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Abstract:  

What are the causes and consequences of systematic measurement error in violence 
measures drawn from media-based conflict event data? More specifically, how valid are 
such event data for geo-coding and capturing election violence? We examine sub-
national variation in election violence and use original data from domestic election 
monitor surveys as a comparison to widely used sources of event data. We show that 
conventional data under-report events throughout the election cycle, particularly in 
sparsely populated areas and outside anticipated violence hotspots. Moreover, 
systematic measurement error of media-based event data for measuring election 
violence generates significant relationships where none exist, and different effect 
magnitudes. We offer ways forward for future research and indicate ways in which 
existing work on election violence may have been affected by systematic measurement 
error.  
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1. Introduction 

 

Since a wave of democratization swept the world in the 1990’s, elections have become a global norm 

(Levitsky and Way 2010). However, many new democracies struggle with consolidation and holding 

elections that meet international standards. Elections have been marred by irregularities and repression. 

Most notably, violence has become a prominent feature of elections in many developing countries 

(Beaulieu 2014, 138; Collier 2009). When elections turn violent, it threatens their integrity, it tilts the 

electoral playing field towards actors with repressive capacity, and it limits participation, particularly 

among those unable to protect themselves from repression (Bratton 2008). 

 

Election violence is a type of political violence that is aimed at influencing the election’s process or 

outcome and occurs temporally close to elections.1 A burgeoning literature in comparative politics and 

international relations examines the causes and consequences of such election violence.2 Some of the 

quantitative work on election violence has been cross-national (E.g. Birch and Muchlinski 2018; von 

Borzyskowski 2014; Daxecker 2014; Fjelde and Höglund 2016a, Hafner-Burton et al. 2014, 2017; 

Kuhn 2015; Taylor et al. 2017), while other work has been subnational (E.g. Reeder and Bech Seeberg 

2018; Burchard 2015; Goldring and Wahman 2018; Dercon and Guitérrez-Romero 2012; Ishiyama et 

al. 2016; Linke 2013; Weidmann and Callen 2013; Wilkinson 2004). Both sub- and cross-national 

                                                      
1 Election violence can be directed against people (candidates, voters, election officials, external supporters) or objects 

(election facilities, party offices, material) and can happen before or after election-day. Our definition of violence is fairly 

comprehensive and includes fatal and non-fatal events. A narrow focus on only the most extreme fatal incidents would 

seriously underestimate the level of violence experienced in many African countries. Violence does not have to be fatal to 

reduce trust in political institutions or affect citizens’ participation in the democratic process (Norris 2014).   

2 For recent reviews, see Dunning 2011 and Fjelde and Höglund 2016b 
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studies tend to assume that underlying data on election violence are free of systematic measurement 

error and reflect dynamics on the ground reasonably well; or more formally, that there is no systematic 

measurement error, and that the variables used are a valid measure of the underlying concept of 

election violence. We argue that this assumption is incorrect for some widely used datasets.  

 

Most subnational (and some cross-national) work on election violence has relied on media-based 

conflict event data.3 A number of newer social conflict datasets, like the Armed Conflict Location and 

Event Data Project (Raleigh et al. 2010) and the Social Conflict Analysis Database (SCAD) (Salehyan 

et al. 2012), have enabled researchers to place violent events geographically and study variation both 

within and across countries. Such conflict event data have opened up a wealth of new opportunities 

for researchers interested in the causes and consequences of election violence. But how valid are such 

media-based conflict event data to measure election violence? Even more importantly, do these 

measures of violence have errors that may systematically skew empirical results? Indeed, some earlier 

work has argued that this may well be the case (Eck 2012; Weidmann 2016). Media logics inherent in 

domestic and international reporting are likely to create serious underreporting and potential systematic 

measurement error. Several studies have acknowledged the limitations of media-based event data in 

their ability to capture violence or political mobilization (Davenport and Ball 2010; Earl et al. 2004; 

Mueller 1997; Weidmann 2016). Yet, we are the first to measure the extent of such systematic 

measurement errors in relation to elections and at a low level of aggregation (constituencies). We 

document how serious this under-estimate is, as well as its causes and consequences.  

 

                                                      
3 Some research also uses surveys (Bratton 2008; Dercon and Gutiérrez-Romero 2012, Gutiérrez-Romero 2014), such as 
the Afrobarometer. However, these survey data are usually only representative at high levels of sub-national aggregation 
(regions) but not politically relevant units (constituencies), and cover only few constituencies in the country.   
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To deal with under-reporting and mis-classification, researchers have proposed two main solutions. 

One solution is to triangulate between multiple measures (Hendrix and Salehyan 2015, Weidmann 

2016), for example with capture-recapture methods or merging. This solution is only possible when 

multiple sources exist and assumes that the measures do not suffer from similar systematic 

measurement error. A second solution is to fix the issue with statistical remedies, trying to assess the 

severity and direction of systematic measurement error through sensitivity analyses (Gallop and 

Weschle 2017) and try to correct for it (Cook et al. 2017). However, as Weidmann (2016, 208) notes, 

“there have been no tests on a real case of selectively reported data where the true values are known.” 

While we do not claim to have revealed the absolute “truth,” we provide two cases for which the more 

accurate values are known, as data are systematically collected from domestic election monitors evenly 

spread across the country, regardless of remoteness and communication. The difference between the 

more accurate monitor measure of where violence happened and the media-based event measure is 

what we call under-reporting.  

 

Measurement error concerns the relationship between an observed variable and a specific concept it 

is intended to capture, and can be random or systematic. Both our own data and event data may have 

some random measurement error. However, event data suffer from systematic measurement error due 

to the logic of reporting. Media-based incident data (such as ACLED and SCAD) are not clean 

measures of violence but measures of reported violence. This threatens measurement validity (Adcock 

and Collier 2001). Our method guarantees equal coverage across space and provides a baseline against 

which we can estimate the sources and effects of systematic measurement error in event data. Scholars 

wishing to use event data in their own research may use these results to account for systematic 

measurement error in modeling sub-national variation in election violence. 

 



 6 

We make both substantive and methodological contributions to research on measurement error 

concerning media-based event data. Methodologically, we contribute to research on under-reporting 

by comparing two frequently used media-based event datasets (SCAD, ACLED) to new datasets on 

constituency-level election violence. Our novel approach, captured in the Malawi Election Monitor 

Survey (MEMS) and Zambia Election Monitor Survey (ZEMS), uses systematic expert surveys with 

domestic election observers to map election violence. This new approach is designed to ensure 

consistent national coverage at the constituency level. Using two recent African elections, Malawi 2014 

and Zambia 2016, we compare these constituency-level expert survey data to SCAD and ACLED. 

Based on these comparisons, we then sign the direction of the systematic measurement error likely to 

result from using media-based event data to capture election violence.  

 

Substantively, we document under-reporting not only in rural areas but also outside expected violence 

hotspots and disproportionately in the pre-election period.  We show that the consequences of these 

systematic measurement errors are severe, generating significant relationships where none exist and 

also different effect magnitudes. Our findings have important implications for scholars conducting 

empirical research on election violence, but also for those using other media-based event data on issues 

such as social mobilization or civil conflict.  

 

To be clear, our argument is not that event data are entirely unsuitable for research on election violence. 

For large-N cross-national analyses, such event data often remain the only easily accessible data source. 

However, scholars should be aware of systematic measurement errors in these data, should be careful 

when interpreting results, and use appropriate models to analyze the possible consequences of such 

errors. Our substantive results cast doubt on some of the most important empirical work on the 

frequency, location, and timing of election violence. Taken together, our findings raise a larger issue, 
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as it suggests that the current state of knowledge on election violence may well be affected by 

systematic biases when using violence measures from media-based event data. 

 

2. Potential Systematic Measurement Error When Using Media-Based Event Data 

 

Geo-coded data on social conflict creates new opportunities to conduct cross-national (e.g. Burchard 

2015; Daxecker 2014; Goldsmith 2015) as well as sub-national election violence research (e.g. Reeder  

and Bech Seeberg 2018; Buchard 2015; Ishiyama et al. 2016; Linke 2013). We focus on two such 

datasets: ACLED (Raleigh et al. 2010) and SCAD (Salehyan et al. 2012) and concentrate particularly 

on their ability to capture subnational variation in election violence.4 In this paper we will compare 

these datasets with our own collected expert survey data (M/ZEMS). 

 

Neither ACLED nor SCAD were designed with the primary purpose of capturing election violence 

but both have been used for this purpose (e.g. Reeder and Bech Seeberg 2018; Buchard 2015; Daxecker 

2014; Ishiyama et al. 2016; Linke 2013). We focus on ACLED and SCAD because of their popularity 

and their comparability to M/ZEMS data. ACLED, SCAD, and M/ZEMS all aim to capture conflict 

events in African countries sub-nationally, include lethal as well as non-lethal incidents, and events 

inside as well as outside of civil wars.5  

 

ACLED and SCAD are also similar to each other in that they both document conflict events in Africa 

based on media sources, and offer a geographic location indicator. They also differ in a number of 

                                                      
4 A third frequently used dataset, the UCDP-GED (Croicu and Sandberg 2015), could also possibly be used for this 
purpose but only includes fatal incidents which makes it less comparable to the two datasets described above, and even 
less comprehensive for capturing violence. 
5 ACLED 2012 codebook pages 3, 16; SCAD 2014 codebook pages 1, 3. About 88 percent of all ACLED and SCAD 
events recorded are non-lethal. 
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ways. In terms of news sources, ACLED uses a variety of local, regional, national newspapers, and 

NGO reports to locate violent events. SCAD’s data collection is limited to two international news 

agencies: Associated Press and Agence France-Presse.6 Importantly, that means SCAD excludes all local 

newspapers. For the two countries included in this paper, it means that SCAD excludes local 

newspapers such as Malawi’s Malawi Nation and Malawi Times and Zambia’s The Post, Times of Zambia, 

and Zambia Daily Mail..  

 

There are at least two preconditions for mapping constituency-level election violence: geo-precision 

and election specificity. In terms of geo-precision, we must be able to place each violent incident within 

the boundaries of an electoral constituency. One limitation of both ACLED and SCAD is that none 

of them were designed to map incidents into electoral constituencies and the precision of the 

geographic coordinates is often limited. For instance, a newspaper article may name the district of an 

election violence event, but a district (as in the case of Malawi and Zambia) may have several 

constituencies.7 The second precondition for mapping election violence is that we can distinguish 

election violence from other forms of social conflict, which are not directly related to the electoral 

process. Although neither of the two datasets is particularly focused on election violence, they provide 

ways to filter election-specific violence – with more or less objectivity and replicability. An election 

“issue” filter exists in SCAD but not ACLED, so that single-sentence incident narratives must be used 

for ACLED, which can be ambiguous in terms of electoral relevance.8  

 

                                                      
6 SCAD codebook, page 1.  
7 ACLED codes the precision of the event. However, not even the highest geographic precision (spatial precision=1) 
guarantees that an event is placed in the appropriate constituency. Precision = 1 means that a town is specified; however, 
we might not know the location within the town where the incident occurred. For instance, the Zambia’s capital Lusaka 
has 14 constituencies.  
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The fundamental problem of media-based event data is that they are likely to underreport violence, 

especially lower-scale violence that is overshadowed by other, more dramatic events. Some violent 

events are unlikely to be picked up by newspapers. For an event to appear in the media, a journalist 

needs to know and write about it, and an editor needs to decide to publish it. Yet both actors face 

constraints. Journalists face physical and economic constraints, they routinely make decisions about 

where to go and trade off one location over another. In deciding where to go, journalists consider 

where (more important) events are likely to happen, how to reach these places, and how to publish 

stories from there. If notable events are likely to happen in both places A and B, but A is within easier 

reach or offers other conveniences, then journalists choose A over B. Such patterns are reinforced if 

journalists are mainly freelancers, paid per published story. Thus, journalists tend to privilege towns 

over villages, central areas over more remote ones, and places with access to better communication 

tools.9 However, even if journalists see/hear and write about an event, it does not guarantee publicity. 

Editors also face constraints on what to publish; these can be space constraints due to paper/column 

space, or political constraints as to what is fit for print given the outlet’s preferences and government 

policies. As a result of these constraints, many events do not make it into the media, and thus do not 

appear in event datasets based on media outlets. 

 

This fundamental problem of media-based event data also applies to the case of election violence. 

Based on these reporting dynamics inherent in media, we argue that underreporting varies by election 

cycles, by connectivity, and by expectations of violence. As for electoral cycles, general underreporting 

should be especially noteworthy in the longer pre-election period where journalists are likely to be less 

alert on possible violence. After elections, however, journalists pay closer attention to reactions to the 

                                                      
9 E.g. cell phone or internet connection; see Öberg and Sollenberg 2011, 55 
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election results and process, and any contestation or unrest. We hence formulate the following 

hypotheses:  

 

Underreporting Hypothesis (H1): Media-based conflict event data tend to under-report incidents of election violence. 

Pre-Election Hypothesis (H2): Media-based conflict event data tend to under-report incidents of election violence more in 

the pre-electoral than post-electoral period. 

 

These conjectures are important because underreporting of election violence in media-based event 

data can paint a misleading picture of security concerns in relation to elections. A misrepresentation 

of the relative frequency of pre- and post-election violence can also distort research on the timing of 

election violence. For instance, using Reuters news database, Bhasin and Gandhi (2013) show that 

most government electoral repression happens after rather than before elections, but this result could 

have been affected by an increased propensity for the media to report on post-election violence. In 

addition to distorting studies on the timing of violence, under-reporting can also generate inference 

problems for violence studies more broadly if the underreporting is systematically related to the 

independent variable (Weidmann 2016; Wooldridge 2006). Below we outline two different sources of 

possible under-reporting: (1) constituency connectivity and (2) expectations of violence. We argue that 

both of these sources may create media under-reporting, systematic measurement error, and thus 

biased estimate and inaccurate inference from (election) violence studies using media-based event data.  

 

2.1 Constituency Connectivity 

 

Sub-national units vary vastly in their level of connectivity. This is especially true in the developing 

world, where infrastructure is poor, mobility limited, and access to electricity, the internet, and mobile 
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networks restricted. Journalists and editorial offices are based in cities and organizational life is much 

denser in major urban areas. We should hence see a significant urban bias in the reporting of election 

violence. Similar arguments have been made about the measurement of social conflict more generally 

(Weidmann 2016) and state terror (Davenport and Ball 2002). We hence formulate the following 

hypothesis: 

 

Connectedness Hypothesis (H3): The less connected a constituency, the greater the extent to which media-based conflict 

event data under-report incidents of election violence within the constituency.   

 

Connectivity driving underreporting is important because much literature on election violence argues 

that election violence is a predominantly urban phenomenon (Burchard 2015; Wilkinson 2004). 

Possible systematic measurement error in relation to constituency connectivity could have significant 

ramifications as the level of violence in less urban, more remote places is likely under-estimated. Even 

more troubling, urban-rural contrasts in Africa are stark and local political dynamics differ significantly 

between cosmopolitan African cities, regional commercial centers, densely populated commercial 

agricultural zones, and semi-arid pastoral regions. Many locations that have been hypothesized as high-

risk areas for election violence, including ethnically diverse cities (Straus 2011), agricultural settlement 

schemes (Boone 2011; Kanyinga 2009), and resource extraction sites (Bratton 2008) are also areas with 

high population density. Population density and electoral competition correlate highly, with cities and 

highly populated rural areas showing significantly higher levels of political competition than low-

density rural areas dominated by subsistence farming and pastoral areas (Wahman and Boone 2018). 

Population density also serves as a strong proxy for modernization and economic development. Figure 

1 shows the relationship between constituency-level population density, political competition, ethnic 
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fractionalization, and economic development 10  in our sample. Population density is significantly 

correlated with political competition, ethnic fractionalization, and economic development (night light 

density). This is important for studies on sub-national election violence because relationships between 

socio-economic conditions, population density, political competition, and election violence are 

difficult to disentangle if underlying data fail to record election violence equally in high and low 

population density areas. We return to this issue in the robustness section. 

 

 

 

                                                      
10 Following a significant literature in development economics and geography we approximate sub-national wealth with 
night light density (Weidmann and Schutte 2016). For each constituency we take the mean score, divide it by the land 
area to get the mean night lights per square kilometer, add 1 to avoid losing observations that equal 0, and take the 
natural log. Data from United States National Oceanic and Atmospheric Association’s (NOAA) National Geographic 
Data Center have been aggregated to the constituency level by Boone (2016).  
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2.2 Expectations of violence  

 

In the run-up to elections, journalists and other country specialists often have expectations about 

where in the country violence is more likely to occur. These locations may be politically contested 

(high competition) or have a history of election violence. Election observers often invest more effort 

into monitoring such election “hotspots.” Civil society also tends to increase efforts to prevent 

violence, and representatives of international organizations tend to be more present in such locations. 

The increased attention devoted to such hotspots should increase the probability of incidents being 

captured and reported. Hence we formulate the following hypothesis: 

 

Hotspot Hypothesis (H4): Media-based conflict event data tend to under-report incidents of election violence in elections 

outside expected violence hotspots. 

 

Such potential systematic measurement error from using media-based conflict data are problematic 

because they reinforce our pre-conceptions of the causes of election violence. Wilkinson (2004), using 

data from Indian newspapers, finds that election-related ethnic riots11 tend to recur in the same 

locations. However, the logic presented above suggests that there may be a tendency for media to 

increase reporting from areas with a violent history.  

 

3. An Alternative Measure: Expert surveys for mapping constituency-level election violence 

 

As an alternative to media-based event data, we propose a new technique of mapping election violence 

based on systematic surveys with domestic election monitors. The advantage of this method is that it 

                                                      
11 Wilkinson does not talk about election violence specifically. We address this in section 5.3. 
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ensures consistent national coverage by systematically collecting data on a constituency-to-

constituency basis regardless of the constituency’s salience, connectivity, or expected levels of election 

violence. This study builds on two original constituency-level surveys, the Malawi Election Monitor 

Survey (MEMS) carried out in relation to Malawi’ 2014 general election and the Zambia Election 

Monitor Survey (ZEMS) carried out in relation to Zambia’s 2016 general election. Descriptive statistics 

in the appendix document that Malawi and Zambia are representative of African countries in terms of 

election violence levels and drivers, and thus allow generalization.  

 

We use our Malawi and Zambia surveys as our benchmark for empirical comparison with data from 

ACLED and SCAD. Both surveys were executed in collaboration with leading, non-partisan domestic 

election observer organizations, following the same general principles. We carried out our Malawi 

survey with the assistance of the country’s leading domestic election observation organization, the 

National Initiative for Civic Education (NICE). NICE engaged its full-time district civic education 

officers, regional civic education officers, and community volunteers in long-term monitoring and 

party mediation, and also engaged a total of 4,500 stationary monitors in short-term observation during 

election day in every polling center. In Zambia, we collaborated with two organizations, the 

Foundation for Democratic Process (FODEP) and the Southern African Centre for Constructive 

Resolution of Disputes (SACCORD). FODEP and SACCORD are two leading domestic election 

observation organizations who jointly covered all constituencies in the country, deploying a combined 

9,000 election monitors throughout the election cycle. NICE, FODEP, and SACCORD are all non-

partisan organizations with international funding. They all have a clear organizational structure and 

provide their monitors with extensive training. In both Malawi and Zambia, we carried out phone 

interviews with three selected observers in each constituency.  
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Importantly, respondents were not a random sample but instead deliberately a sample of experts, as in 

other prominent expert surveys on election integrity.12 The survey respondents for MEMS and ZEMS 

were recruited from the NICE, FODEP, and SACCORD networks. The Executive Directors of 

NICE, FODEP, and SACCORD commissioned the regional and district coordinators to collaborate 

in identifying three suitable respondents in every constituency (193 constituencies in Malawi and 156 

in Zambia). In particular, we asked for individuals who had appropriate monitor training, a thorough 

understanding of the entire electoral cycle for a particular constituency, and no known partisan 

affiliation. The surveyed monitors include the constituency coordinators for each constituency as well 

as two additional suitable monitors. In total, we conducted 579 interviews in Malawi and 464 interviews 

in Zambia. Overall inter-coder reliability scores are reasonable: they are high for Malawi but a bit lower 

for Zambia pre-election violence. 13  We would not expect perfect scores since constituency 

coordinators (coder 1) are higher in the hierarchy and thus receive more information than coders 2 

and 3. Indeed, constituency coordinators (coder 1) generally report more violence than other coders.14 

To err on the side of caution given a lower score in inter-coder reliability for pre-election violence in 

Zambia, we conduct analyses of under-reporting for the two countries separately; we show pooled 

results in the appendix. Generally, similar patterns of under-reporting emerge in Malawi where inter-

coder reliability is larger as in Zambia where inter-coder reliability is lower.  

 

                                                      
12 Norris et al. 2015. MEMS and ZEMS experts have knowledge about the entire constituency rather than particular polling 
stations. During the election cycle our experts received information about events in the entire constituency and the survey 
asked about events in the entire constituency.  
13 We use the Kuder-Richardson statistic which is similar to Cronbach’s Alpha but designed for binary variables instead 
of Likert scales. Kuder-Richardson scores range from 0 to 1 with higher scores indicating higher reliability. Kuder-
Richardson scores above 0.5 are usually regarded as reasonable. Pooling the two countries, the ICR score for pre-election 
violence is 0.56 and for post-election violence is 0.70. Malawi’s scores are 0.74 for pre-election violence and 0.86 for 
post-election violence.  
14 In Zambia pre-election violence, the case with the lowest ICR score, we observe the largest deviation between 
coordinators and the other coders: coordinators (coder 1) reported violence in 25% of constituencies compared to only 
15% for coders 2 and 3. In Malawi pre-election violence, the same pattern persists but the difference is smaller: 
coordinators (coder 1) reported violence in 17% of constituencies compared to 13% for coders 2 and 3.  
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The original MEMS survey in June 2014 asked respondents whether any pre-election or election-day 

violence had occurred in their constituency.15 To validate our findings and ensure consistency across 

respondents and consistency with our definition of election violence, we also asked respondents who 

indicated violence for a narrative of the event.16 The narratives provide more precise information on 

the location, severity, and actors involved in the violence. In some cases, the respondents’ violence 

narratives did not meet our definition of election violence (such as tense rhetoric); here, we changed 

the coding to no violence for that respondent. Our datasets represent a wealth of material at the 

constituency level with several monitor reports per unit and qualitative descriptions.  

 

Our analysis hinges on the assumption that our indicator of election violence based on experts’ 

evaluations is measured without systematic error.  One line of criticism of this assumption would be 

that the roles our experts hold may give them an interest in either downplaying or exaggerating the 

extent of violence. While we cannot rule this out completely, several aspects – including the non-

partisanship of the monitor organizations and monitors, the timeline and detail of the surveys – make 

this unlikely. The first potential concern is individual partisan biases among monitors. Although we 

would not expect any institutional bias within our non-partisan monitoring organizations, we cannot 

exclude the possibility of individual biases. However, asking for detailed event narratives makes it less 

likely that respondents fabricate incidents and also allows assessing the reported events for validity. A 

second concern is that monitors may themselves be affected by the media sources included in ACLED 

and SCAD. 17 However, our data would mitigate these systematic measurement errors because – in 

                                                      
15 The exact survey question was: “Thinking only about the election in [Name of constituency]. To what extent have you 
personally experienced or received credible reports of Pre-electoral violence (i.e. physical violence targeted at voters, party 
officials, candidates, monitors or election officials).  
16 In Malawi, we conducted a second round of surveys in November 2014 during which we re-contacted all the 
respondents who had indicated violence in the first survey round. In Zambia, we did not perform a follow-up survey, but 
instead asked for detailed narratives already in the first round of surveys. 
17 To be precise probably more the sources in ACLED than the sources in SCAD: SCAD is based on two international 
media and few monitors im Zambia and Malawi are likely to be consumers of these sources. 
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contrast to journalists – domestic monitors provide coverage across all constituencies, regardless of 

connectivity, violence history, or electoral period. Lastly, there could be recall error if monitors forget 

about incidents that were less serious or happening earlier in the election cycle. However, the empirical 

results – showing a significantly higher number of election violence observations in our monitor data 

than in the media-based event data – give us confidence that recall error is not a serious issue.  

 

 

4. Research Design  

 

To test the hypotheses about systematic measurement error which results from using media-based 

conflict event data to capture election violence across space, we use expert surveys as a benchmark 

and then compare them to media-based event data in bivariate graphs and multivariate regressions. 

That is, we measure election violence before/after elections in each constituency in each of the four 

datasets (ACLED, SCAD, MEMS/ZEMS), and then generate three sets of outcome measures: (1) 

consistency between media and monitor datasets to test the under-reporting and pre-election hypotheses 

(H1 and H2) in bivariate graphs; (2) under-reporting in media as compared to monitor datasets to test the 

consistency and hotspot hypotheses (H3 and H4), using measures for our hypothesized drivers of 

under-reporting; and (3) “raw” violence measures from each dataset to investigate the consequences of 

under-reporting for inference, by emulating a canonical study of election violence in Africa. 

 

4.1 Empirical Strategy to Assess the Consequences of Underreporting 

 

To assess the consequences of underreporting for inference, we run identical model specifications on 

different dependent variables, i.e. violence measures drawn from the monitor surveys and media event 



 18 

data. From each of the expert surveys (MEMS, ZEMS) we code two variables capturing election 

violence at two different stages of the electoral cycle. For example, the variable MEMS pre-election violence 

is a binary variable based on the Malawi expert survey coded 1 for any electoral violence before or on 

election-day and 0 otherwise. We code violence if one or more of the constituency’s observer 

respondents reported election violence. Similarly, the variable MEMS post-election violence is coded 1 for 

electoral violence after election-day and 0 otherwise in Malawi. Pre-election violence occurred in 22 

percent of constituencies in Malawi and 51 percent of constituencies in Zambia. Post-election violence 

occurred in 4 percent in Malawi and 9 percent in Zambia. Figures 2 and 3 illustrate the spatial 

distribution and frequency of violence in the pre- and post-election period in the two countries. 
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We source media-based event data from SCAD and ACLED, using their geocoded information to 

map these events to constituencies. To filter electoral violence from other violence which just happens 

to occur during the election period, we use dataset-specific strategies. For SCAD, we filter electoral 
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violence by using their issue variable, which categorizes events as election-related or not (issue=1). For 

ACLED, we filter by narrative because no objective filter is provided. These strategies follow previous 

studies using these datasets for information on electoral violence (Daxecker 2014). We have also tried, 

as best as possible, to match the time frames of pre- and post-election violence in the three sources. 

The MEMS/ZEMS surveys asked for “pre-election violence during the general election campaign.” 

To approximate this time period, we follow the convention in the literature (e.g. Birch and Muchlinski 

2018; von Borzyskowski 2019; Daxecker 2014) and collect all events in ACLED and SCAD that 

occurred within six months before the election. While the official campaigning periods are only 2-3 

months in Zambia and Malawi, the longer 6-month cutoff effectively gives ACLED/SCAD more 

chances to report an event, thus reducing the risk of documenting under-reporting in media sources.18 

For post-election violence we include the period from election day until two weeks after the final 

results are announced (which is about 3 weeks after the election). This is the time when we start 

conducting the monitor surveys. In both Malawi and Zambia post-election violence had settled at this 

point. 19 

 

 

 

 

 

 

 

                                                      
18 Empirically the vast majority of incidents in SCAD and ACLED cluster close to election day within the official 
campaign period. The longer six-month window for ACLED/SCAD also accommodates the possibility that monitors 
may refer to events that happened before the official start of the campaign.  
19 The last recoded event for Zambia was 11 days after the election in ACLED and 5 days after the election in SCAD. 
The last event in Malawi was 10 days after the election in both ACLED and SCAD. 
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We create the “raw” violence variables ACLED pre-election violence, ACLED post-election violence, SCAD 

pre-election violence, and SCAD post-election violence. According to ACLED (SCAD) data, pre-election 
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violence affected 4 (1) percent of constituencies in Malawi and 17 (0.6) percent of constituencies in 

Zambia. Also, according to ACLED (SCAD) data, post-election violence affected 2 (0.5 percent of 

constituencies in Malawi and 9 (0.6) percent of constituencies in Zambia. Note that both media-based 

event datasets record significantly lower rates of violence than our expert surveys. We also combine 

information from ACLED and SCAD to emulate what an analyst of electoral violence might do, i.e. 

combining all available media-based event data. Thus, we generate variables called ACLED/SCAD 

combined pre-election violence and ACLED/SCAD combined post-election violence. They are coded 1 when 

either or both media datasets indicate violence and 0 when none does. These are our dependent 

variables when analyzing the consequences of systematic measurement error. 

 

For model specification, we emulate a recent study on constituency-level election violence in Africa by 

Reeder and Bech Seeberg (2018).20 Like Reeder and Bech Seeberg, we control for urbanization,21 night 

time lights (economic development),22 competitiveness,23 and democracy.24 Further, we use multiple 

model specifications (logit/OLS, country fixed effects, region clustered standard errors) to ensure that 

it is indeed the varying data source (monitor vs. media) rather than varying model specification that 

drive the differences in results.  

 

4.2 Empirical Strategy to Test Hypotheses 1 and 2 

                                                      
20 Reeder and Bech-Seeberg are particularly interested in differences between intra-party and inter-party violence and 
hence use a dummy for that as well as measuring time until election. We do not include these variables in our models as 
we (like most of the election violence literature) do not distinguish between intra- and inter-party violence. 
21 Reeder and Seeberg use grid data and measure the percentage of each grid cell covered by urban areas, averaged over 
each constituency. This measure yields little variation in Malawi and Zambia, as it suggests that 90 percent of all 
constituencies are less than 1 percent urban, and even urban constituencies are estimated to be less than 10 percent 
urban. Instead we use logged population density, which varies widely and better captures differences between semi-urban 
and rural locations. Data comes from the latest available census (2008 Malawi, 2010 Zambia). 
22 Night lights data from Boone (2016) and NOAA, as described above. 
23 Competitiveness is measured as 1- vote margin in the last presidential election (Malawi Electoral Commission and 
Electoral Commission of Zambia) 
24 Following Reeder and Seeberg we use national level Polity IV scores. This control is redundant in the models using 
country-fixed effects.  
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Using the “raw” violence variables from both the expert surveys and the media event datasets (as 

detailed in the previous section), we then generate consistency variables to test hypotheses about the 

existence of under-reporting generally and particularly in the pre-election period (H1 and H2). 

Consistency measures agreement about whether the two types of datasets report violence for any given 

constituency and electoral period. For example, the variable consistency SCAD pre-election violence for 

Malawi is coded 1 when both MEMS and SCAD reported pre-election violence, or when neither 

dataset reported pre-electoral violence for a given constituency. It is coded 0 when MEMS reported 

violence but SCAD did not; and when SCAD reported violence but MEMS did not. We code 

equivalently the variables consistency SCAD post-election violence, consistency ACLED pre-election violence, and 

consistency ACLED post-election violence for both countries. Similar to the violence measures, we also 

combine the media datasets and generate consistency ACLED/SCAD combined pre-election violence and 

consistency ACLED/SCAD combined post-election violence. These are coded 1 when monitor reports are 

consistent with either ACLED or SCAD, and 0 otherwise. We test hypotheses about the existence of 

under-reporting generally and particularly in the pre-election period (H1 and H2) with the use of 

bivariate graphs of distributions and paired t-tests.  

 

4.3 Empirical Strategy to Test Hypotheses 3 and 4 

 

To test hypotheses 3 and 4 about the drivers of under-reporting being connectivity and hotspots. To 

capture connectivity, we measure population density (i.e. number of people per km2) using the most recent 

census data.25  

                                                      
25 We divide the variable population density by 10 to ease interpretation of the coefficient. The latest available census is  
2008 (Malawi) and 2010 (Zambia). 
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To capture anticipated hotspots, we measure history of election violence and vote margin from the presidential 

election. The variable history of election violence is sourced from the two media-based event datasets 

(ACLED and SCAD) for all prior elections. While media-based event data have significant blindspots 

(as we document in this paper) we use these data for capturing history because it is precisely the widely 

reported violence that might drive journalists’ expectations of more violence and thus reporting 

dynamics. This variable is categorical and coded 0 when no violence was widely reported for a 

constituency in previous elections, 1 for widely reported violence in one previous election, and 2 for 

widely reported violence in multiple previous elections. In line with the Hotspot Hypothesis (H4), we 

expect a negative coefficient: hotspot constituencies – those with a history of election violence – should 

be less subject to under-reporting in the current election. 

 

As another indicator of anticipated hotspots, we also use vote margin from the Presidential election 

(from the Malawi Electoral Commission and Electoral Commission of Zambia, respectively). That is, 

we use presidential vote margin results from the current election in the models of post-election 

outcomes in both countries. We use vote margin results from the previous election (the 2015 

presidential by-election) for pre-election outcomes in Zambia. However, in the case of Malawi we also 

use current results for pre-election outcomes. We do so because these dynamics (competitive vs. non-

competitive constituencies) were widely anticipated and major realignment in the Malawian party 

system (the government party had split into two parties) made 2009 electoral results a poor 

approximation for 2014 competitiveness. Note that this could introduce post-treatment bias in the 

models of pre-election consistency for Malawi, since this variable is observed only after election-day. 

However, the results are robust to dropping that variable in the pre-election period.  
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We include several control variables to capture other potential causes of systematic measurement error. 

Since poorer locations may be less likely to attract media attention, we include economic development 

in terms of electrification (i.e. the percentage of households with electricity in a constituency, census 2008 

and 2010)26 and human development in terms of literacy (the percentage of literate citizens over the age 

of 15 in a constituency, census 2008 and 2010). Descriptive statistics of all variables are in Appendix 

Tables A1 and A2. 

 

To test the Connectivity and Hotspot Hypotheses (H3 and H4), we estimate the following statistical 

model  

 

where β1

 

and β2 are the parameters of interest on the key explanatory vectors Ccr and Hcr, which capture 

connectivity and hotspot variables and thus test hypotheses 3 and 4. DV are the respective dependent 

variables: consistency between survey and media data for analyses of the causes of systematic 

measurement error, and violence measures for analyses of the consequences of systematic measurement 

error. Further, the vector X’cr represents a set of control variables, εcr is the idiosyncratic error, and the 

subscripts c stands for constituency, and r for region. The model is estimated using logit with region-

clustered standard errors to account for the lack of independence between constituencies within the 

same regions. Constituencies within one region might differ from constituencies in another region 

because regions differ somewhat in remoteness/distance to the capital as well as language, which might 

influence reporting. We thus cluster standard errors by region.27 Our estimates represent the average 

constituency-level variation within the same subnational region and conditional on the included 

                                                      
26 The average electricity prevalence is quite low in Malawi (under 5 percent of households), so this coefficient has a 
rather large magnitude in the regression results. 
27 We cannot use region fixed effects in many of the models because several regions have no variation in violence. This is 
especially true for the post-election models and for SCAD. 
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controls. We estimate models on each country – Malawi and Zambia – separately. We also provide 

pooled models in the appendix.  

 

5. Results  

5.1 Reporting of constituency-level violence  

 

To assess the first two hypotheses, Figures 4-5 document consistency between the expert surveys and 

media-based event data. Figure 4 shows consistency in Malawi and Figure 5 equivalently in Zambia. 

In each of these Figures, we show four graphs (from left to right): monitor vs. ACLED pre-election, 

monitor vs. ACLED post-election, monitor vs. SCAD pre-election, and monitor vs. SCAD post-

election. Each marker represents a constituency; we add random noise around the markers to visualize 

the relative frequency. The location of each data point within the graph denotes whether a constituency 

was coded consistently in the media-based event data and expert survey. Consistently coded 

constituencies are located in the upper right (1,1) if both types of datasets coded a constituency as 

violent; or the lower left (0,0) if both datasets coded it as non-violent. Inconsistently coded 

constituencies are located in the lower right (1,0) if media-based datasets coded violence but the expert 

survey did not; and in the upper left (0,1) if the expert survey reported violence but the media event 

data did not. Numbers indicate the number of constituencies in each group.  

 

 

 

 

 

 



 27 

 



 28 

Figures 4-5 provide empirical support for the existence of general under-reporting and particularly in 

the pre-election periods (Hypotheses 1 and 2). Figures 4-5 show several constituency observations 

located off the diagonal, indicating disagreement between the datasets. In most cases, this disagreement 

involves constituencies where the media-based event data reported “no violence” but the expert survey 

reported violence. Those are the cases clustered in the upper left corner of each graph where 

ACLED/SCAD=0 and MEMS/ZEMS=1 (marked by solid red triangles). In a minority of the 

inconsistencies, the relationship is reversed: there are a handful of cases where media data reported 

violence but the expert surveys did not (lower right corner of Figures 4-5). However, overall the 

relationship between media-based event data and expert survey data is one in which media data tend 

to under-report incidents of election violence.  

 

The underreporting of violence in media data compared to survey data is statistically significant. For 

example, for the pre-election period in Malawi, the survey data indicate that 22 percent of 

constituencies experienced violence, while ACLED indicates 4 percent and SCAD 1 percent. Paired t-

tests indicate that the difference between the survey measure and each of the media measures is highly 

statistically significant (p<0.001).28 For the post-election period, these differences are somewhat less 

severe (4 percent versus 2 and 1 percent) but still statistically significant (p<0.09, 0.01). From the eight 

comparisons, all but one 29  result in statistically significant differences between survey and media 

measures.  This supports Hypothesis 1 about the existence of underreporting in violence measures 

drawn from media-based event data. 

 

                                                      
28 We use paired t-tests because the same constituencies are measured both in survey and media data, so there should be a 
strong relationship between the scores. This test looks at the difference in scores for each constituency with the null 
hypothesis that the mean difference is zero. We reject the null hypothesis in almost all cases. 
29 The one exception is the paired t-test on post-election estimates between survey and ACLED in Zambia.  
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Moreover, the underreporting is significantly stronger before elections than after elections, supporting 

Hypothesis 2. Figures 4-5 and paired t-tests indicate that media-based event data under-report violence 

more in the pre- than in the post-electoral period. Tables A1 and A2 in the appendix show descriptive 

statistics: in the pre-election period, consistency between the media data and expert survey ranges 

between 49 and 77 percent, while it ranges between 90 and 96 percent in the post-election period. 

Importantly, paired t-tests indicate that these differences between consistency before and after 

elections are highly statistically significant (p<0.001). That is, consistency between survey and media 

data is significantly higher after elections than before elections.  

 

The general trend shows that ZEMS/MEMS are more capable of picking up events than 

SCAD/ACLED. Nevertheless, there is a handful of constituencies where ACLED/SCAD found 

violence but MEMS/ZEMS did not. Looking at these cases we find a number of explanations as to 

why monitors may not have reported these incidents. In the case of Zambian pre-electoral violence, 3 

of 10 cases concern the burning of billboards. This may be examples of recall bias where monitors 

failed to remember this relatively mild form of violence. There are also cases where we have reason to 

question the authenticity of the newspaper reports. The ACLED data include both heavily biased 

government newspapers and online publications (such as the Zambian Watchdog) without editorial 

control.  

 

5.2 Causes of systematic measurement error  

 

What drives these substantial differences in violence reporting between media and expert survey data? 

We argue that under-reporting is contingent on constituencies’ connectivity and expected violence 

hotspots, as stipulated in Hypotheses 3 and 4. We test these hypotheses through multivariate analyses. 
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Tables 1 and 2 show estimated logit coefficients for the determinants of under-reporting, that is 

whether monitors reported violence but media sources did not. Table 1 shows results for Malawi and 

Table 2 for Zambia. Columns 1 and 2 show the determinants of under-reporting between MEMS and 

ACLED; columns 3 and 4 show under-reporting for MEMS/SCAD; columns 5 and 6 show under-

reporting for MEMS with the combined ACLED/SCAD measure. Table 2 is structured the same way 

but for ZEMS data in Zambia. We remove the capital, Lusaka, from the sample;30 we show results 

with Lusaka included in Appendix Table A3. We also provide results pooling both countries in the 

appendix (Table A4); results are robust. An important caveat is needed here: there are fewer post-

election violence events than pre-election violence events and also more consistency in the post-

election period. The low number of inconsistencies in the post-election period makes the post-election 

results more unstable.  

 

                                                      
30 ACLED has a particular problem with geo-precision for the geocraphically small constituencies in Lusaka. Events are 
clustered in the most central constituency, Lusaka Central, although Lusaka is comprized of 13 constituencies. As a 
consequence, Lusaka constituencies that are not Lusaka Central have missing events as they have wrongly been given the 
geographic coordinates of Lusaka Central.  
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The results in Tables 1 and 2 provide support for the argument that connectivity drives underreporting 

(Hypothesis 3) as well as some – concededly weaker – support for the argument that anticipated 

hotspots drives underreporting (Hypothesis 4). The estimated coefficients on population density are 

negative and significant in almost all models of Tables 1 and 2. This suggests that higher population 

density (higher connectivity) is associated with less under-reporting. This supports the Connectivity 

Hypothesis (H3). While the coefficients on population density are highly statistically significant for Malawi 

(p<0.01), for Zambia three of these coefficients are only borderline significant (p<0.10) or 

insignificant. All coefficients point in the hypothesized direction. As noted above, population density 

in the African context is highly correlated with political competition (a variable that has been associated 

with election violence in the literature). In table A5 and A6 of the appendix we re-run the models 

without controlling for vote margin in the presidential election. This modified specification strongly 

reinforces the results in relation to population density. Without controlling for vote margin, the 

coefficient for population density is negative and significant for all post- and pre-models for both 

Malawi and Zambia.31  

 

Surprisingly, SCAD and ACLED even missed some fatal cases of pre-election violence in rural areas. 

For example, lethal election violence in Malawi occurred in both Mulanje (where supporters of the 

incumbent party killed a DPP supporter for wearing DPP regalia) and Rumphi (where a person 

interrupting an AFORD meeting was killed). In Zambia, one person was stabbed to death in clashes 

between the Patriotic Front (PF) and the United Party for National Development (UPND) in Magoye, 

Southern Province, again without the story reaching the news media. These events clearly show the 

problem of underreporting violence outside major urban centers.  

                                                      
31 We also replicate Tables 1 and 2 without controlling for population density; those results are in Appendix Tables A7 
and A8. 
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Among the control variables, the positive coefficient on electrification was unexpected. However, 

electrification is strongly correlated with population density (the correlation coefficient is r=0.79 in 

Malawi and r=0.52 in Zambia). When electrification and population density are interacted (Tables not 

shown), the coefficient on the interaction term is negative and significant in all models. In line with 

the argument, this indicates that more populated and developed places have less under-reporting in 

the media-based event data.  

 

In addition to finding evidence that connectivity generates underreporting, we also find some evidence 

that expected hotpots receive differential attention. However, these results are weaker and not 

consistent. Recall that we use two variables to capture potential hotpots: competitiveness (vote margin) 

and election violence history. Election violence history is negatively and significantly associated with 

underreporting pre-election violence in Malawi (Table 1 columns 1, 3, 5). This is evidence in favor of 

the Hotspot Hypothesis (H4). However, coefficients on history of violence point in the opposite direction 

in columns 2, 4, 6 of Tables 1 and 2, indicating that previous violence hotspots are more subject to 

underreporting. This is surprising and counter to our expectation. However, as noted earlier, the low 

number of constituencies with post-election violence and the low underreporting in the post-election 

period should caution strong inference from these post-election models.  

 

For the second measure of anticipated hotspots, vote margins, the coefficients are consistently in the 

hypothesized direction (positive), indicating that larger vote margins (less competitive constituencies) 

tend to have more underreporting. While the coefficients are consistently in the expected direction, 

the relationship only reaches statistical significance in the models for post-election violence in Zambia 



 34 

(Table 2, columns 2, 4, 6). We thus conclude that while there are some signs of underreporting being 

more pronounced in anticipated hotspots, that evidence is weaker and limited to particular cases.  

 

These analyses provide support for the argument that election violence measures drawn from media-

based event data have systematic measurement error. Both media-based event sources under-report 

violence; this under-reporting is more pronounced before than after elections; the systematic 

measurement error is driven by connectivity, with more densely populated areas receiving better 

coverage; measurement error also seems to be generated by journalists going to and reporting from 

highly competitive areas within the country, but this seems limited to post-election violence (recent 

competition) and the case of Zambia. We now turn to the consequences of these measurement errors. 

Given that media-based event measures of violence are affected by systematic measurement error – 

how do they affect our inference? Do our substantive conclusions about the drivers of violence change 

when using different datasets?  

 

5.3 Consequences of Systematic Measurement Error 

 

To investigate this question, we change the dependent variable from underreporting to the raw measure 

of violence reported in each dataset and period. As outlined in the research design and shown in the 

descriptive statistics (Appendix Table A1, A2), these variables include MEMS pre-election violence and 

MEMS post-election violence as well as the equivalents for ZEMS, ACLED, SCAD, and ACLED/SCAD 

combined per country and electoral period. Recall that our model specification here emulates, a recent 

constituency-level study on election violence in Africa by Reeder and Bech Seeberg (2018). Following 

the analysis of Reeder and Bech Seeberg, the models include measures of urbanization, night lights, 

competition, and democracy. As in the prior analyses, we use logit and robust standard errors clustered 
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at the region.32 The results for the pre- and post-election period are in Tables 3 and 4, respectively. In 

each of these Tables, column 1 shows results for using the dependent variable from the monitor 

surveys, column 2 is for ACLED, 3 for SCAD, and 4 for the combined ACLED/SCAD measure of 

election violence.  

 

 

 

 

 

                                                      
32 We use several other model specifications for robustness (OLS instead of logit), adding country fixed effects, and not 
clustering standard errors. The Reeder/Seeberg study does not use clustering. Our results are robust to replicating Table 
3 with different model specifications; Appendix Figures A1-A2 summarize these results. 
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The results point to important differences for inference. Differences in measuring the dependent 

variable can generate significant relationships where none may exist. The coefficients on urbanization 

and night lights suggest significant relationships with violence in media event datasets, but not in the 

expert surveys. The estimated coefficient on urbanization is not significant in the monitor data but 

significant for ACLED, SCAD, and the combined media data (columns 2-4 in Tables 3 and 4). Using 

ACLED data, Reeder and Bech and Seeberg (2018) find urbanization to be significantly correlated 

with election violence at the constituency-level in their analysis of Kenya and Zimbabwe. Although 



 37 

this is not their main finding, our results here suggest that this particular positive association between 

urbanization and election violence in Reeder and Bech Seeberg may be, at least partially, an artifact of 

the data. 

 

Similar to urbanization, the coefficient on night lights (a proxy for development) is not significant for 

the monitor data but significant for SCAD and the combined media data (columns 3-4 in Table 3 and 

column 3 in Table 4). The expert survey data suggest that there is no relationship between election 

violence and urbanization and development. In contrast, the media event data suggest significant 

relationships for these variables. Researchers might also come to different conclusions about the 

substantive magnitude of the effect. For example, the marginal effect of democracy on election 

violence is smaller in media event data than in monitor data, which is illustrated in Figure 6.33  
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As an additional robustness test, we ran all our models again including all violent events in SCAD and 

ACLED (independent of whether they were directly related to the election or not) for the period under 

investigation. The results are shown in the appendix (Tables A9-A11). Including non-election related 
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violent events does not change our substantive results and adds surprisingly few additional events; in 

the case of Zambia and Malawi, most political violence in this time period was related to the election.34    

 

Based on these results for Malawi and Zambia, we propose some ways in which election violence 

studies using media-based event data may over- and under-estimate relationships. Studies using 

geocoded media-based event data tend to skew the effects of population density and development, 

showing relationships where none may exist. These over-estimates seem largely driven by the selection 

of journalists into urban areas: they are more likely to reside and report from urban, more densely 

populated, economically vibrant centers as opposed to more remote areas with worse communication 

technology. Further, studies using media-based event data might find smaller effects for some variables 

(such as democracy) than they would find using higher-quality data.  

 

6. Conclusion  

 

In this paper, we have examined the prevalence, causes, and consequences of systematic measurement 

error in violence measures drawn from in media-based event data. From qualitative work on election 

violence we know that violence varies significantly across space (Boone 2011), but in this paper we 

have discussed the potential limitations of existing conflict data for mapping such election violence 

systematically across space. As a way to assess and correct for underreporting, we have introduced a 

new expert survey-based approach for measuring election violence at the constituency level. We have 

argued that the new approach is better designed to systematically measure election violence at the 

constituency level. Although restricted to two countries in this study, Malawi and Zambia, the method 

                                                      
34 For violence after election-day in Zambia, ACLED and SCAD do not record violent events of a non-electoral nature, 
so that replicating Table 4 by including non-electoral violence yields identical results and is thus omitted. 
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could be replicated in other places. Finally, we used these new data to document the causes and 

consequences of under-reporting and systematic measurement error in media-based civil conflict 

literature, pointing to problems in achieving consistency and geocoding accuracy.   

 

So what should researchers interested in sub-national variation in election violence do with this 

information? Most research on sub-national variation in election violence are single-election studies 

(e.g. Wilkinson 2004; Dercon and Guitérrez-Romero 2012; Linke 2013; Ishiyama et al. 2016). When 

the sample is small, our survey-based approach offers a realistic and preferable alternative to existing 

media-based event data. Other research on sub-national variation includes several countries. Here, the 

most radical solution would be to altogether abandon media-based event data as a source. This would, 

however, not be our recommendation. For multi-country studies, media-based event data are more 

cost effective and enable comparisons across time and space. Thus, researchers may still wish to use 

event data but should be aware of their systematic measurement error, explicitly discuss them as 

weaknesses, and try to remedy them. As we demonstrate, violence measures from monitor and media 

data cannot be used interchangeably, so it is important for researchers to choose violence measures 

carefully and demonstrate robustness across measures where possible. The results obtained in this 

study should help researchers wishing to account for measurement error in event data. This paper has 

helped to identify some variables that may introduce systematic measurement error. It has also 

provided insights about the direction of such error. This information may be used to run sensitivity 

tests with simulated data (Gallop and Weschle 2017). Moreover, we have also shown that 

underreporting is not equal across event data sources, but higher in SCAD than ACLED. Researchers 

interested particularly in more low-scale incidents of election violence would do well to rely on data 

sources that do not solely rely on two or three international news outlets but a range of domestic and 
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non-media sources as well. For subnational studies, researchers should also investigate the accuracy of 

geocoded information in these datasets. 

 

The results in this paper also have important implications for prominent findings in existing work on 

election-related violence. Using data from Indian newspapers, Wilkinson (2004) shows, among other 

things, that ethnic riots are more common in large cities and in places with history of violence. 

However, our results suggest that newspapers are better at picking up violent events in urban areas 

and in historic hotspots. Bhasin and Gandhi (2013), using reports extracted from the Reuters news 

database, show that government electoral repression is more common after than before elections. 

However, our results suggest that media-based data record events in the post-electoral period to a 

higher extent than events in the pre-electoral period.  

 

This paper focuses on systematic measurement error in sub-national data, but many of these 

measurement errors also have consequences for cross-national work. Media freedom and journalistic 

capacity varies significantly between countries, implying that countries with better infrastructure and a 

more independent flow of information have more reports than otherwise similar countries where 

information is more restricted for political and/or capacity reasons. For instance, it seems likely that a 

higher share of incidents would be captured in a country like South Africa than in the Democratic 

Republic of Congo or Ethiopia, even if the same events happened.  

 

Our discussions have focused specifically on violence related to elections. Election violence is a topic 

where we are in particular need of sub-national data. However, we contend that our findings have 

implications for violence event-data more generally. There is no reason to believe that under-reporting 

of violence or systematic measurement error, particularly stemming from uneven reporting from urban 
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and rural areas as well as geocoding problems, would be more pronounced in and around elections 

than at time periods disconnected from the electoral campaign. In fact, the opposite is likely true. 

Elections signify a focal event, as media attention, both local and international, is high. The systematic 

measurement error and under-reporting we find on violence in media-based event data around 

elections is likely to be as high, or probably even higher, when studying violence unrelated to elections. 

Thus, researchers have to take systematic measurement error seriously when studying violence at the 

sub-national level.    
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