
The Body is Not a Given: Joint Agent Policy Learning and
Morphology Evolution

Dylan Banarse

DeepMind

dylski@google.com

Yoram Bachrach

DeepMind

yorambac@google.com

Siqi Liu

DeepMind

liusiqi@google.com

Guy Lever

DeepMind

guylever@google.com

Nicolas Heess

DeepMind

heess@google.com

Chrisantha Fernando

DeepMind

chrisantha@google.com

Pushmeet Kohli

DeepMind

pushmeet@google.com

Thore Graepel

DeepMind

thore@google.com

ABSTRACT
Reinforcement learning (RL) has proven to be a powerful paradigm

for deriving complex behaviors from simple reward signals in a

wide range of environments. When applying RL to continuous con-

trol agents in simulated physics environments, the body is usually

considered to be part of the environment. However, during evolu-

tion the physical body of biological organisms and their controlling

brains are co-evolved, thus exploring a much larger space of ac-

tuator/controller configurations. Put differently, the intelligence

does not reside only in the agent’s mind, but also in the design

of their body. We propose a method for uncovering strong agents,

consisting of a good combination of a body and policy, based on

combining RL with an evolutionary procedure. Given the result-

ing agent, we also propose an approach for identifying the body

changes that contributed the most to the agent performance. We

use the Shapley value from cooperative game theory to find the

fair contribution of individual components, taking into account

synergies between components. We evaluate our methods in an

environment similar to the the recently proposed Robo-Sumo task,

where agents in a software physics simulator compete in tipping

over their opponent or pushing them out of the arena. Our results

show that the proposed methods are indeed capable of generating

strong agents, significantly outperforming baselines that focus on

optimizing the agent policy alone.

A video is available at: https://youtu.be/CHlecRim9PI

KEYWORDS
Reinforcement Learning; Evolutionary Computation

ACM Reference Format:
Dylan Banarse, Yoram Bachrach, Siqi Liu, Guy Lever, Nicolas Heess, Chrisan-

tha Fernando, Pushmeet Kohli, and Thore Graepel. 2019. The Body is Not a

Given: Joint Agent Policy Learning andMorphology Evolution. In Proc. of the
18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), Montreal, Canada, May 13–17, 2019, IFAAMAS, 9 pages.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

1 INTRODUCTION
Reinforcement Learning (RL) uses a simple reward signal to de-

rive complex agent policies, with recent progress on representing

the policy using deep neural networks leading to strong results

in game playing [32, 41], robotics [26, 27] and dialog systems [28].

Such algorithms were designed for stationary environments, but

having multiple learning agents interact yields a non-stationary

environment [6, 29]. Various approaches were proposed for contin-

uous control, required for locomotion in software physics simulator

environments [1, 19, 34, 37]. Although very successful, such ap-

proaches consider the body of the agent to be fixed, simply a part of

the environment. However, during evolution the physical body of

biological organisms is constantly changing; thus, the controlling

brain and physical body are jointly optimized, exploring a larger

space of actuator-controller configurations.

The interaction of evolution with learning by individual ani-

mals over their lifetime can result in superior performance [42].

Researchers refer to how individual learning can enhance evolution

at the species level as the “Baldwin Effect” [46], where learning

guides evolution by smoothing the fitness landscape. In learning

agents, the physical shape of the body plays a double role. First, a

good body has the capability of effectively exerting many forces in

the environment. Second, a well-configured body is easier to learn
to control, by making it simpler to identify good policies for exert-

ing the forces. Consider a physical task which requires exerting

certain forces at the right time, such as locomotion. Some bodies

can exert the required forces, while others cannot. Further, some

bodies exert the required forces only under a small set of exactly

correct policies, whereas others have a wide range of policies under

which they exert the required forces (at least approximately). In

other words, some bodies have a wide “basin of attraction” where

a learner can find a policy that exerts at least a part of the required

forces; once discovering a policy in this wide basin, the learner

can optimize the policy to exert the required forces. This indicates

that the intelligence of agents resides not only in their mind (the

controller), but also in the design of their body.

Our contribution: we propose a method for uncovering strong

agents, consisting of a good combination of a body and policy. Our

Session 4C: Deep Learning AAMAS 2019, May 13-17, 2019, Montréal, Canada

1134

https://youtu.be/CHlecRim9PI

Figure 1: Left: conventional RL optimizes the controller. Right: this work aims to jointly optimize both the controller and the
body. Components to be optimized shown in shaded boxes.

approach is based on Policy Optimization while Evolving Morphol-

ogy, or POEM for short. This approach stands in contrast to the

traditional paradigm, which takes the body as a given (i.e. a fixed

part of the environment), as shown in Figure 1. Our technique relies

on applying reinforcement learning algorithm combined with an

evolutionary procedure. We also show how to identify the body

changes that contributed the most to agent performance, taking

into account synergies between them. We demonstrate our method

in the Robo-Sumo task [1], where agents in a software 3D physics

simulator compete in pushing the opponent out of the arena or

tipping it over. This environment is based on the MuJoCo software

physics simulator [45], allowing us to easily modify the agent’s

body. Our results show that the proposed methods are indeed ca-

pable of generating superior agents, significantly outperforming

baselines that focus on optimizing the agent policy alone.

Related Work. Evolving virtual creatures (EVCs) work uses ge-

netic algorithms to evolve the structure and controllers of virtual

creatures in physics simulators, without learning [43]. EVCs have

a genetically defined morphology and control system that are co-

evolved to perform locomotion tasks [8, 11, 43], with some methods

using a voxel-based “soft-body” [8, 21, 31]. Most such attempts have

yielded simple behaviors and morphologies [7, 11]. One approach to

enable increasingly complex behavior is using a curriculum [10]. Re-

searchers hypothesized that embodied cognition, where a controller

expresses its behavior through a body, may cause morphological

changes to have an immediate detrimental impact on a behavior

[7]. For example, a mutation generating longer legs may harm per-

formance with a controller optimized for shorter legs. This results

in pressure to converge on a body design early in evolution, to give

the controller a stable platform to optimize. This interdependence

can be mitigated by giving the controller time to adapt to morpho-

logical changes, so bodies that are easier to learn to control have

an evolutionary advantage, and learning would smooth the fitness

landscape; this may speed up body evolution, with the extent of

learning required for new bodies decreasing over time [42, 46].

Scenarios where learning is used only in the evaluation phase of

evolved agents are referred to as Baldwinian evolution [46], where

the results of learning are discarded when an offspring is generated.

This is in contrast to “Lamarkian evolution” [24, 47], where the

result of learning is passed on to offspring. Typically the adaption

stage uses a genetic algorithm operating to evolve the controller

[7, 24]. In contrast, we use an RL algorithm to learn to control an

evolving body. RL has achieved complex behaviours in continu-

ous control tasks with fixed morphology [1, 19, 34, 37], and has

the potential to adapt to morphological changes. Our experiments

evaluate the potential of evolving the bodies of a population of

learning agents. We leverage Population Based Training [22, 23]

(PBT), originally proposed to evolve parameters of the controller.

To our knowledge, this is the first attempt at evolving the body of

continuously controlled RL agents in a software physics simulator.

Preliminaries. We applymulti-agent reinforcement learning
in partially-observable Markov games (i.e. partially-observable sto-
chastic games) [17, 29, 39], in an environment based on a software

physics simulator. In every state, agents take actions given partial

observations of the true world state, and each agent obtains an in-

dividual reward. Through their individual experiences interacting

with one another in the environment, agents learn an appropriate

behavior policy. More formally, consider an N -player partially ob-

servable Markov gameM [29, 39] defined on a finite state setS. An

observation function O : S × {1, . . . ,N } → Rd gives each agent’s

d-dimensional restricted view of the true state space. On any state,

the agents may apply an action from A1, . . . ,AN
(one per agent).

Given the joint action a1, . . . ,aN ∈ A1, . . . ,AN
the state changes,

following a transition function T : S×A1×· · ·×AN → ∆(S) (this
is a stochastic transition, and we denote the set of discrete proba-

bility distributions over S as ∆(S)). We use Oi = {oi | s ∈ S,oi =
O(s, i)} to denote the observation space of agent i . Every agent gets
an individual reward r i : S × A1 × · · · × AN → R for player i .
Every agent has its own experience in the environment, and in-

dependently learns a policy π i : Oi → ∆(Ai) (denoted π (ai |oi))
given its own observation oi = O(s, i) and reward r i (s,a1, . . . ,aN)).
We use the notation ®a = (a1, . . . ,aN), ®o = (o1, . . . ,oN) and ®π (.|®o) =
(π 1(.|o1), . . . ,πN (.|oN)). Every agent attempts to maximize its long

term γ -discounted utility:

V i
®π (s0) = E

[
∞∑
t=0

γ t r i (st , ®at)| ®at ∼ ®πt , st+1 ∼ T(st , ®at)

]
(1)

Actions and Observations in our Environment: The soft-

ware physics simulator holds the full true world state, but agents

only receive partial observations, in the form of an egocentric view

consisting of the positions and velocities of their and their oppo-

nent’s bodies (end effectors and joints) and distances from the edges

Session 4C: Deep Learning AAMAS 2019, May 13-17, 2019, Montréal, Canada

1135

of the pitch. The full list of observed variables include the 3D po-

sitions of each end effector of the body, the 3D positions of each

joint, the velocities and acceleration of the joints, and distances

(on 3 axes) to the corners of the pitch. The agents observe all of

these variables for both their own body, and the relative ones of

the opponents body. The action space of the agents relates to the

actuated hinges. Our agents have multiple limbs, connected by ac-

tuated hinges. Our experiments use an “ant” body, with a spherical

torso connected to 4 limbs, each having two hinges, one at the “hip”

(attaching it to the torso), and one at the “knee”. Each of these is a

single degree of freedom (DoF) joint, responding to a continuous

control signal. The full action space is thus the Cartesian product

of the allowed action for each of the hinges (8 hinges in total, with

a single DoF each). The above observations and actions are similar

to other locomotion tasks based on a physics simulator [19].

Our analysis of the relative importance of the body changes uses

cooperative game theory. We view the set of body changes as a

“team” of players, and quantify the impact of individual components,

taking into account synergies between them. Game theory studies

players who can form teams, looking for fair ways of estimating

the impact of individual players in a team. A cooperative game
consists of a set A of n players, and a characteristic function v :

2
A → R which maps any team C ⊆ A of players to a real value,

showing the performance of the team as a whole. In our case, A
consists of all changes to body components resulting in the final

body configuration. The marginal contribution of a player i in a

team C that includes it (i.e. i ∈ C) is the change in performance

resulting from excluding i: ∆Ci = v(C) − v(C \ {i}). We define a

similar concept for permutations. Denote by π a permutation of the

players (i.e. π : {1, 2, . . . ,n} → {1, 2, . . . ,n} where π is a bijection),

and by Π the set of all player permutations. We refer to the players

occurring before i in the permutation π as the predecessors of i in π ,
and denote by Sπ (i) the predecessors of i in π , i.e. Sπ (i) = {j |π (j) <
π (i)}. The marginal contribution of a player i in a permutation is

the change in performance between i’s predecessors and including
i , and the performance of i’s predecessors alone: ∆πi = v(Sπ (i) ∪
{i})−v(Sπ (i)). The Shapley value [40] is considered a fair allocation
of the overall team reward to the individual players in a team,

reflecting the contribution of each individual player to the team’s

success [16, 44]. It is the unique value exhibiting various fairness
axioms [13, 15], taking into account synergies between agents.

The Shapley value is the marginal contribution of a player, av-

eraged across all player permutations, given by the vector ϕ(v) =
(ϕ1(v),ϕ2(v), . . . ,ϕn (v)) where:

ϕi (v) =
1

n!

∑
π ∈Π
[v(Sπ (i) ∪ {i}) −v(Sπ (i))] (2)

2 METHOD
We consider agents who compete with one another in a physical

environment, and propose a method for optimizing both the agent’s

policy and its physical characteristics. We refer to the agent’s policy

as the controller, and to the configuration of its physical structure

as the body. Our method begins with an initial agent body and a

random policy and repeatedly competes agents with each other,

identifying beneficial changes to both the agent’s policy and the

agent’s body. Finally, the procedure outputs high performing agents,

consisting of both a body configuration and a controller.

Our high level approach combines a reinforcement learning pro-

cedure that optimizes each agent’s controller with an evolutionary

procedure that optimizes the agent’s body. We thus simultaneously

improve the agents’ bodies, while improving and fitting each agent’s

controller to its current body. Specifically, we use a variant of Popu-

lation Based Training (PBT) [22, 23], which maintains a population
of RL agents and leverages an evolutionary procedure to improve

their controllers, except we apply evolution to not only the policy

learner, but also to the physical agent body. Further, given a final

agent body, we decompose the overall agent performance to the

contribution of each individual body change.

2.1 Our Approach: Policy Optimization while
Evolving Morphology (POEM)

POEM maintains a population of agents and lets them participate

in contests with each other. It uses the data from the contests in two

ways: first, it uses the experience from these episodes to improve the

controller by applying RL; second, it analyzes the outcomes of the

contests to rank agents by their performance, and uses this ranking

to apply an evolutionary process to improve the agents’ bodies

(and controllers). POEM retains two sub-populations of agents, a

body-fixed population where only the agent policy is optimized,

and a body-evolving population, where the agent body as well as the
controller are improved over time. The individual agents, in both

sub-populations, are continuous policy agents. For the evolutionary

procedure, POEM uses a variant of PBT which improves model

parameters and learner hyper-parameters (in both body-fixed and

body-evolving sub-populations), and also evolves the agent bodies

in the body-evolving population.

Controller (Policy Learner): RL Agents: We use continuous

control RL agents, based on Stochastic Value Gradients (SVG) [20]

and employing off-policy Retrace-correction [33]. SVG is a policy

gradient algorithm that learns continuous control policies, allowing

for stochastic control by modelling stochasticity in the Bellman

equation as a deterministic function of external noise. Our im-

plementation augments SVG with an experience replay buffer for

learning the action-value function with k-step returns, applying

off-policy Retrace-corrections [33] (several papers cover this in de-

tail [18, 35]). We chose to use SVG rather than alternative learners

such as TRPO and PPO [36, 37] as the reparameterization trick

it applies typically achieves lower variance estimates, which are

particularly important in continuous control settings [20].

Evolutionary Procedure: POEM uses an evolutionary proce-

dure jointly with policy learners to evolve agent bodies and learner

parameters, adapting PBT. In PBT, agents play against each other in

multiple matches, and Elo ratings [14] are used to measure agents’

performance, and “evolve” them, with low-ranked agents copying

the parameters of highly-ranked agents. Match episode trajectories

are used by the RL algorithm to modify agent policy, and the match

outcomes also affect agent fitness ratings, which drive the evolution

procedure. The original PBT procedure is designed for “monolithic”

agents, but we maintain two sub-populations with an important

asymmetry between them; the action space is the same for all agents,

but the outcome of taking the same action depends on the body of

Session 4C: Deep Learning AAMAS 2019, May 13-17, 2019, Montréal, Canada

1136

the agent (agents in the body-fixed population are identical, but the

body-evolving population agents have different bodies, yielding

different outcomes for the same action).

POEM Procedure at a High Level: As discussed above, POEM
combines SVG [20] which is a single agent reinforcement learning

algorithm with an evolutionary procedure based on PBT [22, 23].

POEM maintains two sub-populations of agents, with the set of

body evolving agents denoted as E = {ei }
N
i=1 and the set of body

fixed agents denoted as F = { fi }
N
i=1. Each agent i consists of a

representation of it physical body characteristics called the genotype
and denoted as θbi , as well as a neural network representing its

policy with parameters (weights) denoted as θi , and learner hyper-

parameters denoted as θhi (in our case θhi are hyper-parameters

of the SVG reinforcement learning procedure, which determine

how the agent policy is updated given its experience in previous

episodes). Each agent i in both sub-populations E and F is initialized

with random policy parameters θi and learner hyper-parameters

θhi sampled from an initialization distribution. All agents in the

body fixed sub-population F are initialized to the same fixed initial

body configuration θbinit , whereas agents in the body-evolving sub-

population are initialized with parameters sampled from a body

initialization distribution Db
init (and thus have different bodies). In

addition to the agent parameters, POEM maintains a fitness score
for each agent, reflecting its relative ability to win against others.

The fitness rating ri of agent i is initialized to a fixed rating rinit .
Following initialization, PBT repeatedly engages agents inmatches.

Amatch-making method randomly chooses pairs (i, j) of agents
to compete with one another. POEM ensures agents from both

sub-populations constantly encounter one another, by having each

agent face another agent chosen uniformly at random from the

whole population E ∪ F . Each matchm is an episode trajectory con-

sisting of sequence of the states, actions and rewards of the agents:

m = {(st ,a
i
t ,a

j
t , r

i
t , r

j
t)}

h
t=1, where st denotes the true world state

at time t , where axt denote the action taken by agent x at step t and
where rxt denote the reward obtained by agent x at step t . Following
each match, every agent i who participated in the match updates its

policy parameters θi using the reinforcement learning algorithm;

We use SVG [20] to update θi given the match trajectorym (and

the hyper-parameters θhi). Given the outcome of the contestm, we

also update the fitness ratings of the participating agents i, j , using
a rating update procedure (POEM applies Elo updates [14]).

Following matches between agents, which result in updates to

the agent policy and ratings, we employ an evolutionary proce-

dure to adapt agent bodies, policy parameters and learner hyper-

parameters. In POEM, the evolution procedure differs between the

two sub-populations; agents in both E and F use the procedure

to periodically copy policy parameters θi and copy and perturb

learner hyper-parameters θhi , but only the body-evolving agents E

also evolve the body parameters θbi . To guarantee that parameters

are not updated too frequently, the procedure first checks that the

agent is evolution-eligible, using a test based on the number of

steps since their parameters were last updated. Each agent i eligible
for evolution is compared against a peer j randomly chosen from

the population, using a selection procedure, which compares i’s
rating against j’s, and only evolves i if j’s rating exceeds i’s by a

certain threshold. If i is selected to evolve, we apply an inheritance

procedure where i copies j’s policy and body and a random subset

of learner hyper-parameters, and a mutation procedure which

randomly perturbs the parameters within some bounds.

The high level description of POEM is given in Algorithm 1.

Below we describe each of the sub-procedures: measuring fitness,

determining which agents to evolve (Evolution-Eligible and Selec-

tion), and how to evolve agents (Inherit and Mutate).

Algorithm 1 POEM PBT Procedure

1: E: population of body-evolving agents

2: F : population of body-fixed agents

3: procedure POEM-PBT

4: for agent ai in population E ∪ F do (Initialize)

5: Initialize rating ri ← rinit
6: Initialize policy and learner hyper-parameters θi ,θ

h
i

7: end for
8: for agent ai in F do
9: Initialize fixed body θbi ← θbinit
10: end for
11: for agent ai in E do
12: Initialize random body θbi ∼ Db

init
13: end for
14: while true do
15: Agents play matchesM = {mx = (i, j)}

q
x=1

16: for matchm = (i, j) ∈ M do
17: Apply SVG to update θi ,θ j usingm’s trajectory

18: Update fitness scores ri , r j usingm’s results (Elo)

19: end for
20: for agent ai in population do (Evolution)

21: if Evolution-Eligible(ai) then
22: Choose random target aj
23: if Selection(ai ,aj) then
24: Inherit(ai ,aj)
25: Mutate(ai)
26: end if
27: end if
28: end for
29: end while
30: end procedure

POEM Sub-Procedures: We now describe the sub-procedures

of Algorithm 1. First, note that the body and learner hyper-parameters

θbi ,θ
h
i are only updated through evolution (the Inherit and Mutate

sub-procedures), whereas the policy parameters θi are updated

both through the RL procedure (SVG) and through evolution.

Fitness: Our procedure uses fitness scores {ri }
N
i=1 to drive evo-

lution, as ratings are used to decide which agents are replaced by

mutated copies of others. Following the original PBT work, we use

the Elo rating system [14] which was originally introduced to rate

chess players. The fitness ratings are based on the outcomes of a

setM of past matches, as given in Algorithm 2.

Evolution eligibility: Agents are examined using evolution eli-
gibility criteria to avoid early convergence of parameters. Initially

there is a warm-up period, during which only the RL learner is

used and no evolution steps are performed. Following the warm-up

period, agents are only considered for evolution if they meet these

Session 4C: Deep Learning AAMAS 2019, May 13-17, 2019, Montréal, Canada

1137

Algorithm 2 Iterative Elo rating update.

1: Initialize rating ri for each agent in the agent population.

2: K : step size of Elo rating update given one match result.

3: si , sj : score for agent i, j in a given match.

4: procedure UpdateRating(ri , r j , si , sj)
5: s ← (siдn(si − sj) + 1)/2

6: selo ← 1/(1 + 10(r j−ri)/400)

7: ri ← ri + K(s − selo)
8: r j ← r j − K(s − selo)
9: end procedure

criteria: a certain number of steps must have passed since they last

became eligible for evolution, and a certain number of steps must

have passed since their parameters were modified by the evolution.

In our experiments, we use a warm-up period of 1 × 108 frames,

and require 4 × 106 to have passed since last evolution step.

Selection: Not every agent eligible for evolution immediately

modifies its parameters: eligible agents are examined using a selec-
tion procedure to determine whether the agent would modify its

parameters. Each eligible agent i is compared to another agent j
sampled uniformly at random from the sub-population, and the

ratings are used to compute si, j , the probability of agent i to win
in a contest against j. If this probability (win-rate) is lower than a

certain threshold, an agent undergoes inheritance and mutation.

Formally, for each sub-population E, F , recipient-donor pairs (i, j)
are uniformly sampled from the evolution eligible agents. The Elo

ratings ri , r j are used to compute si, j ; if si, j > t (for a threshold
t) then the recipient i will be undergo inheritance and mutation,

making it more similar to j. We use a threshold of t = 45%.

Inheritance: POEM uses an inheritance procedure to modify

i’s configuration to be more similar to j’s, affecting three types of
parameters: policy parameters (neural network weights), learner

hyper-parameters, and body configuration parameters. Neural net-

work parameters and body configuration parameters are set to the

target j’s configuration. Each hyper-parameter is taken either from

the evolving agent i or from the target j depending on a (possibly-

biased) coin-flip. The inheritance procedure is given in Algorithm 3.

Algorithm 3 Agent i inherits from agent j by cross-over.

1: Agent i, j with respective network parameters θi ,θ j , hyper-

parameters θhi ,θ
h
j , and body configuration parameters θbi ,θ

b
j .

2: procedure Inherit(θi ,θ j ,θhi ,θ
h
j ,θ

b
i ,θ

b
j)

3: θi ← θ j
4: θbi ← θbj
5: m ∼ B(0.5)
6: θhi ←mθhi + (1 −m)θ

h
j

7: end procedure

Mutation: After inheritance, parameters undergo a mutation

procedure, which multiplies each parameter by a factor sampled

uniformly at random from the range [1−m, 1+m] (we usem = 0.01),

but maintains caps for each parameter. The caps avoid the body-

evolving morphology from diverging too far from the body-fixed

morphology.We impose upper and lower bounds on each parameter

at ±25% of the parameter’s value in the body-fixed configuration.

The mutation procedure is given in Algorithm 4.

Algorithm 4 Mutate

P set of mutable parameters in genotype

m mutation level

procedure Mutate(P ,m)

for mutable parameter pi in P do
bu upper bound for pi
bl lower bound for pi
r ∼ U(1 −m, 1 +m)
pi ← pi · r
if pi > bu then

pi ← bu
end if
if pi < bl then

pi ← bl
end if

end for
end procedure

Body-Evolving Random Initialization: The PBT procedure

in Algorithm 1 samples a body configuration θbi for each agent i

in the body-evolving population E from the distribution Db
init . In

our implementation, we sampled body configurations around the

body-fixed configuration: we sample each parameter θbi uniformly

at random between the caps used for the mutation procedure.

3 EXPERIMENTS
We now describe our experiments for evaluating POEM, examining

several research questions. First, does POEM allow obtaining high

performing agents (in controller and body)? Second, is the advan-

tage achieved by the resulting agent due solely to their improved

body, or does the process allow us to obtain superior controllers

even for the original agent body? Finally, which body changes are

most influential in achieving an improved performance?

Environment:Our experiments involve contests between agents,

conducted using the MuJoCo software physics simulator [45]. We

focus on the Robo-Sumo task [1], where ant shaped robots must

tip their opponent over or force them out of the arena.

Agent Body: We use a quadruped body, which we refer to as

the “ant body”, an example of which is shown in Figure 4a. The

body is composed of a root sphere and 8 capsules (cylinders capped

by hemispheres) connected via hinges (single DoF joints), each of

which are actuated. All rigid bodies have unit density.

In our experiments, the morphology is represented as a graph-

based genotype where nodes represent physical components and

edges describe relations between them [43]. The morphology is

expressed by parsing the genotype. A node describes the shape of a

3D body (sphere or capsule), and the limits of the joint attaching it to

its parent (see Figure 2). Edges contain parameters to position, orient

and scale child node, shown in Figure 3. Edges have a “reflection”

parameter to express symmetry; when enabled, the body of the

child is cloned, reflected across the parent’s Z-Y plane.

A schematic description of the ant’s body is shown in Figure 4b.

The genotype for our ant consists of three nodes and three edges,

Session 4C: Deep Learning AAMAS 2019, May 13-17, 2019, Montréal, Canada

1138

Joint limit

radius

Root

length

Hinge joint

+ 𝜃

- 𝜃
Default dimensions Joint limit

Node parameters

Figure 2: Nodes

position

rotation

Parent

Child

z

y

x

x
y

z

Part orientation Part scale Part positioning

Edge parameters

Figure 3: Edges

shown in Figure 4c. The root node specifies the spherical torso,

with two edges connected to an “upper leg” node, one for the upper

segment of the rear legs, and one for the front legs. The lower

segments of the ant’s legs are all specified by the same “lower leg”

node. The full body structure is determined by 25 parameters in

these nodes and edges. Parameters for the body-fixed ant nodes

and edges are shown in Tables 1 and 2.

Shape Radius (m) Length (m) Joint Limit (rad)

Torso Sphere 0.2 n/a n/a

Upper leg Capsule 0.08 0.28 0.52

Lower leg Capsule 0.08 0.56 0.35

Table 1: Node parameters

x rot y rot z rot Scale Parent pos Parent rot

Front hip π/2 0 π/2 1.0 0.5 3π/4
Rear hip π/2 0 π/2 1.0 0.5 π/4
Knee π/4 0 0 1.0 1.0 −π/2

Table 2: Edge parameters

PopulationConfiguration:Wemaintain a body-fixed and body-
evolving sub-populations, each consisting of n = 64 agents. Both

sub-populations are initialized with random policy parameters and

the same hyper-parameters. As discussed in Section 2, body-fixed

agents are all initialized to the body configuration shown in Fig-

ure 4a, and body-evolving agents are each initialized with a differ-

ent body sampled around the original body configuration. Figure 5

shows example initial bodies for the body-evolving population.

3.1 Comparing Body-Fixed and Body-Evolving
Populations

Our experiment is based on data from k = 70 runs of the POEM

method of Section 2.1, with two sub-populations (a body-fixed and

a body-evolving sub-population), each with n = 64 agents. POEM

matches agents for contests uniformly at random across the entire

population, so the body-fixed agents adapt the controller so as to

best match the body-evolving agents, making them increasingly

stronger opponents. Finding a good controller for the body-evolving

population is challenging, as the controller must cope with having

many different possible bodies it may control (i.e. it must be robust

to changes in the physical body of the agent). We examine agent

performance, as reflected by agent Elo scores. Figure 6 shows agent

Elo ratings over time, in a typical run, where agents of the body-

evolving sub-population outperform the body-fixed agents (body-

fixed agents are shown in red, and body-evolving agents in blue).

Both populations start with similar Elo scores, but even early in

training there is a gap in favor of the body-evolving agents.

To determine whether POEM results in a significant advantage

over optimizing only the controller, we study outcomes in all k =
70 runs. We run POEM for 36 training hours (equivalently, 1e10
training steps), and analyze agent performance. At the evaluation

time, each agent (in either sub-population) has its own Elo rating,

reflecting its win-rate against others. As our goal is to identify the

strongest agents, we examine the highest Elo agent in each sub-

population. Figure 7 shows a histogram of Elo scores on the run

of Figure 6, at evaluation time, showing that in this run all body-

evolving agents outperform all body-fixed agents. We examine the

proportion of runs where the highest Elo agent is a body-evolving

agent (rather than a body-fixed one). In over 95% of the runs, the

top body-evolving agent outperforms the top body-fixed agent.

A binomial test shows this to be significant at the p < 0.0001

level. When one can change physical traits of agents, this shows

that POEM can find the configuration of strong agents (a body

and matching controller), typically outperforming agents with the

original body and a controller optimized for that body. Figure 4d

shows an example evolved ant from the body-evolving population.

On average the evolved body is wider and heavier, and has a lower

center of gravity; the caps on parameters during evolution allow

the body to evolve to be even heavier, so the advantage is not only

due to mass. Figure 8 shows how one body parameter evolves over

time within the population. Initially the variance is high, but by

1e10 steps it is negligible. This shows the population converges

early in training, possibly to a sub-optimal body.

Body-EvolvingControllers in theOriginal Body: POEMun-

covers good combinations of a body and controller. One might con-

jecture that the advantage stems from the agent’s modified body,

rather than from the controller. As the overall structure of the ant

remains the same, with only sizes, locations and angles of joints

modified, we can use any controller in any body. Thus we can test

the performance of the controller discovered for the evolved body

in the original, unevolved body. We compared the win-rate of the

body-fixed population against that of the body-evolving controllers

fit into the unevolved body. Controllers were taken after 36 hours of

training. The results show that in 23% of the runs, the controllers

taken from the body-evolving population outperform those of the

body-fixed population, when used in the unevolved body (similar to

recent observations in EVCs by [25]). This shows POEM may find

strong controllers even for the original body, and may be useful

even when we cannot modify the physical body of agents.

Original Body Controller in the Body-Evolved Body: Simi-

larly, an indication of the performance improvement afforded by the

body-evolving body can be gained by coupling it with the original-

body optimized controller; as if the body and controller have been

optimized separately. For all experiments, we competed the best

body-evolving body against the original body-fixed body where

both agents use the best body-fixed controller. The results showed

a 70% win-rate for the body-evolving body, demonstrating that

whilst the body-evolving body does improve performance, jointly

optimizing the body and controller provides the best performance.

Session 4C: Deep Learning AAMAS 2019, May 13-17, 2019, Montréal, Canada

1139

(a) Unevolved Ant body (b) Ant body schematic (c) Ant genotype (d) An evolved Ant Body

Figure 4: Ant model

Figure 5: Initial bodies in the body-evolving population

Figure 6: Agent Elo over time (SD=20). Across runs mean
body-evolving Elo was 100 higher (SD=60) than body-fixed.

3.2 Identifying Influential Body Changes
Section 3.1 discusses making multiple body changes to improve

performance. But which change had the most impact? The agent’s

performance isn’t simply the sum of the “strengths” of individual

changes, as different body components depend on each other. For

instance, changing the orientation of the leg may only be help-

ful when changing its length. We view the set of body changes

as a “team” of components, and attempt to fairly attribute the im-

provement in performance to each of the parts, taking into account

synergies between components, using the Shapley value. We define

a cooperative game where “players” are the changes to body parts.

Figure 7: Elo histogram.

Figure 8: Lower leg radius across agents during training

As we have 25 body configuration parameters, we obtain a coop-

erative game with 25 players.
1
Our analysis is based on defining

a cooperative game where the players are the body parts changes

converting the original unevolved body into the final evolved body.

Given this game, one can compute Shapley values using the for-

mula in Section 1, to obtain the vector ϕ = (ϕ1, . . . ,ϕn), reflecting
the fair contribution of each body change, taking into account the

interdependence and synergies between components.

AMotivating Example: consider three possible body changes:

a) increase leg length, b) change the leg’s angle, c) increase torso

size. Suppose that changes a and b in isolation each increase the

win-rate from 50% to 56%, while applying c in isolation increases

the win-rate from 50% to 54%. Based solely on this, one might

1
This is akin to using Shapley values tomeasure feature importance in prediction [9, 12],

or for measuring power in voting and networking domains [3–5, 38].

Session 4C: Deep Learning AAMAS 2019, May 13-17, 2019, Montréal, Canada

1140

claim that a and b are more impactful. However, suppose that a

and b are substitutes so applying both increases the win-rate to 56%

(i.e. once one has been applied, applying the other change does

not further improve the win-rate). In contrast, while applying c in

isolation only increases performance by 4%, it is synergetic with

a and b, so combined with either a or b, it improves performance

by 5%; for instance, applying both a and c result in a win rate of

50% + 6% + 5% = 61%. Finally, applying all three changes (a,b,c)

still achieves a win-rate of 61%. As a and b are substitutes, their

fair contribution should be lower than one would assume based

on applying changes in isolation. Similarly, as c complements the

other changes, it contribution should be higher than one would

assume based on applying changes in isolation. The Shapley value

examines the average marginal contribution (MC) of components in

all permutations, as given in Table 3, to reflect these considerations.

Permutation MC(a) MC(b) MC(c)

abc 0.06 0.0 0.05

acb 0.06 0.0 0.05

bac 0.0 0.06 0.05

bca 0.0 0.06 0.05

cab 0.06 0.0 0.04

cba 0.0 0.06 0.04

average(Shapley) 0.03 0.03 0.0467

Table 3: Shapley computation for hypothetical example

A direct computation of the Shapley value is computationally

intractable, so we use an approximation method [2].

The Cooperative Game:We define the valuev(S) of a subset S
of body changes as follows. Given the original body b and evolved

body b ′ and a set S of body parts, we define the body b(S) as one
where each part p ∈ S takes the configuration as in the evolved

body, and where p < S takes the configuration as in the unevolved

body b. To evaluate the performance of the hybrid body b(S)we use
the evolved controller discussed in Section 3.1. Given an (evolved)

controller c and a fixed baseline agent d (consisting of a fixed body

and a fixed policy), we define the value v(S) of a set S of body

changes as the win probability of an agent with the body b(S) and
controller (policy) c against the baseline agent d . v(S) defines a
cooperative game over the body parts, allowing us to compute the

Shapley value of each body part. Figure 9a shows Shapley values

measuring relative importance of body changes (for the top body-

evolving agent), showing that body changes are unequal in their

contribution to agent performance. The high impact parameters

are lower leg radius and the rotation of upper leg and hip.

We conduct another experiment to confirm that high Shapley

components indeed yield a bigger performance boost than low

Shapley ones. We rank body parameters by their Shapley value

and use the ranking to incrementally apply evolved-body param-

eter values to an unevolved body-fixed body. We do this once in

decreasing Shapley values order, and a second time in an opposite

order. This process generates 26 body variants, where the first vari-

ant has no evolved body parameters and the last has all 25. Each

body variant competes against a fixed baseline agent (with fixed

body and policy) in 25, 000 matches to get the proportion of won

(a) Relative importance of body changes using the Shapley decompo-
sition (single POEM run).

(b) Performance as body parameters are incrementally changed from
unevolved to evolved body (descending and ascending Shapley value
order, and descending through parameter-heuristic importance).

Figure 9: Shapley analysis of importance of body changes.

matches, used as a performance measure. Figure 9b depicts the

resulting agent performance. The curves show that introducing

the highest Shapley valued parameters first has a large impact on

performance. The figure also shows that the Shapley ranking also

outperforms another baseline heuristic, which ranks parameters

by the magnitude of their change from the unevolved body.

4 CONCLUSION
We proposed a method for jointly optimizing agent body and policy,

combining continuous control RL with an evolutionary procedure

for modifying agent bodies. Our analysis shows that this method

can achieve stronger agents than obtained by optimizing the con-

troller alone. We used game theoretic solutions to identify the most

influential body changes. Several questions remain open. First, can

we augment our procedure to also modify the neural network ar-

chitecture of the controller, similarly to recent neural architecture

optimizers [30]? Second, can we use similar game theoretic methods

to guide the evolutionary process? Finally, How can we ensure the

diversity of agents’ bodies so as to improve the final performance?

Session 4C: Deep Learning AAMAS 2019, May 13-17, 2019, Montréal, Canada

1141

REFERENCES
[1] Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, IgorMordatch, and

Pieter Abbeel. 2017. Continuous adaptation via meta-learning in nonstationary

and competitive environments. arXiv preprint arXiv:1710.03641 (2017).
[2] Yoram Bachrach, Evangelos Markakis, Ezra Resnick, Ariel D Procaccia, Jeffrey S

Rosenschein, and Amin Saberi. 2010. Approximating power indices: theoretical

and empirical analysis. Autonomous Agents and Multi-Agent Systems 20, 2 (2010),
105–122.

[3] Yoram Bachrach, Reshef Meir, Michal Feldman, and Moshe Tennenholtz. 2012.

Solving cooperative reliability games. UAI (2012).
[4] Yoram Bachrach and Ely Porat. 2010. Path disruption games. In AAMAS.
[5] Yoram Bachrach, Jeffrey S Rosenschein, and Ely Porat. 2008. Power and stability

in connectivity games. In AAMAS.
[6] D. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. 2002. The complexity

of decentralized control of Markov decision processes. (2002), 819–840 pages.

[7] Bongard J. SunSpiral V. Lipson H. Cheney, N. 2016. On the Difficulty of Co-

Optimizing Morphology and Control in Evolved Virtual Creatures. ALIFE XV,
The Fifteenth International Conference on the Synthesis and Simulation of Living
Systems (2016).

[8] MacCurdy R. Clune J. Lipson H. Cheney, N. 2013. Unshackling Evolution: Evolv-

ing Soft Robots with Multiple Materials and a Powerful Generative Encoding. In

Genetic and Evolutionary Computation Conference (GECCO’13), Amsterdam, The
Netherlands.

[9] Shay B Cohen, Eytan Ruppin, and Gideon Dror. 2005. Feature Selection Based on

the Shapley Value.. In IJCAI, Vol. 5. 665–670.
[10] Don Fussell Dan Lessin and Risto Miikkulainen. 2014. Adapting Morphology

to Multiple Tasks in Evolved Virtual Creatures. In The Fourteenth International
Conference on the Synthesis and Simulation of Living Systems (ALIFE 14).

[11] Risto Miikkulainen Dan Lessin, Don Fussell. 2013. Open-Ended Behavioral Com-

plexity for Evolved Virtual Creatures. In Genetic and Evolutionary Computation
Conference (GECCO’13), Amsterdam, The Netherlands.

[12] Anupam Datta, Shayak Sen, and Yair Zick. 2016. Algorithmic transparency via

quantitative input influence: Theory and experiments with learning systems. In

Security and Privacy (SP), 2016 IEEE Symposium on. IEEE, 598–617.
[13] Pradeep Dubey. 1975. On the uniqueness of the Shapley value. International

Journal of Game Theory 4, 3 (1975), 131–139.

[14] Arpad E. Elo. 1978. The rating of chessplayers, past and present. Arco Pub.,

New York. http://www.amazon.com/Rating-Chess-Players-Past-Present/dp/

0668047216

[15] Vincent Feltkamp. 1995. Alternative axiomatic characterizations of the Shapley

and Banzhaf values. International Journal of Game Theory 24, 2 (1995), 179–186.

[16] Faruk Gul. 1989. Bargaining Foundations of Shapley Value. Econometrica 57, 1
(1989), 81–95.

[17] Eric A. Hansen, Daniel S. Bernstein, and Shlomo Zilberstein. 2004. Dynamic

Programming for Partially Observable Stochastic Games. In Proceedings of the
19th National Conference on Artifical Intelligence (AAAI’04). AAAI Press, 709–715.

[18] Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin

Riedmiller. 2018. Learning an Embedding Space for Transferable Robot Skills. In

International Conference on Learning Representations.
[19] Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg

Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, S. M. Ali Eslami, Martin A. Ried-

miller, and David Silver. 2017. Emergence of Locomotion Behaviours in Rich

Environments. CoRR abs/1707.02286 (2017). http://arxiv.org/abs/1707.02286

[20] Nicolas Heess, Gregory Wayne, David Silver, Tim Lillicrap, Tom Erez, and Yuval

Tassa. 2015. Learning continuous control policies by stochastic value gradients.

In Advances in Neural Information Processing Systems. 2944–2952.
[21] Jonathan Hiller and Hod Lipson. 2012. Automatic Design and Manufacture of

Soft Robots. (2012).

[22] Max Jaderberg, Wojciech Czarnecki, Iain Dunning, Luke Marris, Guy Lever,

Antonio García Castañeda, Charles Beattie, Neil C. Rabinowitz, Ari S. Morcos,

Avraham Ruderman, Nicolas Sonnerat, Tim Green, Louise Deason, Joel Z. Leibo,

David Silver, Demis Hassabis, Koray Kavukcuoglu, and Thore Graepel. 2018.

Human-level performance in first-person multiplayer games with population-

based deep reinforcement learning. CoRR abs/1807.01281 (2018).

[23] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki,

Jeff Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Si-

monyan, et al. 2017. Population based training of neural networks. arXiv preprint
arXiv:1711.09846 (2017).

[24] Milan Jelisavcic, Rafael Kiesel, Kyrre Glette, Evert Haasdijk, and A. E. Eiben.

2017. Analysis of Lamarckian Evolution in Morphologically Evolving Robots. In

Proceedings of the 14th European Conference on Artificial Life. MIT Press, 214–221.

[25] M.J. Jelisavcic, D.M. Roijers, and A.E. Eiben. 2018. Analysing the Relative Im-

portance of Robot Brains and Bodies. In ALIFE 2018 Proceedings of the Artificial
Life Conference 2018 (Artificial Life Conference Proceedings). MIT Press Journals,

United States, 327–334. https://doi.org/10.1162/isal_a_00063

[26] Jens Kober, J Andrew Bagnell, and Jan Peters. 2013. Reinforcement learning in

robotics: A survey. The International Journal of Robotics Research 32, 11 (2013),

1238–1274.

[27] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. 2016. End-to-end

training of deep visuomotor policies. The Journal of Machine Learning Research
17, 1 (2016), 1334–1373.

[28] Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky.

2016. Deep reinforcement learning for dialogue generation. arXiv preprint
arXiv:1606.01541 (2016).

[29] Michael L. Littman. 1994. Markov Games as a Framework for Multi-Agent

Reinforcement Learning. In In Proceedings of the Eleventh International Conference
on Machine Learning. Morgan Kaufmann, 157–163.

[30] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray

Kavukcuoglu. 2017. Hierarchical representations for efficient architecture search.

arXiv preprint arXiv:1711.00436 (2017).
[31] Borys WrÃşbel MichaÅĆ Joachimczak. 2012. Co-evolution of morphology and

control of soft-bodied multicellular animats. In Genetic and Evolutionary Compu-
tation Conference (GECCO’12), Philadelphia, Pennsylvania, USA.

[32] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.

Nature 518, 7540 (2015), 529.
[33] Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. 2016. Safe

and efficient off-policy reinforcement learning. In Advances in Neural Information
Processing Systems. 1054–1062.

[34] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, John Schulman, Emanuel

Todorov, and Sergey Levine. 2017. Learning complex dexterousmanipulationwith

deep reinforcement learning and demonstrations. arXiv preprint arXiv:1709.10087
(2017).

[35] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas De-

grave, Tom Van de Wiele, Volodymyr Mnih, Nicolas Heess, and Jost Tobias

Springenberg. 2018. Learning by Playing-Solving Sparse Reward Tasks from

Scratch. arXiv preprint arXiv:1802.10567 (2018).

[36] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.

2015. Trust region policy optimization. In International Conference on Machine
Learning. 1889–1897.

[37] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[38] Abigail See, Yoram Bachrach, and Pushmeet Kohli. 2014. The cost of principles:

analyzing power in compatibility weighted voting games. In AAMAS.
[39] L. S. Shapley. 1953. Stochastic Games. Proceedings of the National Academy of

Sciences of the United States of America 39, 10 (1953), 1095–1100.
[40] Lloyd S Shapley. 1953. A value for n-person games. (1953).

[41] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural

networks and tree search. nature 529, 7587 (2016), 484.
[42] George Gaylord Simpson. 1953. The baldwin effect. Evolution 7, 2 (1953), 110–117.
[43] K. Sims. 1994. Evolving virtual creatures. 21st annual conference on Computer

graphics and interactive techniques, SIGGRAPH ’94 (1994).
[44] P Straffin. 1988. The ShapleyâĂŤShubik and Banzhaf power indices as probabili-

ties. The Shapley value. Essays in honor of Lloyd S. Shapley (1988), 71–81.

[45] Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. Mujoco: A physics engine

for model-based control. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on. IEEE, 5026–5033.

[46] Bruce H Weber and David J Depew. 2003. Evolution and learning: The Baldwin
effect reconsidered. Mit Press.

[47] Darrell Whitley, V Scott Gordon, and Keith Mathias. 1994. Lamarckian evolution,

the Baldwin effect and function optimization. In International Conference on
Parallel Problem Solving from Nature. Springer, 5–15.

Session 4C: Deep Learning AAMAS 2019, May 13-17, 2019, Montréal, Canada

1142

http://www.amazon.com/Rating-Chess-Players-Past-Present/dp/0668047216
http://www.amazon.com/Rating-Chess-Players-Past-Present/dp/0668047216
http://arxiv.org/abs/1707.02286
https://doi.org/10.1162/isal_a_00063

	Abstract
	1 Introduction
	2 Method
	2.1 Our Approach: Policy Optimization while Evolving Morphology (POEM)

	3 Experiments
	3.1 Comparing Body-Fixed and Body-Evolving Populations
	3.2 Identifying Influential Body Changes

	4 Conclusion
	References

