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Abstract

Skeletal muscle has a high regenerative capacity, injuries trigger a regenerative program

which restores tissue function to a level indistinguishable to the pre-injury state. How-

ever, in some cases where significant trauma occurs, such as injuries seen in military

populations, the regenerative process is overwhelmed and cannot restore full function.

Limited clinical interventions exist which can be used to promote regeneration and pre-

vent the formation of non-regenerative defects following severe skeletal muscle trauma.

Robust and reproducible techniques for modelling complex tissue responses are essen-

tial to promote the discovery of effective clinical interventions. Tissue engineering has

been highlighted as an alternative method, allowing the generation of three-dimensional

in vivo like tissues without laboratory animals. Reducing the requirement for animal

models promotes rapid screening of potential clinical interventions, as these models are

more easily manipulated, genetically and pharmacologically, and reduce the associated

cost and complexity, whilst increasing access to models for laboratories without animal

facilities. In this study, an in vitro chemical injury using barium chloride is validated using

the C2C12 myoblast cell line, and is shown to selectively remove multinucleated

myotubes, whilst retaining a regenerative mononuclear cell population. Monolayer cul-

tures showed limited regenerative capacity, with basement membrane supplementation

or extended regenerative time incapable of improving the regenerative response. Con-

versely tissue engineered skeletal muscles, supplemented with basement membrane pro-

teins, showed full functional regeneration, and a broader in vivo like inflammatory

response. This work outlines a freely available and open access methodology to produce

a cell line-based tissue engineered model of skeletal muscle regeneration.
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1 | INTRODUCTION

For the majority of individuals skeletal muscle injuries are regenera-

tive, restoring function to a level indistinguishable from that seen

before injury. The severity of muscle wounds seen in clinical settings

is highly varied, ranging from minor strains to significant muscle

traumas such as volumetric muscle loss. Typically, wounds caused by

military trauma or severe sports injury, do not retain full regenerative

capacity and complete recovery is not observed (Belmont, McCriskin,

Sieg, Burks, & Schoenfeld, 2012; Dharm-Datta & McLenaghan, 2013;

Wheatley et al., 2015). In addition, individuals with genetic conditions,

collectively termed myopathies, also experience a lack of regeneration

following injury (Dimachkie & Barohn, 2014; Flanigan, 2014; Nigro &

Piluso, 2015; Shieh, 2013). In such situations the capacity of muscle

to heal is impaired, resulting in non-regenerative healing and subse-

quent fibrosis (Mann et al., 2011; Mueller, Van Velthoven, Fukumoto,

Cheung, & Rando, 2016; Olson & Soriano, 2009), adipogenesis (Rose,

2002; Uezumi, Fukada, Yamamoto, Takeda, & Tsuchida, 2010; Uezumi

et al., 2011), and in extreme cases osteogenesis (Belmont et al., 2012;

Wheatley et al., 2015).

Mature adult skeletal muscle consists of aligned myofibres, encased

within a basement membrane and a predominantly type I collagen

extracellular matrix (ECM). These multinucleated cells contain the con-

tractile apparatus of skeletal muscle, with the force generated transmit-

ted through the ECM to the tendons (Cooke, 2004; Szent-Györgyi,

2004). Located between the membrane of these multinucleated cells

(sarcolemma) and the basement membrane resides a population of stem

cells, termed satellite cells, which are required for muscle hypertrophy

and regeneration (Hurme & Kalimo, 1992; Kuang, Kuroda, Le Grand, &

Rudnicki, 2007; Mauro, 1961; Moss & Leblond, 1971). Following injury,

satellite cells activated by the post injury environment proliferate rap-

idly producing large numbers of progeny (Doumit, Cook, & Merkel,

1993; Haugk, Roeder, Garber, & Schelling, 1995; Hurme & Kalimo,

1992), which express early markers of myogenic commitment (Kuang

et al., 2007). It is these progeny which commit to the myogenic lineage

fusing to regenerate the damaged myofibres and return full functionality

(Cornelison et al., 2004; Seale et al., 2000). A number of studies have

shown the importance of inflammatory mediators on muscle progenitor

proliferation and differentiation, and so the role of inflammation in regen-

eration is seen as an essential coordinating event following injury (Arnold

et al., 2007; Lu et al., 2010; Segawa et al., 2008; Summan et al., 2006).

Currently, limited pharmacological interventions are available, in

clinical practice, to increase regenerative repair within injured and/or

diseased populations. As such, individuals that fall into these groups are

left with skeletal muscle which never recovers full function, and in

many cases can cause long term pain and disability. The processes

governing skeletal muscle regeneration are highly complex, relying

upon the coordinated effects of multiple cell types in vivo. To date,

studies of muscle regeneration have relied upon the use of animal

models. However, attempts to reduce the reliance upon animals

models, as per the 3Rs directive (EU, 2010; Russell, Burch, & Hume,

1959), in addition to difficulties translating animal data to human

physiology (Boldrin, Muntoni, & Morgan, 2010; Gerry & Leake, 2014;

Shanks, Greek, & Greek, 2009), demonstrates a requirement for new

approaches. Recreating complex biological processes, such as skeletal

muscle regeneration in in vitro tissue culture systems, requires sophisti-

cated models of tissues which go beyond simple monolayer cultures.

Examination of cellular responses typically relies upon monolayer

cell culture methods; however, these monolayer culture methods lack

the advanced tissue hierarchy seen in vivo. The lack of spatial organisa-

tion in monolayer models may limit the capacity of cellular models to

undergo complex physiological events, such as muscle regeneration.

Tissue engineering has been highlighted as an alternative method, all-

owing the generation of three-dimensional in vivo like tissues without

the need for laboratory animals. Reducing the requirement for animal

models promotes rapid screening of potential clinical interventions, as

these models are easily manipulated genetically and pharmacologically

and therefore are associated with reduced cost and complexity.

A number of tissue engineered models of skeletal muscle have been

published which are capable of producing a 3D construct that contains

aligned myofibres (Agrawal, Aung, & Varghese, 2017; Gilbert-honick

et al., 2018; Huang, Dennis, Larkin, & Baar, 2005; Juhas, Engelmayr,

Fontanella, Palmer, & Bursac, 2014; Langelaan et al., 2011; Madden,

Juhas, Kraus, Truskey, & Bursac, 2015; Martin et al., 2013; Rao, Qian,

Khodabukus, Ribar, & Bursac, 2018; Sakar et al., 2012; Sharples et al.,

2012; Vandenburgh et al., 2009; Vandenburgh, 2010), and in some

cases capable of producing force when electrically stimulated (Capel

et al., 2019; Juhas et al., 2014; Madden et al., 2015; Martin et al., 2017;

Rao et al., 2018). These models have been used for a range of applica-

tions including preclinical drug screening and investigations of basic

biology. To date only a single model has shown any regenerative capac-

ity. This study employed a fibrin/Matrigel® hydrogel system containing

primary skeletal muscle myoblasts from rats (Juhas et al., 2014, 2018).

The culture system employed is based upon a bespoke 3D culture

mould and uses primary rat myogenic precursor cells (requiring the sac-

rifice of small laboratory animals), negating some of the advantages

associated with using engineered tissues as models. Therefore, a sys-

tem that employs a freely available and open source 3D printed mould,

to allow other investigators to accurately and rapidly reproduce the sys-

tem, and does not use any primary animal tissue, represents a signifi-

cant advance to the tissue engineering field.

Here, we present a comparative analysis of injury and regeneration

in both monolayer and tissue engineered 3D culture systems using the

murine skeletal myoblast cell line C2C12. Morphological analysis, gene

expression and functional output are used to assess the differences and

similarities between monolayer and 3D model systems and identify a

system which most closely mimics in vivo skeletal muscle regeneration.

2 | METHODS

2.1 | Culture of C2C12 skeletal muscle myoblasts

C2C12 skeletal muscle myoblasts (below passage 10) were expanded

using growth medium (GM); composed of 79% Dulbecco's Modified

Eagle Medium (DMEM, Fisher Scientific, UK), 20% foetal bovine serum
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(FBS, Pan Biotech, UK) and 1% Penicillin/Streptomycin (P/S, Fisher). Cells

were cultured in T80 flasks (NuncTM, Fisher) and incubated in a 5% CO2

humidified atmosphere at 37 !C until 80% confluence was attained. GM

was changed every 24 hr during the expansion of cells.

2.2 | Monolayer (2D) culture

Cells were plated into six well plates containing 0.2% gelatin coated

glass cover slips at a density of 1 × 104 cells/cm2. To examine the

effect of surface matrix, experimental plates and coverslips were

coated with a 1.5 mg/mL Matrigel® solution as per manufacturer's

instructions (Corning, UK). Myoblasts were cultured to confluence in

GM before being cultured in low serum differentiation medium (DM);

composed of 97% DMEM, 2% Horse Serum (HS, Sigma Aldrich, UK)

and 1% P/S. The total culture period was standardised at 2 days GM,

followed by a further 3 days DM.

2.3 | 3D tissue engineered constructs

Collagen constructs were generated using C2C12 myoblasts, as previously

published (Capel et al., 2019). Type I collagen only hydrogels were formed

by the addition of 85% vol/vol type I rat tail collagen (First Link, UK; dis-

solved in 0.1 M acetic acid, protein at 2.035 mg/mL), with 10% vol/vol of

10X minimal essential medium (MEM, Gibco, UK). This solution was

neutralised by the addition of 5 M and then 1 M sodium hydroxide

(NaOH) dropwise, until a colour change to cirrus pink was observed. Col-

lagen/Matrigel® constructs were generated by the addition of 65% vol/vol

type I rat tail collagen, with 10% vol/vol of 10X minimal essential medium.

This solution was neutralised as above. This was followed by the addition

of 20% vol/vol Matrigel® (Corning®, Germany). Myoblasts were added to

the neutralised collagen or collagen/Matrigel® solution at a density of

4 × 106 cells/mL in a 5% vol/vol GM solution, before being transferred to

the pre-sterilised biocompatible polylactic acid (PLA) 3D printed inserts

(Rimington, Capel, Christie, & Lewis, 2017) to set for 10–15 min in an

incubator. Collagen only gels were set in 500 μL inserts (Rimington et al.,

2018a), whilst Matrigel®/Collagen gels were set in 50 μL inserts

(Rimington et al., 2018b, 2018c). All moulds used in this manuscript are

freely available to download at the following URL: https://figshare.com/

projects/3D_Printed_Tissue_Engineering_Scaffolds/36494. GM was

added for 4 days and changed daily, before being changed to DM,

refreshed every 2 days, for a further 10 days in culture. Figure S5 contains

a cross sectional image and macroscopic image of deformed hydrogels to

illustrate the morphology and appearance of mature control constructs.

2.4 | Barium chloride injury and regeneration

Barium chloride (BaCl2) was chosen as an injurious stimulus due to

previous in vivo publications and its high water solubility, allowing

easy and reproducible in vitro application (Hardy et al., 2016; Mueller

et al., 2016). Once cultures had reached maturity, as defined above,

they were exposed to chemical injury by BaCl2. Prior to inducing

injury, fresh DM was added to all conditions. Precisely 50 μl/mL of

12% wt/wt BaCl2 solution was then added to the medium for injury

culture conditions, followed by a 6 hr incubation to cause injury. Fol-

lowing injury, cultures were washed once with phosphate buffered

saline (PBS) to remove residual BaCl2 containing media. Control

(no injury) and 0 hr (0 hrs) time points were collected at the end of

injury incubation. Injury was followed by a regenerative period, and in

all experiments this regenerative period mimicked exactly the protocol

used to generate mature cultures, allowing comparison of regenerated

cultures to controls. End GM time points were collected when reg-

enerating cultures were changed from GM to DM. End DM time

points were collected at the end of the experimental protocol.

2.5 | Fluorescence staining

Cells and 3D constructs were fixed using a 3.75% formaldehyde solu-

tion (Sigma). The actin cytoskeleton of cells was identified using rho-

damine phalloidin (1:500, Fisher) and nuclei were stained using

40 ,6-diamidino-2-phenylindole (DAPI, 1:1,000, Fisher) in tris-buffered

saline (TBS) for 2 hr. Coverslips and 3D constructs were then washed

(3 × 15 min, TBS). Coverslips were mounted directly onto microscope

slides using Fluoromount™ mounting medium (Sigma). Constructs were

transferred to polysine adhesion microscope slides (Fisher) and mounted

under glass coverslips, again using Fluoromount™mounting medium.

2.6 | Image collection and analysis

Images were captured using a Leica DM2500 (monolayer) or a Zeiss LSM

880 confocal (3D) microscope. Morphological measures; fusion index

(number of nuclei in myotubes represented as a percentage of the total

number of nuclei in the image frame), myotube density per 100 μm (num-

ber of myotubes measured intersecting a line drawn perpendicular to the

long axes of the construct, averaged from five points per image), percent-

age coverage (myotube width multiplied by myotubes per 100 μm) and

average myotube width were all conducted manually. Total nuclei were cal-

culated using an in-house macro implemented in ImageJ (Schindelin et al.,

2012). Analysis was conducted from nine monolayer images taken across

three coverslips per biological repeat, or from a 21-image tile scan of a 3D

construct for every condition, derived from n ≥ 3 biological repeats.

2.7 | Assessment of muscle function by electrical
stimulation

Electric field stimulation was used to assess the functional capacity

(force generation) of tissue engineered constructs. Constructs were

washed twice in PBS, and one end of the construct removed from the

supporting mould pin. The loose end of the construct was then

attached to the force transducer (403A Aurora force transducer,

Aurora Scientific, Canada) using the eyelet present in the construct.

The construct was positioned to ensure its length was equal to that

before removal from the pin and covered (3 mL) with Krebs-Ringer-

HEPES buffer solution (KRH; 10 mM HEPES, 138 mM NaCl, 4.7 mM

KCl, 1.25 mM CaCl2, 1.25 mM MgSO4, 5 mM Glucose, 0.05% Bovine

Serum Albumin in dH2O, Sigma). Aluminium wire electrodes, sepa-

rated by 10 mm, were positioned either side of the construct to allow
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for electric field stimulation. Impulses were generated using LabVIEW

software (National Instruments, Berkshire, UK) connected to a

custom-built amplifier. Maximal twitch force was determined using a

single 3.6 V/mm, 1.2 ms impulse and maximal tetanic force was mea-

sured using a 1 s pulse train at 100 Hz at 3.6 V/mm, generated using

LabVIEW 2012 software (National Instruments). Where possible,

twitch and tetanus data were derived from three contractions per

construct, and a minimum of two constructs per time point per biolog-

ical repeat. Data was acquired using a Powerlab system (ver. 8/35)

and associated software (Labchart 8, AD Instruments, UK).

2.8 | RNA extraction and RT-PCR

RNA was extracted using TRIReagent® chloroform extraction,

according to manufacturer's instructions (Sigma). RNA concentration

and purity were obtained by UV spectroscopy (Nanodrop 2000, Fisher).

For snap frozen 3D constructs, TRIReagent® extraction was augmented

by mechanical disruption of hydrogels via addition of metal beads in

round bottomed Eppendorf's (Starlab, UK) in a TissueLyser II (Qiagen,

UK) for 5 min at 20 Hz. Following disruption, beads were removed, and

RNA was isolated as for monolayer samples.

All primers (Table 1) were validated for 5 ng of RNA per 10 μL real

time-polymerase chain reaction (RT-PCR) reaction. RT-PCR amplifica-

tions were carried out using Power SYBR Green RNA-to-CT 1 step kit

(Qiagen, UK) on a 384 well ViiA Real-Time PCR System (Applied Bio-

systems, Life Technologies), and analysed using ViiA 7RUO Software.

RT-PCR procedure was: 50 !C, 10 min (for cDNA synthesis), 95 !C,

5 min (reverse transcriptase inactivation), followed by 40 cycles of

95 !C, 10 s (denaturation), 60 !C, 30 s (annealing/extension). Melt anal-

ysis was then carried out using standard ViiA protocol. Relative gene

expressions were calculated using the comparative CT (ΔΔCT) method

giving normalised expression ratios (Schmittgen & Livak, 2008). RPIIβ
was the designated housekeeping gene in all RT-PCR assays and no

sample controls for each primer set were included on every plate.

2.9 | Statistical analysis

Statistical significance of data was determined using IBM© SPSS© Sta-

tistics version 23. Mauchly's test of sphericity and Shapiro–Wilk tests

were used to confirm homogeneity of variance and normal distribution

of data, respectively. Where parametric assumptions were met, an

ANOVA test was used to identify significant interactions. Where signif-

icant interactions were observed, Bonferroni post-hoc analyses were

used to analyse differences between specific time-points. Non-

parametric Kruskal–Wallis analysis was undertaken where data violated

parametric assumptions. Mann–Whitney (U) tests were then used, with

a bonferonni correction, to identify the differences between groups. All

data is reported as mean ±SD. Significance was assumed at p ≤ .05.

3 | RESULTS

3.1 | Monolayer muscle cultures exhibit only a partial
regenerative response following injury

To cause a wounding insult in 2D, a mechanism of injury is required

that specifically removes myotubes, without causing excessive

TABLE 1 Forward and reverse primer
sequences for all primers used for RT-
PCR expression analysis

Primer Sequence (50 to 30) Product length
NCBI reference
sequence

RPIIβ Fw-GGTCAGAAGGGAACTTGTGGTAT 197 NM_153798.2

Rv-GCATCATTAAATGGAGTAGCGTC

Myod Fw-CATTCCAACCCACAGAAC 125 NM_010866.2

Rv-GGCGATAGAAGCTCCATA

Myog Fw-CCAACTGAGATTGTCTGTC 173 NM_031189.2

Rv-GGTGTTAGCCTTATGTGAAT

Myh3 Fw-CATATCAGAGTGAGGAGGAC 86 NM_001099635.1

Rv-CTTGTAGGACTTGACTTTCAC

Tnf Fw-TCAACAACTACTCAGAAACAC 130 NM_013693.3

Rv-AGAACTCAGGAATGGACAT

Il6 Fw-AAGAAATGATGGATGCTACC 164 NM_001314054.1

Rv-GAGTTTCTGTATCTCTCTGAAG

Mcp1 Fw-CAAGATGATCCCAATGAGTAG 87 NM_011333.3

Rv-TTGGTGACAAAAACTACAGC

Pparg Fw-AAAGACAACGGACAAATCAC 195 XM_017321456.1

Rv-GGGATATTTTTGGCATACTCTG

Runx2 Fw-ACAAGGACAGAGTCAGATTAC 197 XM_006523545.2

Rv-CAGTGTCATCATCTGAAATACG

Note: Product length and NCBI gene reference determined using NCBI primer blast.
Abbreviation: RT-PCR, real time-polymerase chain reaction.
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damage to the mononuclear cell population. The chemical BaCl2 was

selected, demonstrating a dose dependent ability to specifically

remove myotubes (Figure S1). Furthermore, BaC12 has been docu-

mented to induce injury in animal models of skeletal muscle regenera-

tion (Hardy et al., 2016).

BaCl2 insult in monolayer cultures caused total removal of

myotubes, demonstrated by the significant ablation of fused nuclei

(p < .001), however no reduction in total nuclei number indicates the

retention of mononuclear cells following injury (Figure 1a–c). Follow-

ing a further 2 days culture in GM, nuclei number was significantly

F IGURE 1 Treatment of differentiated C2C12 cultures with BaCl2 specifically removes myotubes from culture and initiates a regenerative
response. (a) ×20 widefield micrographs of recovery time points in C2C12s. Stained for actin (phalloidin, red) and nuclei (DAPI, blue), scale bars
represent 50 μm. (b) Fusion index, (c) total nuclei, (d,e) measures of myotube maturity. Values for 0 hr and 2 days post injury have been omitted
as too few myotubes were present in these conditions to accurately measure these variables (b–e) Graphs express mean ±SD, asterisks above
bars denotes significance from control, ***denotes significance p < .001, (f–i) RT-PCR analysis of cellular developmental and inflammatory
markers. All graphs display mean ±SD, *denotes significance p < .05, **denotes significance p < .01, ***denotes significance p < .001.
(j) Experimental timeline for generation of differentiated C2C12 culture, injury and subsequent recovery. RT-PCR, real time-polymerase chain
reaction [Color figure can be viewed at wileyonlinelibrary.com] [Color figure can be viewed at wileyonlinelibrary.com]

FLEMING ET AL. 5



increased (p < .001), without a corresponding increase in fusion index,

outlining a proliferative response to BaCl2 insult without myoblast

fusion. Following 3 days in DM fusion index recovered from 0 to 48%

of the value at control (p < .001), but remained significantly reduced

compared to control (p < .001). Nuclei per image frame remained sig-

nificantly elevated compared to control after 5 days regeneration

(p < .001), but returned to baseline following a further 3 days regener-

ation (Figure S2). No difference was observed in indicators of matu-

rity; myotube width or nuclei per myotube, from control (Figure 1d,

e, p > .05).

Increases in nuclei number without commitment to fusion, sug-

gests a blockade in myogenesis following BaCl2 insult. As such, an

examination of genes involved in myogenesis and skeletal muscle

maturity were undertaken. Embryonic myosin heavy chain, Myh3,

expression correlated with fusion index (Figure 1f), although no signif-

icant reduction was identified between control and 5 days (p = .09).

The transcriptional regulators of myogenesis, Myod and Myog,

expression levels were supressed although not significantly 2 days

post injury (Figure 1g, p > .05). Both Myod and Myog showed signifi-

cant increases (p < .001) during DM phase of recovery, consistent

with an activation of myogenesis and a level of regeneration. Non-

myogenic commitment to osteogenic lineage was measured via the

expression of Runx2, although no significant increase above control

was observed (p > .05). An upward trend in the expression of the

adipogenic marker Pparg across recovery was evident, with significant

increases in this gene observed after 5 days regeneration compared

to immediately post injury (Figure 1h, p = .041). The role of inflamma-

tory signalling in injury and regeneration is well established. As such,

inflammatory genes encoding for interleukin-6 (Il6) and macrophage

chemoattractant protein-1 (Mcp1/Ccl2) were used to analyse levels

of inflammation induced by BaC12 administration. Il6 expression

increased 36-fold (p = .0013) when compared to immediately post

injury. This was, completely resolved following 2 days recovery in GM

(p < .05). Mcp1 displayed no significant upregulation at any time-point

throughout the recovery process (Figure 1i).

The recovery of myogenic genes Myod and Myog (Figure 1g)

suggested that although myogenic precursors were present in cultures

after 5 days post injury, myogenic progression was not sufficiently

advanced to enable the fusion required at this time-point to fully

regenerate ablated myotubes. To examine whether extended regener-

ative periods were sufficient to initiate full recovery, time in DM was

extended by a further 3 days, taking the total regeneration time to

8 days. Despite this no increase in fusion index was observed

between 5 and 8 days regeneration (Figure S2).

3.2 | Type I collagen based tissue engineered
muscles lack regenerative capacity following injury

A widely published system for the culture of tissue engineered skele-

tal muscle is the use of type I collagen hydrogels (Smith, Passey,

Greensmith, Mudera, & Lewis, 2012; Vandenburgh et al., 2009), gen-

erating aligned myotubes via longitudinal tension. This well-

established model was utilised to examine if the incorporation of cells

into a tissue engineered environment was sufficient to support full

regeneration.

Following insult, significant reductions in myotube density were

observed (p < .001, Figure 2a,b), accompanied by decreased total

nuclei (Figure 2c). During the regenerative period, recovery of

myotube density was completely inhibited (Figure 2a), with reductions

in nuclei number also evident across time (Figure 2c). This data sug-

gests that hydrogels composed solely of type I collagen do not sup-

port regeneration following injury, and so are not a viable ex vivo

model of skeletal muscle regeneration.

3.3 | Inclusion of basement membrane proteins in
the form of Matrigel® is sufficient to support
regeneration in 3D

The potential lack of a stem cell like niche between the sarcolemma

and basement membrane in hydrogels consisting of type I collagen

only, could explain the inability to regenerate. To confirm the require-

ment for a basement membrane, hydrogels containing the basement

membrane supplement Matrigel® were injured and allowed to regen-

erate. Hydrogels composed of collagen/Matrigel® were cultured in

50 μl inserts compared to 500 μl for collagen only hydrogels, to

increase experimental throughput. The comparison of the mould sizes

has been made previously and shown to be consistent (Capel

et al., 2019).

Immediately following injury in collagen/Matrigel® hydrogels,

myotube density and coverage were significantly reduced (p < .001,

Figure 3a,b), demonstrating that 6 hr BaCl2 exposure remains suffi-

cient to induce injury. Following 4 days (End GM) of regeneration,

myotube density recovered to control levels and remained stable over

the remaining 10 days (End DM, Figure 3b). Myotube coverage

remained significantly reduced at both End GM and End DM time

points (p < .001, p = .015, Figure 3b). This is due to significant reduc-

tions in myotube width from 23.6 μm (control) to 19.1 μm at 14 days

following injury (Figure 3d). No variation over time was seen in total

nuclei per image frame, and so no proliferative response was observed

(Figure 3c). Morphological decreases in myotube width did not trans-

late to reduced functional output (Figure 3e), with force reduced fol-

lowing injury, but recovering completely at End GM time point.

Although not statistically significant, force generation was enhanced

at End DM. Twitch force outputs were on average 2.5-fold higher and

tetanus 2.8-fold higher than control. Figure 3f shows representative

force traces at two frequencies for control gels, no difference in force

trace shape was observed during recovery.

To examine the molecular mechanisms of regeneration, gene

expression analysis was carried out on myogenic (Figure 4a), myosin

heavy chains (Figure 4b), inflammatory genes (Figure 4c) and non-

myogenic developmental genes (Figure 4d). Myogenic markers Myod

and Myog were expressed at significantly lower levels throughout

regeneration (p = .013, p = .001), with the only myogenic marker

expressed at an increased level being the embryonic myosin heavy

chain, Myh3. Myh3 was significantly increased (p = .018) by 52% com-

pared to control immediately following injury, however throughout
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regeneration transcription of this gene reduced across time to 45% of

control at End DM 14 days later. Expression of myosin heavy chains

associated with increased maturity, Myh8 (perinatal) and Myh1

(mature), initially were reduced (18% and 38%, respectively) followed

by an increase through recovery from 4 days post injury onwards. At

14 days post injury (End DM), both Myh8 and Myh1 expression were

elevated compared to control although not significantly.

Il6 was elevated 34-fold in 2D experiments (Figure 1i), however

was only up-regulated 4.2-fold in 3D (p = .024). Il6 expression ret-

urned to baseline 4 days (End GM) following injury and remained simi-

lar to control for the remainder of regeneration (Figure 4b). Mcp1 was

elevated immediately following injury (fourfold, p = .011), and was

expressed twofold higher than control at End GM time point although

not significant. At the end of regeneration, Mcp1 expression returned

to baseline levels (Figure 4b). To examine if injury was promoting non-

myogenic commitment of mononuclear cells, the markers Pparg

(adipogenic) and Runx2 (osteogenic) were also quantified, although no

significant variation from control expression was observed (Figure 4c).

To ensure that the addition of basement membrane components

and growth factors contained within Matrigel® was not the sole cause

of regeneration seen in tissue engineered constructs, further 2D

experiments using Matrigel® coated coverslips were carried out. BaCl2

injury caused a significant reduction in fusion index (p < .001), that

despite recovering significantly (p = .016), remained significantly

(p < .001) below control at experimental termination (Figure S3). A

proliferative phase was evident at End GM time-point (Figure S3), in

addition to consistent myotube widths pre and post injury. Significant

reductions in nuclei per myotube were observed (p = .031); however,

this was the only variation from the trends observed with gelatin as a

substrate. Increased fusion index at control and following injury could

potentially affect the regenerative process; however, correlation anal-

ysis shows no relationship between fusion, before or after injury, and

the level of regeneration (Figure S4). This data confirmed the require-

ment for a 3D environment for full regeneration.

4 | DISCUSSION

In this study, we present a model of skeletal muscle regeneration

which requires no laboratory animal sacrifice or donor tissue and is

designed to be straightforward to replicate between laboratories. In

addition, we have made a direct comparison of monolayer to 3D

F IGURE 2 Type I collagen hydrogels lack regenerative capacity following injury. (a) representative confocal microscope tile scans at ×40
magnification consisting of 21 individual images. Stained with phalloidin (red) and DAPI (blue) to identify actin and nuclei, respectively. Scale bars
denote 250 μm. (b) Myotube density expressed as myotubes per 100 μm. Mean ±SD. (c) Total nuclei per image frame. Mean ±SD, *p < .05.
(d) Experimental time course of the 28 day 3D recovery experiment [Color figure can be viewed at wileyonlinelibrary.com] [Color figure can be
viewed at wileyonlinelibrary.com]
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F IGURE 3 Inclusion of Matrigel® allows 3D culture models to support regeneration following insult from BaCl2. (a) Representative tile
scans at ×40 magnification, phalloidin staining (red) and DAPI (blue) identify actin and nuclei, respectively. Scale bars represent 100 μm.
(b) Myotube density expressed as myotubes per 100 μm (solid bars) and percentage of gel occupied by myotubes (hashed bars). Mean ±SD,
significance from control denoted by asterisks above bars, **p < .01, ***p < .001. (c) Nuclei per image frame. Mean ±SD. (d) Myotube width (μm).
Mean ±SD, significance from control ***p < .001. (e) Force output data, twitch (1 Hz, solid bars) and fused tetanus (100 Hz, hashed bars) peak
force expressed as mean ±SD, significance from control, **p < .01. (f) Representative force traces for C2C12 constructs stimulated at different
frequencies to achieve; single twitch (1 Hz) and fused tetanus (100 Hz) [Color figure can be viewed at wileyonlinelibrary.com] [Color figure can be
viewed at wileyonlinelibrary.com]
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culture to ensure that the increased complexity of 3D culture

improves the biological relevance of results obtained.

In monolayer, C2C12 cultures showed limited regeneration fol-

lowing injury and so lacked a fully regenerative response. As the

C2C12 cell line is a committed cell line, analysis of stem cell activation

which is possible in primary derived myogenic precursors is not possi-

ble, however this cell line does allow the committed myogenic compo-

nent of regeneration to be isolated. Therefore, the RNA levels of

Myod and Myog have been examined to indicate the commitment of

cells to myogenesis. An increase in Myod and Myog was observed

only in the DM phase of recovery in monolayer cultures, suggesting a

requirement for a change in serum concentration to trigger the myo-

genic program activating these canonical transcription factors. This

recovery of Myod and Myog RNA levels but not of myotubes,

suggesting a blockade of myogenesis at a late developmental stage.

This blockade is most likely preventing the fusion of myoblasts into

myotubes (Bentzinger, Wang, & Rudnicki, 2012). In addition to the

potential myogenic blockade an increase in the non-myogenic

adipogenic transcription factor Pparg (Memon et al., 2000; Siersbæk,

Nielsen, & Mandrup, 2010) suggest a proportion of cells in the culture

commit to non-myogenic developmental lineages, again blocking

myogenesis. In contrast to monolayer cultures Myod and Myog were

seen to fall continuously through recovery in engineered tissues, with-

out the upregulation seen during the DM phase of regeneration in

monolayer. As regeneration was morphologically complete by 4 days

post injury, the upregulation of Myod and Myog required for

myogenesis followed by subsequent down regulation (Bentzinger

et al., 2012) may have occurred in the GM phase of recovery and

therefore expression of these genes was resolved by 4 days post

injury. Rapid induction of Myh3 (embryonic/regenerative) is seen

immediately post injury, and is a response to injury consistent

with in vivo models, which see preferential expression of

regenerative/embryonic isoforms of myosin heavy chains during

regeneration (Gorza, Sartore, Triban, & Schiaffino, 1983; Hindi &

Kumar, 2016; Schiaffino, Rossi, Smerdu, Leinwand, & Reggiani, 2015).

This response to switch to embryonic myosin may protect remaining

myotubes from further injury and perhaps increase the ability of these

myotubes to regenerate and support myogenesis. Throughout regen-

eration Myh3 expression falls and Myh8 (perinatal) and Myh1

(mature) isoforms increase in expression, showing a return to a mature

phenotype and recovery from injury. At 14 days post injury increased

Myh8 and Myh1 expression compared to controls suggests a more

mature phenotype, and potentially explains the non-significant

increase in force production at End DM time point. Force generation

in skeletal muscle is dependent upon a myriad of contributing factors

and as such this is likely to be one of numerous contributing variables.

Myh3 expression in monolayer matches the morphological trends,

with no increased Myh3 expression immediately post injury. This sug-

gest no isoform hand over as seen in engineered tissues, and instead

an early blockade of myogenesis shown by the late elevation of Myod

and Myog. This rapid regeneration of engineered tissues in GM high-

lights the regenerative capacity of the 3D environment, in the absence

of external serum concentration changes. This inherent ability of the

engineered tissues to produce the required cues to drive myogenesis

F IGURE 4 RT-PCR analysis of gene expression during recovery of 3D tissue engineered muscle. (a–d) All graphs display means ±SD,
significance from control denoted by asterisk; *p < .05, **p < .01. RT-PCR, polymerase chain reaction
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without external signals is desirable, as muscle derived factors are

known to drive regeneration in vivo and appear to be doing so in this

engineered tissue.

Inflammatory factors present in regeneration have been shown to

promote proliferation of myogenic cells (Hoene, Runge, Haring,

Schleicher, & Weigert, 2013; Yahiaoui, Gvozdic, Danialou, Mack, &

Petrof, 2008), and indeed a proliferative response post injury is

observed in monolayer. When Il6 and Mcp1 expression were exam-

ined, only Il6 was upregulated immediately post injury and rapidly

resolved. No induction of Mcp1 suggests an incomplete inflammatory

response which may contribute to the reduced regenerative capacity

of monolayer cultures. In vivo data suggests the major role of MCP-1

is as a monocyte chemoattractant with its removal impairing regener-

ation (Shireman et al., 2006), and therefore the lack of Mcp1 expres-

sion reduces the biological relevance of the monolayer model. This

limits its suitability for studying interactions with immune cells in

future work narrowing the potential applications of monolayer stud-

ies. The lack of an improved regenerative response in the presence of

basement membrane proteins, or increased culture time, suggest that

monolayer cultures have an inherently limited regenerative capacity

following a significant injurious insult.

Collagen I based tissue engineered skeletal muscles showed no

regenerative capacity; however, the addition of Matrigel® was suffi-

cient to allow regeneration following injury, showing the importance

of basement membrane proteins in regenerative processes. Further-

more, the 3D organisation of these proteins must be a requirement

for regeneration as basement membrane supplementation in mono-

layer was shown to be insufficient to support full regeneration. The

presence of a niche with 3D organisation is key for defining stem cell

proliferation, lineage commitment and self-renewal in in vivo muscle

and the 3D environment supplied by tissue engineered muscles is able

to reproduce this in a way that is impossible in monolayer culture. The

presence of this regenerative niche within collagen/Matrigel®

engineered muscles allows potential future work to examine how dif-

ferent injury mechanisms, which may disrupt this niche, affect

regeneration.

The full morphological regeneration of myotube number and full

functional regeneration matches the response to BaCl2 insult in in vivo

experiments (Hardy et al., 2016). The ability to measure functional

output, something not possible in monolayer cultures, is a major

advantage of 3D systems allowing direct and rapid assessment of tis-

sue function which is the primary clinical measure of recovery from

injury. The inflammatory response of 3D cultures was also shown to

be more biomimetic than monolayer. Both Il6 and Mcp1 showed

increased expression, compared to Il6 alone in monolayer, this

increased number of inflammatory cytokines adds complexity to the

regenerative environment post injury. As immune cells play an impor-

tant role in directing and regulating skeletal muscle regeneration an

inflammatory response as close to in vivo as possible will be required

to understand the interaction between muscle and immune cells. As

such we see the tissue engineered model presented as superior to the

monolayer equivalent as it not only provides a fully regenerative

response and functional output but expresses a fuller inflammatory

response to injury important for the recruitment and activation of

immune cells which support regeneration in vivo.

This study, which compares directly the use of the same injury

mode in both monolayer and 3D cultures, demonstrates the useful-

ness of tissue engineered models for disease, and highlights where

these models can be used to produce results superior to monolayer

culture. We also recognise that monolayer culture is still widely used

for preclinical interventions and have shown that a monolayer model

of skeletal muscle regeneration is perhaps of use for some applica-

tions which require only limited biological relevance. Previous work

demonstrating regeneration in tissue engineered muscles relies upon

isolation of myogenic precursors from rat tissue (Juhas et al., 2014,

2018), whereas this study presents a cell line based model contained

within a 3D printed mould making it suitable from high throughput

work often required in therapeutic development. We show that

regeneration of tissue engineered skeletal muscles containing base-

ment membrane proteins provides a system which is representative

of the in vivo response to chemical injury, providing a platform for the

investigation of the myogenic events which underpin regeneration.

This model can be used as a tool for researchers to obtain in vivo like

results without requiring laboratory animals, improving the relevance

of preclinical screening and potentially reducing failure rates of novel

clinical interventions.
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