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Abstract
Whether subtle differences in the emotional context during threat perception can be detected by multi-voxel pattern analysis
(MVPA) remains a topic of debate. To investigate this question, we compared the ability of pattern recognition analysis to
discriminate between patterns of brain activity to a threatening versus a physically paired neutral stimulus in two different
emotional contexts (the stimulus being directed towards or away from the viewer). The directionality of the stimuli is known
to be an important factor in activating different defensive responses. Using multiple kernel learning (MKL) classification models,
we accurately discriminated patterns of brain activation to threat versus neutral stimuli in the directed towards context but not
during the directed away context. Furthermore, we investigated whether it was possible to decode an individual’s subjective
threat perception from patterns of whole-brain activity to threatening stimuli in the different emotional contexts using MKL
regression models. Interestingly, we were able to accurately predict the subjective threat perception index from the pattern of
brain activation to threat only during the directed away context. These results show that subtle differences in the emotional
context during threat perception can be detected by MVPA. In the directed towards context, the threat perception was more
intense, potentially producing more homogeneous patterns of brain activation across individuals. In the directed away context,
the threat perception was relatively less intense and more variable across individuals, enabling the regression model to success-
fully capture the individual differences and predict the subjective threat perception.
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Introduction

Functional neuroimaging (fMRI) has provided a great oppor-
tunity to obtain insight into of how emotional representations
are encoded in brain activity (Lindquist et al. 2012; Murphy

et al. 2003). The most common approach used to analyze
fMRI data is based on the general linear model (GLM)
(Friston et al. 1995) and is known as a mass-univariate anal-
ysis because it makes statistical inferences independently at
each location (voxel). Despite the success of this approach in
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identifying brain regions associated with a specific stimulus or
cognitive task, mass-univariate analysis does not take into
account the multivariate aspect of data, i.e., the fact that each
scan contains information about brain activation at thousands
of voxels that are related to each other. In contrast, multivar-
iate approaches simultaneously consider information across
multiple voxels in the brain and, therefore, can provide higher
sensitivity for identifying subtle differences in brain activa-
tion. Consequently, multivariate analyses can improve our
ability to obtain valuable information from the whole brain
based on functional neuroimaging.

In the last fifteen years, pattern recognition, specifically
multi-voxel pattern analysis (MVPA), has been increasingly
used as an alternative approach for analyzing neuroimaging
data (Cox and Savoy 2003; Haxby et al. 2001; Haynes and
Rees 2005; LaConte et al. 2005;Mourão-Miranda et al. 2005).
Pattern recognition analyses use computer-based techniques
to automatically discover regularities in the data, i.e., patterns
(Shawe-Taylor and Cristianini 2004). These discovered pat-
tern regularities in existing datasets can then be used to make
predictions for new datasets, such as to classify an indepen-
dent series of individuals, case by case, into different catego-
ries (patient x control) or different brain states (emotional x
neutral). Pattern recognition techniques can also be used to
predict continuous measures such as behavioral scores or
symptom levels (Portugal et al. 2016).

One remarkable disadvantage of MVPA is the difficulty in
making local inferences because the model is based on the
entire multivariate pattern or set of voxels included in the
model. Therefore, it is not possible to make inferences at the
voxel level, making difficult to discuss the relative importance
of individual brain regions in whole-brain MVPA models.
This issue can be addressed using a multiple kernel learning
(MKL) model that considers the whole-brain multivariate pat-
tern as a combination of regional patterns and learns the con-
tribution of each brain region for the predictive task (i.e.,
classification or regression, Schrouff et al. 2018). Regions that
carry more information about the variable being predicted will
have a higher contribution to the model, which is character-
ized by the kernel or region weights. Brain regions can then be
ranked according to their contribution to the model, which
facilitates the interpretation of the predictive model in terms
of the contributions of different brain regions.

Previous studies have demonstrated that distributed pat-
terns of brain activity measured with fMRI contain informa-
tion capable of differentiating among emotional brain states
(Baucom et al. 2012; Chang et al. 2015; Johnson et al. 2015;
Kragel et al. 2016; Kragel and LaBar 2015; Markey et al.
2013; Saarimäki et al. 2016; Yuen et al. 2012). For instance,
Kassam et al. (2013) classified nine different emotions based
on patterns of brain activity during self-induced emotional
states with an 84% mean rank accuracy (the normalized rank
of the correct label, averaged for each fold) when training and

testing were performed with the same subject and with a 70%
mean rank accuracy when training and testing were performed
with independent subjects (considering 50% chance level). In
this same line, Saarimäki et al. (2016) showed that MVPA
could discriminate patterns of brain activity among six dis-
crete emotions (disgust, fear, happiness, sadness, anger, and
surprise) induced by short movies or mental imagery.
Moreover, MVPA has also been applied to predict continuous
measures in emotional contexts (Chang et al. 2015; Fernandes
et al. 2017). Chang et al. (2015) identified a neural signature
that predicted differences in the subjective experience of neg-
ative emotion from patterns of fMRI activity and recent work
from our group demonstrated that pattern regression analyses
can be used to decode a personality trait from patterns of brain
activation during emotional stimuli (Fernandes et al. 2017).

In summary, the high sensitivity of MVPA approaches may
facilitate significant progress toward discovering links be-
tween distributed brain representations and discrete or contin-
uous emotions. Nevertheless, limited work has investigated
the roles of different emotional contexts in the discriminability
among brain states using MVPA. For example, does the accu-
racy of MVPA for discriminating emotional and neutral brain
states vary according to the threat level induced by different
threat contexts? To investigate this question, we compared the
ability of MVPA to discriminate between brain activity pat-
terns to threatening stimuli (a person holding a gun) versus
brain activity patterns to neutral stimuli (a person holding a
non-lethal object) in two different contexts. The two contexts
differed only in the direction of the stimuli, i.e., the threating
and neutral objects were either directed towards the viewer
(directed towards context) or directed away from the viewer
(directed away context). The direction of the threat is a subtle
change in the visual scene that may increase the perception of
threat imminence, i.e., whether the threat is directed towards
or away from the viewer. Many studies in the literature have
shown that the direction of the threat can modulate psycho-
physiological responses and brain activity (Dimberg and
Ohman 1983; Flykt et al. 2007; Hugdahl and Johnsen 1989;
Kveraga et al. 2015). For example, Flykt et al. (2007) tested
the effect of threat direction in conditioning experiments using
conditioned biological threats (e.g., snakes) or cultural threats
(e.g., guns). The results revealed that threatening stimuli di-
rected towards the viewer produced conditioned skin conduc-
tance responses that were resistant to backward masking, re-
gardless of whether the threat was due to biological or cultural
causal factors. Threat stimuli directed away from the viewer
produced conditioned skin conductance responses, but back-
ward masking abolished this effect. The authors emphasized
that the direction of the threat stimulus was the critical factor
modulating defensive responses and that threat stimuli
directed towards the viewer increased threat imminence,
which enhanced psychophysiological responses. In a very
interesting paper, Grèzes et al. (2013) found that “self-directed
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body expressions” of anger (those directed towards the view-
er) triggered higher corrugator reactivity and greater feelings
of threat than “other-directed bodies” (directed away from the
viewer). In addition, the direction of the threat stimulus has
been considered a key factor in activating different defensive
responses (Bastos et al. 2016; Carlson et al. 2009; Dimberg
and Ohman 1983; Fernandes et al. 2013; Flykt et al. 2007;
Hugdahl and Johnsen 1989). Pictures of a person pointing a
gun towards the viewer were reported as significantly more
threatening than those of a person pointing a gun away from
the viewer, the former eliciting more intense magnitudes of
threat, proximity, situation inescapability, and impossibility of
hiding (Bastos et al. 2016; Fernandes et al. 2013). Moreover,
threat directed-towards pictures were reported as significantly
less ambiguous than threat directed-away pictures (Bastos
et al. 2016).

In a previous behavioral study from our group (Fernandes
et al. 2013), we demonstrated that directed-towards pictures
produced a decrease in reaction time compared to neutral stim-
uli, while the opposite pattern was observed for threat
directed-away pictures, i.e., an increase in reaction time com-
pared to neutral pictures. This reduction in response time when
stimuli were directed towards the viewer was attributed to
increased motor preparation resulting from strong activation
of the defense response cascade. Threat directed-away stimuli
possibly activated the defense cascade, although with less in-
tensity, prompting immobility, leading to an increase in re-
sponse time (Fernandes et al. 2013). It is reasonable to hypoth-
esize that individual threat perception modulates the patterns
of brain reactivity in each context. Thus, a critical question is
whether the individual’s subjective threat perception rating can
be decoded from their patterns of brain activity. Considering
the importance of threat direction in modulating defensive
responses, we hypothesized that a higher accuracy would be
achieved for discriminating between emotional versus neutral
brain states in the directed towards context than in the directed
away context. Moreover, we also hypothesized that the indi-
vidual threat perception could be decoded from the pattern of
brain activation to threatening stimuli in both contexts. To
investigate these hypotheses, we applied an MKL classifica-
tion model to discriminate between patterns of brain activation
to threat versus neutral stimuli in two different contexts (di-
rected towards and directed away) and an MKL regression
model to decode the individual’s subjective threat perception
from his/her brain activation pattern to threat in both contexts.

Methods

Participants

Thirty-eight undergraduate or graduate students without his-
tory of neurological or psychiatric illness and who were not

taking any central nervous system-acting medication partici-
pated in this study (18 women; age range: 18–38 years, aver-
age = 26.9 (SD = 4.9) years). All participants had normal or
corrected-to-normal vision, and each participant provided
written informed consent prior to participation. Part of the
fMRI dataset used in this study was previously described in
Fernandes et al. (2017). The project was performed in accor-
dance with the local Ethics Committee of the Federal
Fluminense University, Brazil.

Data acquisition

The data for this study were collected at the Department of
Radiology at Hospital Universitário Clementino Fraga Filho
(Federal University of Rio de Janeiro, Brazil) using a 1.5-T
Siemens (Magnetom Avanto) scanner with a 8-channel head
coil for brain imaging. The fMRI runs were acquired with a
sequential ascending framework using a gradient-echo echo-
planar imaging (EPI) single-shot sequence covering 25 axial
slices (4 mm thick; 0.6 mm gap; TR/TE = 2000/40 ms; IST =
80 ms; FOV= 256 mm; matrix, 64 × 64; voxel dimensions,
4 × 4 × 4 mm). Head movements were restrained by foam
padding. In each run, 198 functional volumes were acquired
in four runs. In addition, a three-dimensional high-resolution
T1-weighted anatomical image (TR/TE = 2730/3.27 ms, 128
slices, 0.6 mm gap, FOV = 250 mm, voxel dimensions 1.33 ×
1 × 1.33 mm) was obtained at the beginning of each session
for functional to anatomical image registration.

Stimuli

Eighty-four pictures comprising two sets, threat and neutral
stimuli (42 pictures each), were employed in this study. The
threatening stimuli were photographs of a man holding a gun.
The neutral stimuli were photographs of a man holding a non-
lethal object, such as a camera or a domestic tool. The guns
and the neutral objects were either directed towards or away
from the viewer (21 pictures in each). In summary, the stimu-
lus categories were as follows: (1) threat stimulus directed
towards, (2) threat stimulus directed away, (3) neutral stimulus
directed towards, and (4) neutral stimulus directed away. The
pictures were matched in several properties to avoid con-
founding effects unrelated to emotion on brain activity
(Steinmetz et al. 2011). The ethnicity of the men holding the
objects was balanced among the categories. Threat and neutral
stimuli were matched in terms of brightness, contrast, spatial
frequency and complexity (Table 1). Bradley et al. (2007)
studied event-related potentials in response to emotional pic-
tures and showed that, beyond the affective content of pic-
tures, the complexity of pictures also impacts the amplitude
of brain potentials. We attempted to minimize this confound-
ing factor by selecting only emotional and neutral stimuli with
approximately the same level of complexity, i.e., they were all
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clear figure-ground pictures (in which the principal object/
person was easily distinguishable from a uniform back-
ground). To assess the adequacy of this a priori selection, we
followed the procedures of Bradley et al. (2007) and asked an
independent sample of 58 students (42 female) to rate picture
complexity on a scale of 1–9 (1 = clear figure-ground, 9 =
complex scenes). In order to investigate significant differences
in the physical characteristics of stimuli, we performed a re-
peated measure ANOVAwith two factors: direction of stimuli
(towards x away) and category (threat x neutral) to each indi-
vidual physical characteristic. Only for contrast, ANOVA re-
vealed a significant main effect of direction (F (1,20) =
11.662, p = 0.003), showing that the directed towards stimuli
(threat and neutral) presented more contrast than directed
away stimuli (threat and neutral). As we used pattern classifi-
cation analysis to investigate whether it was possible to dis-
criminate between patterns of brain activity to threat versus
neutral stimuli within each context, this difference is not very
critical. No other main effects were observed due to bright-
ness, spatial frequency and complexity.

The pictures were obtained from the World Wide Web,
purchased from Getty Images® (http://www.gettyimages.
com), selected from the International Affective Pictures
System (IAPS, Lang et al. 2005) and produced by the authors
with the aid of a professional photographer. In order to mini-
mize confounding effects related to facial features, such as
gaze direction, we used a blur effect in imaging processing
software (Adobe Photoshop©) to blur the faces. All pictures
had the same size (1024 × 768 pixels). Following the protocol
developed by Lang and colleagues (Lang et al. 1997), the
pictures were rated on a scale of 1–9 in terms of pleasure
and arousal by a separate group of 134 participants (104 fe-
male, 21.5 years ±3.36) using the paper-and-pencil version of
the Self-Assessment Manikin (Bradley and Lang 1994). The

means and standard deviation values of valence and arousal
for each category are shown in Table 1. To assess whether the
ratings for valence and arousal differ between the categories,
we performed a repeated measures ANOVAwith two factors:
direction of stimuli (towards x away) and category (threat x
neutral) separately for valence and arousal ratings. For
valence, ANOVA revealed a significant main effect of direc-
tion (F(1,20) = 18.561, p < 0.001) and a main effect of valence
(F(1,20) = 400.162, p < 0.001). As expected, the threat stimuli
were considered more negative than neutral stimuli for both
directed towards and directed away contexts. Furthermore, the
directed towards stimuli (threat and neutral) were considered
more negative than directed away stimuli (threat and neutral).
No significant interaction was found. For arousal, ANOVA
revealed a significant main effect of direction (F(1,20) = 8.
573, p = 0.008) and a main effect of valence (F(1,20) = 147.
482, p < 0.001) in the same line of the valence results.
However, in this case, we found a significant interaction be-
tween the two factors (F(1,20) = 8.151, p = 0.009). The post
hoc Newman-Keuls tests revealed that threat stimuli directed
towards were more arousing than the threat stimuli directed
away (p < 0.001), no difference was observed between direct-
ed towards and directed away neutral stimuli (p = 0.96).

Experimental design

The stimuli were projected onto a screen located in front of the
participant’s body and were viewed inside the scanner using a
mirror attached to the head coil. Stimuli were presented using
Presentation software (Neurobehavioral Systems, version
11.0, Inc., Albany, CA, USA). At the beginning of each trial,
the participants were instructed to attend to each picture while
maintaining their eyes fixed on a fixation spot at the center of
the screen. After attending to the picture for 3 s, a square

Table 1 Stimuli evaluation
report: Threat and neutral
stimulus ratings for valence,
arousal, complexity, and physical
characteristics of the pictures
(brightness, contrast, and spatial
frequency) in the directed towards
and directed away contexts. The
threat perception index to threat
stimuli are presented for the
directed towards and directed
away contexts

Directed towards context Directed away context

Threat Neutral Threat Neutral

Threat perception index 12.38 (7.47) – 10.29 (7.94) –

Valence 2.06 (1.22) 5.20 (0.99) 2.73 (1.37) 5.47 (1.01)

Arousal 6.56 (2.20) 3.65 (2.02) 5.50 (2.16) 3.63 (1.99)

Complexity 3.00 (0.74) 2.92 (0.57) 2.59 (0.77) 3.02 (1.04)

Brightness 76.47 (23.75) 79.33 (24.98) 92.84 (36.86) 87.07 (37.10)

Contrast 25.43 (9.73) 27.67 (8.78) 20.95 (10.57) 21.42 (7.37)

Spatial frequency 0.96 (0.10) 0.99 (0.14) 0.99 (0.06) 1.02 (0.11)

Standard deviations are shown within parentheses. Brightness, contrast and spatial frequency were measured
according to Bradley and colleagues (Bradley et al. 2007). Brightness was defined as the mean RGB (red, green
and blue) value for each pixel, averaged across all pixels for each picture. Contrast was defined as the standard
deviation of the mean RGB values computed across pixels for each column. Spatial frequency was defined as the
median fast Fourier transform (FFT) power, which was computed for each row and column and then averaged.
The valence, arousal, complexity ratings, brightness, contrast and spatial frequency values have been already
published for the threat and neutral stimulus in a previous study of our group (Fernandes et al. 2017).
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appeared around the fixation spot 700–1200 ms prior to the
target onset. The target was a small annulus that appeared
around the fixation spot. The picture, the square and the target
remained visible until the end of the trial, which had a total
duration of 5 s. The participants were required to press a but-
ton with their right index finger as quickly as possible after
target onset. An MR-compatible response key, positioned on
the right side of the participant’s abdomen, recorded the re-
sponses. Each block consisted of three pictures (5 s each) of
the same category (threat stimulus directed towards or directed
away and neutral stimulus directed towards or directed away)
presented in sequence, followed by 12 s of presentation of the
fixation cross. The experimental session consisted of 56
blocks (14 blocks of each category), pseudo randomized
throughout the experiment, divided into 4 runs; Fig. 1 shows
the experimental paradigm. Each picture was presented and
repeated once, but not in the same run.

Threat evaluation reports

After MRI acquisition, thirty-four subjects (16 women; aver-
age age = 26.3; SD = 4.6) evaluated the emotional impact of
the stimuli from each set (i.e. threat and neutral). Four subjects
were excluded from the pattern regression analysis because
they did not complete the threat evaluation questionnaire.
The threat evaluation questionnaire was answered using a pa-
per and pencil on a Likert-like scale of 9 points. Questions
were related to the dimensions of the threat perception: (i)
threat magnitude, (ii) the distance between the threat and the
participant (proximity), (iii) the escapability of the situation
(inescapability) and (iv) the presence of available hiding
places (impossibility of hiding). Participants were instructed
to rate the stimuli from each set according to their subjective
feelings when viewing the threat stimulus. These subjective
threat dimensions were adapted from the studies of Blanchard
et al. (2001) and Shuhama et al. (2008), together with others
studies that have demonstrated that particular features of
threatening stimuli that are determinant for triggering a defen-
sive response in animals are very similar to defensive strate-
gies in humans (Bastos et al. 2016; Fernandes et al. 2013;
Perkins and Corr 2006). The ratings obtained for the four
dimensions were summed and used as an index for threat
perception; these values are presented in Table 1. The threat
perception index related to each set of threatening stimuli
(directed towards and directed away) were used as targets in
the MKL regression models.

Data pre-processing and general linear model
analysis

The Statistical Parametric Mapping software package (SPM8,
Wellcome Department of Cognitive Neurology, London, UK)
was used for pre-processing and General Linear Model

(GLM) analysis. The first three functional volumes of each
run were removed to eliminate non-equilibrium effects of
magnetization. The remaining images were corrected for head
movement by realigning all the images to the first image via
rigid body transformations. The data were realigned to remove
residual motion effects. For each participant, functional and
structural images were co-registered. Structural data were seg-
mented and normalized by matching them to the standardized
MNI template (Montreal Neurologic Institute, Evans et al.
1993), and the transformation parameters estimated in this
step were applied to all functional images. Finally, the func-
tional images were spatially smoothed with an 8-mm full-
width half-maximum (FWHM) Gaussian filter.

GLM analysis was performed according to the framework
implemented in SPM8 (Friston et al. 1995). For each partici-
pant, a GLMmodel was built with the four experimental con-
ditions (threat directed towards, threat directed away, neutral
directed towards and neutral directed away) entered into the
design matrix as separate regressors. Before estimation via
multiple regression, regressors of interest were convolved
with a canonical hemodynamic response function. As our
aim was to investigate whether the MKL algorithm could
decode different emotional contexts, the 15-s experimental
blocks were used as regressors of interest for each condition,
and the 12-s fixation cross between the blocks served as a
baseline. Movement parameters from the realignment step
were entered as covariates of no interest to control for partic-
ipant’s movement. The low frequency components were
modelled by a set of discrete cosine functions (128-s cut-off
period). The four runs were first modelled independently, and
at the end, contrast images for each condition were created
based on all runs: (1) threat directed towards > baseline, (2)
threat directed away > baseline, (3) neutral directed towards
> baseline, (4) neutral directed away > baseline. These
contrast images represent the patterns of brain activation
during each experimental condition with respect to base-
line and were used as input to the pattern classification
and regression analyses. We used one contrast image per
participant in each classification (in this case one contrast
image per class) and regression model.

We used a custom-created mask to exclude voxels, com-
mon to all participants that had “NaN” (not a number) in the
contrast images. This mask can improve the performance of
pattern recognition analyses by decreasing the number of non-
informative features/voxels in the model (Portugal et al.
2016).

Pattern recognition analysis

Pattern recognition analyses were performed according to the
framework implemented in the Pattern Recognition for
Neuroimaging Toolbox (PRoNTo, Schrouff et al. 2013). We
used pattern classification analysis to investigate whether it
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was possible to discriminate between patterns of brain activity
to threat versus neutral stimuli in each context (directed towards
and directed away). More specifically, we trained and tested
two classification models. The first model was trained to dis-
criminate between the patterns of brain activity to threat versus
neutral stimuli in the directed towards context (‘directed to-
wards threat versus neutral’). The second model was trained
to discriminate between the patterns of brain activity to threat
versus neutral in the directed away context (‘directed away
threat versus neutral’). Additionally, we used pattern regression
analysis to investigate the relationship between patterns of brain
activity to threat in both contexts and the subjects’ threat per-
ception indices. More specifically, we trained two regression
models with the goal of predicting the subjects’ threat

perception indices. One model was based on patterns of brain
activation to threat directed towards the observer (‘threat direct-
ed towards regression’), and the other was based on patterns of
brain activation to threat directed away from the observer
(‘threat directed away regression’), see Fig. 2.

In the present work, we used a pattern recognitionmodel that
embeds prior information about brain anatomy. This approach
relies on MKL (Schrouff et al. 2018) and models the whole-
brain multivariate pattern as a combination of regional patterns
based on a previously defined atlas. More specifically, the mod-
el learns the contribution of each brain region (kernel or regions
weights) and the contribution of each voxel within each region
(voxel weights) to build the prediction function. As the MKL
model currently implemented in PRoNTo assumes sparsity in

Fig. 1 Experimental Design: (a) Experimental paradigm – Each trial
began with the presentation of a photograph and a fixation spot. After
3 s, a square appeared around the fixation spot 700–1200 ms prior to
target onset. The target was a small annulus that appeared around the
fixation spot. The total duration of the trial was 5 s. Each block consisted
of three photographs of the same category. The fixation cross on a black
background remained for 12 s. The experimental session consisted of 56
blocks (14 blocks for each category), pseudo randomized through the
experiment and divided into 4 runs. (b) MKL classification models -

The first model was trained to discriminate between the patterns of brain
activity to threat versus neutral stimuli in the directed towards context.
The second model was trained to discriminate between the patterns of
brain activity to threat versus neutral in the directed away context. (c)
MKL regression models - Two regression models were trained with the
goal of predicting the subjects’ threat perception indices. The first model
was based on the patterns of brain activation to threat stimuli directed
towards the viewer, and the second model was based on patterns of brain
activation to threat stimuli directed away from the viewer
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the kernel combination (Simple MKL, Rakotomamonjy et al.
2008), it will select a subset of the regions that are important for
the predictive task (classification or regression), the remaining
regions will have kernel weights equal to zero. We used the
predefined automated anatomical labelling (AAL2) atlas of
Tzourio-Mazoyer and colleagues (Tzourio-Mazoyer et al.
2002) that was recently updated with new parcellation of the
orbitofrontal cortex (Rolls et al. 2015). The AAL2 atlas was
used to delineate the anatomical regions in the brain. The AAL2
template divides the brain into 120 anatomical regions. For each
region, a linear kernel was computed based on the regional
pattern of activation containing all voxels within the region.
The kernels were normalized (to compensate for the fact that
the number of voxels varies among brain regions) and mean
centered using standard operations in PRoNTo. We also trained
and tested the two other classification models, support vector
machine (SVM, Burges 1998) and Gaussian process classifier
(GPC, Rasmussen and Williams 2006), and the two other re-
gression models, relevance vector regression (RVR, Tipping
2001) and Gaussian process regression (GPR, Rasmussen and
Williams 2006), that are currently available in PRoNTo. There
were no significant differences in performance among the dif-
ferent classifications and regression approaches (see supple-
mentary material). Since we were interested in identifying the
contribution of each brain region for the predictive model, we
present here only the results for the MKL classification and
regression models.

Model performance

The performance of the classification models was evaluated
using two metrics: balanced accuracy and area under the re-
ceiver operating characteristic (ROC) curve (AUC). In classi-
fication, it is common to compute the prediction accuracy for
each class and the balanced accuracy, which is the average
class accuracy. The ROC curve compares the classifier’s true
positive rate (TP) and false positive rate (FP) as the decision
threshold is varied. A classifier performing at chance level
would, therefore, result in a 45-degree diagonal line that con-
nects the point (0, 0) with the point (1,1), while classifiers
discriminating above chance would result in an ROC curve
that is ‘northwest’ of this line. The AUC is therefore a sum-
mary measure describing the performance of the classifier
across all decision thresholds. A classifier achieving perfect
classification would achieve an AUC of 1, while a classifier
performing at chance level would achieve an AUC of 0.5.

For the performance of regression models, three metrics
were used to measure the agreement between the predicted
and actual threat perception scores, Pearson’s correlation co-
efficient (r), the coefficient of determination (R2) and the mean
squared error (MSE). The correlation coefficient (r) describes
the strength of a linear relationship between 2 variables. A
small correlation is an indication of poor prediction

performance. The coefficient of determination (R2) can be
interpreted as the proportion of variance explained by the re-
gression. The MSE is the mean of the squared differences
between the predicted and true scores; it represents the mean
error between the predicted and actual scores and is common-
ly used to evaluate the performance of predictive models.

To avoid the over-optimistic model performance that has
been recently described for the leave-one-out approach
(Varoquaux et al. 2017), we trained the models using two
different cross-validation procedures, the “leave-one-subject-
out” (LOSO) and the “k-fold-out” cross-validation (where:
k = 10) methods. A nested cross-validation procedure was
used to optimize the models’ hyperparamaters, with the same
cross-validation scheme for the internal and external loop.

The significance of the classification and regression perfor-
mancemeasures were determined using permutation tests, i.e.,
the same cross-validation procedure described above was per-
formed 100 times with the labels permuted across the partic-
ipants. The p value was calculated by counting how many
times the absolute value of the metric with the permuted labels
was equal to or bigger (smaller for MSE) than the absolute
value of the metric obtained with the correct labels and divid-
ing by 100. The results were considered significant when the
obtained models performed equal to or better than the model
without shuffling the labels at most 5% of the time across 100
permutation (i.e., p value < 0.05) (Schrouff et al. 2018).

Model interpretation

As previously explained, the MKL model has two sets of
weights: the kernel or region weights and the voxel weights.
The kernel or region weights represent the contribution of
each region and the voxel weights represent the contribution
of each voxel within the regions to the prediction function.
Both sets of weights can be explicitly computed and plotted as
brain images. Regions can then be ranked according to their
contribution to the model averaged across folds. Here, we
present the weight maps and a list of selected regions for the
models that were statistically significant.

Results

Pattern classification models

TheMKL classification model was able to accurately discrim-
inate between patterns of brain activation to threat versus neu-
tral stimuli in the directed towards context using both cross-
validation procedures. However, the MKL classification mod-
el did not perform better than chance in discriminating be-
tween patterns of brain activation to threat versus neutral stim-
uli in the directed away context for either cross-validation
procedure; all performance results are presented in Table 2.
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These results indicate the importance of the context direction-
ality in the discriminability between brain responses to threat
versus neural stimuli. Other classification algorithms (SVM
and GPC) presented similar results. They were also able to
discriminate between threat versus neutral stimuli in the di-
rected towards context but not in the directed away context (all
results are presented in supplementary materials table S-1).

Regions identified by the MKL classification model

When using the 10-fold cross-validation scheme, the MKL
model discriminating between patterns of brain activation

to threat versus neutral stimuli in the directed towards context
identified 60 regions that contributed to the predictive function.
When using the LOSO cross-validation scheme, theMKLmod-
el identified 52 regions that contributed to the predictive func-
tion. Overall the regions identified by both cross-validation
schemes were similar. For the sake of brevity, we only present
the regions identified using the 10-fold cross-validation scheme.
The full list of regions ranked in descending order according to
the kernel weights is presented in the supplementary materials
table S-2. Figure 3 displays the whole-brain MKL weight map
at the region level and the voxels weights for the 10 regions with
the highest contributions to the predictive function.

Fig. 2 Multiple Kernel Learning Framework. MKL Classification
Model (left panel): (a) The training data for the multiple kernel
learning (MKL) classification model consists of examples that pair a
contrast image from the GLM model and the corresponding label of the
experimental conditions (threat or neutral). (b) TheMKL framework uses
a predefined anatomical template to segment the contrast images into 120
anatomical brain regions. (c) During the training the MKL model simul-
taneously learns the contribution of each region (kernel/regions weights)
and within each region the contribution of each voxel (voxel weights) for
the predictive function, respectively. (d) During the test phase, given the
contrast image of a test subject theMKLmodel predicts its corresponding
experimental condition (threat or neutral). (e) The classification model
performance is evaluated using accuracy and ROC curve (see methods
and results). MKL Regression Model (right Panel): (a) The training

data for the multiple kernel learning (MKL) regression model consists of
examples that pair a contrast image from the GLM model and the corre-
sponding threat perception index. (b) The MKL framework uses a
predefined anatomical template to segment the contrast images into 120
anatomical brain regions. (c) During the training the MKL model simul-
taneously learns the contribution of each region (kernel/regions weights)
and within each region the contribution of each voxel (voxel weights) for
the predictive function, respectively. (d) During the test phase, given the
contrast image of a test subject theMKLmodel predicts its corresponding
threat perception index. (e) The model performance is evaluated using
three metrics that measure the agreement between the predicted and the
actual threat perception indices: Pearson’s correlation coefficient (r), co-
efficient of determination (r2) and mean squared error (MSE)
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Here, we present a summary of the kernel weights per cere-
bral lobe. Frontal regions had the highest contributions to the
model, with a total kernel/region weights sum of 39.68%.
Selected frontal regions included the left inferior frontal gyrus
(triangular part), the right subgenual prefrontal cortex, the dor-
solateral prefrontal cortex, and many regions of the
orbitofrontal cortex. Occipital regions presented the second
highest contribution to the model, with a total sum of 21.18%.
Selected Occipital regions included the primary visual cortex
(calcarine fissure and lingual gyrus) and more complex visual
processing areas (inferior, middle and superior occipital gyrus).
Some of these regions cover areas important for processing
emotional body expressions (such as the extrastriate body area
[EBA]). Temporal regions had the third highest kernel/regional
weights, comprising 12.8%, and included three parts of the
temporal gyrus (superior, middle and inferior) and Heschl’s
gyrus (auditory cortex). These regions cover areas important
for semantic understanding and categorical representation.

Other individual regions contributing more than 1% to the
model included the left putamen (4.73%), the left
parahippocampal gyrus (2.34%), the right hippocampus
(2.17%), the right amygdala (2.07%), the left thalamus
(1.94%), the right supplementary motor area (1.37%) and
the right nucleus of the pallidum (1.25%). Regions related to
emotional processing and motor response control had smaller
contributions, including the left amygdala (0.68%), the right
paracentral lobule (0.43%), the right middle cingulate cortex
(0.21%), and the left insula (0.21%).

Pattern regression models

The results for the MKL regression models predicting threat
perception index are presented in Table 3. The first model was
based on patterns of brain activation to threat directed towards
the observer (‘threat directed towards regression’), and the
second model was based on patterns of brain activation to
threat directed away from the observer (‘threat directed away
regression’). The threat directed away regression model
showed significant performance measures for both cross-
validation procedures (LOSO and 10-fold cross-validation).
However, the threat directed towards regression model only
showed significant performance for the LOSO cross-
validation procedure. These results suggest that the associa-
tion between patterns of brain activation to threat and the
threat perception is higher when the threat is directed away
from the observer. Figure 4a shows a scatter plot depicting the
predicted versus actual threat perception index for the threat
directed away regression using a 10-fold cross-validation pro-
cedure. Other regression algorithms (RVR and GPR) also
showed significant performance measures for both cross-
validation procedures only for the threat directed away
regression (all results are presented in supplementary mate-
rials table S-3).

Regions identified by the MKL regression model

When using the 10-fold cross-validation scheme, the threat
directed away regression MKL model identified 43 regions
that contributed to the predictive function. When using the
LOSO cross-validation scheme, the MKL model identified
38 regions that contributed to the predictive function.
Overall the regions identified by both cross-validation
schemes were similar. For the sake of brevity, we only present
the regions identified using the 10-fold cross-validation
scheme. The full list of regions ranked in descending order
according to the kernel weights is presented in the supplemen-
tary materials in table S-4. Figure 4b shows the whole-brain
MKL weight map at the region level and the voxels weights
for the 10 regions with the highest contributions to the predic-
tive function.

Here, we presented a summary of the kernel weights per
cerebral lobes. Cerebellum regions presented a kernel weight
sum of 23.97%. Occipital regions contributed 14.56% to the
model. Selected occipital regions included complex visual
processing areas (such as the superior and inferior occipital
gyri) and early processing visual areas (such as the lingual
gyrus and the right calcarine fissure). Frontal regions present-
ed a total kernel weight sum of 10.01%. Selected frontal re-
gions included the right lateral orbital gyrus, the right
subgenual prefrontal cortex, and the right dorsolateral superior
frontal gyrus. Temporal regions presented a total kernel
weight sum of 7.64%. Selected temporal regions included
the left inferior temporal gyrus, the left middle temporal gyrus,
and the right Heschl’s gyrus (auditory cortex). Subcortical
gray nuclei regions had a total kernel weight sum of 1.8%.
Other regions had kernel weight contributions below 1%.

Discussion

The main goal of the present study was to investigate whether
the discriminability between patterns of brain activation to
threat versus neutral stimuli measured by the MVPA perfor-
mance (i.e., accuracy) could be influenced by subtle differ-
ences in the emotional context due to the directionality of
the stimuli. Our results demonstrate that changes in the direc-
tionality of the stimuli affect the performance of MVPA algo-
rithms. In the classification model, a significant accuracy for
discriminating brain activation patterns to threat versus neutral
stimuli was found only in the directed towards context. The
classification model was not able to discriminate between pat-
terns of brain activation to threat versus neutral stimuli in the
directed away context. These results demonstrate that the
emotional context plays an important role in the discrimina-
bility of brain activation patterns to emotional stimuli. These
findings agree with the idea that the direction of the threat
stimulus is a critical factor to modulate brain responses to an
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emotional stimulus. Additionally, we investigated whether the
subjective measure of threat perception could be decoded
from patterns of whole-brain activity to threatening stimuli

in different contexts using pattern regression analysis.
Interestingly, our results showed that it was possible to decode
the individuals’ subjective threat perceptions from patterns of

Fig. 3 MKL classification model based on the 10-fold cross-valida-
tion scheme: (a) Whole brain map showing the kernel weights per
region; the color bar represents the full range of kernel weights. (b)
Images showing the voxels weights within the regions with highest
contributions to the MKL classification model in sagittal or axial plane
slices (“x” or “z” MNI coordinates, respectively). The top 10 regions
ranked by the MKL classification model as relevant for discriminating

between patterns of brain activity to threat versus neutral stimuli in the
directed towards context are shown; the regions’ weights (in percentage)
are shown in parentheses. The color bars represents the full range of voxel
weights within each region. The red circle highlights small region.
Acronyms: IFG – inferior frontal gyrus; EBA – extrastriate body area;
PFC – prefrontal cortex; OFC – orbitofrontal cortex

Table 2 MKL classification model performance

Models Cross-validation procedure Balance accuracy Class 1 (threat) Class 2 (neutral) ROC/AUC

Directed towards threat versus neutral LOSO 78.95 (p = 0.01) 78.95 (p = 0.01) 78.95
(p = 0.01)

0.82

“10-fold” 72.37 (p = 0.01) 63.16 (p = 0.08) 81.58
(p = 0.01)

0.78

Directed away threat versus neutral LOSO 47.37 (p = 0.66) 47.37 (p = 0.67) 47.37
(p = 0.68)

0.49

“10-fold” 60.53 (p = 0.08) 52.63 (p = 0.40) 68.42
(p = 0.03)

0.55

p-values were obtained by permutation test (100 permutations). LOSO = leave-one-subject-out procedure; “10-fold”= 10-fold cross-validation
procedure
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brain activation to threat, with a better performance in the
directed away threat context than in the directed towards con-
text. In summary, these results suggest that in the directed
towards context, the patterns of brain activation to threat and
neutral stimuli are more consistent across individuals, which
improves the performance of classification models in
discriminating between the patterns of brain activation
to these stimuli (threat versus neutral). Conversely, the
greater variability across individuals in the direct away
context, potentially associated with subjective threat per-
ception, facilitates the regression model learning.

The ability to discriminate between patterns of brain acti-
vation to threat versus neutral stimuli obtained in the directed
towards contexts is in line with previous studies in the litera-
ture. Most studies have shown discrimination between brain
activation to emotional versus neutral stimuli using various
emotions expressed by faces (Harry et al. 2013; Pessoa and
Padmala 2007; Wegrzyn et al. 2015), videos clips, audio
sounds, words (Ethofer et al. 2009; Markey et al. 2013;
Oosterwijk et al. 2017; Skerry and Saxe 2015), and emotional
pictures from IAPS with a wide range of valence and arousal
ratings (Baucom et al. 2012; Yuen et al. 2012).

Threat stimuli directed towards the observer has been
shown to be an important factor for activating more intense
emotional responses. A number of studies in the literature
have shown that the direction of the threat can modulate psy-
chophysiological responses and behavioral measures (Bastos
et al. 2016; Carlson et al. 2009; Dimberg and Ohman 1983;
Fernandes et al. 2013; Flykt et al. 2007; Hugdahl and Johnsen
1989). For instance, previous studies have shown increased
activity in skin conduce responses to directed angry faces
during conditioning (Dimberg and Ohman 1983), reduced ex-
tinction during fear conditioning to directed towards stimuli of
snakes and guns (Flykt et al. 2007; Hugdahl and Johnsen
1989), and improved spatial attention to threat stimuli directed
towards the viewer (such as a pointed gun and striking snake)
on a dot-probe test (Carlson et al. 2009). Additionally,
Hortensius and colleagues (Hortensius et al. 2016) showed
that the direction of threat differently influences explicit

recognition. Recognition accuracy was higher for anger di-
rected toward the observer than for anger directed away from
the observer, while the opposite pattern was found for fearful
expressions. In the same vein, our group has shown that threat
stimuli directed towards the observer can activate more in-
tense defensive cascade responses (Bastos et al. 2016;
Fernandes et al. 2013). More specifically, Fernandes et al.
(2013) found that threat stimuli directed towards the observer
induced a decreased reaction time (RT) while participants per-
formed a bar orientation discrimination task. This accelerated
RT during the directed towards threat stimuli scenario was
attributed to increased motor preparation resulting from an
intense defensive response. Thus, one possible explanation
for the better performance of the MKL model in discriminat-
ing between patterns of brain responses to threat versus neutral
stimuli in the directed towards context could be attributed to
an increase in threat perception, which could lead to more
consistently increased brain activation across subjects and less
susceptibility of the model to individual variability. In fact, the
MKL regression model was not able to consistently decode
the threat perception index of individuals from patterns of
brain activation to threat during the directed towards context,
suggesting that the patterns of brain activation during this
context were not strongly associated with the individuals’
subjective threat perceptions. This effect is likely because
the threat stimuli in the directed towards context are more
threatening and may evoke more homogeneous emotional re-
actions across subjects.

The MKL classification algorithm was not able to discrim-
inate between patterns of brain activation to threat versus neu-
tral stimuli in the directed away context. A previous study
reported by our group showed that threat stimuli directed
away from the viewer were considered less intense, farther
away, and more escapable than threat stimuli directed towards
the viewer (Fernandes et al. 2013). These stimuli were also
classified as more ambiguous than the directed towards stim-
uli (Bastos et al. 2016). One possible explanation for this
finding is that the directed away stimuli produced patterns of
brain activation that were more heterogeneous across subjects

Table 3 MKL regression model
performance Models Cross-validation procedure r R2 MSE

Threat directed towards regression LOSO 0.48

(p = 0.03)

0.23

(p = 0.30)

42.94

(p = 0.03)

“10-fold” 0.27

(p = 0.08)

0.07

(p = 0.53)

54.81

(p = 0.09)

Threat directed away regression LOSO 0.42

(p = 0.02)

0.18

(p = 0.13)

52.24

(p = 0.02)

“10-fold” 0.56

(p = 0.01)

0.31

(p = 0.01)

43.41

(p = 0.01)

p-values were obtained by permutation test (100 permutations). LOSO= leave-one-subject-out procedure; “10-
fold”= 10-fold cross-validation procedure
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and more susceptible to individual variability. In agreement
with our hypothesis, previous work from our group showed
that MKL regression analyses were able to decode negative
affect (NA) from patterns of brain activation to threat in the
directed away context but not in the directed towards context
(Fernandes et al. 2017). These results indicate that the patterns
of brain activation to threatening stimuli during the directed
away context are more influenced by individual variability.

The MKL classification model discriminating between pat-
terns of brain activation to threat versus neutral stimuli in the
directed towards context identified 60 brain regions from the
AAL2 atlas (Rolls et al. 2015) that were relevant for the classi-
fication. The top 10 regions corresponded to a sum of 61.1% of
the total kernel weights. The brain regions with the highest
contributions to the MKL classification model included the
prefrontal cortex (left inferior frontal gyrus, right subgenual
prefrontal cortex, and medial orbitofrontal cortex), the left

putamen, the cerebellum, occipital and temporal regions.
Prefrontal regions contributed to 39.68% of the total kernel
weights. These results are consistent with the literature, as pre-
frontal regions playmore important roles in decoding emotional
information by evaluating the emotional content of stimuli and
selecting the best defensive strategy according to each context
(Mobbs et al. 2007, 2009, 2010). Occipitotemporal regions
contributed to 23.0% of the kernel weights and included the
EBA, the superior temporal sulcus (STS), and the middle
temporal/V5 complex (MT/V5, or motion area) in the middle
temporal gyrus. The EBA has been shown to exhibit strong and
selective responses to images of human bodies and body parts
(Downing et al. 2001). Many studies have also reported EBA
activity to static and dynamic emotional stimuli (Grèzes et al.
2007; Kret et al. 2011; Peelen et al. 2007). The STS region has
been shown to be activated in face perception processing
(Haxby et al. 2000). Furthermore, connections from the STS

Fig. 4 MKL regression model based on the 10-fold cross-validation
scheme: (a) Scatter plot between the actual and predicted threat
perception indices for the MKL regression model based on patterns of
brain activation to threat stimuli in the directed away context. (b) Images
showing the voxels weights within the regions with highest contributions
to the MKL regression model in sagittal or axial plane slices (“x” or “z”

MNI coordinates, respectively). The top 10 regions ranked by the MKL
regression model as relevant for predicting the threat perception index are
shown; the regions’ weights (in percentage) are shown in parentheses.
The color bars represents the full range of voxel weights within each
region. The red circle highlights small region
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to structures including the amygdala (Kravitz et al. 2013) sug-
gest that this network mediates the evaluation of visual stimuli
in emotional responses. Our findings provide further evidence
that the functions of the EBA and the STS go beyond the mere
perception of body shape, reinforcing the idea that these areas
are sensitive to threating body/facial expressions and the vio-
lence expressed by a conspecific.

TheMKL regressionmodel used to decode the individuals’
threat perception from patterns of brain activation to threat in
the directed away context identified 43 regions distributed
across the brain as relevant for the predictive function. The
top 10 regions corresponded to a sum of 80.9% of the total
kernel weights. The region with the highest contribution to the
MKL regression model was the left angular gyrus in the pari-
etal cortex (13.7% kernel weight). The role of this region
seems to be related to processing concepts (e.g., when a motor
response is requested after a stimulus) rather than perception
(Seghier 2012). In fact, the left angular gyrus is considered a
cross-modal hub where converging multisensory information
is combined and integrated to solve problems (Seghier 2012).
Engelen and colleagues (Engelen et al. 2015) found that the
inferior parietal lobule plays a critical role in emotional body
processing. Threat perceptionmay have potentially modulated
the activity of this region: Individuals who evaluated the threat
stimuli directed away as more threatening may have had a
different activation pattern than individuals who evaluated
the threat stimuli directed away as less threatening. Taken
together, these findings support the importance of the angular
gyrus in the parietal lobule in decoding subjective perceptions
of threat from patterns of brain activation to threatening stim-
uli in the directed away context.

This study has some limitations. First, the results of our
classification models were obtained with a sample of 38 par-
ticipants, and the results of our regressionmodels were obtain-
ed with a sample of 34 participants; therefore, the conclusions
cannot be extrapolated as representative of large populations.
Even though we tested different cross-validation procedures,
the models should ideally be trained and tested with truly
independent samples. Further studies with larger sample sizes
are needed to assess the generalizability of these results by
training and testing the models with completely independent
samples. Another limitation of this study is the fact in the
MKL classification and regression models the sparsity on
the number of selected kernels (or regions in the present work)
was imposed by an L1-norm regularization constraint, which
might not select regions with correlated information. Future
studies should explore other MKL approaches, including a
combination of L1- and L2-norm regularization constraints
to address this limitation. Finally, threat stimuli directed
towards the individuals were considered more arousing than
threat stimuli directed away. Threat stimuli directed toward
the individuals were expected to produce more intense activa-
tion of the defensive cascade than threat stimuli directed away

(Fernandes et al. 2013), and an increase in arousal is inevita-
ble. Furthermore, Kragel and LaBar (2015) demonstrated that
differences in categorical emotional states, as represented by
neural activation patterns, are more separable by multivariate
classification analyses than differences in terms of valence or
arousal. Therefore, although we cannot rule out the contribu-
tion of arousal, it is unlikely that the results of the classifica-
tion models were completely explained by differences in
arousal. Additional studies should be performed to investigate
this issue.

In conclusion, we observed that the directionality of the
stimulus plays an important role in the discriminability be-
tween patterns of brain activation to threat versus neutral stim-
uli and in decoding individuals’ subjective threat perceptions
from patterns of brain activation to threat. Furthermore, we
found a double dissociation effect related to the emotional
context: The directed towards context enabled discriminating
between patterns of brain activation to threat versus neutral
stimuli but not decoding the individuals’ subjective threat per-
ceptions from patterns of brain activation to threat.
Conversely, the directed away context facilitated better per-
formance in decoding the individuals’ subjective threat per-
ceptions but not in discriminating between patterns of brain
activation to threat versus neutral stimuli. One possible expla-
nation for this dissociation is that, in the directed towards
context, the threat perception produced a more intense defen-
sive reaction, inducing more homogeneous patterns of brain
activation across individuals and, thus, facilitating the classi-
fication task. Conversely, in the directed away context, the
threat perception produced a less intense and more variable
defensive reaction among individuals, capturing individual
differences and facilitating the regression model learning.
Finally, as a concluding remark, the findings of the present
study corroborate the idea that the direction of the threat stim-
ulus is a critical factor that modulates the brain response to an
emotional stimulus. Furthermore, we provide evidence that
prefrontal regions, including the EBA and the STS, are rele-
vant brain regions to decode the direction of the threat.
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