)

β, for all 0 ≤ t ≤ T, (5.28)

and

f(T, x) = F (x), for all real numbers x,

where K(t, x) = xf(t, x), β = µ +
∫∞
−∞ y v(dy), and the operator A is introduced in

(5.19). It is also assumed that f and K satisfy the following integrability conditions

for all 0 ≤ t ≤ T :

• E
[∫ t

0

∫ −Xs
−∞ |h(s,Xs)| v(dy) ds

]
<∞,

• E
[∫ t

0

∫ −Xs
−∞ |h(s,Xs + y)| v(dy) ds

]
<∞,

•
∫ t

0

∫
R |(h(s,Xs− + y)− h(s,Xs−))| v(dy) ds <∞, almost surely,
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where the function h is either f or K.

For the rest of this section, the process
(
f(t,Xt)1{τ>t}

)
0≤t≤T is represented by

Z = (Zt)0≤t≤T . Also let the process θ = (θt)0≤t≤T be given by

θt =
(AK(t−, Xt−)−Xt−Af(t−, Xt−)− βf(t−, Xt−))∫

R y
2 v(dy)

1{τ≥t}, (5.29)

where the operator A is introduced in (5.19), the functions K = K(t, x) and f = f(t, x)

are defined in Assumption 5.1 and β = µ +
∫∞
−∞ y v(dy). Notice that the process θ

implicitly depends on the function F = F (x).

Theorem 5.7. Assume that X is the above mentioned Lévy process. Let the function

F = F (x) satisfy Assumption 5.1. We further suppose that the process [Z,X] belongs

to Aloc. Then for all 0 ≤ t ≤ T , the following decomposition holds

f(t,Xt)1{τ>t} = f(0, X0) +

∫ t

0

θs dXs + Lt, (5.30)

and specifically for t = T , one obtains

F (XT )1{τ>T} = f(0, X0) +

∫ T

0

θs dXs + LT , (5.31)

where the function f = f(t, x) is introduced in Assumption 5.1, and the process L =

(Lt)0≤t≤T is a local martingale strongly orthogonal to the martingale part of X, i.e. M .

Proof. Assume that F satisfies Assumption 5.1 and let f be the solution of the PIDE

in (5.28).

Recall that Z is a semimartingale, since a C1,2 function of a semimartingale is also

a semimartingale, and the product of two semimartingales is still a semimartingale.
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Hence, it has a canonical decomposition. Because both functions f and K satisfy the

integrability conditions of Assumption 5.1, by Theorem 5.5, there are the following

local
(
FXt
)

0≤t≤T - martingales M (1) and M (2) on [0, T ]:

M
(1)
t = f(t,Xt)1{τ>t} −

∫ t

0

Af(s,Xs)1{τ>s} ds,

M
(2)
t = K(t,Xt)1{τ>t} −

∫ t

0

AK(s,Xs)1{τ>s} ds.

First we find the GKW decomposition of M (1) versus M . We show that

M
(1)
t = M

(1)
0 +

∫ t

0

θs− dMs + Lt, 0 ≤ t ≤ T, (5.32)

for a local martingale L = (Lt)t≥0 that is strongly orthogonal to M . Note that because

X is càdlàg, the process (θs)s≥0 is càglàd and hence locally bounded and predictable.

Therefore the integral
∫ t

0
θs dMs is well defined for all 0 ≤ t ≤ T and it is an

(
FXt
)

0≤t≤T

- local martingale.

On the other hand, by Proposition 5.2, [Z,X] = [M (1),M ], so [M (1),M ] belongs

to Aloc, and by Lemma 5.1 its compensator exists, which is 〈M (1),M〉. By a similar

reasoning or as we still see shortly, the process 〈M〉 also exists. Hence, the GKW de-

composition exists and the formula (5.27) is applicable. So we need to obtain 〈M (1),M〉

and 〈M〉.

Calculating 〈M〉 is simple. Since the compensator of X is a continuous finite vari-

ation process, we have that [M ] = [X]. Therefore the conditional quadratic variation

of M as the compensator of [M ] is equal to 〈X〉. The later is already obtained in
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Example 5.3 and so

〈M〉t =

∫ t

0

∫ ∞
−∞

y2 v(dy) ds. (5.33)

Since [M (1),M ] = [Z,X], the compensator of the two processes are the same and

to get 〈M (1),M〉, it is enough to obtain 〈Z,X〉. The integration by parts formula for

semimartingales on [0, T ] gives

ZtXt = Z0X0 +

∫ t

0

Zs− dXs +

∫ t

0

Xs− dZs + [Z,X]t.

Let F
(1)
t =

∫ t
0
Af(s,Xs)1{τ>s} ds and F

(2)
t =

∫ t
0
AK(s,Xs)1{τ>s} ds, then Z = M (1) +

F (1), XZ = M (2) + F (2), and we also have that X = M + Λ. Therefore, the above

integration by parts formula on [0, T ] becomes

[Z,X]t − (F
(2)
t −

∫ t

0

Xs− dF
(1)
s −

∫ t

0

Zs− dΛs)

= −Z0X0 +M
(2)
t −

∫ t

0

Xs−dM
(1)
s −

∫ t

0

Zs−dMs.

Since the processes X and Z are càdlàg, (Xs−)s≥0 and (Zs−)s≥0 are predictable,

and so the integrals on the right-hand side of the above equality are local martingales,

see Protter (2004). Since the process

(
F

(2)
t −

∫ t

0

Xs− dF
(1)
s −

∫ t

0

Zs− dΛs

)
0≤t≤T

is a finite variation predictable process and [Z,X] = [M (1),M ], the uniqueness of the

modified version of conditional quadratic variation gives,

〈M (1),M〉t = F
(2)
t −

∫ t

0

Xs− dF
(1)
s −

∫ t

0

Zs− dΛs, 0 ≤ t ≤ T,
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see Section 5.2. Note that ds is the Lebesgue measure so for example

F
(2)
t =

∫ t

0

AK(s−, Xs−)1{τ≥s} ds.

Hence after some manipulations 〈M (1),M〉t is equal to∫ t

0

(
AK(s−, Xs−)−Xs−Af(s−, Xs−)− βf(s−, Xs−)

)
1{τ≥s}ds. (5.34)

Then the GKW decomposition (5.32) is a result of expressions (5.27), (5.33), and

(5.34). Since F = F (x) satisfies Assumption 5.1 and M
(1)
t = f(t,Xt)1{τ>t}−

∫ t
0
θs dΛs,

the GKW decomposition (5.32) becomes

f(t,Xt)1{τ>t} −
∫ t

0

θs dΛs = f(0, X0) +

∫ t

0

θs dMs + Lt.

Because of the integrability conditions of the Assumption 5.1, both of the integrals∫ t
0
|Af(s,Xs)| ds and

∫ t
0
|AK(s,Xs)| ds are almost surely finite for all 0 ≤ t ≤ T .

Therefore, for all 0 ≤ t ≤ T , θt and so the term
∫ t

0
θs dΛs are well defined and almost

surely finite. Hence, one can move the integral on the left-hand side to the other side

of the equality. This gives the decomposition (5.30). Finally the decomposition (5.31)

is obtained by letting t = T in Equation (5.30) and noticing that by Assumption 5.1,

f(T,XT ) = F (XT ).

In the special case when the process X is a martingale, we have the following

corollary.

Corollary 5.4. Assume that X is the same process as Theorem 5.7. Let the function

F = F (x) satisfies Assumption 5.1 and the process [Z,X] belongs to Aloc. Now further

134



suppose that X is a martingale under the natural completed filtration generated by X,

i.e. FX . Then we have

F (XT )1{τ>T} = f(0, X0) +

∫ T

0

AK(s−, Xs−)∫
R y

2 v(dy)
1{τ≥s} dXs + LT , (5.35)

where the operator A is introduced in (5.19), the functions f(t, x) and K(t, x) are

defined in Assumption 5.1, and the process L = (Lt)0≤t≤T is a local martingale strongly

orthogonal to X.

Proof. Since X is a martingale, then β = µ+
∫
R y v(dy) is equal to zero, and therefore

by Assumption 5.1, Af(s, x) is also zero. Now the corollary easily follows from Theorem

5.7.

Our goal is to find the decomposition (5.7), but we should not forget that by

Lemma 5.6, finding this decomposition leads to just pseudo-locally risk-minimizing

and not necessarily local risk-minimization. As we saw in Section 5.4, to bridge the

two concepts, first we need to investigate SC condition on the underlying process and

also the existence of the FS decomposition.

Remember that we can write X as X = M + Λ, where M is a martingale and Λ is

a continuous finite variation process given by

Λt = µt+

∫ t

0

∫
R
y v(dy) ds, t ≥ 0.

The process M is square-integrable if and only if the process X is square-integrable.

Therefore if X is square-integrable then X belong to S2(P). From here on, it is assumed

that X is square-integrable.

135



The conditional quadratic variation of M is calculated in the proof of Theorem 5.7,

see Equation (5.33). It is easy to verify that for all t ≥ 0, we have

Λt =

∫ t

0

µ+
∫
R y v(dy)∫

R y
2 v(dy)

d〈M〉,

so Λ is absolutely continuous with respect to 〈M〉. Also the MVT process K̃ is abso-

lutely continuous with respect to 〈M〉, i.e. for all t ≥ 0,

K̃t =

∫ t

0

(
µ+

∫
R y v(dy)∫

R y
2 v(dy)

)2

d〈M〉.

The meaning of these is that the process X satisfies SC condition.

Therefore, by Theorem 3.3 of Schweizer (1999), locally risk-minimizing strategies

are the same as pseudo-locally risk-minimizing strategies. On the other hand by Propo-

sition 3.4 of Schweizer (1999), the existence of the later is equivalent to the existence

of an FS decomposition of the payoff. Since the MVT process K̃ is uniformly bounded

in both t and ω, the FS decomposition exists.

Therefore we conclude that in our framework the existence of the Föllmer-

Schweizer decomposition and so locally risk-minimizing strategies are guar-

anteed.

Remark 5.16. We shall point out that the boundness of K̃ can hold even in a more

general setting, for example in case of a jump-diffusion process.

From the above, we conclude that in our setup, to get the local risk-minimization

strategies, all we need is to find the FS decomposition. Some integrability conditions
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turns the decomposition (5.31) into FS decomposition. The next proposition clarifies

this.

Proposition 5.6. Assume that X is the above mentioned process X, i.e., it belongs

to S2(P) and satisfies SC condition. Let the function F = F (x) satisfy Assumption

5.1. We further suppose that for all 0 ≤ t ≤ T , f(t,Xt) belongs to L2(Ω,Ft,P) and

the process θ is in ΘS. Then there is a locally risk-minimizing L2-strategy φ = (θ, η),

determined as follows. The number of shares invested in the risky asset to hold is given

by θ. The hedging error L belongs to M2
0. It is strongly orthogonal to M and given by

Lt = f(t,Xt)1{τ>t} − f(0, X0)−
∫ t

0

θs dXs, 0 ≤ t ≤ T.

The value process of the portfolio is equal to

Vt(θ) = f(0, X0) +

∫ t

0

θs dXs + Lt, 0 ≤ t ≤ T,

the number of risk-free assets is

ηt = Vt(θ)− θtXt, 0 ≤ t ≤ T,

and finally the cost process is provided by

Ct = f(0, X0) + Lt, 0 ≤ t ≤ T.

Proof. It is verified above that the process X satisfies the SC condition. Therefore as

explained before the existence of a locally risk-minimizing L2-strategy is equivalent to

the existence of FS decomposition. Notice that for all 0 ≤ t ≤ T , f(t,Xt) belongs
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to L2(Ω,Ft,P), and so by Proposition 4.50 of Jacod and Shiryaev (1987), the process

[Z,X] is in Aloc. From Equation (5.30) of Theorem 5.7, we have

f(t,Xt)1{τ>t} −
∫ t

0

θs dAs = f(0, X0) +

∫ t

0

θs dMs + Lt, 0 ≤ t ≤ T.

Because θ is in ΘS and f(t,Xt) is square-integrable, the left-hand side and so the

right-hand side of the above equation is square-integrable. Since θ belongs to ΘS, it

is also in L2(X) and so by Lemma 2.1 of Schweizer (1999) the process
∫
θ dM is in

M2
0. Hence the process L is square-integrable as well, then Lemma 5.3 shows that it

belongs to M2
0. Now the proposition follows from Lemma 5.6.

Remark 5.17. A similar result like Proposition 5.6 can be obtained when X is a local

martingale but with a simpler form for the strategy θ. Notice that although we did not

use the MELMM method, we have paid the price by involving a PIDE. In MELMM

method when the underlying process is martingale the problem of finding the hedging

strategies are simpler. Here, the same thing happens too. If the underlying process is

a martingale, the PIDE to find the hedging strategy has a simpler form.

The next theorem investigates necessary and sufficient conditions under which the

process L in Theorem 5.7 vanishes. For this theorem and the corollary following it, the

process X does not need to be square-integrable.

Theorem 5.8. Assume that X is the same process as Theorem 5.7 and the function

F = F (x) satisfies Assumption 5.1. Suppose that the three integrability conditions of

Assumption 5.1 are met for the function f 2 defined by f 2(t, x) = (f(t, x))2 where the
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function f is defined in Assumption 5.1. Now further suppose that the process [Z,X]

belongs to Aloc and the process L in the decompositions (5.30) and (5.31) belongs to

M2
0,loc. Let the operator L be defined as below

Lf(t, x) = Af 2(t, x)− 2βf(t, x)− (AK(t, x)− xAf(t, x)− βf(t, x))2∫
R y

2 v(dy)
,

the operator A is introduced in (5.19), the function K(t, x) is the same as in Assumption

5.1. Then the martingale part of the decompositions (5.30) and (5.31) is null on [0, T ],

if and only if Lf(t, x) = 0 for all 0 ≤ t ≤ T and all x in R. In this case, for all

0 ≤ t ≤ T , we have the following

f(t,Xt)1{τ>t} = f(0, X0) +

∫ t

0

θs dXs, (5.36)

and specifically for t = T , one obtains

F (XT )1{τ>T} = f(0, X0) +

∫ T

0

θs dXs. (5.37)

Proof. We look for functions F = F (x) that make vanish the martingale part of the FS

decomposition (5.31) or L = 0. Since L is inM2
0, by Corollary 5.2, L = 0 is equivalent

to 〈L,L〉 = 0. On the other hand, by Theorem 5.7 the following holds

f(t,Xt)1{τ>t} −
∫ t

0

θs dΛs = f(0, X0) +

∫ t

0

θs dMs + Lt.

From this decomposition, we have

〈L,L〉 = 〈Z〉 − 2〈Z,
∫
θ dX〉+ 〈

∫
θ dX〉, (5.38)
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which is obtained assuming that all the terms on the right hand side exist. Not only,

we prove their existence but also we compute them explicitly. First, we obtain 〈Z〉.

We already know that Z = M (1) + F (1) and observe that Z2
t = f 2(t,Xt)1{τ>t}. By

Theorem 5.5, Z2 = M (3) + F (3), where M (3) is an FX- local martingale and F
(3)
t =∫ t

0
Af 2(s,Xs)1{τ>s}ds. Using the integration by parts formula, we get

Z2 = Z2
0 + 2

∫
Z− dM + 2

∫
Z− dΛ + [Z],

M (3) + F (3) = Z2
0 + 2

∫
Z− dM + 2

∫
Z− dΛ + [Z],

or

[Z]− (F (3) − 2

∫
Z− dΛ) = M (3) − 2

∫
Z− dM − Z2

0 .

The right-hand side of the above equation is a local martingale. Now the predictability

of (F (3) − 2
∫
Z− dF ) and uniqueness of Lemma 5.1 give

〈Z〉t =

∫ t

0

Af 2(s,Xs)1{τ>s}ds− 2

∫ t

0

f(s,Xs)1{τ>s}dΛ.

For the second term of (5.38), since [Z,X] = [M (1),M ], computing the second term

follows from

〈Z,
∫
θ dX〉t =

∫ t

0

θ d〈M (1),M〉 =∫ t

0

(AK(s,Xs)−XsAf(s,Xs)− βf(s,Xs))
2∫

R y
2 v(dy)

1{τ>s}ds,

where 〈M (1),M〉 was already computed in the proof of Theorem 5.7.

The third term can be computed similarly

〈
∫
θ dX〉t =

∫ t

0

θ2d〈M〉,
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or

〈
∫
θ dX〉t

=

∫ t

0

(AK(s,Xs)−XsAf(s,Xs)− βf(s,Xs))
2∫

R y
2 v(dy)

1{τ>s}ds.

From Equation (5.38) and the previous calculation we get the following

〈L,L〉t =

∫ t

0

Lf(s,Xs)1{τ>s}ds,

where

Lf(t, x)

= Af 2(t, x)− 2βf(t, x)− (AK(s, x)− xAf(s, x)− βf(s, x))2∫
R y

2 v(dy)
.

Since the function f is in C1,2, 〈L,L〉 is zero on [0, T ] if and only if Lf(t, x) = 0

on [0, T ]× R. On the other hand, by Corollary 5.2, the former is equivalent to L = 0.

Therefore in the decompositions (5.30) and (5.31), the orthogonal part is vanished if

and only if Lf(t, x) = 0 on [0, T ]× R and this gives Equations (5.36) and (5.37).

Corollary 5.5. Assume that X is the same process as Theorem 5.7 and the function

F = F (x) satisfies Assumption 5.1. Suppose that the three integrability conditions of

Assumption 5.1 are met for the function f 2 defined by f 2(t, x) = (f(t, x))2 where the

function f is given in Assumption 5.1. Now, further suppose that the process [Z,X]

belongs to Aloc, the process L in the decompositions (5.30) and (5.31) belongs toM2
0,loc,

and the process X is a martingale under the natural completed filtration generated by
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X, i.e. FX . Let the operator L be defined as below

Lf(t, x) = Af 2(t, x)− (AK(t, x))2∫
R y

2 v(dy)
,

where the operator A is introduced in (5.19), the function K(t, x) is the same one as

in Assumption 5.1. Then the martingale part of the decompositions (5.30) and (5.31)

is zero on [0, T ], if and only if Lf(t, x) = 0 for all 0 ≤ t ≤ T and all x in R. In this

case, for all 0 ≤ t ≤ T , we have the following

f(t,Xt)1{τ>t} = f(0, X0) +

∫ t

0

θs− dXs,

and specifically for t = T , one obtains

g(XT )1{τ>T} = f(0, X0) +

∫ T

0

θs− dXs.

Proof. SinceX is a martingale, then β = µ+
∫
R y v(dy) is equal to zero, and therefore by

Assumption 5.1, Af(s, x) is also zero. Then the corollary easily follows from Theorem

5.8.

By combining Theorem 5.8 and Proposition 5.6, we will get the following result that

provides a necessary and sufficient condition for the existence of a risk-free defaultable

claim. In the context of jump-diffusion processes, Kunita (2010) answers a similar

question for path independent payoffs.

Proposition 5.7. Assume that X is the same process as in Proposition 5.6 and the

function F = F (x) satisfies Assumption 5.1. Suppose that the three integrability condi-

tions of Assumption 5.1 are met by function f 2 defined as f 2(t, x) = (f(t, x))2, where
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the function f is defined in the assumption. Now further suppose that for all 0 ≤ t ≤ T ,

f(t,Xt) belongs to L2(Ω,Ft,P) and the process θ is in ΘS. Let the operator L be as

in Theorem 5.8. Then the process φ = (θ, η), defined in Proposition 5.6, is a locally

risk-minimizing L2- strategy that makes the derivative F (XT )1{τ>t} risk free if and only

if Lf(t, x) = 0 for all 0 ≤ t ≤ T and all x in R. It means that we have the following

decomposition

F (XT )1{τ>T} = f(0, X0) +

∫ T

0

θs dXs.

Remark 5.18. A similar result can be obtained for the case when X is a martingale,

but with a simpler form for the strategy θ.

Example 5.5. Assume that Xt = u + µt +
∑Nt

j=1 Yi, where (Nt)t≥0 is a homogeneous

Poisson process with intensity λ and the Yi’s are i.i.d. random variables with jump

distribution FY . Let µ > 0, −Y1 ∼ exponential(δ), and suppose that the process X

is a martingale under the natural filtration generated by X which means that λ = µδ.

We remind the reader that in this chapter all asset values are discounted. Consider a

defaultable zero-coupon bond that pays one unit of currency if there is no default, i.e.

F (x) = 1 for all x. By Proposition 5.6 the number of the risky assets of the hedging

strategy is given by

θs =

(
δ2

∫ 0

−Xs−
yf(s−, Xs− + y)FY (dy) + δf(s−, Xs−)

)
1{τ≥s}, (5.39)

where f = f(t, x) satisfies the following PIDE

Af(t, x) = 0, for all 0 ≤ t ≤ T and all x ∈ R,
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f(T, x) = 1, for all x ∈ R.

The Feynman-Kac formula or a renewal argument can be applied to prove that the

solution has the following representation

f(t, x) = 1− P(τ ≤ T − t|X0 = x).

This representation holds regardless of the type of the distribution of the jumps. In the

case of exponential jump size distribution like in this example, a closed form solution is

available. This solution is provided in Rolski et. al. (1999). It is a complicated function

defined based on the Bessel 1 function. The graph of this function on [0, 2]× [0, 0.4] is

given by Figure 5.1 for µ = 0.1, δ = 100, λ = 10, and T = 2,

Figure 5.1: The exact function f with exponential jumps.
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The function f = f(t, x) can also be estimated numerically by simulation. With the

same parameters as above, Figure 5.2 is the graph of the estimation of f = f(t, x) on

[0, 2]× [0, 0.4]. The number of the risky asset θ is a closed form of this function given

by Equation (5.39). Therefore the function f = f(t, x) acts as an interface to solve

the problem. However this function has also a nice interpretation. From Proposition

5.6, one can easily verify that the value of the portfolio is provided through the function

f = f(t, x). More precisely we have that Vt(θ) = f(t,Xt)1{τ>t}.
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Figure 5.2: The estimated function f with exponential jumps.

Next we obtain the locally risk minimization strategies and other related quantities

for a simulated sample path of the process X. In practice, a dynamic portfolio is updated
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in some specific trading dates. In fact Proposition 5.6 and formula (5.39) cannot be

applied directly. A discretization procedure is required to implement the theory.

Here we use a simple procedure. We divide the interval [0, T ] = [0, 2] into 1000

equal subintervals. It is assumed that the trading dates are given by {t0, t1, ..., t1000},

for tj = jT
1000

, where j = 0, 1, ..., 1000. Then the number of the risky assets is given by

θt = θ01t=0 +
n∑
k=0

θk1(tk,tk+1](t),

where each θk is a bounded FXti -measurable random variable that is determined right

after the transaction tk. This is due to the fact that a realistic strategy must be left

continuous or predictable. The integral
∫
θ dX must be also discretized using Proposi-

tion 5.1. This is essential to obtain the observed values of the process L.

In Figure 5.3, the simulated sample path of the process X together with the number

θ of shares invested in the risky asset to be held in each trading period, are shown. In

order to have a better vision, we have changed the time scale of the two graphs. As the

Figures 5.1 or 5.2 confirms, the probability of default is relatively high for this process.

Indeed we have that P(τ ≤ 2) ≈ 0.754995. For the sample path of the process X shown

in Figure 5.3, the default happens at τ ≈ 0.30869. The number of the risk-free assets

η, the value of the portfolio V (θ), the error term L, and the cost process C are shown

in Figure 5.4. All the processes remain constant between the trading dates and they

are sensitive with respect to the jumps of the underlying process. When the process X

performs well, the value of the portfolio increases and the cost decreases. At the default
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Figure 5.3: Sample paths of the processes θ and X.

time, the number of risk-free and risky assets and so the value of the portfolio drop to

zero. However after the default time τ the error term L and the cost process C remain

fixed respectively equal to Lτ and Cτ .

Example 5.6. Assume that Xt = u + µt +
∑Nt

j=1 Yi, where (Nt)t≥0 is a homogeneous

Poisson process with intensity λ and the Yi’s are i.i.d. random variables with gamma

distribution having parameters α and β. Let µ > 0, −Y1 ∼ gamma(α, β), and suppose

that the process X is a martingale under the natural filtration generated by X which

means that µ = λαβ. Consider a defaultable zero-coupon bond that pays one unit of

currency if there is no default, i.e. F (x) = 1 for all x. By Proposition 5.6 the number

of the risky assets of the hedging strategy is given by

θs =

(∫∞
−Xs−

yf(s−, Xs− + y)FY (dy)− E[Y1]f(s−, Xs−)
)

1{τ≥s}

E[Y 2
1 ]

,
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Figure 5.4: Sample paths of the processes η, V (θ), L, and C.
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where f = f(t, x) satisfies the following PIDE

Af(t, x) = 0, for all 0 ≤ t ≤ T and all x ∈ R,

f(T, x) = 1, for all x ∈ R.

In this example we only estimate the function f = f(t, x). The estimated graph of the

function f = f(t, x) for different values of α and β is given by Figures 5.5 and 5.6. In

order to make better comparisons between these figures, all the expected values of jump

sizes are equal to 0.01. Remember that the function f = f(t, x) determines the value

of the portfolio before default. Notice that how different values of the parameters can

change the function f and hence the value of the portfolio.

In the next section, we will see that f(0, X0) can be interpreted as the value of

this defaultable bond. The most expensive bond corresponds to β = 5. As β decreases

the value of the bonds decrease as well. A possible explanation for this behavior can

be the tail property of the distribution of jumps. Although all these distributions have

the same expected value, they have slightly different tails. Within these distributions,

the one with β = 5 has the heaviest tail. Hence the contract corresponding to this

distribution is more risky.

In the next section, other aspects of the function f = f(t, x) are studied.
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Figure 5.5: The estimated function f for gamma jumps
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Figure 5.6: The estimated function f for gamma jumps with α = 0.02 and β = 0.5.
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5.8 Estimation of the Default Time and Pricing

Tools

Knowing the distribution of the default time can play an important role in managing

and pricing credit derivatives. In this section, we discuss the distribution of the default

time and also the pricing rules related to the local risk-minimization management. In

this section, it is assumed that X is the same process as in Theorem 5.7 that models

the evolution of the firm asset. In examples, we use the following process

Xt = u+ µt+
Nt∑
j=1

Yj, t ≥ 0, (5.40)

where (Nt)t≥0 is a homogeneous Poisson process and the Yi’s are i.i.d. random variables

with jump distribution FY .

5.8.1 Distribution of the Default Time

In the last section, we studied the hedging problem. However, some of the results of

Section 5.7 can be helpful to understand the structure of the default time. Regarding

Theorem 5.7, one can let F = F (x) be the constant function F = 1. So without almost

any effort, we have the following decomposition.

Proposition 5.8. Assume that X is the same process as in Theorem 5.7 and the

constant function F = 1 satisfies Assumption 5.1. We further suppose that the process(
[1{τ>t}, Xt]

)
0≤t≤T belongs to Aloc. Then, for all 0 ≤ t ≤ T , we have the following

decomposition

f(t,Xt)1{τ>t} = f(0, X0) +

∫ t

0

θs dXs + Lt, (5.41)
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and specifically for t = T , one obtains

1{τ>T} = f(0, X0) +

∫ T

0

θs dXs + LT , (5.42)

where the function f = f(t, x) is introduced in Assumption 5.1, the process θ =

(θt)0≤t≤T is given by (5.29) and the process L = (Lt)0≤t≤T is a local martingale, strongly

orthogonal to the martingale part of X, i.e. M .

Notice that if the process X is square-integrable, then the process
(
[1{τ>t}, Xt]

)
0≤t≤T

belongs to Aloc. Although this decomposition reveals the structure of the default

time, it does not tell us much about the distribution of the default time. This is the

decomposition of the indicator process versus the processX. Regarding the distribution

of the default time, a more useful decomposition is stated in the following proposition.

Remark 5.19. Although the next proposition looks similar to Theorem 5.7, they re

quite different. Theorem 5.7 explains the decomposition of the process Z versus the

underlying process X, while the following proposition finds the decomposition of the

process Z versus M , the martingale part of X. Also note that Assumption 5.1 is

totally simplified here.

Proposition 5.9. Assume that X is the same process as in Theorem 5.7. Let the

function f = f(t, x) be the solution of the following PIDE,

Af(t, x) = 0, for all 0 ≤ t ≤ T and all x ∈ R,

f(T, x) = F (x), for all x ∈ R,
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where the function F = F (x) is a real valued function and the function f satisfies the

integrability conditions of Assumption 5.1. Let the process M be the martingale part

of the canonical decomposition of X, i.e. X = M + A. Then for all 0 ≤ t ≤ T , the

following decomposition holds

f(t,Xt)1{τ>t} = f(0, X0) +

∫ t

0

θs dMs + Lt,

and especially for t = T , one obtains

F (XT )1{τ>T} = f(0, X0) +

∫ T

0

θs dMs + LT , (5.43)

where the process θ is given by

θt =
(AK(t−, Xt−)− βf(t−, Xt−))∫∞

−∞ y
2 v(dy)

1{τ≥t},

and the process L = (Lt)0≤t≤T is a local martingale strongly orthogonal to the process

M .

Proof. For the proof of this proposition, one can follow the same lines of reasoning as

for the Theorem 5.7, though it is tedious. The result basically follows from Equations

(5.32), (5.33), and (5.34) of Theorem 5.7.

As a special case let F = 1, then by taking the expectation of both sides of (5.43),

we obtain P(τ > T ) = f(0, X0), and that f = f(t, x) is the solution of the PIDE in

Proposition 5.9. Finding the distribution of the default time using a PIDE is already

known. For example in Rolski et al. (1999), this PIDE is obtained for a compound

Poisson process plus drift, that is (5.40).
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Example 5.7. Assume that Xt = u + µt +
∑Nt

j=1 Yi, where (Nt)t≥0 is a homogeneous

Poisson process with intensity λ and the Yi’s are i.i.d. random variables with jump

distribution FY . Let µ > 0, −Y1 ∼ exponential(δ), and define the function F =

F (x) by F (x) = 1 − λ
µδ
e(λ

µ
−δ)x. Apply the above proposition for f(t, x) = F (x), then

Af(t, x) = 0, and

F (Xt)1{τ>t} = F (u) +

∫ t

0

θsdMs + Lt,

θs =

(
δ2

∫ ∞
−Xs−

yF (Xs− + y)FY (dy) + δF (Xs−)

)
1{τ≥s}.

Note that the above function F = F (x) is a special choice that makes the operator

A zero and hence the process (F (Xt)1{τ>t})t≥0 is a martingale. This martingale can

also be obtained from Theorem 5.5. Therefore we have the following identity

P(τ > t)− λ

µδ
E[e(λ

µ
−δ)Xt1{τ>t}] = F (u).

One can use the intensity to estimate the distribution of the default time. The

intensity λi in Chapter 4 can be viewed as the first order approximation of the default

time. Hence, it is not surprising if this can be useful in estimating the distribution of

the default time. Before describing the procedure, we give some motivations.

Empirically, many jumps are observed in the evolution process of a firm’s asset

values, but these can be classified in two categories. One, is in some sense, the class

of small jumps, which for instance can be modeled by a Brownian motion. The other

category is made of large jumps, that possibly can be modeled by the pure jump

compound Poisson process. In fact, it is reasonable to assume that larger jumps in
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the evolution process of the firm’s value are rare events, relative to smaller jumps, see

Tauchen and Zhou (2006). We see how these empirical observations lead to a good

estimation of the default time.

For the process in (5.40) the number of jumps is provided by the homogeneous

Poisson process N . This means that the intensity of this process, λt = λt plays an

important role in the estimation. Tauchen and Zhou (2006) show that for one period of

time, λ is a small number less than one. However, this is a delicate assumption and it

totally depends on the type of the firm. Another important factor in our estimation is

the maturity time T . In Credit Default Swap (CDS) contracts and in other important

financial derivatives, the maturity date is as long as 10 years. Both of these observations

make the estimation of the distribution of the default time tractable. In an example,

we see how this works.

In Chapter 4 we saw that when the underlying process X is (5.40), the process(
1{τ>t} −

∫ t
0
λis ds

)
t≥0

is a martingale for λi given by Corollary 4.1, under the natural

filtration generated by X. Considering the form of the process λi, this instantly leads

to a series representation of P{τ ≤ t}. It turns out that with appropriately chosen

values of λ and t, as discussed above 0 < λ < 1 and t < 10, the convergence of this

series is fast enough to get good approximations just by calculating the first few terms

of the series. We now investigate this.

In what follows, we give some results in the absence of a Brownian motion part.

The generalization of the approach, may be possible but will depend on whether the
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limit calculated in Proposition 4.1 is the real intensity.

For the process in (5.40) as shown in Chapter 4, λis is given by (4.21). Martingale

arguments and some simple manipulations show that P(τ ≤ t) satisfies the following

equation

P(τ ≤ t) = 1− e−λt − λe−λt
∫ t

0

FY (u+ µs) ds

− λe−λt
∫ t

0

m−1∑
j=0

Aj ds+ ε,

where Aj = E[FY (u+ βs+
∑j

n=0 Yn)1{τ>s,Tj≤s<Tj+1}] and ε is the error term.

In addition, a bound for the error term can simply be obtained by,

|ε| ≤ λe−λt
∫ t

0

FY (u+ µs)e−λs(eλ
∫ s
0 FY (u+µv) dv −

m−1∑
n=0

(λ
∫ s

0
FY (u+ µv) dv)n

n!
) ds,

since FY (u+ µs) ≤ 1, one special bound is the following function

∆(m, t, λ) = λe−λt
(eλt
λ
− 1

λ
− t−

[m−1∑
i=1

λi

(i+ 1)!
ti+1
])
.

The ∆ function is governed by only three parameters, t, m, and λ, simplifying of

the error control. It should be noted that m is the number of terms needed to get the

desired precision.

Example 5.8. Let λ = 0.2 and t = 1, then ∆(1, 1, 0.2) = 0.01752309617; this means

that for a maturity of T = 1 and a series with just one-term, the error is around two

percent.

Other observations about the ∆ function can be made. First, this error bound is

free of µ, u, and the choice of distribution for Yi. Second this is the extreme case error.
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In most situations, depending on the distribution of jumps and contribution of the

other parameters, the real error will be much smaller and convergence should be fast.

Another fact is the sensitivity of the ∆ function to the maturity T . As we increase

T we need more terms to get the desired precision. For example for a maturity T = 10

(which is the upper bound for the maturities of CDS contracts) we have ∆(6, 10, 0.2) =

0.004533805610 that means 6 terms are needed to have at most a 0.4% error.

Example 5.9. Let λ = 0.2 as before, FY (x) = 1−e−δx (exponential jump distribution),

δ = 0.02, u = 10 and µ = 1 then the method (with one term) gives P(τ ≤ 3) ≈

0.3811593586, compared to the more accurate value 0.3811191123. The exact formula

for exponential jumps can be found in Chapter 5 of Rolski et al. (1999). It is obvious

that the actual error of 0.01% is much less than two percent. This is mostly because

the exponential distribution gives a faster convergence.

The above mentioned approach gives a good approximation for the range of pa-

rameters we are interested in, for example when λ is small enough. From a theoretical

point of view or even for some rare or extreme cases in practice, finding the distribution

of the default for a wide range of parameters, like for large λ, could be an interesting

question. We propose the following approach for more general cases. This method is

considered for the process in (5.40). The main idea is to fix a finite horizon t. Then

for a given λ (the Poisson process intensity) bigger than 1, by changing the probability

space we try to obtain a new process with a smaller Poisson intensity. We already
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observed that in the presence of a small Poisson intensity, the series that represents

the distribution of the default time converges fast. We only state the procedure here,

but omit the details.

Let Xt = u+µt+
∑Nt

i=1 Yi, where Y ′i s are i.i.d. with distribution FY , density of fY ,

and (Nt)t≥0 is a Poisson process with intensity λ. Let the probability associated with

this process be P. The goal is to estimate P(τ ≤ t). This is based on the following

expression

P(τ ≤ t) = et(λPm−λP) EPm [em
∑Nmt
i=1 Y

m
i ]− emu+t(mµ+λPm−λP)

r∑
j=0

Aj + ε,

where Pm’s can be considered as new probability measures for the sequence of processes

X
(m)
t = u+ µt+

∑N
(m)
t

i=1 Y
(m)
i , where Y

(m)
i has distribution Fm given by

Fm(x) =

∫ x
−∞ e

mvf(−v)dv∫ 0

−∞ e
mvf(−v)dv

, for x ≤ 0, and 1 otherwise,

Nm
t is a Poisson process with intensity λPm = λ

∫ 0

−∞ e
mvf(−v)dv,

Aj = EPm [e−mVt1{τ>t}1{Tj≤t<Tj+1}],

and ε is the error term. This is essentially the Esscher’s transform. For instance the

following bound for the error term can be found easily,

|ε| ≤ em(u+µt)
(
eλPm

∫ t
0 FY (u+µv) dv −

r∑
j=0

(λPm
∫ t

0
FY (u+ µv) dv)j

j!

)
.

Note that:

1. Under the condition that
∫ 0

−∞ e
mvf(−v)dv 6= λPm−1

λ
, the λPm are strictly decreas-

ing.
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2. The number of terms needed to get the desired precession is given by r not m.

For a fixed m, by the bound of the error term, the maximum number of the terms

needed to get a desired precession can be determined.

Example 5.10. Let g(x) = βαxα−1e−βx

Γ(α)
, that is a gamma distribution with parameters

α and β. The above conditions are satisfied. Then it turns out that λPm = λβα

(m+β)α
. We

see that λPm ↓ 0 as m→∞.

5.8.2 Pricing Under Locally Risk-Minimizing Hedging

In Section 5.7, we focused on hedging strategies in the context of local risk-minimization.

Under some assumptions, a locally risk-minimizing hedging strategy was found for the

defaultable claim F (XT )1{τ>T}. Now it is time to ask for the price of this product.

Notice that in all the FS decompositions, there is always a constant, and from Proposi-

tion 5.6 this constant is equal to the initial value of the portfolio, i.e. V0(θ) = f(0, X0).

For this reason the constant f(0, X0) in Proposition 5.6 is actually the price of the

product. This constant can also be interpreted as the capital requirement to start the

hedging process.

Normally, pricing of financial derivatives is done under a risk-neutral probability

measure. In an incomplete market, there can be many of such probability measures. In

the context of local risk-minimization approach, the minimal martingale measure is the

appropriate one to use, see Föllmer and Schweizer (1991). Assume that there exists such

a probability measure P̃ in our set up. Then by the uniqueness of FS decomposition,
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we must have that Ẽ[F (XT )1{τ>T}] = f(0, X0), where Ẽ is the expected value under

the probability measure P̃. Therefore we have the following proposition.

Proposition 5.10. Suppose that there exists the minimal martingale measure P̃. With

the same assumptions and notation of Proposition 5.6, the price of the defaultable claim

F (XT )1{τ>T} under the risk-neutral measure P̃ is equal to f(0, X0).

Notice that in the above proposition, only the existence of the minimal martingale

measure is assumed and no explicit form of this measure is used.
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Chapter 6

Credit Risk and Risk Measures

6.1 Introduction

Measuring the risk of financial derivatives is a major growing concern in finance. Ar-

bitrage opportunities that can arise due to over or under estimating the underlying

risk, are important, closely related issues. As an alternative to the classical meth-

ods available to deal with this problem, we introduce a new approach by using risk

measures.

The type of the arbitrage that we investigate defines itself very intuitively from the

properties of risk measures. Simply saying, if under a specific risk measure, the risk of

a portfolio is less than or equal to zero then the possible positive income of the portfolio

will be considered as an arbitrage income. Balbás and López (2008) consider a similar

problem by defining sequential arbitrage measures. The present work parallels their

article. However, our goal is not to build arbitrage portfolios in bond markets. There

are two main purposes in this chapter. First we want to create an indicator to detect

and measure such arbitrage opportunities that we refer to as inconsistencies. Second
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and more importantly, we want to apply this theory to study the credit quality of

bonds issued in bond markets.

A good market must be consistent in all aspect. In other words, an integrated mar-

ket should not let agents take advantage of price differences to make a risk-free profit at

zero cost. The existence of classical arbitrage opportunities that can arise due to over-

or under-estimation of the underlying risk, are one of the indicators of inefficiencies in

the market. This problem has been investigated using classical arbitrage methods, see

Chen and Knez (1995), and also Kempf and Korn (1998). As an alternative to classical

arbitrage methods, we introduce a new indicator by using risk measures. We believe

that risk measures are more powerful and efficient tools to this effect than a classical

arbitrage approach, and one of our goals in this chapter is to justify why.

A typical bond price includes two parts. One is the real bond price assuming that

there is no risk of default, and the other one is the credit spread to compensate for the

risk of default. To reflect this risk of default, all the bonds in the market are rated by

rating agencies. Normally, the most credible bonds are the ones issued by governments.

Our second goal is to measure this credit spread and basically study the credit quality

of the bonds. Although there might be other types of risks, here we assume that these

are restricted just to the risk of default.

We start with fixed income markets like bond markets, in the hope to later develop

the method for more complicated financial portfolios. Finally, we mention that this

work uses a combination of the approach and methods of Balbás, Balbás and Garrido
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(2010), and Balbás and López (2008).

6.2 Preliminaries and Notation

Assume that uncertainty is modeled by (Ω,F ,P), and that A = [aij] is an m × n

matrix representing a portfolio of n bonds with possible future cash flows at times

i = t1, t2, ..., tm. The column j of the matrix A is the future cash flow of the bond

j of the portfolio, bj = (a1j, a2j, ..., amj) at future dates T = {t1, t2, ..., tm}. The row

i of the matrix A is the total cash flow of the portfolio at time ti. From now on, to

simplify notation, a vector (a1, ..., am) in Rm is denoted by a, and T = tm represents

the final date of the cash flow, the last time when a payment is made. Also assume

that p = (p1, p2, ..., pn) with pj > 0 is the current price of the j-th bond.

Assume that the typical future cash flow c = (c1j, c2j, ..., cmj) of a bond or in general

of a portfolio will be reinvested and the accumulated wealth generated by this cash flow

is denoted by ΠT (c). It is worth mentioning this reinvestment is done in fixed income

markets. Although the cash flows are predetermined, because of the fluctuations in

interest rates, the accumulated wealth is a random variable at the maturity time T .

It is assumed that this is the only source of randomness that makes ΠT (c) uncertain.

This provides the motivation to define the accumulated wealth function ΠT : Rm → Π,

where

Π = {ΠT (x);x ∈ Rm},

and x = (x1, x2, ..., xm) is a vector in Rm.
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To avoid technical difficulties, we assume that Π ⊂ L2(Ω,F ,P), or in other words

E[(ΠT (x))2] < ∞. By ignoring transaction costs, we can suppose that ΠT is a linear

function.

To control the risk over the space L2(Ω,F ,P), we use risk measures. For us this

space is interpreted as the space of all future gains. In general, the risk measure ρ can

be defined over the space R, the set of all real valued random variables, as the function

ρ : R→ R.

As mentioned above, in this thesis, the space R is equal to Π which is a subset of

L2(Ω,F ,P).

For any random variable X belongs to R, the quantity ρ(X) can be interpreted as

the risk associated with the future wealth or gain X in a period of time. Artzner et al.

(1997) define coherent risk measures through axioms. They also find a representation

theorem on a finite probability space. Their result was later extended to general

probability spaces. They call a risk measure ρ coherent if it satisfies the following

properties:

• For all X, Y ∈ R, ρ(X+Y ) ≤ ρ(X)+ρ(Y ). This property is called sub-additivity.

• For all t ≥ 0 and X ∈ R, ρ(tX) = tρ(X). This property is called positive

homogeneity.

• For all X ∈ R and all a ∈ R, ρ(X + a) = ρ(X) − a. This property is called

translation invariance.
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• For all X, Y ∈ R, if X ≤ Y then ρ(Y ) ≤ ρ(X). This property is called mono-

tonicity.

Since then, their paper and the results have been extended in a variety of ways and

different types of risk measures have been introduced. For instance deviations and ex-

pectation bounded risk measures are by Rockafellar, Uryasev and Zabarankin (2006).

This paper provides some insights towards the structure of the subgradient sets asso-

ciated with risk measures. Distortion risk measures are introduced by Wang (2000).

Balbás, Garrido and Mayoral (2008) discuss the properties of distortion risk measures.

All these risk measures are defined on a probability space. Recently, new types of

risk measures have been introduced that are defined on data sets. In Section 6.6, we

discuss these new risk measures. Since the risk measures are not our main topic here,

we remind the reader of two famous risk measures:

• The value-at-risk of X for α ∈ (0, 1) is given by

V aRα(X) = − inf{z;FX(z) > α}.

• The conditional value-at-risk is given by

CV aRα(X) = −E [X|X ≤ −V aRα(X)] ,

when FX is continuous at −V aRα(X).

Note that V aR is not a subadditive risk measure and it is hard to work with in

optimization problems. Subadditivity will be one of our main assumptions. For this

reason, our theory is not applicable for risk measures like V aR.
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Now assume that ρ : Π → R is any risk measure that satisfies the two conditions,

subadditivity ρ(x+ y) ≤ ρ(x) + ρ(y) and positive homogeneity ρ(tx) = tρ(x) for every

t ≥ 0 and x, y ∈ Π. Later we may need to impose more conditions on ρ, but for the

moment this is all we need. The composition of ρ and ΠT , that we call ρ = ρ◦ΠT , defines

a risk measure on Rm into R that satisfies the subadditivity and positive homogeneity

properties. As one can see below, the additivity of ΠT is a critical condition for the

subadditivity of ρ:

ρ(x+ y) = ρ(ΠT (x+ y))

= ρ(ΠT (x) + ΠT (y)) ≤ ρ(x) + ρ(y),

where the second equality holds by the additivity of ΠT , while the inequality is due to

the subadditivity of ρ.

In this work, attention is paid to ρ and its underlying space Rm. It is the risk

measure that will be used to analyze the bond market. From now on, we rarely talk

about the space L2(Ω,F,P) and the measure ρ. We will mostly focus on the space Rm

and the measure ρ. This allows us to work in a simplified structural world that serves

as a space for all cash flows.

6.3 Representation Theorem

Finding a suitable representation of ρ plays an important role in the next few sections.

We see how the representation theorem helps us analyze and formulate the primal and

dual problems.
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Theorem 6.1. Assume that ρ : Rm → R is as in Section 6.2, then

ρ(y) = max{−y · z; z ∈ ∆ρ}, (6.1)

where

∆ρ = {z ∈ Rm; ρ(y) ≥ −y · z, for all y ∈ Rm}, (6.2)

and y · z is the usual inner product on Rm.

Remark 6.1. By max in the above theorem or in the rest of the section we implicitly

mean that the maximum is attained. For example in this theorem it turns out that there

exists z∗ ∈ ∆ρ such that ρ(y) = −y · z∗. For a general interpretation of the sub-gradient

set ∆ρ, we refer to Artzner et al. (1999).

To prove the theorem, we need the following lemma which is an interesting result

in itself.

Lemma 6.1. Suppose that:

1. M is a subspace of a real vector space X,

2. ρ : X → R satisfies

ρ(x+ y) ≤ ρ(x) + ρ(y), and ρ(tx) = tρ(x),

for all x, y ∈ X and t ≥ 0,

In addition define

1. ∆ρ = {x∗ ∈ X∗;−x∗(x) ≤ ρ(x), for all x ∈ X}, and
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2. ∆(M,ρ) = {m∗ ∈M∗;−m∗(m) ≤ ρ(m), for all m ∈M},

where X∗ and M∗ are, respectively, the dual spaces of X and M .

Then for any x ∈ X,

ρ(x) = max{−x∗(x);x∗ ∈ ∆ρ}

holds if and only if

ρ(x) = max{−u∗(x);u∗ ∈ ∆(U,ρ)}

holds for the one dimensional subspace U generated by x, i.e. U =≺ x �. Furthermore,

we show that the maximum in these problems is actually reached.

Proof. Assume that ρ(x) = max{−x∗(x);x∗ ∈ ∆ρ} holds for x ∈ X, then there exists

y∗ ∈ ∆ρ such that ρ(x) = −y∗(x). Now define z∗ = y∗|U , that is the restriction of y∗ onto

U =≺ x �. Since y∗ ∈ ∆ρ, clearly we have z∗ ∈ ∆(U,ρ). Now for any u∗ ∈ ∆(U,ρ) we have

−u∗(x) ≤ ρ(x) = −y∗(x) = −z∗(x), so max{−u∗(x);u∗ ∈ ∆(U,ρ)} = −z∗(x) = ρ(x).

For the second half, assume that for the subspace U =≺ x �, ρ(x) = max{−u∗(x);u∗ ∈

∆(U,ρ)} holds. Then there exists u∗ ∈ ∆(U,ρ) such that ρ(x) = −u∗(x). Since u∗ ∈ ∆(U,ρ),

we conclude that for every u ∈ U , −u∗(u) ≤ ρ(u). By the theorem of Hahn-Banach

(see Rudin, 1982) there exists Λ ∈ X∗ such that Λ|U = u∗ and −Λ ≤ ρ on X,

so that Λ ∈ ∆ρ. Now if one takes any z∗ ∈ ∆ρ, then by the definition of ∆ρ,

−z∗(x) ≤ ρ(x) = −u∗(x) = −Λ(x). So we have

max{−x∗(x);x∗ ∈ ∆ρ} = −Λ(x) = ρ(x).
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Now we show that the maximum in the second problem is reached

ρ(x) = max{−u∗(x);u∗ ∈ ∆(U,ρ)},

∆(U,ρ) = {m∗ ∈ U∗;−m∗(u) ≤ ρ(u), for allu ∈ U},

where U =≺ x �. Since U∗ = R, (in the sense that there is a one to one and onto

linear functional from U∗ into R.) a simple argument shows that this is the same as

solving the following problem:

ρ(x) = max{−β; β ∈ ∆(U,ρ)},

∆(U,ρ) = {β ∈ R;−αβ ≤ ρ(αx), for all α ∈ R}.

If β ∈ ∆(U,ρ) then by taking α = 1 and α = −1, one can easily see that −ρ(x) ≤ β ≤

ρ(−x), or ∆(U,ρ) ⊂ [−ρ(x), ρ(−x)]. On the other hand, if α ∈ R+ and β ≥ −ρ(x) then

β ≥ −ρ(αx
α

) = − 1
α
ρ(αx), so we have that −αβ ≤ ρ(αx). Similarly, one can easily show

that if α ∈ R− and β ≤ −ρ(−x) then −αβ ≤ ρ(αx). Therefore ∆(U,ρ) = {β ∈ R :

−ρ(x) ≤ β ≤ ρ(−x)} and it follows that max{−β; β ∈ ∆(U,ρ)} = ρ(x). Please note

that for any x we have −ρ(x) ≤ ρ(−x), hence in any case ∆(U,ρ) is not empty.

We are now ready to prove Theorem 6.1.

Proof. (Theorem 6.1): This is a straight forward application of Lemma 3.1 and Riesz’s

Theorem (see Rudin, 1966) which states that any bounded linear functional x∗ on Rm

can be uniquely represented by an element y, i.e. x∗(x) = y · x, for all x ∈ Rm.
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6.4 Measurement of ρ-arbitrage

As we already mentioned, the type of arbitrage studied in this work is defined through

risk measures. The main result in this section gives a necessary and sufficient condition

for the existence of what we call ρ-arbitrage. First we present its definition.

Definition 6.1. (ρ-arbitrage) Assume that x = (x1, x2, ..., xn) ∈ Rn is representing a

portfolio consisting of xj units of bond j, for j = 1, 2, ..., n. Then x is said to be a

ρ-arbitrage portfolio if

p · x < 0 and ρ(
n∑
j=1

xja1j, ...,
n∑
j=1

xjamj) ≤ 0

or, equivalently, ρ(x · a1, ..., x · am) ≤ 0 where ai = (ai1, ..., ain) ∈ Rm for i = 1, 2, ...,m.

To help interpreting the above definition, note that p · x is the current price of the

portfolio, while for any 1 ≤ i ≤ m,
∑n

j=1 xjaij is the total cash flow of the portfolio at

time ti. Hence the above definition simply says that there is no cost for the portfolio

x and at the same time as the risk measure for the portfolio cash flow is non-positive.

Considering the fact that in a ρ-arbitrage portfolio, −p · x is the arbitrage income, we

propose the following optimization problem that leads us to obtain the main result of

171



this section:

Maximize − p · x,

such that ρ(x · a1, ..., x · am) ≤ 0,

such that x+ h ≥ 0,

such that h · p ≤ 1,

such that h ≥ 0,

(6.3)

where (x, h) ∈ Rn × (R+ ∪ {0})n are the decision variables. As mentioned above, x

represents the portfolio composition. If it respects the above constraints, h ≥ 0 can be

interpreted as an upper bound portfolio for the short sales, whose total price can not

be larger than one unit.

Using Theorem 6.1 this optimization problem is equivalent to

Maximize − p · x,

such that (x · a1, ..., x · am) · z ≥ 0, ∀z ∈ ∆ρ

such that x+ h ≥ 0,

such that h · p ≤ 1,

such that h ≥ 0.

(6.4)

We call this the primal problem. This is very similar to the optimization problems

considered in Balbás, Balbás and Garrido (2010) and Balbás and López (2010), the

same type of analysis works here as well. To obtain most of the results in the rest

of this section, we use constrained optimization theory, as presented in Chapter 8 of

Luenberger (1969). As the first step, we find the Lagrangian of this optimization
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problem. Following the notation of Luenberger (1969), this primal problem can be

represented as:

Maximize − p · x,

such that G(x, h) ≤ 0,

such that h ≥ 0,

(6.5)

where G is a convex mapping from Rn × (R+ ∪ {0})n into Z = ϕ(∆ρ)× Rn × R given

by

G(x, h) = (−gx,−x− h, h · p− 1),

ϕ(∆ρ) is the space of the continuous functions on the weak∗ compact ∆ρ, and for any

x ∈ Rn, gx : Rn → R is given by gx(z) = (x · a1, ..., x · am) · z. To make the notation

consistent with Luenberger (1969), we consider the negative of (6.5):

Minimize p · x,

such that G(x, h) ≤ 0,

such that h ≥ 0.

(6.6)

With the above explanations and knowing that the dual space of ϕ(∆ρ) isM(∆ρ),

and the space of inner regular real-valued σ-additive measures on the Borel σ-algebra

of ∆ρ (endowed with the weak∗ topology), then the Lagrangian function L : Rn×Rn×

Rn × R→ R is

L(x, h, λ, λ) =
n∑
j=1

xjpj −
∫

∆ρ

(x.a1, ..., x · am).z dv(z)

−
n∑
j=1

λj(xj + hj) + λ(
n∑
j=1

hjpj − 1),
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where v belongs to M(∆ρ). After some manipulations, this can be rewritten as

L(x, h, λ, λ) =
n∑
j=1

(pj −
∫

∆ρ

bj · z dv(z)− λj)xj

+
n∑
j=1

(−λj + λpj)hj − λ,
(6.7)

where bj = (a1j, a2j, ..., amj).

It is one of the fundamental results of Luenberger (1969) that an element (v, λ, λ) ∈

M(∆ρ) × Rn × R is dual feasible if and only if it belongs to the non-negative cone

M+(∆ρ)× (R+ ∪ {0})n × (R+ ∪ {0}) and

inf{L(x, h, λ, λ); (x, h) ∈ Rn × (R+ ∪ {0})n} > −∞.

In that case, the infimum above is equal to the optimal value of the dual problem. Now

using this fact and the Lagrangian in (6.7), one can obtain the dual problem of (6.6).

The negative of this dual problem is the dual of our primal problem (6.4)

Minimize θ,

such that pj = λj +

∫
∆ρ

bj · z dv(z), j = 1, 2, ...n,

such that λ ≤ θp,

such that θ ≥ 0, λ ≥ 0, v ∈M+(∆ρ).

(6.8)

From now on we assume that the maximum in the primal problem (6.4) is attained.

Then following Luenberger (1969), (x∗, h
∗
) is the solution of the primal problem if and
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only if there exists (θ∗, λ
∗
, v∗) ∈ (R+ ∪ {0})× (R+ ∪ {0})n ×M+(∆ρ) such that

pj = λ∗j +

∫
∆ρ

bj · z dv∗(z), j = 1, 2, ..., n,

λ
∗ ≤ θ∗ p,

n∑
j=1

x∗j

∫
∆ρ

bj · z dv∗(z) = 0, j = 1, 2, ..., n,

λ
∗ · (x∗ + h

∗
) = 0,

θ∗(h
∗ · p− 1) = 0,

h
∗ ≥ 0, h

∗ · p ≤ 1, x∗ + h
∗ ≥ 0.

A simple calculation shows that these are equivalent to

pj = λ∗j +

∫
∆ρ

bj · z dv∗(z), j = 1, 2, ..., n,

λ
∗ ≤ θ∗ p,

x∗ · (p− λ∗) = 0,

λ
∗ · (x∗ + h

∗
) = 0,

θ∗(h
∗ · p− 1) = 0,

h
∗ ≥ 0, h

∗ · p ≤ 1, x∗ + h
∗ ≥ 0.

(6.9)

In the literature, these are called Karush-Kuhn-Tucker conditions. The dual problem

(6.8) and optimality Equations (6.9) can be further simplified. To do this, we use the

following mean-value type theorem and simplify the integral in both the first constraint

of the dual problem (6.8) and the first Karush-Kuhn-Tucker equation of (6.9). The

proof of the lemma is taken from Balbás et al. (2010).
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Lemma 6.2. Assume that Rm is equipped with the usual inner product, ∆ρ = {z ∈

Rm; ρ(y) ≥ −y · z for every y ∈ Rm}, and v is a positive measure that belongs to

M+(∆ρ). Then there exists zv ∈ ∆ρ such that

∫
∆ρ

y · z dv(z) = y · zvv(∆ρ), for every y ∈ Rm.

Proof. : Define the functional F : Rm → R by

F (y) =

∫
∆ρ
y · z dv(z)

v(∆ρ)
,

then by Cauchy-Schwartz, inequality we have that |F (y)| ≤ c||y||2, where c =

∫
∆ρ
‖z‖2 dv(z)

v(∆ρ)
.

The boundness of ∆ρ and finiteness of the measure v implies c <∞; so F is a bounded

linear functional on Rm, which is a Hilbert space when endowed with the usual inner

product. So by the Riesz theorem there is an element zv ∈ Rm such that for every

y ∈ Rm, F (y) = y · zv, or
∫

∆ρ
y · z dv(z) = y · zvv(∆ρ). Furthermore, zv is uniquely

determined by F and ||F || = ||zv||2.

Therefore, it is enough to prove that zv ∈ ∆ρ. For every y ∈ Rm,

−zv · y =

∫
∆ρ
−y · z dv(z)

v(∆ρ)
≤ ρ(y)v(∆ρ)

v(∆ρ)
= ρ(y),

and clearly this shows that zv ∈ ∆ρ.

The previous explanations and Lemma 6.2 lead us to the following theorem.

Theorem 6.2. Assume that the primal problem is always finite, it reaches its optimal

value, and so the optimal solutions always exist. Then
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1. The equivalent dual form of the primal problem is

Minimize θ,

such that pj = λj + αbj · z,

such that λ ≤ θp,

such that θ ≥ 0, λ ≥ 0, α ≥ 0, z ∈ ∆ρ.

(6.10)

2. (x∗, h
∗
) and (θ∗, λ

∗
, α∗, z∗) solve problems (6.4), and (6.10) respectively, if and

only if they satisfy the following Karush-Kuhn-Tucker conditions

pj = λ∗j + α∗bj · z∗, j = 1, 2, ..., n,

λ
∗ ≤ θ∗p,

x∗ · (p− λ∗) = 0,

λ
∗ · (x∗ + h

∗
) = 0,

θ∗(h
∗ · p− 1) = 0,

h
∗ ≥ 0, h

∗ · p ≤ 1, x∗ + h
∗ ≥ 0,

θ∗ ≥ 0, λ
∗ ≥ 0, z∗ ∈ ∆ρ, α

∗ ≥ 0.

(6.11)

The following interesting lemma bridges the optimal solution of the primal problem

to the existence of ρ-arbitrage. The proof is a straightforward adaptation of a similar

one in Balbás and López (2008).

Lemma 6.3. Assume that L∗ is the optimal value of the primal problem. Then the

market is ρ-arbitrage free if and only if L∗ = 0.

Proof. First assume that the market is ρ-arbitrage free. If L∗ = (x∗, h
∗
) is any optimal

solution then ρ(
∑n

j=1 x
∗
ja1j, ...,

∑n
j=1 x

∗
jamj) ≤ 0. Since the market is ρ-arbitrage free,
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we have x∗ · p∗ ≥ 0 or −x∗ · p∗ ≤ 0. Obviously (0, 0) is primal-feasible so −x∗ · p∗ ≥ 0,

therefore L∗ = x∗ · p∗ = 0.

For the second half assume that L∗ = 0. We show that there is no ρ-arbitrage

portfolio. Suppose that ρ(x · a1, ..., x · am) ≤ 0, and take

y =

{
x

p·x− if p · x− ≥ 1

x if p · x− ≤ 1
, h =

{
x−

p·x− if p · x− ≥ 1

x− if p · x− ≤ 1
,

where x− = max(−x, 0). Then (y, h) are primal feasible, because:

ρ(y · a1, ..., y · am) =

{
ρ(x·a1,...,x·am)

p·x− if p · x− ≥ 1

ρ(x · a1, ..., x · am) if p · x− ≤ 1
,

in any of the previous cases we have ρ(y ·a1, ..., y ·am) ≤ 0. It is obvious that y+h ≥ 0

and h · p ≤ 1. Since L∗ = 0, then −p · y ≤ L∗ = 0, so p · y ≥ 0. The simple outcome of

the last inequality is that p · x ≥ 0. So there is no ρ-arbitrage portfolio.

Combining this lemma with Theorem 6.2 leads to the following result.

Theorem 6.3. There is no ρ-arbitrage portfolio if and only if there exists (z∗, α∗) ∈

∆ρ × R+ such that for every j,

pj = α∗z∗ · bj, j = 1, 2, ..., n,

where bj = (a1j, a2j, ..., amj) is the j’s column of matrix A.

Proof. By Lemma 6.3 and Theorem 6.2, the non-existence of ρ-arbitrage is equivalent

to θ∗ = 0. If θ∗ = 0 then by the second and last condition of part 3 of Theorem 6.2, we

have λ
∗

= 0, and therefore the first condition gives that pj = α∗bj · z∗. On the other
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hand if there exists (z∗, α∗) ∈ ∆ρ×R+ such that for every j, pj = α∗z∗ · bj, the first and

third condition of Theorem 6.2 give λ
∗

= 0 and x∗ · p = 0, respectively. So the optimal

value of the primal problem is zero and consequently θ∗ = 0.

By Theorem 6.3, the existence of ρ-arbitrage is linked to solving the following

system of equations

pj = α∗z∗ · bj, j = 1, 2, ..., n,

where bj = (a1j, a2j, ..., amj) is the j’s column of matrix A. There are two cases for the

solution set of the above system. Either it is empty or non-empty. If the solution set

is non-empty then the existence of ρ-arbitrage (for a specific risk measure ρ) reduces

to whether the solution belongs to ∆ρ × R+ or not. If the solution is in this set then

for this particular risk measure ρ, there is ρ-arbitrage in the market.

On the other hand if the solution set is empty, then by the above theorem this means

that for any risk measure ρ satisfying subadditivity and positive homogeneity, there is

ρ-arbitrage. In other words, for such risk measures ρ, the existence of ρ-arbitrage is

guaranteed. In this case it is easy to prove that classical arbitrage also exists; see the

following corollary.

Corollary 6.1. Suppose that the solution set of the following system of equations is

empty,

pj = α∗z∗ · bj, j = 1, 2, ..., n,

where bj = (a1j, a2j, ..., amj) is the jth column of matrix A. Then the existence of
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classical arbitrage in the market is guaranteed.

Now, we implement the above concepts in a simple model. The portfolios in the

following examples of this section are naive, far from being real. However these exam-

ples illustrate well the above theory. Later, we present more realistic examples with

real portfolio data.

Assume that our probability space includes only two scenarios, i.e. Ω = {ω1, ω2}

with P(ω1) = 1 − q, P(ω2) = q. Take the risk measure to be ρ = CV aRα, for some

α ∈ (0, 1). To model the evolution of the interest rate, we use the following one period

simple tree model

r =

{
r1, with probability 1− q;
r2, with probability q.

Since ρ is CV aRα, from Rockafellar, Uryasev and Zabarankin (2006), it can be proved

that the subgradient set of ρ = CV aRα is the following,

∆ρ = {(z1, z2) ∈ R2; z1(1− q) + z2q = 1, 0 ≤ zi ≤
1

α
, for i = 1, 2}. (6.12)

Using this subgradient, the representation Theorem 6.1, and manipulations one can

show that the subgradient set of ρ is given by

∆ρ = {(z1, 1) ∈ R2; (1 + r1)− q

α
(r1 − r2) ≤ z1 ≤ (1 + r1)}. (6.13)

Having a closed-form subgradient is essential in solving the optimization problems.
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Example 6.1. Assume that the interest rate tree parameters are q = 0.9, r1 = 0.05,

r2 = 0.03, and α = 0.05. Suppose that we have the two following bonds, Table 6.1. In

Bond 1 Bond 2
Price of the bonds 1010 908.9

Cash flow 1 10 9
Cash flow 2 1010 909

Table 6.1: ρ-arbitrage free, two bonds portfolio.

this case θ∗ ≈ 0.

There is almost no sensitivity to any changes in the parameters α, q, r1, and r2 in

the above example. This means that different ranges of these parameters lead to the

same optimal value. This is because the portfolio is quite consistent, in the sense that

both corporations have used the same rule to price their bonds. Therefore, one can not

benefit from any mispricing in the portfolio. Notice that arbitrage opportunities arise

due to inconsistencies in the market.

Different perceptions lead to different rules, and hence different prices. Here, the

yield of this portfolio is very low, so the interest rate is substantially lower than the

future interest rates r1 and r2. However since both firms agree on the same interest

rate and yield (even if ridiculously low), there is no inconsistency in the portfolio and

so no arbitrage opportunities with these bonds.

Example 6.2. Assume that as above, q = 0.9, r1 = 0.05, r2 = 0.03, and the CV aR

probability α = 0.05. By contrast now we consider two bonds represented by Table 6.2.
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Bond 1 Bond 2
Price of the bonds 1010 908.9

Cash flow 1 10 1
Cash flow 2 1010 909

Table 6.2: ρ-arbitrage, two bonds portfolio.

For this portfolio the optimal value is approximately equal to 0.00869. The solution

of the primal problem is equal to x∗1 ≈ 0.00098, x∗2 ≈ −0.0011. The solution of the

dual problem is equal to θ∗ ≈ 0.00869, λ∗1 ≈ 0, λ∗2 ≈ 7.8999, α∗ ≈ 0.9901, z∗1 ≈ 1,

and z∗2 ≈ 0.9901. Here, the existence of ρ-arbitrage is due to the inconsistency in the

portfolio. The two firms have used different rules to price the bonds. No matter who

is right or wrong, this is a situation where the manipulation of bonds can create ρ-

arbitrage. Notice that the solution of the primal problem is in fact the quantity of each

bond needed to gain the arbitrage income, a negative value indicating a short portfolio.

In this case, analyzing sensitivity is not that straightforward as in the previous

example. The optimal solution is sensitive to changes in α, q, r1, and r2. However this

requires more caution. For instance, Figure 6.1 graphs the optimal value as a function

of α. The larger the parameter α, the riskier the agents get. Hence it makes sense that

the arbitrage should increase as well. The parameter α starts at the value of 1% for

which the optimal value θ∗ is approximately 0.00730. This phenomena is not present

in classical arbitrage as no matter the underlying conditions the amount of arbitrage

is pre-determined. Clearly ρ-arbitrage is not necessarily the same as the classical one.

Another important observation from Figure 6.1 is that the solution is stable for a wide
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0.0090

Figure 6.1: Optimal θ∗ values as a function of α.

range of values for the parameter α; from a very risk averse agent (α =1%) to very risk

seeking ones (α = 99%), the range of θ∗ values is of about 0.2% difference. A similar

reasoning can be carried out for the other parameters. Figure 6.2 gives the optimal θ∗

values with respect to r1, while the parameter r2 = 0.03 is fixed. Figure 6.3 is similar,

but this time r1 = 0.05 is fixed and r2 varies.

Figure 6.4 reports the optimal θ∗ values, with respect to the probability q and the

price of the second bond p2. Notice that at a price of p2 = 908.9 the optimal value is

near zero or, in other words, arbitrage disappears. For any other price, either smaller

or larger, there is a non-zero arbitrage opportunity.
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Figure 6.2: Optimal θ∗ values as a function of r1
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Figure 6.3: Optimal θ∗ values as a function of r2
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Figure 6.4: Optimal θ∗ values as a function of q and the price of the second bond p2
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6.5 The Revised Problem

The problem that was investigated in the previous section can be modified in other

ways. These modifications can help finding a better term structure of interest rate

(TSIR) envelopes (lower and upper bounds) and credit risk spreads. Also as a special

case, this includes the problem of sequential arbitrage measurements, see Balbás and

López (2008).

Section 6.4, we focused on maximizing the arbitrage income subject to the first

constraint of problem (6.3), the risk constraint. Another perspective is to maximize

the arbitrage income and minimize the risk simultaneously. In other words, we want

to maximize the objective vector function (−p · x,−ρ(x · a1, ..., x · am)) over a con-

straint set that will be specified soon. This is a multi-objective optimization problem

and the solution(s) of this problem are Pareto optimal, see http://en.wikipedia.

org/wiki/Multi-objective_optimizationformoredetails: A design point x∗ =

(x∗1, x
∗
2, ..., x

∗
n), in objective space, is termed Pareto optimal if there does not exist

another feasible design objective vector x = (x1, x2, ..., xn) such that xi ≤ x∗i for all i

in {1, 2, . . . , n}, and xj < x∗j for at least one index of j, j ∈ {1, 2, . . . , n} .

Notice that by maximizing −ρ(x ·a1, ..., x ·am), the risk decreases. Maximizing this

objective vector function is equivalent to −Minimize (p · x, ρ(x · a1, ..., x · am)). Hence

arbitrage can be given different definitions. For the main constraint, we select strong

sequential arbitrage (SSA), i.e. I∗mAx ≥ 0, for A = [aij]m×n as in Section 6.2, any
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x ∈ R and where I∗m is the m×m matrix
1 0 0 ... 0
1 1 0 ... 0
. . . .
. . . ... .
. . . .
1 1 1 ... 1

 .

Therefore we consider the following vector optimization problem:

Minimize (p · x, ρ(x · a1, ..., x · am)) ,

such that I∗mAx ≥ 0,

such that x+ h ≥ 0,

such that h · p ≤ 1,

such that h ≥ 0.

(6.14)

Since ρ(x · a1, ..., x · am) is a convex function, for every optimal solution (x∗, h
∗
) of

(6.14) there exists the non-zero vector (γ, β) ≥ 0 that solves the scalar optimization

problem

Minimize γp · x+ βρ(x · a1, ..., x · am),

such that I∗mAx ≥ 0,

such that x+ h ≥ 0,

such that h · p ≤ 1,

such that h ≥ 0.

(6.15)

Conversely, if γ, β > 0, then every solution of (6.15) is also a solution of (6.14). Then

the set of solutions of (6.15), over arbitrary non-zero vectors (γ, β) ≥ 0, covers the
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whole solution set of (6.14), with possibility some more points. Hence, we fix a non-

zero vector (γ, β) ≥ 0 and focus on problem (6.15).

In order to analyze this problem we follow the same steps as for problem (6.3),

although there are minor modifications. Inspired by Lemma 6.3, the following definition

and lemma, give sufficient motivation to study problem (6.15).

Definition 6.2. The market is ρ-strong sequential arbitrage free (ρ-SSA) if and only

if the optimal solution of (6.15) for γ = β = 1 is equal to zero.

The following lemma connects ρ−SSA to SSA. The proof is simple and so it is

omitted.

Lemma 6.4. If there is a strong sequential arbitrage opportunity in the market then

there is also a ρ-strong sequential arbitrage opportunity.

Another equivalent form of this lemma is that if a market is ρ-strong sequential

arbitrage free then it is strong sequential arbitrage free as well. This lemma points out

that the credit spreads and TSIR obtained by ρ−SSA are more accurate than those

obtained by SSA.

It can be shown that (x∗, h
∗
) solves (6.15) and ξ∗ = γp · x∗ + βρ(x∗ · a1, ..., x

∗ · am)
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if and only if (ξ∗, x∗, h
∗
) solves the following problem:

Minimize ξ,

such that ξ ≥ γp · x+ βρ(x · a1, ..., x · am),

such that I∗mAx ≥ 0,

such that x+ h ≥ 0,

such that h · p ≤ 1,

such that h ≥ 0, ξ ≤ 0.

(6.16)

Notice that ρ(0) = 0, hence x = 0 and h = 0 is a feasible point for problem (6.15). So

the optimal solutions of (6.15) and (6.16) must be smaller than or equal to zero, or in

other words, ξ ≤ 0.

By the representation Theorem 6.1, problem (6.16) is equivalent to:

Minimize ξ,

such that ξ ≥ γp · x+ β(x · a1, ..., x · am) · z, ∀z ∈ ∆ρ,

such that I∗mAx ≥ 0,

such that x+ h ≥ 0,

such that h · p ≤ 1,

such that h ≥ 0, ξ ≤ 0.

After some manipulations, the Lagrangian function

L = L
(
v, µ, λ, λ

)
,
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L :M+(∆ρ)× (R+ ∪ {0})m × (R+ ∪ {0})n × (R+ ∪ {0}) 7→ R,

can be obtained as

L
(
v, µ, λ, λ

)
=ξ(1− v(∆ρ))

+
n∑
i=1

(
γv(∆ρ)pi − β

∫
ρ

bi · z dv(z)− µ ·Ri − λi
)
xi

+
n∑
i=1

(−λi + λpi)hi − λ,

where v ∈M+(∆ρ), µ ∈ (R+ ∪ {0})m, λ ∈ (R+ ∪ {0})n, λ ∈ (R+ ∪ {0}), and Ri is the

i-th column of the matrix defined by

R =


a1

a1 + a2

.

.

.
a1 + ...+ am

 .

It is known that (v, µ, λ, λ) is dual feasible if and only if it belongs to the non-

negative cone M+(∆ρ)× (R+ ∪ {0})m × (R+ ∪ {0})n × (R+ ∪ {0}) and

inf{L(v, µ, λ, λ); (x, h, ξ) ∈ Rn × (R+ ∪ {0})n × (R− ∪ {0})} > −∞.

In this case the value of the infimum is the objective function of the dual problem.

Hence the dual problem of (6.15) is

Maximize − θ,

such that γv(∆ρ)pi = β

∫
∆ρ

bi · z dv(z) + µ ·Ri + λi, i = 1, 2, ..., n,

such that λi ≤ θpi,

such that θ ≥ 0, λ ≥ 0, µ ≥ 0, v ∈ P(∆ρ),

(6.17)
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where P(∆ρ) = {v ∈M+(∆ρ); v(∆ρ) ≥ 1}.

It is easy to check that (6.17) is equivalently represented as

Maximize − θ,

such that γv(∆ρ)pi = β

∫
∆ρ

bi · z dv(z) + µ · bi + λi, i = 1, 2, ..., n,

such that λi ≤ θpi, i = 1, 2, ..., n,

such that θ ≥ 0, λ ≥ 0,

such that µ1 ≥ µ2 ≥ · · · ≥ µm ≥ 0, v ∈ P(∆ρ),

(6.18)

In optimization problems (6.17) and (6.18), bi is the i-th column of matrix A. In what

follows, the equivalent form of Karush-Kuhn-Tucker conditions for problem (6.18) are

inserted within brackets.
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The Karush-Kuhn-Tucker conditions of (6.17) (respectively of (6.18)) are:

γv∗(∆ρ)pi = λ∗i + β

∫
∆ρ

bi.z dv
∗(z) + µ∗ ·Ri, i = 1, 2, ..., n,(

resp. γv∗(∆ρ)pi = λ∗i + β

∫
∆ρ

bi.z dv
∗(z) + µ∗ · bi, i = 1, 2, ..., n,

)
λ
∗ ≤ θ∗ p,

− v∗(∆ρ)ξ
∗ +

n∑
i=1

x∗i

(
γv∗(∆ρ)pi − β

∫
∆ρ

bi.z dv
∗(z)

)
= 0, i = 1, 2, ..., n,

n∑
i=1

(µ∗ ·Ri)x
∗
i = 0,(

resp.
n∑
i=1

(µ∗ · bi)x∗i = 0,

)
λ
∗ · (x∗ + h

∗
) = 0,

θ∗(h
∗ · p− 1) = 0,

h
∗ ≥ 0, h

∗ · p ≤ 1, x∗ + h
∗ ≥ 0, ξ∗ ≤ 0, θ∗ ≥ 0,

λ
∗ ≥ 0, µ∗ ≥ 0

(
resp. µ∗1 ≥ µ∗2 ≥ · · · ≥ µ∗m ≥ 0

)
, v∗ ∈ P(∆ρ).

(6.19)
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It is easily seen that these are equivalent to

γv∗(∆ρ)pi = λ∗i + β

∫
∆ρ

bi.z dv
∗(z) + µ∗ ·Ri, i = 1, 2, ..., n,(

resp. γv∗(∆ρ)pi = λ∗i + β

∫
∆ρ

bi.z dv
∗(z) + µ∗ · bi, i = 1, 2, ..., n,

)
λ
∗ ≤ θ∗ p,

v∗(∆ρ)ξ
∗ = λ

∗ · x∗,
n∑
i=1

(µ∗ ·Ri)x
∗
i = 0,(

resp.
n∑
i=1

(µ∗ · bi)x∗i = 0,

)
λ
∗ · (x∗ + h

∗
) = 0,

θ∗(h
∗ · p− 1) = 0,

h
∗ ≥ 0, h

∗ · p ≤ 1, x∗ + h
∗ ≥ 0, ξ∗ ≤ 0, θ∗ ≥ 0,

λ
∗ ≥ 0, µ∗ ≥ 0

(
resp. µ∗1 ≥ µ∗2 ≥ · · · ≥ µ∗m ≥ 0

)
, v∗ ∈ P(∆ρ).

(6.20)

Now in view of Lemma 6.2, the dual problem (6.17) and Karush-Kuhn-Tucker
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conditions (6.20) can be further simplified. The simplified dual problem is

Maximize − θ,

such that γα0pi = βα0bi · z + µ ·Ri + λi, i = 1, 2, ..., n

such that

(
resp. γα0pi = βα0bi · z + µ · bi + λi, i = 1, 2, ..., n

)
such that λ ≤ θp,

such that θ ≥ 0, λ ≥ 0, µ ≥ 0, α0 ≥ 1, z ∈ ∆ρ,

such that

(
resp. θ ≥ 0, λ ≥ 0, α0 ≥ 1,

such that µ1 ≥ µ2 ≥ · · · ≥ µm ≥ 0, z ∈ ∆ρ

)

(6.21)

and the modified Karush-Kuhn-Tucker conditions are

γα∗0pi = λ∗i + βα∗0bi · z∗ + µ∗ ·Ri, i = 1, 2, ..., n,(
resp. γα∗0pi = λ∗i + βα∗0bi · z∗ + µ∗ · bi, i = 1, 2, ..., n,

)
λ
∗ ≤ θ∗ p,

α∗0ξ
∗ = λ

∗ · x∗,
n∑
i=1

(µ∗ ·Ri)x
∗
i = 0,(

resp.

n∑
i=1

(µ∗ · bi)x∗i = 0,

)
λ
∗ · (x∗ + h

∗
) = 0,

θ∗(h
∗ · p− 1) = 0,

h
∗ ≥ 0, h

∗ · p ≤ 1, x∗ + h
∗ ≥ 0, ξ∗ ≤ 0, θ∗ ≥ 0, α∗0 ≥ 1

λ
∗ ≥ 0, µ∗ ≥ 0,

(
resp. µ∗1 ≥ µ∗2 ≥ · · · ≥ µ∗m ≥ 0

)
, z∗ ∈ ∆ρ.

(6.22)
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By analogy to Theorem 6.2 we have the following result.

Theorem 6.4. Assume that the primal problem is always finite and that it attains its

optimal value, then

• The equivalent form of the dual problem is given by (6.21),

• (x∗, h
∗
, ξ∗) and (θ∗, λ

∗
, µ∗, z∗) solves problems (6.16) and (6.21), respectively if

and only if they satisfy the Karush-Kuhn-Tucker conditions (6.22).

Similarly to (6.3) we also obtain the following result.

Theorem 6.5. There is no ρ-strong sequential arbitrage if and only if there exists

µ∗1 ≥ µ∗2 ≥ · · · ≥ µ∗m ≥ 0 and z∗ ∈ ∆ρ such that

pi =
1

γ
(βz∗ + µ∗) · bi, i = 1, 2, ..., n.

By letting γ = 1 and β = 0, this gives the same result as Balbás and López (2008).

6.6 Numerical Implementation by Applying Risk

Statistics

Numerical Examples 6.1 and 6.2 clearly show that knowledge of the subgradient set

∆ρ is essential in the numerical implementation. Indeed, the probability structure

of the model is embedded in this set. The subgradient of some risk measures have

already been derived, for example the subgradient of CV aRα is given in closed form

by Rockafellar, Uryasev and Zabarankin (2006). However the structure of the new risk
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measure ρ, that builds on ρ, can be totally different. Therefore it is not surprising

that their subgradient sets are also different. For instance, this can be observed in

the simple model explained in Section 6.4. While the subgradient of ρ = CV aRα is

given by (6.12), the subgradient set (6.13) is different. Even in this simple example,

finding the subgradient set requires some manipulations, not necessarily applicable for

real portfolio examples. For instance in these examples, if we have one more period,

then the structure of the set is more complicated (in fact we were not able to find

a closed form). Therefore we need a tractable and practical approach to involve the

subgradient set in the numerical implementation. In what follows, we try to solve this

problem by introducing a new class of risk measures called statistical risk measures,

see Heyde, Kou and Peng (2007) for more details.

A special feature of the risk measure ρ is that its domain is not a random space.

One can think that ρ is defined on a data set. In other words each vector in Rn can

be interpreted as a set of data. This is the idea behind risk statistics as defined in

Heyde, Kou and Peng (2007). Based on this idea they define some new risk measures

and representation theorems. Basically we want to use their representation theorems

and the structure of the subgradient sets in order to solve our numerical caveat. Here,

we review some definitions of risk statistics and as well a representation theorem from

the above paper. For proofs based on convex analysis, we refer to Ahmed, Filipovic

and Svindland (2008).

Definition 6.3. The function ρ : Rn → R is a natural risk statistic if it satisfies the
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following conditions:

C(1) For all a ∈ R and x ∈ Rn, ρ(x + a1) = ρ(x) − a, where 1 is the n-dimensional

vector (1, 1, ..., 1). This property is called translation invariance.

C(2) For all t ≥ 0 and x ∈ Rn, ρ(tx) = tρ(x). This property is called positive homo-

geneity.

C(3) For all vectors x and y in Rn, if x ≤ y then ρ(x) ≥ ρ(y). This property is called

monotonicity.

C(4) If (xi − xj)(yi − yj) ≥ 0 for i 6= j then ρ(x + y) ≤ ρ(x) + ρ(y). This property is

called comonotonic subadditivity.

C(5) For any permutation {i1, ..., in} of {1, 2, ..., n}, we have ρ(x1, ..., xn) = ρ(xi1 , ..., xin).

This property is called permutation invariance.

The next theorem is the representation theorem of natural risk statistics. In the

following theorem and the subsequent ones, the increasing order statistics of any vector

(y1, ...., yn) is denoted by (y(1), ...., y(n)), with y(n) being the largest.

Theorem 6.6. If ρ is a natural risk statistic then

ρ(x) = sup
z∈∆

n∑
i=1

zi(−x)(i),

∆ ⊂ {z ∈ Rn;
n∑
i=1

zi = 1 and z ≥ 0}.
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Definition 6.4. The function ρ : Rn → R is a coherent risk statistic if it satisfies the

conditions C(1), C(2), C(3), and subadditivity (not comonotonic).

Theorem 6.7. If ρ is a coherent risk statistic then

ρ(x) = sup
z∈∆
−

n∑
i=1

zixi,

∆ ⊂ {z ∈ Rn;
n∑
i=1

zi = 1 and z ≥ 0}.

Definition 6.5. The function ρ : Rn → R is a law-invariant coherent risk statistic if

it satisfies conditions C(1), C(2), C(3), C(5), and subadditivity.

Theorem 6.8. If ρ is a law-invariant coherent risk statistic then

ρ(x) = sup
z∈∆

n∑
i=1

zi(−x)(i),

∆ ⊂ {z ∈ Rn;
n∑
i=1

zi = 1, z1 ≤ z2 ≤ ... ≤ zn and z ≥ 0}.

Now assume that ρ is any of the three above risk statistics, and take the portfolio

in Table 6.2. All the arguments of Sections 6.4 and 6.5 and the optimization problems

are still valid. The only difference is that now we assume additional properties for ρ as

the composition of ρ and ΠT . In the context of risk statistics, we do not assume any

probability structure and we work directly with the data. The probability structure is

embedded in the prices. Therefore interpreting the final result is difficult from a prob-

abilistic point of view, and this could be an objection to this method. In applying the

above risk statistics, we use the most trivial ones. It means that we let the subgradient
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∆ be the maximal set. This will make the optimal value lower than what it really is.

Hence if we ever get a non-zero solution (arbitrage income), it will be a lower bound,

and the actual value might be larger.

After running the maximization problem by the above three risk statistics with the

maximal ∆ set, the optimal value (the lower bound) is approximately zero which is a

trivial bound.

Now let us update the portfolio in Table 6.2 to the following. Assuming that this

Bond 1 Bond 2
Price of the bonds 1010 908.9

Cash flow 1 10 1
Cash flow 2 101000 909

Table 6.3: Obvious ρ-arbitrage, two bonds portfolio.

portfolio is homogeneous, due to the huge last payment of Bond 1, this is clearly

an arbitrage portfolio. In this case the optimal value (or arbitrage income), under the

assumptions of Example 6.2 is approximately 0.9989874. But if we use any of the above

risk statistic measures with the maximal ∆ set, the optimal value of the maximization

problem still is zero. However, we can not yet conclude that these risk measures can

not detect arbitrage in this obvious portfolio. Because one might take a non-maximal

∆ set in each of the above risk measures and therefore a new risk statistic to obtain a

non-zero lower bound, but this is not the only problem. In fact as we see shortly, the

permutation invariance assumption of the natural risk statistic and the law-invariant

coherent risk statistic, is not consistent with our model. But a non-zero optimal value
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is feasible for coherent risk measures which is consistent with our model assumptions.

The main problem with the natural risk statistic and the law-invariant coherent

risk statistic is that they do not distinguish strictly the weights given to the cash flows

at different times. This is reflected in Definitions 6.3 and 6.5 through property C(5)

(Definition 6.4 is silent about it). For example by C(5), ρ(1, 0) = ρ(0, 1). Now let

us explain this. By definition ρ(1, 0) is equal to ρ(ΠT (1, 0)), that represents the risk

associated to the future wealth of a portfolio that pays one unit of currency at time

t = t0 and nothing at time t = t1. And of course due to the uncertainty on factors like

random interest rates, this risk is different from ρ(0, 1) = ρ(ΠT (0, 1)) with a similar

interpretation. In Heyde, Kou and Peng (2007), they take data statically (i.e. at a

fixed time), here we take data at different times.

Coherent risk statistics do not meet axiom C(5). Hence one can look for a suitable

∆ set and so a new risk measure that provides a non-zero lower bound. Fortunately

through numerical trials, we found out that there is such a risk measure with the

following representation,

ρ(x) = sup
z∈∆

n∑
i=1

−zixi,

∆ρ = {z ∈ Rn;
n∑
i=1

zi = 1, z1 ≥ z2 ≥ ... ≥ zn and z ≥ 0}.

But how can we interpret this risk measure? Answering this question leads to a new

representation theorem.

We introduce a new axiom to reflect these different weights assigned at different
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times. Instead of C(5), we use the following,

C(6): For all j > i, ρ(ei − ej) ≤ 0, where ei and ej are the unit vectors with

the i-th and j-th coordinates of 1 and the other coordinates equal to zero.

The following argument is to motivate this assumption. For instance take the

very simple case of a two dimensional space and only two periods t0 and t1. Then

e1 − e2 = (1,−1) and Πt1(e1 − e2) = Πt1(1,−1), where t1 is the maturity time. In a

fixed income market like ours, because the accumulation amount of one unit at time

t0 can compensate a claim of -1 at time t1, we have Πt1(1,−1) ≥ 0 or Πt1(e1− e2) ≥ 0.

However more caution is required here. If we want to take into account all the details,

then this assumption is true in general if there is no risk of default for the issuer of the

bonds. Remember that we only manipulate the bonds and no net value is invested.

Therefore if it is a matter of arbitrage income, it makes more sense to focus on the

companies with a low probability of default or at least consider homogeneous portfolios,

i.e. bonds with the same credit ratings.

Axiom C(6) can be also a probabilistic assumption. For instance here we have

assumed that this inequality is true almost surely and the probabilistic structure of

the model is embedded in this assumption. Once we study the credit measurement, we

will revisit this assumption again. Finally by assuming the monotonicity of the risk

measure ρ we get ρ(Πt1(e1− e2)) ≤ 0 or ρ(e1− e2) ≤ 0. One conclusion of this property

is that ρ(e1) ≤ ρ(e2).

Remark 6.2. Note that due to market conditions and prior assumptions, other axioms
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may also be considered. The Axiom C(6) is just one possible option and in fact the

simplest one.

Definition 6.6. The function ρ : Rn → R is the risk statistic DF (default free) if it

satisfies the axioms C(1), C(2), C(3), C(6) and subadditivity.

Theorem 6.9. If ρ is the risk statistic DF then

ρ(x) = sup
z∈∆

n∑
i=1

−zixi,

∆ ⊂ {z ∈ Rn;
n∑
i=1

zi = 1, z1 ≥ z2 ≥ ... ≥ zn and z ≥ 0}.

This can be proved by simple adjustments of Ahmed, Filipovic and Svindland

(2008). In Heyde, Kou and Peng (2007) the proofs are simpler but long, while in

Ahmed, Filipovic and Svindland (2008) the proofs are shorter and more technical,

based on convex analysis.

In our numerical example we use the following special version of the above risk

statistic

ρ(x) = sup
z∈∆

n∑
i=1

−zixi,

∆ = {z ∈ Rn;
n∑
i=1

zi = 1, z1 ≥ z2 ≥ ... ≥ zn and z ≥ 0}.

By taking the maximal set, all the optimal values should be considered as a lower

bonds.

Example 6.3. Now let us review the previous examples by this new risk measure and

also we present two real data examples:
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• With this new risk statistic the lower bound for the optimal problem of the port-

folio represented by Table 6.2 is approximately 0.00861 compared to 0.00869 in

Example 6.2.

• In case of the portfolio represented by Table 6.3 the lower bound for the optimal

problem is 0.888876.

So far we have only seen academic examples. In what follows, we consider the

data of two real portfolios, composed with the five following bonds taken from the

Yahoo Finance: http://screen.yahoo.com/bonds.html. There is nothing special

about these bonds, except that they have the same credit ratings. Apart from this

characteristic they were simply chosen randomly. The identifications of these bonds

are given in Tables 6.4 and 6.5.

Example 6.4. For the portfolio represented by Table 6.6, the optimal value is approx-

imately equal to θ∗ ≈ 0.03857.

• The solution of the primal problem is equal to

x∗1 ≈ 0, x∗2 ≈ −0.50503, x∗3 ≈ −0.50018, x∗4 ≈ 0.00853.

• The solution of the dual problem is equal to

θ∗ ≈ 0.03857, λ∗1 ≈ 3.80981, λ∗2 ≈ 3.85572, λ∗3 ≈ 3.81869, λ∗4 ≈ 0, α∗ ≈ 30.79152,

z∗1 ≈ 0.02711, z∗2 ≈ 0.02711,....

The value x∗1 ≈ 0 means that Bond 1 can be excluded in our analysis. In order to
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COLGATE PALMOLIVE CO MTNS BE
As of 7-Dec-2010
OVERVIEW

Price: 98.77
Coupon(%): 1.375
Maturity Date: 1-Nov-2015
Yield to Maturity(%): 1.639
Current Yield(%): 1.392
Fitch Rating: AA
Coupon Payment Frequency: Semi-Annual
First Coupon Date: 1-May-2011
Type: Corporate
Callable: No

OFFERING INFORMATION
Quantity Available: 1240
Minimum Trade Qty: 1
Dated Date: 3-Nov-2010
Settlement Date: 13-Dec-2010

Table 6.4: Corporate Bond 1

obtain the optimal arbitrage income, the negative values of the primal problem should

be interpreted as shortening the bond and the positive value are going for long.

An interpretation of the solution of dual problem is done in the next section. In

a short review, the value α∗z∗j is a lower bound for the real market discount factor in

period j. For instance here α∗z∗1 ≈ 0.83 is a lower bound for the real market discount

factor in period 1. The quantities λj can be interpreted as the credit spreads. For more

details see the next section.

Example 6.5. For the portfolio represented by Table 6.7, the optimal value is approx-

imately equal to θ∗ ≈ 0.04432.

• The solution of the primal problem is equal to
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JPMORGAN CHASE & CO
As of 7-Dec-2010
OVERVIEW

Price: 99.96

Coupon(%): 2.600

Maturity Date: 15-Jan-2016

Yield to Maturity(%): 2.607

Current Yield(%): 2.601

Fitch Rating: AA

Coupon Payment Frequency: Semi-Annual

First Coupon Date: 15-Jul-2011

Type: Corporate

Callable: No

OFFERING INFORMATION

Quantity Available: 300

Minimum Trade Qty: 1

Dated Date: 18-Nov-2010

Settlement Date: 13-Dec-2010

COCA COLA CO
As of 7-Dec-2010
OVERVIEW

Price: 99.00

Coupon(%): 1.500

Maturity Date: 15-Nov-2015

Yield to Maturity(%): 1.714

Current Yield(%): 1.515

Fitch Rating: AA

Coupon Payment Frequency: Semi-Annual

First Coupon Date: 15-May-2011

Type: Corporate

Callable: No

OFFERING INFORMATION

Quantity Available: 175

Minimum Trade Qty: 1

Dated Date: 15-Nov-2010

Settlement Date: 13-Dec-2010

Bond 2 Bond 3

CHICAGO ILL GO BDS
As of 7-Dec-2010
OVERVIEW

State: Illinois

Price: 112.70

Coupon(%): 5.000

Maturity Date: 1-Jan-2014

Yield to Maturity(%): 0.780

Current Yield(%): 4.437

Fitch Rating: AA

Coupon Payment Frequency: Semi-Annual

First Coupon Date: 1-Jan-2008

Callable: No

BOND PROFILE

Type: Municipal

Insured: Yes

Alternative Minimum Tax: No

CHICAGO ILL TAXABLE GO BONDS
As of 7-Dec-2010
OVERVIEW

State: Illinois

Price: 114.35

Coupon(%): 5.400

Maturity Date: 1-Jan-2014

Yield to Maturity(%): 0.644

Current Yield(%): 4.722

Fitch Rating: AA

Coupon Payment Frequency: Semi-Annual

First Coupon Date: 1-Jan-2005

Callable: No

BOND PROFILE

Type: Municipal

Insured: Yes

Alternative Minimum Tax: No

Bond 4 Bond 5

Table 6.5: Corporate Bonds 2 and 3; Municipal Bonds 4 and 5
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Dates Bond 1 Bond 2 Bond 3 Bond 4

7-Dec-2010 98.77 99.96 99.00 112.70

1-Jan-2011 0 0 0 5

1-May-2011 1.375 0 0 0

15-May-2011 0 0 1.5 0

1-July-2011 0 0 0 5

15-July-2011 0 2.6 0 0

1-Nov-2011 1.375 0 0 0

15-Nov-2011 0 0 1.5 0

1-Jan-2012 0 0 0 5

15-Jan-2012 0 2.6 0 0

1-May-2012 1.375 0 0 0

15-May-2012 0 0 1.5 0

1-July-2012 0 0 0 5

15-July-2012 0 2.6 0 0

1-Nov-2012 1.375 0 0 0

15-Nov-2012 0 0 1.5 0

1-Jan-2013 0 0 0 5

15-Jan-2013 0 2.6 0 0

1-May-2013 1.375 0 0 0

15-May-2013 0 0 1.5 0

1-July-2013 0 0 0 5

15-July-2013 0 2.6 0 0

1-Nov-2013 1.375 0 0 0

15-Nov-2013 0 0 1.5 0

1-Jan-2014 0 0 0 5+100

15-Jan-2014 0 2.6 0 0

1-May-2014 1.375 0 0 0

15-May-2014 0 0 1.5 0

15-July-2014 0 2.6 0 0

1-Nov-2014 1.375 0 0 0

15-Nov-2014 0 0 1.5 0

15-Jan-2015 0 2.6 0 0

1-May-2015 1.375 0 0 0

15-May-2015 0 0 1.5 0

15-July-2015 0 2.6 0 0

1-Nov-2015 100+1.375 0 0 0

15-Nov-2015 0 0 1.5+100 0

15-Jan-2016 0 2.6+100 0 0

Table 6.6: Future cash flows of the four bonds portfolio.
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Dates Bond 1 Bond 2 Bond 3 Bond 4 Bond 5

7-Dec-2010 98.77 99.96 99.00 112.70 114.35

1-Jan-2011 0 0 0 5 5.4

1-May-2011 1.375 0 0 0 0

15-May-2011 0 0 1.5 0 0

1-July-2011 0 0 0 5 5.4

15-July-2011 0 2.6 0 0 0

1-Nov-2011 1.375 0 0 0 0

15-Nov-2011 0 0 1.5 0 0

1-Jan-2012 0 0 0 5 5.4

15-Jan-2012 0 2.6 0 0 0

1-May-2012 1.375 0 0 0 0

15-May-2012 0 0 1.5 0 0

1-July-2012 0 0 0 5 5.4

15-July-2012 0 2.6 0 0 0

1-Nov-2012 1.375 0 0 0 0

15-Nov-2012 0 0 1.5 0 0

1-Jan-2013 0 0 0 5 5.4

15-Jan-2013 0 2.6 0 0 0

1-May-2013 1.375 0 0 0 0

15-May-2013 0 0 1.5 0 0

1-July-2013 0 0 0 5 5.4

15-July-2013 0 2.6 0 0 0

1-Nov-2013 1.375 0 0 0 0

15-Nov-2013 0 0 1.5 0 0

1-Jan-2014 0 0 0 5+100 5.4+100

15-Jan-2014 0 2.6 0 0 0

1-May-2014 1.375 0 0 0 0

15-May-2014 0 0 1.5 0 0

15-July-2014 0 2.6 0 0 0

1-Nov-2014 1.375 0 0 0 0

15-Nov-2014 0 0 1.5 0 0

15-Jan-2015 0 2.6 0 0 0

1-May-2015 1.375 0 0 0 0

15-May-2015 0 0 1.5 0 0

15-July-2015 0 2.6 0 0 0

1-Nov-2015 100+1.375 0 0 0 0

15-Nov-2015 0 0 1.5+100 0 0

15-Jan-2016 0 2.6+100 0 0 0

Table 6.7: Future cash flows of the five bonds portfolio.
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x∗1 ≈ 0, x∗2 ≈ 0, x∗3 ≈ −0.10101, x∗4 ≈ 0.00836, x∗5 ≈ 0.

• The solution of the dual problem is equal to

θ∗ ≈ 0.04432, λ∗1 ≈ 4.37731, λ∗2 ≈ 4.43005, λ∗3 ≈ 4.38750, λ∗4 ≈ 0, λ∗5 ≈ 0.67351,

α∗ ≈ 30.60751, z∗1 ≈ 0.02711, z∗2 ≈ 0.02711,....

The same interpretation for the solutions as the previous example can be done here.

6.7 Credit Risk Measurement and ρ-arbitrage

In this section we discuss the main purpose of this chapter, measuring the credit risk of

corporate bonds. In fact we accomplish this by obtaining some kind of credit spread. A

credit spread is basically the extra value of bonds due to their level of risk that makes

them attractive to investors. In this section we assume that the market is free from all

types of arbitrage, either ρ-arbitrage or the classical one, and use this assumption to

estimate credit spreads.

To start we define the following new theoretical prices

p∗j = α∗z∗.bj, j = 1, 2, ..., n,

for the n bonds, where α∗ and z∗ are obtained from the solution of the dual problem

(6.10). Notice that α∗z∗j is the discount factor for the period j. Here bj is the j-th

column of matrix A. By Theorem 6.3, the theoretical prices produce no ρ-arbitrage

and the optimal solution of the dual problem (6.10) is zero, if the bonds are valued at

these theoretical prices.
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In an ideal market the theoretical prices must be the same as the real ones because a

good market must be consistent and it should not provide any ρ-arbitrage opportunities

to the agents. Therefore assuming that the market is free from arbitrage, any difference

between the real prices and the theoretical ones should be due to the risk of default

associated with the bonds. Although there are other types of risks involved in a market,

for simplicity we only focus on the major one which is the credit risk.

We formally define the credit spread of the Bond j to be (pj−p∗j). Notice that here

we used the Theorem 6.3 to define these credit spreads. The same procedure can be

carried out by Theorem 6.5. Indeed, applying the latter should provide more accurate

credit spreads than with Theorem 6.3 because it also counts the inconsistencies arising

due to the existence of strong sequential arbitrage opportunities in the market.

The procedure is explained through some examples. We discuss the credit spread

associated with those bonds considered in the previous section. First, we start by the

portfolios represented by Tables 6.1 and 6.2 under the assumptions of Section 6.4.

Example 6.6. As we saw in Example 6.1, in the portfolio represented by Table 6.1,

there is essentially no ρ-arbitrage. The theoretical prices are approximately equal to

the original ones and credit spreads can be ignored. On the other hand, the portfolio

of Table 6.2 is different. In this case the spread of the first bond is 10 and the spread

of the second bond is equal to 16.92069. Hence in this portfolio the first bond is more

credible than the second one as it has a smaller spread. However, this is a theoretical

example with abstract assumptions and there is no concrete interpretation for the risk
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of default.

Now we turn to the real data portfolios and measure the credit risk of those bonds.

Note that as one can check in Tables 6.4 and 6.5, all these bonds have an AA rating.

However, we are able to distinguish the credit worthiness of these homogeneous bonds.

To implement the numerical procedure we use the risk statistic DF explained in

the last section. The conditions C(1), C(2), and C(3) have traditional intuitive inter-

pretations. Condition C(6) was validated in the previous section under a default-free

market assumption. The general method to implement the numerical procedure is as

follows.

For a moment assume that the bond market is default free and ρ-arbitrage free,

then as detailed in Section 6.6, by applying the risk statistic DF in Definition 6.6, the

optimal solution of the dual problem (6.10) for this risk statistic ρ must be zero and

then the theoretical prices are equal to the market prices. However, if these theoretical

prices are not same as the market prices (which is normally the case), then the market

is either non-default free or non-ρ-arbitrage free. At the beginning of this section we

assumed that the market is free from all types of arbitrage, so any difference between

theoretical and market prices must be due to the risk of default. Notice that not all

risk measures are applicable due to the initial default-free assumption. However the

risk statistic DF was specifically constructed to satisfy our default-free assumption.

By Karush-Kuhn-Tucker conditions (6.11), we have that pj = λ∗j + p∗j , for j =

1, 2, ..., n. Since λ∗j ≥ 0, the theoretical prices are the lower bounds of the market
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prices. Hence (pj − p∗j) is non-negative and it is also a lower bound for the credit

spreads. Other details are explained in the following examples.

Example 6.7. First take the bonds 1 to 3 of the portfolio represented by Table 6.6.

In this case by running the optimization problem (6.10), the optimal solution is zero.

Hence the theoretical prices are exactly the same as the market prices. However, this

does not mean that credit spreads are actually zero. What we can conclude is that the

lower bounds on the credit spreads of these bonds are zero, a trivial conclusion! Since

these are corporate bonds with AA ratings, there must be some credit spreads, even if

small.

This phenomena happens because here, we do not focus on the whole market, but

rather on a small sector made of only three bonds. To get a better estimation, we

should add more data. Now let us consider the portfolio represented by Table 6.6. The

following table summarizes the results. Notice that here the lower bounds of the spreads

pj p∗j pj − p∗j Revised Rating

j=1 98.77 94.96 3.81 AA2
j=2 99.96 96.10 3.86 AA4
j=3 99 95.18 3.82 AA3
j=4 112.70 112.70 0 AA1

Table 6.8: Credit spreads for the portfolio in Table 6.7

of the first three bonds are not zero any more. These lower bounds are small, as the

bonds have good ratings, and their ratings are close to each other because all of them

are in the same rating sector. At first, the zero lower bound spread of the fourth bond

seems to be mysterious, but if one takes a look at the identification of the bond, i.e.
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Table 6.5, it comes out that this is a municipal bond which is insured.

Traditionally, municipal bonds have very low risk of default. To compare the his-

torical default rates of the corporate and municipal bonds, we refer to the following

link, http: // frwebgate. access. gpo. gov/ cgi-bin/ getdoc. cgi? dbname= 110_

cong_ reports&docid= f: hr835. 110 . The data are from Moody’s and Standard &

Poor’s.

This study is done with a 2007 evaluation data and data for the years between 1970

and 2006. For instance, based on this study by Moody’s, the historical default rates of

municipal bonds with AA ratings is 0.06% compare to 0.52% for corporate bonds with

the same rating. By Standard & Poor’s, the historical default rates of municipal bonds

with AA ratings is 0.00% compare to 1.50% of corporate bonds with the same rating.

Although the municipal bonds have showed lower rates of default (especially for the

ones with good ratings), after the 2009 mortgage crisis, a zero credit spread is not

realistic even for an AA municipal bond.

Again one should pay attention that these spread estimations are just based on the

information taken from a small part of the whole market. Therefore to have more

reliable lower bounds on spreads, more data are needed. The next example shows the

analysis for the five bonds portfolio.

Based on these spreads, we have revised the bond ratings. This is showed in the last

column of Table 6.8. For instance AA1 is the highest rating in this table.

Example 6.8. In this example we consider the portfolio represented by Table 6.7.
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Here, one can see the effect of adding a new bond. The result is summarized in the

following table.

pj p∗j pj − p∗j Revised Rating

j=1 98.77 94.96 4.38 AA3
j=2 99.96 96.10 4.43 AA5
j=3 99 95.18 4.39 AA4
j=4 112.70 112.03 0.67 AA2
j=5 114.35 114.35 0 AA1

Table 6.9: Credit spreads for the five bonds portfolio

Notice how this time the fourth bond does not have a zero lower bound credit spread

any more and also how the lower bound on spreads of the other bonds are updated and

are wider now. The fifth bond is also a municipal bond and a zero lower bound credit

spread can be interpreted the same way as the fourth bound. Interestingly, the rating

orders of Example 6.7 hold here as well.

Notice that any feasible point of the optimization problem (6.10) for (n+ 1) bonds

is also a feasible point for the optimization problem (6.10) with n bonds. This explains

why the lower bounds are getting wider from three to five bonds portfolios in the above

examples.

In general assume that we want to estimate the credit spread of a corporate bond

with the current market price p. We start constructing portfolios by adding bonds from

the market. Assume that CSn is the credit spread of this bond in a portfolio consisting

of n bonds. Note that to build a portfolio of n bonds we keep the last (n−1) bonds and

add a new bond from the market. As it was explained earlier, the sequence {CSn}∞n=2

212



is an increasing sequence that is bounded from below by zero and from above by the

price of the bond. Each element of this sequence is a lower bound for the true credit

spread. Therefore theoretically this sequence is converging to its real credit spread.

This is a practical way of estimating the credit spread of corporation bonds.

The same kind of table can be obtained for any group of four bonds of the portfolio

represented by Table 6.7. Finally these examples were just for illustrative purposes.

To get reliable estimates, one should take a large pool of bonds. The more data we

have, the more accurate and reliable the estimation of the credit spreads and ratings.

The above rating system is based on the bond prices taken from the market on

December 7, 2010. These are therefore daily ratings for this specific day. These ratings

can be updated with the new prices taken either hourly, daily or based on any other

periodic time intervals.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis credit risk in two area of stochastic processes and risk measures are stud-

ied. In the first part, the main focus is the study of credit risk under jump processes.

Due to the path dependent property of claims, most of the current and previous litera-

ture does not apply when the underlying process has jumps. Therefore our aim in this

first approach is to initiate a method for studying credit risk under jump processes.

A locally risk minimization approach is used for the corresponding risk management

problem.

As the application of risk measures in finance becomes increasingly popular, the

goal of the second part of this thesis is to use risk measures to gauge the credit quality

of financial products. Here the concentration is more on a practical approach and the

theory is developed for defaultable bond markets. Some of the conclusions and results

of this thesis are listed below:

• Two credit risk models (structural models and reduced form models) and their
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relations are explained. Then the advantages and disadvantages of each one

are studied. The main advantages and disadvantages of structural models are

respectively their intuitive default model, and non-realistic results, such as zero

short spreads. On the other hand reduced form models give out non-zero short

spreads, but they cannot explain the default event in the model.

• Two types of intensities and their properties are rigorously studied. Also some

well known pricing rules based on the idea of intensity are discussed.

• The importance of information in credit risk modeling is highlighted. Information

based models for three different filtration expansions are studied. The relation-

ships of the intensity with these filtration expansions are explored. A few results

that are already obtained under progressive filtration expansions are generalized

and improved under a more general version of the filtration expansions. This

includes the minimal and progressive filtration expansions, as special cases.

• The interpretation of two types of intensities as short credit spreads are dis-

cussed. The results in this area are particularly improved for more realistic and

general filtration expansions, than for progressive filtration expansions. In this

context the predictability problems with the intensity that arise for discontinuous

intensity processes are fixed as well.

• The Laplacian approximation method to calculate the intensity and its drawbacks

are fully discussed. This approach is implemented for a special jump process.
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The structure of the intensity for a Brownian motion with drift perturbed by a

compound Poisson process is explained, and it turns out that under jump process

the short spreads are non-zero even in the presence of full information.

• To obtain the hedging strategies, an auxiliary theorem is proved that can also be

of interest in martingale theory.

• Hedging of defaultable claim is obtained under finite variation Lévy processes

for which none of the known methods work. The approach is again locally risk

minimization.

• A necessary and sufficient condition for the existence of a perfectly hedgeable

(risk-free) defaultable claim is provided.

• The estimation of the distribution of the default time and pricing rules are stud-

ied.

• Credit risk is studied under risk measures. A new type of indicator to detect

inconsistencies in bond market is defined and well measured. This indicator is

linked to a new type of arbitrage that is called ρ-arbitrage. A necessary and

sufficient condition for the existence of this type of arbitrage is provided.

• Finally by introducing a new type of risk statistic, a practical approach to obtain

credit spread of defaultable bonds is obtained.
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7.2 Future Work

Some interesting questions for future work are listed below:

• Theoretically, as we saw, the intensity process is actually the credit spread. It

will be interesting to fit the closed form of the intensity obtained in this thesis

to real data and see how well it performs.

• The predictable part of the default indicator process (and in fact the intensity

process) was obtained in Corollary 4.1 for a compound Poisson process. It is

interesting to see the structure of this predictable part for a jump-diffusion or a

general Lévy process. The existence is guaranteed by Doob-Meyer’s decomposi-

tion. Especially, what is the relation of this predictable part with Proposition

4.1, and more specifically with equation (4.4)?

• The model presented in Chapter 5 can be improved and extended in many ways.

Some of these are: considering a non-zero interest rate, working under more gen-

eral Lévy processes, considering a non-zero level of default, extending the hedg-

ing to multivariate payoff functions, improving the integrability conditions of the

theorems and propositions, redoing the same procedure but with an exponen-

tial Lévy process, considering multiple period payments instead of a defaultable

zero-coupon bonds, or extending the theory to insurance products.

• Further and more complicated numerical procedures will be investigated to im-
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plement the theory of Chapter 5 with real data. Especially in this area more

sophisticated tools than simulations are needed to solve the involved PIDEs for

more complex finite variation Lévy processes.

• The procedure in Chapter 6 can also be improved. For example we obtained

lower bounds for real market discount factors. By changing the constraints, one

can obtain upper bounds as well. Therefore we will obtain intervals for credit

spreads instead of lower bounds.

• In Example 6.1, a two periods interest rate model was used. The structure

of interest rates can be extended to more complicated models, for instance the

Vasicek model. If the underlying risk measure is CV aRα, it is possible to obtain

closed forms. This can be an interesting project because it is a combination of

the theory of risk measure and that of stochastic processes.

• In order to obtain finer envelopes for the interest rate structure and also credit

spreads, one can implement the numerical methods by using our revised problem

in Section 6.5.

• Better risk statistic measures with more advanced probabilistic back ground can

be applied to implement with real data.

• Finally, one can try a large pool of defaultable bonds and actually observe the

convergence of the credit spreads explained in Section 6.6.
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Appendix A

Definitions and Technical Results

A.1 Definitions

Definition A.1. A random time is a non-negative F-measurable random variable.

Definition A.2. A stopping time T is predictable if there exists an increasing sequence

of stopping times Tn, n ≥ 1 such that for all n, Tn < T on {T > 0} and limn→∞ Tn = T ,

almost surely. This is called an announcing sequence.

Definition A.3. A stopping time T is totally inaccessible if for every predictable stop-

ping time S, P{T = S <∞} = 0.

Definition A.4. If ϕ is a class of processes, the localized class is denoted by ϕloc and it

is defined as follows: a process X belongs to ϕloc if and only if there exists an increasing

sequence {Tn}n≥1 of stopping times (depending on X) such that limn→∞ Tn =∞, almost

surely. and that each stopped process XTn belongs to ϕ. The sequence {Tn}n≥1 is called

a localizing sequence for X (relative to ϕ).
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Definition A.5. The process X is called a potential if it is a càdlàg, positive super-

martingale with limt→∞ E[Xt] = 0.

Definition A.6. Let a be an extended real number including infinity, 0 ≤ a ≤ ∞ and

X be a right continuous supermartingale, uniformly integrable on the interval [0, a]. X

belongs to class D on this interval, if the family {XT : T ∈ Pa} is uniformly integrable,

where Pa is the set of all stopping times bounded by a.

If X belongs to the class D on every interval [0, a], for 0 < a < ∞, it is said to

locally belong to class D.

The above definition of Class D is the same as Meyer (1962). In the current lit-

erature, locally belonging to the class D is called class DL, see Karatzas and Shreve

(1988).

Definition A.7. The set of all local martingales null at zero is denoted by L .

Definition A.8. Here we define two important classes of random processes:

• A semimartingale is a process X of the form X = X0 + M + Λ, where X0 is

finite-valued and F0-measurable, M ∈ L and A ∈ V , where V is the class of

finite variation processes. The class of all semimartingales is denoted by S .

• A special semimartingale is a semimartingale which admits a decomposition X =

X0 + M + Λ as above, with a process Λ that is predictable. The class of special

semimartingales is denoted by Sp.
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Definition A.9. For a stopping time T , the σ-algebra FT − is the smallest σ-algebra

containing F0 and all sets of the form A ∩ {t < T }, t > 0 and A ∈ Ft.

A.2 Technical Results

Theorem A.1. Assume that T is a random time in the reference filtration G and

Γt = P(T > t|Gt) > 0, almost surely for all t > 0, and E(Γt) > 0. By Doob-

Meyer’s decomposition, there is a unique nondecreasing G-predictable process K such

that the process Γ + K is a G-martingale. Suppose that F is the progressive filtration

expansion of G and T . Then Jeulin-Yor’s results states that 1{T ≤t} −
∫ t∧T

0
1

Γs−
dKs is

an F-martingale.

Remark A.1. The original form of this theorem in Jeulin and Yor (1978) considers

more than one filtration expansion that includes the progressive one.

Remark A.2. In the above theorem, the existence of the compensator is already guar-

anteed by Doob-Meyer’s decomposition.

Lemma A.1. Assume that X is an integrable F-measurable random variable on the

probability space (Ω,F ,P). Suppose that on this probability space, F2 ⊂ F is any

σ-algebra expansion of F1 ⊂ F and a random time T such that the following hold:

• F1 ⊂ F2 and T is F2 measurable,

• F2 ⊂ {A ∈ F ; there is B ∈ F1, A ∩ {T > t} = B ∩ {T > t}}.
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Then for all t ≥ 0, we have

E
[
1{T >t}X | F2

]
P(T > t|F1) = 1{T >t}E

[
1{T >t}X | F1

]
.

By a simple application of the previous lemma, we have the following corollary.

Corollary A.1. Assume that X is an integrable F-measurable random variable on the

probability space (Ω,F ,P). Suppose that on this probability space, F = (F)t≥0 is any

filtration expansion of G = (G)t≥0 and a random time T such that:

• T is an F-stopping time,

• F is a subset of the progressive filtration expansion of G and T , i.e. for all t ≥ 0,

Ft ⊂
{
A ∈ G∞ ∨ σ(T ); there is B ∈ Ft, A ∩ {T > t} = B ∩ {T > t}

}
• for all t ≥ 0, P(T > t | Gt) is almost surely non-zero.

Then for all t ≥ 0 we have

E
[
1{T >t}X | Ft

]
= 1{T >t}

E
[
1{T >t}X | Gt

]
P(T > t | Gt)

.

Lemma A.2. Let X and Y be bounded random variables defined on probability space

(Ω,F,P), while G1 and G2 are sub σ-fields of F. If X is independent of Y and G2,

while Y is independent of G1, then E[XY | G1

∨
G2] = E[X | G1]E[Y | G2].

This is a classical result and can be found in most advanced probability books.
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Lemma A.3. Let (Ω,F,P) be a probability space with Λ ∈ F and ξ an integrable

random variable. Then, if G is a sub σ-field of F such that G ∩ Λ = F ∩ Λ, we have

that E[ξIΛ | F] = E[ξIΛ | G]
E[IΛ | G]

IΛ.

The proof of this lemma can be found in page 94 of Kallenberg (2001).
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Symbols

H, 29

(Ω,F ,P), 5

(Ω,F ,F,P), 5

(θ, η), 91

Ac, 64

B, 10

C(φ), 91

CV aRα, 166

D, 41

E, 41

F , 14

G, 26

H, 13, 91

Kt, 98

L2(Ω,Ft,P), 81

N , 10, 27

R(φ), 95

S(t, T ), 17

T , 13

V (φ), 91

V aRα, 166

V ar(Λ), 75

V ar (Λ)∞, 75

[X,X], 71

[X,X]c, 78

[X, Y ], 71

[X], 71

∆, 48

∆ρ, 168

Γ, 26

Λ, 22

Φ, 56

Π, 164

ΠT , 164

η, 91

〈X,X〉, 71

〈X, Y 〉, 71

〈X〉, 71
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λ, 28

λS, 29

λh, 26

λi, 23, 24

(Re)tk , 35

(Ft)0≤t<∞, 5

A, 106

F , 5

H, 44

H′ , 44

M(∆ρ), 173

N , 54

P , 102

T , 7, 16

M+(∆ρ), 174

D, 15, 34

F, 5

F = (Ft)t≥0, 35

FX,D, 16

G = (Gt)t≥0, 8, 23, 34, 35

N, 7, 22, 102

R, 165

F = (Ft)t≥0, 7

F∞, 36

FT − , 80

FXt , 40

G∞, 36

a, 164

ai, 171

bj, 174

cj, 164

ρ, 167

φ, 91

ρ, 165

τ , 13, 15

τ+, 112

τD, 41

τD, 15

θ, 91

Ñ, 118

ϕ(∆ρ), 173

r = (rs)s≥0, 30
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rs, 17

yc, 16
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Subjects

I2 model, 9

L2-martingales, 81

L2-strategy, 98

H-hypothesis, 44

H′-hypothesis, 44

ρ-arbitrage, 171

σ-algebra, 5

(Local) risk-minimization, 93

(Strong) Markov Feller process, 64

Adapted subdivision Riemann sequence,

73

Admissible portfolio, 93

Announcing sequence, 20

Attainable, 92

Aven’s Theorem, 54

Barrier, 15

Black and Cox Model, 15

càdlàg, 25

càglàd, 25

CDS, 1

Class D, 51, 220

Class DL, 121, 220

Comonotonic subadditivity, 196

Compensator, 75

Complete market, 93

Conditional quadratic covariation, 76

Conditional quadratic variation, 76

Conditional value-at-risk, 166

Contingent claim, 91

Cost process, 91

Counting process, 54

Cox process, 29

Credit spread, 17, 208

Creep down, 112

Creep over, 112

Cumulative gain, 91

Defaultable zero-coupon bond, 68
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DF, 201

Doob’s inequality, 82

Doob’s optional sampling theorem, 22,

28

Doob-Meyer’s decomposition, 22

Föllmer-Schweizer decomposition, 101

FS, 101

Galtchouk-Kunita-Watanabe decompo-

sition, 96

GKW, 96

Hazard process, 26

Incomplete market, 93

Information based models, 33

Integrable variation, 75

Intensity, 24

Intensity based hazard, 26

Intensity based pricing approach, 29

Intensity of the default model, 23

Investors filtration, 35

Jensens’s inequality, 82

Jeulin and Yor’s theorem, 38

Karush-Kuhn-Tucker, 175

Lebesgue’s dominated convergence the-

orem for conditional expectation,

18

Local risk-minimization hedging, 90

Local risk-minimizing strategy, 99

Mean-self-financing, 95

Mean-variance hedging, 93

Mean-variance trade-off process, 98

MELMM, 101

Merton’s Model, 14

Meyer’s Laplacian approximation, 51

Meyer’s previsibility Theorem, 64

Minimal filtration expansion, 36

Modified version of conditional quadratic

covariation, 77

Monotone class argument, 25

Monotonicity, 166

MVT, 98, 127
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Natural filtration, 40

Natural increasing process, 83

Natural risk statistic, 195

No times of discontinuity, 80

Non-homogeneous Poisson process, 28

Orthogonal, 83

Permutation invariance, 196

PIDE, 68

Positive homogeneity, 165

Potential, 51, 219

Predictable σ-algebra, 108

Predictable stopping time, 16

Primal problem, 172

Progressive filtration expansion, 36

Pseudo-locally risk-minimizing, 100

Quadratic covariation, 74

Quadratic pure jump process, 78

Quadratic variation, 72

Quasi left continuous filtration, 80

Quasi left continuous process, 80

Random time, 18, 23

Reduced form models, 21

Reference filtration, 24, 34

Replicating portfolio, 91

Representation theorem, 167

Risk measure, 165

Risk process, 95

Risk-minimization, 96

RM-strategy, 94

SC, 98

Self-financing, 92

Semimartingale, 71, 92, 221

Short credit spreads, 17

Small perturbation, 99

Special semimartingale, 220, 221

Square-integrable martingales, 80

Standard normal distribution function,

56

Structure condition, 97

Sub-additivity, 165
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The usual hypothesis, 6

Totally inaccessible scoping time, 22

Translation invariance, 165

TSIR, 185

Uniformly integrable martingale, 22

Uniformly integrable martingales, 82

Value process, 91

Value-at-risk, 166

Yield, 16

230



Classes of Processes

L(X), 98

L2(X), 94

ΘS, 98, 100

Aloc, 85

M, 82

M2, 81

M2
loc, 97

M0, 84

M2
loc, 85

S2(P), 97

L(X), 87

M2, 80

U, 83

U+, 83

A , 75

L , 220

S , 71, 220

Sp, 220

V , 74
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[29] Geman, H., 2002. Pure jump Lévy processes for asset price modelling. Journal of

Banking and Finance, 26, 1297–1316.

[30] Giesecke, K., 2004a. Correlated default with incomplete information. Journal of

Banking and Finance, 28, 1521-1545.

[31] Giesecke, K., 2004b. Credit risk modeling and valuation: An introduction. Credit

Risk: Models and Management, 2.

[32] Giesecke, K., 2006. Default and information. Journal of Economic Dynamics and

Control, 30, 2281-2303.

235



[33] Giesecke, K. and Goldberg, L.R., 2004. Forecasting default in the face of uncer-

tainty. Journal of Derivatives, 12 (1), 14–25.

[34] Guo, X., Jarrow, R.A. and Zeng Y., 2009. Credit risk models with incomplete

information. Mathematics of Operations Research, 34 (2), 320–332.

[35] Guo, X. and Zeng, Y. 2008. Intensity process and compensator: A new filtration

expansion approach and the Jeulin–Yor formula. The Annals of Applied Probabil-

ity, 18 (1), 120–142.

[36] Harrison, J.M. and Pliska, S.R., 1981. Martingales and stochastic integrals in

the theory of continuous trading. Stochastic Processes and their Applications, 11,

215–260.

[37] He, S.-W., Wang, J.-G. and Yan, J.-A., 1992. Semimartingale Theory and Stochas-

tic Calculus . CRC Press: Boca Raton.

[38] Heyde, C.C., Kou, S. G., Peng, X. H., 2007. What is a good external risk measure:

Bridging the gaps between robustness, subadditivity, and insurance risk measures.

Preprint.

[39] Jacod, J. and Shiryaev, A.N., 1987. Limit Theorems for Stochastic Processes .

Springer: Berlin.

[40] Jarrow, R.A. and Turnbull, S.M., 1995. Pricing derivatives on financial securities

subject to credit risk. Journal of Finance, 50 (1), 53-86.

236



[41] Jeanblanc, M. and LeCam, Y., 2007. Reduced form modelling for credit risk.

Available at SSRN: http://ssrn.com/abstract=1021545.

[42] Jeulin, T. and Yor, M., 1978. Grossissement d’une filtration et semimartingales:
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