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Abstract 9 

Bayesian Networks (BNs) have the ability to perform inference on uncertain variables given evidence 10 

on observed quantities, which makes them relevant mathematical tools for the updating of ground-11 

motion fields based on strong-motion records or macroseismic observations. Therefore the present 12 

article investigates the use of BN models of spatially correlated Gaussian random fields as an accurate 13 

and scalable method for the generation of ground-motion maps. The proposed BN model is based on 14 

continuous Gaussian variables, as opposed to discrete variables as in previous formulations, and it is 15 

built to account for cross-correlated ground-motion parameters as well as macroseismic observations. 16 

This approach is validated with respect to the analytical solution (i.e., conditional multivariate normal 17 

distributions) and it is also compared to the USGS ShakeMap method, thus demonstrating a better 18 

ability to model jointly the inter- and intra-event error terms of ground-motion models. The scalability 19 

of the approach, i.e. its capacity to be applied to large grids, is ensured by a grid sub-division strategy, 20 

which appears to be computationally efficient and accurate within an error rate of a fraction of percent. 21 

Finally, the BN implementation is demonstrated on a real-world example (the Mw 6.2 Kumamoto, 22 

Japan, 2016 foreshock), where vector-valued shake-maps of cross-correlated intensity measures are 23 

generated, along with the integration of macroseismic observations.  24 

 25 

INTRODUCTION 26 

Over the past decade, rapid loss assessment following earthquakes has emerged as a crucial research 27 

topic, with the objective of providing emergency responders and critical facility operators with 28 

accurate estimates of intensity levels or probable damage across the affected area (e.g., Wald et al., 29 

2008; Erdik et al., 2011). For instance, at the hazard level, the updating of the spatially-distributed 30 

ground-motion field, or ground-motion map, is achieved by combining estimates from ground-motion 31 

prediction equations (GMPEs) and field observations (Wald et al., 2005; Worden et al., 2010). A 32 

comparison of the most common statistical techniques is provided by Douglas (2007) for the Les 33 

Saintes (Guadeloupe, France) 2004 earthquake. Worden et al. (2010) also provide valuable insights 34 
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into pending issues, namely: the treatment of uncertainties near the observations, the quality of the 35 

estimates for poorly-observed events and the computation of joint distributions for correlated intensity 36 

measures (IMs). A rigorous probabilistic analysis of the relation between macroseismic intensity and 37 

peak ground acceleration (PGA) has been proposed by Ebel and Wald (2003), but without accounting 38 

for correlation between spatially-distributed ground motions. 39 

The inference abilities of Bayesian Networks (BNs) appear to be appealing for such a problem because 40 

they use observations as evidence in order to update directly the prior distributions of various 41 

variables, such as estimates from GMPEs or the damage distribution (Jaiswal et al., 2011). The 42 

application of BNs to earthquake engineering has been formalized by Bensi et al. (2011a) for the 43 

analysis of infrastructure systems of interdependent elements, which requires the estimation of 44 

statistics for joint events over spatially-distributed assets. Besides forward risk analyses (Bensi et al., 45 

2013), BNs may also be used for the backward analysis of a system when a partial knowledge of 46 

losses is available immediately after an earthquake (e.g., Pozzi and Der Kiureghian, 2013; Gehl et al., 47 

2017). Most proposed BN formulations are, however, hampered by scalability and computational 48 

issues, which complicate their application to real-world systems (Cavalieri et al., 2017). 49 

Therefore, the present paper builds upon the original BN approach by Bensi et al. (2011a), while 50 

applying the Bayesian framework to the ground-motion assessment part only. It is expected that the 51 

removal of the variables related to damage and system performance estimation will greatly reduce the 52 

computational difficulties, mostly by enabling the use of continuous Gaussian BNs, as opposed to the 53 

discrete BNs used in previous studies. Moreover, the BN formulation is augmented with additional 54 

variables representing secondary cross-correlated IMs and even macroseismic intensities, so that the 55 

Bayesian updating can be performed with diverse sources of field observations. The proposed 56 

developments pursue multiple objectives: (i) to demonstrate the accuracy of the BN approach for the 57 

generation of ground-motion maps, which is a pre-requisite before complete BNs enabling loss 58 

estimation may be used in a decision support system, (ii) to verify the feasibility and scalability of the 59 

BN approach for large spatial grids in the case of real-world earthquakes,  and (iii) to investigate the 60 

potential benefits that can be gained from inferring ground-motion fields with a BN, especially in 61 
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terms of uncertainty treatment (e.g., joint updating of inter- and intra-event error terms) and the 62 

generation of maps for vector-valued intensity measures. The underlying equations necessary to model 63 

the formulation of the proposed BN are presented in Section “Demonstration of the Bayesian network 64 

approach”, which contains also a comparative analysis of the BN approach with respect to the well-65 

established ShakeMap algorithm (Worden et al., 2016). The scalability issue is addressed in Section 66 

“Computational performance”, where a sub-grid division strategy is investigated to ensure the stability 67 

of the BN. Finally, Section “Application to the Mw 6.2 Kumamato Earthquake (April 14 2016)” 68 

applies the BN approach to a specific event, the Mw 6.2 earthquake on 14 April 2016 near Kumamoto, 69 

Japan, thus providing an opportunity to demonstrate the implementation of the BN on an actual 70 

earthquake and to analyze the information gain when considering multiple cross-correlated intensity 71 

measures. 72 

DEMONSTRATION OF THE BAYESIAN NETWORK APPROACH 73 

This section provides details on the construction of the BN and an investigation of its validity with 74 

respect to other methods for the generation ground-motion maps. 75 

Proposed approach for the construction of the Bayesian Network 76 

The distribution of a given strong motion parameter or IM over a given geographical grid is usually 77 

estimated from the following variables (Crowley and Bommer, 2006): 78 

 Mw, the moment magnitude of the earthquake event; 79 

 Epi, the location of  the epicenter of the earthquake, if a point-source event is assumed, or the 80 

rupture location and extent for finite-fault scenarios; 81 

 Other parameters such as the faulting mechanism, the fault geometry and the depth to top of 82 

rupture, depending on the specific GMPE that is used; 83 

 Xi, the logarithm of the median estimate of the IM at the grid point i, as predicted by the 84 

selected GMPE (i.e., ii IMX ln ); 85 

 η, the inter-event (or between-event) error term from the GMPE; 86 
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 ζ, the intra-event (or within-event) error term from the GMPE; 87 

 Yi, the logarithm of the IM distribution at the grid point i, accounting for the aleatory 88 

variability generated by the GMPE error terms (i.e., ii IMY ln ); 89 

It should be noted that Xi, η and ζ depend on the GMPE chosen and hence they are a function of its 90 

database, functional form and the technique used for its derivation. There can be considerable 91 

differences in these variables depending on the GMPE chosen (epistemic uncertainty), particularly at 92 

the edges of their applicability (e.g., large magnitudes and close source-to-site distances) (Douglas and 93 

Edwards, 2016). When there are few observations these differences would map to large differences in 94 

the ground-motion fields estimates. However, when dense observations exist the BN method presented 95 

below would lead to these differences being reduced and the choice of the original GMPE would then 96 

be less important. 97 

According to Crowley et al. (2008a) and Park et al. (2007), the same inter-event variability should be 98 

applied to all grid points within a given earthquake scenario, while the joint distribution of the intra-99 

event term should follow the spatial correlation among grid points. As shown by Bensi et al. (2011b), 100 

representing the dependency among grid points is facilitated by a Cholesky factorization of the 101 

correlation matrix. Let us assume a grid of n points, where the variability of the intra-event term is 102 

represented by a correlated Gaussian random field defined by standard normal variables Zi at grid 103 

points i. The proposed decomposition is then performed as follows: 104 

UTZ   (1) 105 

where the n × n transformation matrix T is a lower triangular matrix obtained through a Cholesky 106 

factorization, so that R = T.TT, with R being the correlation matrix of each couple of the grid points. 107 

The n × 1 vector U represents the standard normal variables, which are statistically independent from 108 

each other and are used to model the variation in the correlation among the grid points. The correlation 109 

matrix R is built thanks to a spatial correlation model, such as the one proposed by Jayaram and Baker 110 

(2009), where the correlation coefficient ρij between the ground-motion parameters at two sites i and j 111 

is expressed as: 112 
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where rij is the distance between the sites and b is the correlation distance, assumed here to be equal to 114 

13.5 km for PGA, which is consistent with recent studies on spatial correlation (e.g., Jayaram and 115 

Baker, 2009; Esposito and Iervolino, 2011). 116 

When the ground-motion field is generated to estimate losses for various types of assets, such as an 117 

infrastructure system, the method may need to provide estimates for more than one IM, depending on 118 

the type of fragility models used. Therefore, the cross-correlation between the IMs of interest must be 119 

taken into account when computing their joint distribution. When modelling a ground-motion field of 120 

nIM cross-correlated IMs over n sites, the corresponding correlation matrix must be of the order of nIM 121 

× n, if it is directly used in Equation 1 (Weatherill et al., 2014). Therefore, because this matrix can 122 

rapidly become large, Weatherill et al. (2014) advocate the use of a sequential simulation method, 123 

which first generates a field of primary IMs, represented by the correlated vector Z1 of standard 124 

normal variables. Then, the field of secondary IMs, represented by the correlated vector Z2 of standard 125 

normal variables, is conditioned upon the distribution of the primary IMs. These variables may then be 126 

expressed as follows (Oliver, 2003): 127 

 






2
2
1211222

111

1 UUTZ

UTZ


 (3) 128 

where T1 and T2 are the n × n triangular transformation matrices that are factorized from the 129 

correlation matrices R1 and R2, for the primary and secondary IMs respectively. U1 and U2 are n × 1 130 

vectors of independent standard normal variables. Finally, ρ12 represents the cross-IM correlation 131 

coefficient between the primary and the secondary IMs. 132 

The proposed BN structure corresponding to the above detailed variables is presented in Figure 1. The 133 

selected GMPE directly establishes a deterministic relationship between Mw, Epi and iIM  at site i. 134 

For this study we assume here that the magnitude and epicentre are known for a given earthquake. 135 
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Hence, the BN structure may be greatly simplified with respect to the original BN formulation by 136 

Bensi et al. (2011a): only the variables that have a probabilistic dependency between each other are 137 

displayed, namely Yi, W and Ui (representing η and ζ). 138 

[Figure 1 about here] 139 

Since all the BN variables may be expressed as normal distributions (i.e., W and Ui are standard 140 

normal variables, and the normal distribution of the parameters Yi is a very common assumption in 141 

ground-motion prediction), it is possible to define the BN in Figure 1 as a Gaussian Bayesian Network 142 

(GBN), as introduced by Murphy (2002). In this case, all BN nodes become continuous normal 143 

variables with parameters expressed as a linear combination of the values of the parent nodes. In the 144 

proposed example, the root nodes Ui and W are defined by a marginal distribution (i.e., normal 145 

probability density function represented by N): 146 
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Meanwhile, the conditional distribution of the child nodes Yi (i.e., Y1,i as primary IM and Y2,i as 148 

secondary IM) is expressed as follows: 149 
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 (5) 150 

where σζ and ση respectively represent the standard deviations of the intra-event and inter-event error 151 

terms, which are provided by the GMPE. The coefficients t(1)
ij and t(2)

ij respectively represent the 152 

elements of the transformation matrices T1 and T2. If it is assumed that Y1,i and Y2,i are completely 153 

determined by knowledge of Ui and W, a value close to zero has to be assumed for their standard 154 

deviation ε to achieve convergence. A standard deviation corresponding to the record-to-record 155 

variability may also be assigned, if it is specified by the GMPE. 156 
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In the case that an earthquake event is recorded by a set of accelerometers, the recorded ground 157 

motions may be used to update the predicted ground-motion field. Thanks to the proposed Bayesian 158 

approach, an inference can be performed through the Ui and W variables, which are used to pass the 159 

message to the neighboring sites. To this end, the original BN formulation is augmented with the 160 

addition of the nodes representing the observed ground motions (i.e., red nodes and edges in Figure 1), 161 

which are then used as evidence for the Bayesian inference. It can be seen, therefore, that the spatial 162 

correlation structure between the IMs plays a major role in the propagation of the observations to the 163 

grid points in the vicinity. Such a BN has the merit of providing probabilistic distributions of the 164 

ground-motion estimates, while ensuring that the joint distribution of the predicted parameters 165 

complies with the spatial correlation of the intra-event residuals. 166 

Once the Yi distributions are obtained at the grid points, they may be interpolated at the locations of 167 

the vulnerable sites (e.g., built areas or infrastructure elements), while local amplification factors may 168 

also be added to account for site effects. The expression of the problem as a GBN has the merit of 169 

manipulating only continuous variables, which do not require a preliminary discretization and the 170 

creation of conditional probability tables that grow exponentially with the number of parents.  171 

Single-IM Bayesian inference on a synthetic example 172 

A trivial synthetic example is introduced in order to demonstrate how the ground-motion map is 173 

updated with the BN approach. It consists of a 3 x 3 square grid (grid step = 1 km) with a Mw 5.5 174 

earthquake occurring in its vicinity (at coordinates [-3; 5]), while two ground-motion records are 175 

assumed to be available (see the spatial configuration in Figure 2a): the two observations (i.e., Yobs1 176 

and Yobs2) are assumed to be 15% smaller and 10% larger than the predictions, respectively. For 177 

simplification purposes, only a single IM is considered here, which is the PGA estimated using the 178 

GMPE of Chiou and Youngs (2008). 179 

[Figure 2 about here] 180 

The corresponding BN is detailed in Figure 2b, where the link structure between Ui and Y(i) variables 181 

is characteristic of the triangular transformation matrix T, following the Cholesky decomposition. This 182 
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BN structure, consisting of a table describing the directed links between the variables and of normal 183 

distribution parameters for each variable (see Equations 4 and 5), is then implemented in the Bayes 184 

Net toolbox (see Data and Resources). The junction-tree algorithm, which carries out exact inference 185 

and thus provides exact probability distributions, is used within the toolbox. This algorithm consists in 186 

the following steps: 187 

 Moralization of the BN: all edges are represented as undirected links, and all the parents of a 188 

same node are linked by a new undirected edge, if they were not previously linked. 189 

 Variable elimination: each node is successively removed while its adjacent nodes are 190 

connected through additional undirected edges (i.e., fill-in edges), if they were not previously 191 

linked. Then a clique is formed by the eliminated node and all its adjacent nodes. 192 

 Once all variables have been eliminated, the cliques are assembled into a junction tree (see 193 

Figure 3). 194 

 The potential of each clique (i.e., joint probability distribution of the variables within the 195 

clique) is computed by multiplying the marginal and conditional Gaussian distributions that 196 

are associated with the variables (see Equations 4 and 5). 197 

[Figure 3 about here] 198 

Once the junction tree is built, the BN is considered as initialized and it can be used to perform 199 

inference on any scenarios. In the proposed example, the evidence is set on the Yobs1 and Yobs2 200 

variables and propagated through the junction tree, as shown in Figure 3. The evidence propagation is 201 

carried out in two successive stages: 202 

 Evidence collection: the evidence is collected from the leaves of the junction tree to the root 203 

clique. Operations of probability marginalization (i.e., removal of a variable) and 204 

multiplication are performed in order to update the potential of the root clique. 205 

 Evidence distribution: the evidence is distributed from the root clique to all cliques along the 206 

junction tree. Operations of probability marginalization, division and multiplication in order to 207 

update the remaining cliques. 208 
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The posterior probability distribution can then be observed for any variable of interest. For instance, 209 

the updated distribution of variable Y(1) is obtained by marginalizing the potential of the clique [U1 ; 210 

W ; Y(1)] with respect to Y(1). The prior and posterior distribution parameters of the variables involved 211 

in the synthetic example are summarized in Table 1. 212 

[Table 1 about here] 213 

As expected, the ground-motion grid is modified by the field observations, i.e. lower values are found 214 

towards the lower left of the grid where the assumed observation Yobs1 is lower than the initial 215 

prediction. An analysis of the distributions of the BN variables after the inference reveals two 216 

complementary levels of updating (Figure 4): 217 

 On a global level, the distribution of the W variable, which represents the inter-event error η 218 

that is common to all grid points, is updated to provide a biased GMPE prediction that 219 

balances the general under- or over-estimation of the ground motion when compared with the 220 

observations. In the present example, the two hypothetical ground-motion records are globally 221 

lower than the initial GMPE estimates with an unbiased inter-event error: as a result, the 222 

variable η is updated to account for the observed bias; the standard deviation ση is also 223 

reduced, even though it does not converge towards zero due to the limited number of 224 

observations. 225 

 On a local level, the distribution of the Ui variables, which are used to map the spatially-226 

correlated intra-event errors ζi, is updated in order to match the local variations of the ground 227 

motion in the vicinity of each of the two hypothetical stations. For instance, the closest grid 228 

point to observation #1 is heavily influenced by the parent variable U1 according to the 229 

corresponding element in the transformation matrix T (i.e., t1,1 = 1). Therefore, the posterior 230 

distribution of U1 is shifted towards the left to represent over-estimation of PGA by the initial 231 

GMPE prediction when compared to the observation. The same effect is observed for the grid 232 

points close to observation #2, where the recorded PGA is higher than the initial GMPE 233 
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prediction: the distribution of U8, which has a strong weight in the transformation matrix (i.e., 234 

t8,8 = 0.488) with respect to grid point Y(8), is therefore shifted towards the right. 235 

[Figure 4 about here] 236 

 237 

Comparison with current ground-motion map methods 238 

The BN-updated ground-motion field is first compared with the ShakeMap algorithm (Worden and 239 

Wald, 2016), developed by the U.S. Geological Survey, which has proven its operational abilities to 240 

deliver ground-motion maps in near real-time. The main principles of this algorithm are summarized 241 

as follows, in the case of a basic ground-motion map using strong-motion data only (i.e., no 242 

conversion between macroseismic intensity and ground-motion parameters): 243 

 Removal of the potential site amplification factors from the observed ground motions (i.e., 244 

correction to “rock” site). 245 

 Computation of the global bias introduced by the recorded ground motions with respect to the 246 

initial GMPE estimates, and use of a bias-adjusted GMPE for the prediction at the grid points. 247 

This adjustment is achieved by finding the Mw magnitude that reduces the errors between the 248 

observed and the predicted ground-motions, when the GMPE is evaluated for the adjusted 249 

magnitude. 250 

 Interpolation of the observations to the grid points. 251 

 At each grid point, updating of the ground motion through a weighted average between the 252 

bias-adjusted GMPE estimate and the observations (Worden et al., 2010). The GMPE estimate 253 

is weighted by the inverse of the variance provided by the GMPE, while each observation is 254 

weighted by the term 1/σ2
obs (i.e., σobs is the standard deviation assigned to the observation — 255 

it increases with the distance between the observation and the grid point based on a correlation 256 

model). 257 

 Application of potential site amplification factors at the grid points. 258 
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In the ShakeMap method, the total standard deviation associated to each grid point is obtained as a 259 

byproduct of the interpolation process (Worden et al., 2010): 260 


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


k

j jobsGMPE
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1
2

,
2

ln 11
1



  (6) 261 

where σobs,j is the standard deviation assigned to the jth observation and σGMPE is the standard deviation 262 

of the GMPE estimate. As stated by Worden et al. (2010), if enough observations are used to update 263 

the event magnitude, σGMPE may be taken as equal to σζ (i.e., intra-event variability only), which has 264 

been assumed here. 265 

In order to apply the ShakeMap algorithm, one must ensure that comparable correlation models are 266 

applied to both ShakeMap and BN-based approaches (Equation 2). In the ShakeMap method, the 267 

influence of the observations on the grid predictions is modelled by a weighting function F = 268 

σobs/σGMPE, which tends towards zero when the inter-site distance is zero, and towards infinity for large 269 

distances. However, it appears that using the influence distances that are advocated in the ShakeMap 270 

manual (i.e., rROI = 10 km and rMAX = 15 km) corresponds to correlation coefficients that are much 271 

larger than the ones generated by Equation 2, with b = 13.5 km. Some numerical tests have shown 272 

that, in order to yield comparable results, the weighting function should follow the same shape as the 273 

proposed correlation model, with an exponentially decreasing rate. The mathematical link between the 274 

weighting function F and the correlation coefficient ρ is investigated in Appendix A, where equivalent 275 

models for both the ShakeMap and the BN approaches are presented. 276 

On the other hand, the use of the spatial correlation matrix in the BN approach in order to update the 277 

intra- and inter-event error distributions is conceptually similar to the analytical resolution of a 278 

conditional multivariate normal distribution, as proposed by Vanmarcke (1983) and Stafford (2012). 279 

This method directly computes the means and standard deviations of the intra- and inter-event error 280 

terms through vector and matrix multiplications. Therefore, it is straightforward to implement and fast 281 

to execute. All three methods are applied to the synthetic example, for the updating of PGA 282 
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distributions across a 3 x 3 grid: the updated ground-motion values and their associated uncertainties 283 

are detailed in Table 2. 284 

[Table 2 about here] 285 

Regarding the prediction of the ground-motion means, it appears first that the BN results are identical 286 

to the analytical solution, thus validating the accuracy of the proposed approach. The ShakeMap 287 

method, however, does not provide exactly the same means, which might be due to the way the 288 

updating is modelled, i.e., through an interpolation instead of accounting for the full spatial correlation 289 

matrix. Moreover, both BN and analytical methods provide the same value for the inter-event error 290 

term η and its standard-deviation, while the ShakeMap approach results in a lower value with zero 291 

uncertainty: this is explained by the bias removal through an optimization process, without accounting 292 

for the prior distribution and the associated likelihood function, as opposed to conditional updating 293 

methods. 294 

On the other hand, the uncertainties in Table 2 are not exactly identical between the different methods, 295 

since the analytical method yields higher standard-deviations than both the BN and ShakeMap 296 

methods, especially for grid points that are close to observations. In the BN method, the global 297 

uncertainty appears to be sometimes lower than the inter-event standard-deviation ση, which is in 298 

contradiction to the widespread assumption of the quadratic combination of inter- and intra-event 299 

dispersions. In order to investigate this aspect, another synthetic example is considered, where points 300 

are fixed along a line at increasing distances from a given observation, thus measuring the evolution of 301 

the ground-motion uncertainty with distance (see Figure 5). 302 

[Figure 5 about here] 303 

Many noteworthy observations can be made from this result: 304 

 Far from the observation, both BN and analytical solutions converge to the same asymptote, 305 

which correspond to the quadratic combination of the updated inter-event dispersion and the 306 

far-field intra-event dispersion. Conversely, the global dispersion is underestimated by the 307 
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ShakeMap method, which converges toward the intra-event dispersion only: this result is due 308 

to the assumption that sufficient observation points lead to an inter-event term with zero 309 

dispersion (Worden et al., 2010), while the alternative methods have shown that this is not 310 

necessarily the case. 311 

 Close to the observation, both BN and ShakeMap methods yield a global dispersion that tends 312 

towards zero: this behavior is consistent with a correlated Gaussian random field, where 313 

predictions in the immediate vicinity of an observation are almost certain, with negligible 314 

dispersion. On the other hand, if the analytical solution is used, the dispersion tends towards 315 

the inter-event standard-deviation ση, which results in predictions that keep a significant 316 

dispersion even when very close to an observation. This discrepancy is explained by the 317 

following rationale: 318 

o The analytical solution uses a two-step set of separate equations to compute the 319 

updated distributions of inter- and intra-event error terms. 320 

o These terms may then be used to compute the global dispersion thanks to a quadratic 321 

combination, under the assumption that the variables are independent. 322 

o However, it appears that the intra-event error terms are dependent on the estimation of 323 

the inter-event error, thus breaking the independency assumption and preventing the 324 

use of the quadratic combination. Therefore, while the analytical solution is perfectly 325 

valid for the separate estimation of inter- and intra-event error terms, it does not 326 

provide any means of accurately computing the global dispersion. 327 

o The BN method, on the other hand, implicitly accounts for the correlation between the 328 

intra- and inter-event residuals through the multiplication of conditional probabilities: 329 

as a result, a stronger correlation close to an observation leads to a smaller global 330 

dispersion, which ultimately tends towards zero. 331 

Therefore, the comparison between the different approaches has demonstrated that the BN method is 332 

as accurate as the analytical solution for the updating of mean values, while the ShakeMap method 333 

cannot provide the same values due to its interpolation scheme that is conceptually different to the use 334 
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of spatial correlation models. Moreover, in terms of uncertainties, the BN method also provides the 335 

best solution to account for both inter- and intra-event dispersions, whether the predictions are made 336 

close or far from an observation. 337 

 338 

COMPUTATIONAL PERFORMANCE 339 

The following sub-sections study the feasibility of the proposed approach for large spatial grids, while 340 

different strategies are investigated in order to facilitate its use in real-world applications. If such a 341 

method is to be used to develop an operational decision support system, it has to be accurate enough 342 

(i.e., high resolution grid) over a spatial extent that covers most of the earthquake’s effects, thus 343 

possibly leading to a huge correlation matrix. Moreover, such a system is expected to deliver updated 344 

ground-motion fields almost immediately after the occurrence of an earthquake, in order to provide 345 

situational awareness to emergency responders. 346 

Scalability 347 

As stated above, the BN has been implemented in the Bayes Net toolbox, which enables the inference 348 

of GBNs through a junction-tree algorithm. Thanks to the Gaussian formulation that enables the use of 349 

continuous variables, the computation time is expected to remain much lower than the same BN 350 

structure with discrete variables, which would lead to the creation of conditional probability tables and 351 

clique potentials with an intractable number of elements. The execution time of a single inference 352 

operation (i.e., updating of one Y node) is detailed in Figure 6 for different grid sizes, for a single IM 353 

prediction (i.e., no secondary IM). As expected, the computational load increases exponentially with 354 

the number of grid points, even if the execution time remains tractable for a large grid containing 400 355 

points. In Figure 6 (right), the computation time is represented with respect to the number of U → Y 356 

links that are required in the BN. The almost-linear relation between these two indicators shows that 357 

they are closely related; therefore, the explosion in computational times is mostly due to the proposed 358 

BN formulation, which is associated with an exponential increase of links with respect to the number 359 

of nodes. 360 
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[Figure 6 about here] 361 

As a result, even with the use of GBNs, the proposed BN approach is eventually bound to reach its 362 

limits for very large grids, usually due to elongated computation times that no longer meet the 363 

demands of a near real-time information system. This issue becomes especially pressing when high-364 

resolution maps are required, e.g. grid steps around 1 km for areas spanning several hundreds of 365 

kilometers, which would lead to tens of thousands of grid points. 366 

Optimization strategies 367 

To make the problem tractable, several optimized BN formulations for correlated Gaussian random 368 

fields have been proposed by Bensi et al. (2011b), who have found that a numerical optimization of an 369 

approximate transformation matrix T̂  results in a better computational performance than a Cholesky 370 

decomposition. This optimization starts by specifying a number m of U nodes to keep in the BN, so 371 

that the approximation of the correlated Gaussian random field can be expressed as follows: 372 

VSUTZ  m
ˆˆ  (7) 373 

where T̂  is the approximated n × m transformation matrix, V is a n × 1 vector of independent standard 374 

normal variables and it is multiplied by a diagonal n × n transformation matrix S, whose elements si 375 

are used to correct the global variance of the variables in Ẑ : 376 





m

k
iki ts

1

2ˆ1  (8) 377 

This approximation may be seen as a generalization of a Dunnett–Sobel (DS) class of Gaussian 378 

random variables: the ikt̂  elements are found through a numerical optimization, with the objective of 379 

minimizing the difference between the actual correlation matrix R and its approximation tTT ˆˆ  . 380 

Finally, once the transformation matrix has been optimized, further simplifications may be carried out, 381 

such as the removal of nodes (i.e., columns in T̂ ) or links (i.e., elements in T̂ ) from the BN: all these 382 

elimination strategies, based on importance measures checking the respective influence of each 383 
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variable, are detailed in Bensi et al. (2011b). This strategy is tested on the synthetic example detailed 384 

above, with the aim of comparing its accuracy and computational efficiency. The scalability is also 385 

investigated by increasing the grid extent with different scenarios (see Table 3). The discrepancy 386 

between the exact solution (i.e., BN with Cholesky decomposition over the full grid) and the various 387 

approximations is measured with two metrics, namely the average of the absolute errors in predicting 388 

the PGA mean over the grid points, and the maximum error. 389 

[Table 3 about here] 390 

It appears that the optimization strategy does not lead to any computational time gain, even at the cost 391 

of less accurate results (i.e., around 20% error rate on the prediction of the mean PGA for larger grids). 392 

For smaller grids, the accuracy loss is negligible; however, as the number of grid points increases 393 

relatively to the number m, the quality of the approximation diminishes greatly, unless a very costly 394 

optimization is carried out with a large enough m value.  This observation is in strong contrast with the 395 

original findings by Bensi et al. (2011b), who have shown that this optimization significantly reduces 396 

the computational time while maintaining a reasonable accuracy. In the present concept, two main 397 

conceptual differences with the work by Bensi et al. (2011b) explain this difference: 398 

 Continuous GBNs are implemented here instead of discrete BNs, so that the initial 399 

computational bottlenecks (i.e., size of CPTs and cliques) are now removed to some extent 400 

and that the size of the correlation matrix is one of the main issues. The initialization time is 401 

displayed in Table 3, thus revealing how difficult it is to perform the numerical optimization 402 

of a large matrix with a large number m of variables. The BN inference time becomes less 403 

essential, although it should be noted that adding the V nodes has the effect of slightly 404 

increasing computational costs. 405 

 The objective here is to perform a backward analysis (i.e., inference from an observation to 406 

other Y nodes), while only the accuracy of a forward analysis has been investigated in Bensi et 407 

al. (2011b). Backward analyses are more complex (i.e., message passing through many nodes) 408 

and they require a highly accurate correlation matrix. 409 
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Alternatively, a more radical and straightforward strategy is proposed in the present paper,  where the 410 

initial grid containing n × n points is divided into k sub-grids of m × m points, where k = (n / m)2. As a 411 

result, k BNs need to be created and solved before all the predictions at the grid points are aggregated 412 

and projected on the same map (Figure 7). 413 

[Figure 7 about here] 414 

As shown in Figure 7, all observations must be used as evidence within each BN in order to ensure 415 

that the updating of the variables is at the same level for each sub-grid. This approach is justified by 416 

the fact that the BN inference appears to be robust with respect to the number and location of the Yi 417 

variables, as long as the evidence nodes remain unchanged (i.e., whatever the extent of the grid, the 418 

updated ground-motion field should remain stable). This grid subdivision may be seen as an extreme 419 

case of the numerical optimization detailed above, in the sense that grid points from two different sub-420 

grids are similar as nodes between which links have removed. However, the main difference lies in the 421 

fact that all observations are kept for all sub-grids in order to maintain the same inference across all 422 

sub-grids. This strategy is tested on the largest grid of the synthetic example (i.e., 24 x 24 grid with 16 423 

observations), which is divided in different sets of sub-grids: the average and maximum error 424 

measures are estimated for both the PGA mean and standard-deviation (see Table 4). 425 

[Table 4 about here] 426 

The grid sub-division provides a dramatic decrease in computational times, while the accuracy of the 427 

estimations remains very high and stable, i.e. always below 0.1% of maximum error. This preliminary 428 

observation is investigated further by checking the evolution of the error rate with the correlation 429 

length, defined as dcorr = b/3 if the correlation model from Equation 2 is used. The spatial extent of the 430 

sub-grid with respect to the correlation distance appears to govern slightly the evolution of the error 431 

rate. For small correlation distances, there are almost no differences between the various grids; while 432 

greater error rates, albeit still very small, may be observed when the grid extent (i.e., its total 433 

dimension) becomes much smaller than the correlation distance. Globally, these small deviations from 434 

the initial grid appear to be negligible, especially when considering that such a strategy enables almost 435 
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any map size and resolution to be handled, with few computational constraints. Additional overlapping 436 

sub-grids might also be considered in order to correct any boundary effects; however the present 437 

configuration, with standard correlation lengths (e.g., up to a couple of dozen km) and 1 km grid steps, 438 

results in excellent accuracy, especially when compared to the much larger error rates obtained with 439 

the optimized transformation matrix. One significant caveat, however, is that the use of sub-grids 440 

requires the construction of independent BNs, thus preventing the computation of joint statistics for 441 

locations that do not belong to the same sub-grid: such a feature is essential in the context of 442 

infrastructure risk analysis (i.e., presence of interdependent assets at various locations). It may be 443 

overlooked, however, if the main objective is to generate a ground-motion map following an 444 

earthquake. 445 

 446 

APPLICATION TO THE Mw 6.2 KUMAMATO EARTHQUAKE (APRIL 14 2016) 447 

The inference abilities of the proposed BN approach are demonstrated in the following sub-sections, 448 

where strong-motion data from the Mw 6.2 earthquake that occurred near Kumamoto (Japan) on April 449 

14th 2016 (this was the foreshock of the destructive Mw 7.0 event that occurred two days later in the 450 

same region) are exploited. This earthquake was recorded by a dense network of strong-motion 451 

stations in the near field. Its smaller magnitude than the mainshock enables a point-source event to be 452 

assumed. 453 

Single-IM Bayesian inference 454 

The Mw 6.2 Kumamoto earthquake (see Data and Resources) was recorded by a total of 192 local 455 

strong-motion instruments. For demonstration purposes, a distributed ground-motion field is predicted 456 

across a 100 by 100 km square area, which contains 26 strong-motion observations (Table 5 and 457 

Figure 8). In this section, the BN approach is first demonstrated for a single-IM prediction (peak 458 

ground acceleration, PGA, only), without the cross-correlation with other IMs (e.g., response spectral 459 

ordinates). Therefore only 25 observations are exploited, since the PGA from station #8 was not 460 

available. 461 
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[Table 5 about here] 462 

The prior ground-motion field is computed with the GMPE of Chiou and Youngs (2008), assuming a 463 

strike-slip faulting mechanism and a depth to top of rupture ZTOR = 5 km. Before the PGA observations 464 

are entered in the BN, they are converted to rock conditions by removing the amplification factors that 465 

are modelled in the GMPE using the time-averaged velocity of the top 30m, Vs,30. The Vs,30 value for 466 

each seismic station is obtained from the K-NET database, while an extrapolation for profiles that are 467 

shallower than 30 m has been performed using the relationships provided by Boore et al. (2011). 468 

 [Figure 8 about here] 469 

A 48 × 48 global grid is used for the prediction of the ground motions, while a subdivision into 16 12 470 

× 12 sub-grids is adopted to reduce the computation time. As a result, the total number of points within 471 

each sub-grid equals 144 (+ 25 observation points), which leads to a 169 × 169 correlation matrix. The 472 

resulting BN contains a total of 339 nodes and around 14,000 directed links between the variables. 473 

By substituting Y1,i = ln PGAi in Equation 4 and by setting σζ = 0.518 and ση = 0.296 (i.e., intra- and 474 

inter-event standard deviation provided by Chiou and Youngs, 2008), the updated PGA field is 475 

computed using Bayesian inference (Figure 9, left). The spatial correlation model from Equation 2 476 

with b = 13.5 km for PGA is adopted here, although the choice of the spatial correlation model and its 477 

corresponding correlation distance remains a crucial issue and may have a large impact on the 478 

resulting ground-motion map, as noted by Crowley et al. (2008b). Other studies (e.g., Sokolov et al., 479 

2010) have shown the significant variations in correlation lengths that may be deduced from different 480 

seismic arrays, even for the same geographical area. The total time taken for the generation of the 481 

ground-motion field is less than 3 minutes on a personal computer. 482 

[Figure 9 about here] 483 

The updated ground-motion field from the ShakeMap method is also displayed on Figure 9 right. It 484 

can be seen that the outcomes from both approaches are very similar: over all grid points, the averaged 485 

error rate between the ShakeMap and BN results is 6.5%, with a maximum of 32.2%. There is a slight 486 
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over-estimation by the BN method, since the initial inter-event variability of the GMPE (i.e., prior 487 

distribution) tends to constrain the updating of the distribution from the relatively small number of 488 

observations. Conversely, the ShakeMap algorithm has adjusted the event magnitude down to 5.952 to 489 

even out the global bias introduced by the observations. In the GMPE used, the relation between Mw 490 

and the Yi estimates is not linear, so lowering the magnitude is not exactly the same as lowering the 491 

inter-event error. Other differences are due to the fact that the spatial correlation between grid points in 492 

not taken into account by the ShakeMap method, which relies on interpolation only, as discussed in 493 

Section “Demonstration of the Bayesian network approach”.  494 

The total standard-deviation of the PGA estimates by the two methods is also displayed in Figure 10. 495 

The results confirm the discussion in Section “Demonstration of the Bayesian network approach” (see 496 

Figure 5): the dispersion of the predictions far from the observations is lower for the ShakeMap, due to 497 

the assumption that the inter-event standard-deviation can be set to zero if enough observations are 498 

present. On the contrary, the BN method provides an updated inter-event standard-deviation of 0.101 499 

(instead of the initial value of 0.296), which has to be included in the field of intra-event dispersions. 500 

[Figure 10 about here] 501 

To summarize, the discrepancy in the estimation of the uncertainty fields derives from the way 502 

posterior distributions are computed in the BN: the ground-motion inference relies entirely on the 503 

updating of the intra- and inter-event error terms, which are globally affected by the number and the 504 

spatial distribution of observations. On the other hand, the interpolation that is performed in the 505 

ShakeMap algorithm is strongly influenced by the observations in the immediate vicinity. 506 

Joint inference on two cross-correlated IMs 507 

The Mw 6.2 Kumamoto earthquake is used again to demonstrate the inference of cross-correlated 508 

ground-motion fields, namely PGA as the primary IM and SA(1.0s) as the secondary IM. Therefore 509 

the vector-valued ground-motion field may be updated from 25 PGAs and 26 values of SA(1.0s), 510 

according to Table 5. Assuming a correlation distance of 20 km for SA(1.0s) and a period-to-period 511 

cross-correlation coefficient of ρ12 = 0.587 (Baker & Cornell, 2006), the inferred ground motions are 512 
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displayed in Figure 11 for both cross-correlated IMs. It should be noted that another BN configuration 513 

has been tested, where SA(1.0s) becomes the primary IM and PGA the secondary one: the results are 514 

identical whatever the selected order of IMs, thanks to the message passing ability of BNs (i.e., the 515 

propagation of evidence is not necessarily influenced by the direction of the link between two 516 

variables). 517 

[Figure 11 about here] 518 

Slight differences may be observed between the PGA field that has been estimated as a single-IM 519 

prediction (Figure 9) and the one that is cross-correlated with a secondary IM (Figure 11). In 520 

particular, the PGA field appears to be altered at the location of station #8, which has no record of 521 

PGA, thanks to the contribution of the SA(1.0s) observations, which provide additional constraints. 522 

This effect is demonstrated through a cross-validation study (see Table 6) on the 25 stations for which 523 

PGA observations are available: for each station, the PGA observation is removed from the analysis 524 

and the prediction at this station’s location. This process is repeated for three approaches, namely the 525 

ShakeMap method, the BN inference with PGA only and the BN inference with both PGA and 526 

SA(1.0s), in order to compare their predictive abilities. 527 

[Table 6 about here] 528 

The difference between the ShakeMap method and the single-IM BN inference is not very significant, 529 

as already suggested by the comparison of the respective ground-motion maps in the previous sub-530 

section. The multi-IM BN approach, however, introduces non-negligible changes in the PGA field and 531 

improves the prediction with respect to the observation in most cases. Aside from better constraining 532 

the ground-motion map, the ability of the BN approach to generate multiple-IM fields is very useful 533 

for the rapid post-earthquake damage assessment of different types of exposed assets. 534 

Integration of macroseismic intensities and site conditions 535 

To demonstrate the operational capabilities of the proposed BN approach, a ground-motion map is 536 

generated for a wider area, i.e. a 200 by 200 km square surrounding the epicenter of the Mw 6.2 537 
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Kumamoto foreshock, with a step grid of around 2 km. Within this area, 90 strong-motion 538 

observations are found, along with 14 aggregated reports of macroseismic intensity. As with the 539 

ShakeMap algorithm, macroseismic data may be exploited in complement to strong-motion data, 540 

through the use of ground-motion intensity conversion equations (GMICEs) (Wald et al., 1999). 541 

Starting from the BN in Figure 1, another set of BN nodes representing the macroseismic intensity is 542 

created, with a link pointing from each primary IM (i.e., PGA) node to each macroseismic intensity 543 

node. In the present example, the global GMICE developed by Caprio et al. (2015) has been used, thus 544 

the expression of the modified Mercalli intensity (MMI) takes the following form: 545 

MMIPGAMMI   ln  (9) 546 

where α and β are GMICE coefficients and εMMI represents the error term of the regression, which 547 

follows a normal distribution with zero mean and standard deviation σMMI.  548 

Therefore, in the BN, the conditional probability distribution of each MMi node, which is the child of a 549 

Y1,i node representing PGA, can be expressed as: 550 

   2
,1,1 , MMIiii YYMMIp   N  (10) 551 

As a result, the BN is able to collect evidence from various sources and pass the inference message in 552 

a two-way manner, i.e. (i) from a PGA observation up to the neighboring grid points and finally to the 553 

converted intensities on the grid, or (ii) from the reported intensity up to the converted PGA at the 554 

same location and finally to the neighboring grid points. The generated ground-motion maps for both 555 

PGA and MMI are displayed in Figure 12, after a site correction has been applied to the inferred 556 

variables at “rock” conditions. 557 

[Figure 12 about here] 558 

CONCLUSIONS 559 

The BN formulation presented in this paper, which makes use of the spatial distribution of the intra- 560 

and inter-event errors in the GMPE, has been successfully tested on a real-world example, thus 561 



24 
 

validating the way the ground-motion inference is performed in the proposed Bayesian framework. 562 

Therefore, such a result lays a solid foundation for the development of more elaborate BNs that 563 

integrate damage and loss assessments, which may be used as part of an operational decision support 564 

system for emergency responders. 565 

The comparison with the ShakeMap algorithm has provided valuable lessons on the respective merits 566 

of each approach. Although computationally costlier, the BN method offers a different philosophy 567 

when treating uncertainties because a more refined estimation of the posterior distribution of the inter-568 

event error is possible. It may be imagined to use such an approach in complement to the current 569 

ShakeMap algorithm, to adjust the value of inter-event error with respect to the number of 570 

observations, for instance. On the other hand, there is no obvious link between the weighted 571 

interpolation used in the ShakeMap algorithm and the spatial correlation coefficient used in the BN 572 

method, which complicates the direct comparison of the two approaches. However, the analysis and 573 

the comparison of maps generated with these two complementary approaches could be useful to help 574 

constrain the current correlation models. 575 

Moreover, the ability of the BN approach to compute vector-valued IM fields and to access the joint 576 

probabilities of IMs across several locations should prove highly beneficial when dealing with the loss 577 

prediction of infrastructure systems, whose components are often susceptible to different IMs. Such 578 

inferences come at a high computational cost, which are currently not suitable for the near real-time 579 

applications that are covered by the ShakeMap framework. Conversely, in the case of the risk 580 

management of spatially-distributed infrastructure systems, where the ground-motion prediction has to 581 

be carried out for a limited number of sites, the BN approach might provide a rigorous probabilistic 582 

framework for the rapid loss assessment of interdependent components. 583 

Finally, the proposed BN has mainly been focused on the treatment of aleatory variabilities (i.e., 584 

GMPE error terms); however, other variables representing epistemic uncertainties may be added to the 585 

BN, such as different GMPE candidates or different source or site assumptions. Provided that 586 
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sufficient field observations are gathered, the BN inference would then be able to better constrain 587 

these parameters. 588 

DATA AND RESOURCES 589 

The metadata on the Mw 6.2 Kumamoto earthquake for the generation of the ground-motion map have 590 

been taken from the USGS ShakeMap webpage 591 

(http://earthquake.usgs.gov/earthquakes/eventpage/us20005hzn#shakemap). Website last accessed on 592 

August 1st 2017. 593 

The information on the soil profiles of the seismic stations has been taken from the K-NET network 594 

webpage (http://www.kyoshin.bosai.go.jp/). Website last accessed on August 1st 2017. 595 

The Bayes Net toolbox has been written by Kevin Murphy and it is available from the webpage 596 

https://github.com/bayesnet/bnt. Website last accessed on August 1st 2017. 597 
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TABLES 687 

Table 1: Prior and posterior Gaussian distribution parameters of the BN variables corresponding to 688 

the synthetic example.  689 

Variables 
Prior Posterior 

μ σ μ σ 
U1 0 1 -0,2499 0,5877 
U2 0 1 0,0628 0,9667 
U3 0 1 0,1174 0,9667 
U4 0 1 0,0780 0,9674 
U5 0 1 0,1512 0,9379 
U6 0 1 0,1468 0,9498 
U7 0 1 0,1116 0,9720 
U8 0 1 0,1983 0,9050 
U9 0 1 0,1361 0,9564 
U10 0 1 -0,1992 0,9194 
U11 0 1 0,1897 0,9126 
W 0 1 -0,0300 0,8434 
Y(1) -1,6377 0,6508 -1,7884 0,2163 
Y(2) -1,5960 0,6508 -1,6974 0,2976 
Y(3) -1,5648 0,6508 -1,6083 0,3906 
Y(4) -1,6701 0,6508 -1,7595 0,2884 
Y(5) -1,6283 0,6508 -1,6645 0,2762 
Y(6) -1,5958 0,6508 -1,5843 0,3325 
Y(7) -1,7113 0,6508 -1,7275 0,3591 
Y(8) -1,6700 0,6508 -1,6213 0,2418 
Y(9) -1,6375 0,6508 -1,5610 0,2528 
Yobs1 -1,6335 0,6508 -1,7961 0 
Yobs2 -1,6526 0,6508 -1,5573 0 

The numbers in bold correspond to the evidence from the observations. 690 

Table 2: Posterior ground-motion parameters of the synthetic example, obtained with the three 691 

methods (BN, ShakeMap and analytical solution). 692 

Analytical solution BN method ShakeMap method 
PGA [m/s2] σtot_lnPGA PGA [m/s2] σtot_lnPGA PGA [m/s2] σtot_lnPGA 
Y(1)     0.1672 0.3477 0.1672 0.2163 0.1710 0.2080 
Y(2)     0.1832 0.4030 0.1832 0.2976 0.1858 0.2808 
Y(3)     0.2002 0.4736 0.2002 0.3906 0.2004 0.3568 
Y(4)     0.1721 0.3967 0.1721 0.2884 0.1732 0.2758 
Y(5)     0.1893 0.3883 0.1893 0.2762 0.1891 0.2750 
Y(6)     0.2051 0.4291 0.2051 0.3325 0.2020 0.3106 
Y(7)     0.1777 0.4495 0.1777 0.3591 0.1763 0.3319 
Y(8)     0.1977 0.3645 0.1977 0.2418 0.1959 0.2350 
Y(9)     0.2099 0.3712 0.2099 0.2528 0.2040 0.2404 

η ση η ση η ση 
-0.0097 0.2730 -0.0097 0.2730 -0.0336 0.0000 

 693 
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Table 3: Computational cost and accuracy of the optimization strategy, with different values of m 694 

(number of U nodes). 695 

Grid size Measure 
Cholesky 

decomposition 
Optimization 

m = 20 m = 10 m = 5 m = 2 
3x3 mean error exact 

N/A 

< 0.1% 0.1% 0.5% 
(+ 2 obs.) max. error exact < 0.1% 0.3% 1.1% 
 init. time < 0.1 s 7.7 s 0.5 s 0.2 s 
 BN time < 0.1 s < 0.1 s < 0.1 s < 0.1 s 
6x6 mean error exact  < 0.1% 0.4% 2.6% 7.7% 
(+ 4 obs.) max. error exact 0.2% 1.0% 6.1% 13.2% 
 init. time < 0.1 s 173.6 s 20.5 s 2.7 s 0.6 s 
 BN time 0.3 s 0.9 s 0.8 s 0.7 s 0.7 s 
12x12 mean error exact 1.4% 2.2% 3.3% 3.6% 
(+ 8 obs.) max. error exact 6.3% 9.9% 13.1% 12.8% 
 init. time < 0.1 s 4237.6 s 606.5 s 117.6 s 16.9 s 
 BN time 5.9 s 14.9 s 14.1 s 13.4 s 12.9 s 
24x24 mean error exact 

out of 
memory 

out of 
memory 

out of 
memory 

5.9% 
(+ 16 obs.) max. error exact 15.8% 
 init. time < 0.1 s 1141.1 s 
 BN time 1213.1 s 2588.4 s 

“init. time” refers to the initialization time, corresponding to the construction of the transformation matrix T or 696 

its approximation T̂ , “BN time” refers to the total duration of the Bayesian execution (i.e., construction of the 697 

junction tree and Bayesian inference for all grid points) on a standard PC. The mean and maximum error 698 

measures refer to the PGA mean value. 699 

Table 4: Computational cost and accuracy of the grid subdivision strategy, with different sub-grid 700 

sizes, for the large 24 x 24 grid tested in Table 3. 701 

Measure 64 x (3 x 3) sub-grids 16 x (6 x 6) sub-grids 4 x (12 x 12) sub-grids 
init. time < 0.1 s < 0.1 s < 0.1 s 
BN time 10.3 s 8.8 s 27.9 s 

dcorr = 4.5 km mean PGA σtot_lnPGA mean PGA σtot_lnPGA mean PGA σtot_lnPGA 
mean error 2.14E-4% 9.37E-4% 1.81E-4% 8.82E-4% 1.57E-4% 8.50E-4% 
max. error 1.83E-3% 4.33E-3% 1.63E-3% 4.41E-3% 1.54E-3% 3.72E-3% 

dcorr = 9 km mean PGA σtot_lnPGA mean PGA σtot_lnPGA mean PGA σtot_lnPGA 
mean error 1.93E-4% 7.51E-4% 1.80E-4% 7.80E-4% 1.48E-4% 7.29E-4% 
max. error 2.13E-3% 4.75E-3% 3.53E-3% 7.92E-3% 1.84E-3% 4.75E-3% 

dcorr = 18 km mean PGA σtot_lnPGA mean PGA σtot_lnPGA mean PGA σtot_lnPGA 
mean error 1.52E-4% 8.12E-4% 1.41E-4% 8.24E-4% 1.42E-4% 8.12E-4% 
max. error 2.90E-3% 1.32E-2% 2.25E-3% 8.45E-3% 1.96E-3% 9.46E-3% 

The error measures, applied to both the mean PGA and global standard-deviation, are computed with respect to 702 

the full grid solution. The accuracy is quantified for three correlation lengths dcorr, the first one corresponding to 703 

the standard case (i.e., b = 3*dcorr = 13.5 km). 704 

Table 5: Recording K-Net stations used and corresponding PGA and SA(1.0s) values corrected at a 705 

rock site, for the Mw 6.2 Kumamoto earthquake. 706 
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Station 
# 

Station 
ID 

Estimated 
Vs,30 [m/s] 

Recorded 
PGArock [m/s2] 

GMPE-
Predicted 

PGArock [m/s2] 

Recorded 
SA(1.0s)rock 

[m/s2] 

GMPE-
Predicted 

SA(1.0s)rock 
[m/s2] 

1 KMM006 195 4.03 3.26 1.93 1.42 
2 KMM008 160 2.34 2.39 1.10 1.01 
3 KMM005 287 1.34 1.46 0.64 0.60 
4 KMM003 239 0.50 1.22 0.18 0.49 
5 KMM011 185 2.66 1.05 0.23 0.43 
6 KMM002 190 0.70 0.98 0.18 0.40 
7 KMM010 149 0.38 0.86 0.25 0.35 
8 KMM009 348 - - 0.19 0.34 
9 KMM012 205 0.75 0.70 0.35 0.29 
10 NGS012 466 0.25 0.67 0.27 0.28 
11 FKO016 363 0.44 0.63 0.11 0.26 
12 KMM007 239 1.01 0.53 0.14 0.22 
13 FKO014 858 0.34 0.49 0.17 0.21 
14 KMM004 211 0.20 0.48 0.08 0.21 
15 KMM014 641 0.57 0.44 0.07 0.19 
16 NGS011 518 0.16 0.42 0.24 0.18 
17 FKO015 134 0.42 0.38 0.16 0.17 
18 KMM001 223 0.22 0.38 0.09 0.17 
19 FKO013 259 0.37 0.38 0.08 0.16 
20 KMM013 220 0.30 0.38 0.15 0.16 
21 NGS008 547 0.18 0.37 0.11 0.16 
22 NGS014 143 0.26 0.36 0.08 0.16 
23 KMM018 287 0.29 0.35 0.03 0.16 
24 MYZ020 256 0.44 0.33 0.06 0.15 
25 KMM019 490 0.26 0.28 0.03 0.13 
26 KMM020 386 0.15 0.25 0.05 0.12 

 707 

Table 6: Updated prediction of PGA for the 25 stations, when sequentially removing the PGA 708 

observation at the given station. 709 

Station 
# 

ShakeMap BN (PGA only) BN (PGA and SA) 
PGArock 
[m/s2] 

Prediction 
error 

PGArock 
[m/s2] 

Prediction 
error 

PGArock 
[m/s2] 

Prediction 
error 

1 2.95 -27.0% 2.68 -33.4% 3.46 -14.2% 
2 2.11 -9.7% 1.97 -15.8% 2.21 -5.8% 
3 1.25 -7.1% 1.22 -9.4% 1.34 -0.4% 
4 1.03 107.2% 1.00 102.5% 0.64 29.2% 
5 0.88 -66.9% 0.83 -68.7% 0.67 -74.7% 
6 0.81 16.0% 0.79 12.1% 0.58 -17.3% 
7 0.72 87.8% 0.73 90.8% 0.65 70.1% 
9 0.57 -23.9% 0.56 -25.5% 0.69 -8.1% 
10 0.55 123.2% 0.54 119.7% 0.57 132.5% 
11 0.51 17.9% 0.50 15.5% 0.37 -15.3% 
12 0.43 -57.5% 0.40 -60.0% 0.36 -64.1% 
13 0.40 15.4% 0.41 17.8% 0.40 15.5% 
14 0.39 98.9% 0.43 119.0% 0.29 44.7% 
15 0.35 -37.9% 0.36 -37.2% 0.24 -57.6% 
16 0.33 100.6% 0.33 99.5% 0.41 147.5% 
17 0.30 -28.3% 0.31 -26.7% 0.34 -18.2% 
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18 0.30 35.2% 0.31 40.2% 0.25 13.2% 
19 0.30 -19.3% 0.31 -16.7% 0.22 -40.1% 
20 0.30 -1.9% 0.31 1.6% 0.33 8.6% 
21 0.29 63.9% 0.30 67.8% 0.25 40.4% 
22 0.28 7.1% 0.29 10.1% 0.21 -18.6% 
23 0.28 -2.8% 0.29 0.2% 0.14 -52.1% 
24 0.26 -40.8% 0.26 -39.6% 0.19 -57.3% 
25 0.22 -15.9% 0.23 -14.9% 0.13 -50.7% 
26 0.19 24.0% 0.21 33.2% 0.17 10.8% 

The prediction error measures the relative error rate with the actual observation. 710 

  711 
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FIGURES 751 

 752 

Figure 1: Example of a BN structure for the prediction of the spatial ground-motion distribution for 753 

three grid points (Y1 represents the principal IM and Y2 the secondary IM). The nodes Y1_obs and 754 

Y2_obs in bold represent an observation (i.e., evidence) of the two IMs at a given location. 755 

 756 

 757 

Figure 2: (a) Spatial configuration of the synthetic example used in the demonstration and (b) 758 

corresponding BN formulation. 759 
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 760 

Figure 3: Junction tree corresponding to the example BN. The circles represent the cliques and the 761 

rectangular box is an example of a clique separator (i.e., set of nodes that are common to two 762 

connected cliques). The top circle is the root clique and the bottom ones represent the leaves of the 763 

junction tree. 764 

 765 

 766 

Figure 4: Prior (dashed line) and posterior (solid line) distributions for variables W, U1 and U8, 767 

representing respectively the inter-event error (left), an overestimated intra-event error (middle) and 768 

an underestimated intra-event error (right). The normal variables U1 and U8 have a strong link in the 769 

BN with the sites close to virtual stations #1 and #2, respectively. 770 
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 771 

 772 

Figure 5: Evolution of the global error term (intra- and inter-event) as a function of the distance from 773 

an observation, for the three methods. σinter,post represents the updated inter-event standard-deviation 774 

and σintra,∞ the updated intra-event standard-deviation very far from the observation (i.e., equivalent to 775 

the prior intra-event standard-deviation). 776 

 777 

 778 

Figure 6: Computation time (on an Intel(R) Core(TM) i5 processor with 4 GB RAM) for the Bayesian 779 

updating of one Y node, with respect to the number of points in the grid (left) and the number of U → 780 

Y links in the corresponding BN. 781 
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 782 

 783 

Figure 7: Illustration of the grid sub-division strategy, where the diamonds represent observations. 784 

 785 

 786 

 787 

Figure 8: Prior estimation of PGArock using the source parameter and the GMPE. The recording 788 

stations are represented by diamonds and the earthquake epicenter by a star. The small black crosses 789 

represent the 2 025 grid points. 790 
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 791 

 792 

Figure 9: Updated shake-map for PGArock using the BN approach (left) and the ShakeMap algorithm 793 

(right). The recording stations are represented by diamonds and the earthquake epicenter by a star. 794 

 795 

 796 

Figure 10: Updated field of σlnPGA using the BN approach (left) and the ShakeMap algorithm (right). 797 

 798 
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 799 

Figure 11: Updated BN based shake-map for PGArock (left) and SArock at 1.0s (right) in g, using all 800 

observations from Table 5. Both sets of observations are used for the generation of each of the maps. 801 

 802 

 803 

Figure 12: Updated BN based shake-map for PGA (left) in g and MMI (right), accounting for sites 804 

conditions and all available data (strong-motion data and macroseismic intensities). Strong-motion 805 

stations are represented by diamonds and intensity reports by black full squares. 806 
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 808 

Figure A.1: Adopted spatial correlation model and weighting function, for b = 13.5 km. 809 

  810 
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APPENDIX A 811 

The objective of this Appendix is to establish a correspondence between the weighting function used 812 

in the ShakeMap interpolation and the spatial correlation coefficient used in the BN approach. 813 

Consider two independent and identically distributed normal variables X and Y, where X represents the 814 

initial GMPE estimate at a given grid point and Y represents an observation at a distance r. 815 

According to Worden et al. (2010), the interpolated value Xint at the grid point may be computed from 816 

the following expression: 817 
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where F(r) = σY/σX is the weighting function defined by Worden et al. (2010), and Xint is assumed to 819 

have the following standard deviation: 820 
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According to the above definitions, the correlation coefficient between the variables Y and Xint must 822 

correspond to the spatial correlation coefficient ρ between two sites separated by a distance r. 823 

Therefore we can write: 824 
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By definition, we have cov(Y,Y) = σY
2 and cov(X,Y) = 0, due to the independence assumption. 826 

Therefore the expression of the spatial correlation coefficient becomes: 827 
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If a spatial correlation model with an exponential decrease rate is used here (i.e., see Equation 8), then 829 

the weighting function F(r) that is proposed for the ShakeMap algorithm becomes: 830 
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where b is the correlation length. 832 

The evolution of the weighting function F(r) and of the correlation coefficient ρ(r) with respect to 833 

inter-site distance r is represented in Figure A.1, for b = 13.5 km. 834 

[Figure A.1 about here] 835 
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