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Abstract. We construct large families of new collapsing hyperkähler metrics on the K3 surface.
The limit space is a flat Riemannian 3-orbifold T 3/Z2. Away from finitely many exceptional points
the collapse occurs with bounded curvature. There are at most 24 exceptional points where the
curvature concentrates, which always contains the 8 fixed points of the involution on T 3. The
geometry around these points is modelled by ALF gravitational instantons: of dihedral type (Dk)
for the fixed points of the involution on T 3 and of cyclic type (Ak) otherwise.

The collapsing metrics are constructed by deforming approximately hyperkähler metrics obtained
by gluing ALF gravitational instantons to a background (incomplete) S1–invariant hyperkähler
metric arising from the Gibbons–Hawking ansatz over a punctured 3-torus.

As an immediate application to submanifold geometry, we exhibit hyperkähler metrics on the
K3 surface that admit a strictly stable minimal sphere which cannot be holomorphic with respect
to any complex structure compatible with the metric.

1. Introduction

Soon after Yau’s proof of the Calabi Conjecture showed that the (smooth 4-manifold underlying
a complex) K3 surface carries Kähler Ricci-flat metrics, Gibbons and Pope [24] suggested the
construction (further explored by Page in [43]) of explicit approximately Ricci-flat metrics on
Kummer surfaces. They considered the quotient of a flat 4-torus by an involution and resolved the
16 orbifold singularities by gluing in copies of the Eguchi–Hanson metric. ThisKummer construction
was later made rigorous by LeBrun–Singer [33] and Topiwala [47] using twistor methods. Much more
recently Donaldson [19] gave a different proof using analysis, closest to the approach taken in the
current paper.

From a broader perspective the Kummer construction furnishes the prototypical example of
the appearance of orbifold singularities in non-collapsing sequences of Einstein 4-manifolds. In [1,
Theorem C] Anderson showed that a sequence of Einstein 4-manifolds (Mi, gi) with a uniform
lower bound on volume and upper bounds on diameter and Euler characteristic converges (up to
subsequences) to an Einstein 4-orbifold M∞ with finitely many singular points. The formation of
orbifold singularities is modelled on complete Ricci-flat ALE spaces which appear as rescaled limits,
or “bubbles”, of the sequence (Mi, gi) around points that approach one of the singularities of the
orbifold M∞.

In the Ricci-flat case collapsing can also occur. Anderson [2, Theorem II] showed that every
sequence of Ricci-flat metrics (M, gi) of unit volume but unbounded diameter collapses everywhere,
i.e. injgi(x) → 0 for all x ∈ M . The collapse is in the sense of Cheeger–Gromov outside finitely
many points x1, . . . , xn, i.e. injgi(x)→ 0 and injgi(x)2|Rmgi |gi(x) ≤ ε0 for all x ∈M \ {x1, . . . , xn},
for a universal constant ε0 > 0. In fact, Cheeger and Tian [10, Theorems 0.1 and 0.8] have shown
that the collapse occurs with bounded curvature away from a definite number of points.

Contrary to the case of non-collapsed singularities, almost nothing is known about the structure
of the singular points arising in collapsing sequences of Ricci-flat metrics [3, §6]. One would expect
that the geometry around these points is modelled on complete Ricci-flat manifolds with non-
maximal volume growth. A simple example of the expected phenomena was suggested by Page [44]
in 1981. Consider the Kummer construction of Ricci-flat metrics on the K3 surface along a family
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of split tori T 4 = T 3 × S1
` with a circle factor of length ` → 0. We can then think of the 2-

spheres arising in the resolution of the 16 singularities of T 4/Z2 as coming in pairs aligned along
the collapsing circle over each of the 8 singular points of T 3/Z2. If we now rescale the sequence of
Kähler Ricci-flat metrics on the K3 surface by `−2 around one of these pairs, Page suggests, in the
limit ` → 0 we should obtain a complete Ricci-flat (hyperkähler) metric on a noncompact space
which at infinity looks like (R3 × S1)/Z2.

In this paper we regard this example as a simple case of a more general construction of sequences
of Ricci-flat metrics on the K3 surface that collapse to a 3-dimensional limit. In this more general
construction, the 4-torus T 3 × S1

` is replaced by a non-trivial circle bundle over a (punctured)
3-torus and the role of Page’s “periodic but nonstationary gravitational instanton” is played by
other ALF gravitational instantons.

A gravitational instanton is a complete hyperkähler 4-manifold with decaying curvature at in-
finity. Since every hyperkähler manifold is in particular Ricci-flat, gravitational instantons have
constrained volume growth: the volume of a geodesic ball of radius r grows at most as r4. Grav-
itational instantons of maximal volume growth are the ALE spaces constructed and classified by
Kronheimer [32] following earlier work of Eguchi–Hanson, Gibbons–Hawking and Hitchin. We have
seen how ALE spaces arise as models for the formation of orbifold singularities of non-collapsed
sequences of Einstein 4-manifolds. In [41] Minerbe showed that if Vol

(
Br(p)

)
= O(ra) for some

3 ≤ a < 4 and all p, then we must have a = 3. Gravitational instantons of cubic volume growth
are called ALF. By [41] the (unique) end of an ALF space looks like a circle fibration over the
complement of a ball in R3 or R3/Z2 with fibres of asymptotically finite length. If the base of
the circle fibration at infinity is R3 (respectively, R3/Z2) then we say that the ALF space is of
cyclic (dihedral) type, since the boundary of large geodesic balls is diffeomorphic to S3/Γ, where
Γ ⊂ SU(2) is a cyclic group in the first case and a binary dihedral group in the second.

The prototypical example of an ALF space of cyclic type is the Taub–NUT metric on R4. This
metric is explicit and the circle fibration at infinity is induced by the Hopf projection S3 → S2. The
first example of an ALF metric of dihedral type was found by Atiyah–Hitchin [5] by studying moduli
spaces of magnetic monopoles on R3, i.e. the solutions of the dimensional reduction of the Yang–
Mills self-duality equations from 4 to 3 dimensions. The Atiyah–Hitchin manifold is diffeomorphic
to the complement of a Veronese RP2 in S4 and the metric is explicitly given in terms of elliptic
integrals.

Recently ALF gravitational instantons have been the focus of intense research with the aim of
constructing and classifying examples. Minerbe [42] classified ALF spaces of cyclic type. These
are all explicitly given by the Gibbons–Hawking construction of hyperkähler 4–manifolds with a
triholomorphic circle action [25]. Most (if not all) the known methods of construction of hyperkähler
metrics have been applied to the dihedral ALF case: twistor methods [13,29], hyperkähler quotient
constructions [15, 16], gauge-theoretic constructions as in the case of the Atiyah–Hitchin manifold
[13], Kummer-type constructions [8] and complex Monge–Ampère methods [6]. For example, Page’s
“periodic but nonstationary” gravitational instantons of [44], more commonly known as D2 ALF
spaces, were first constructed rigorously by Hitchin [29] using twistor methods, then by Dancer [15]
using a hyperkähler quotient construction and more recently by Biquard–Minerbe [8] using an
extension of the Kummer construction to non-compact spaces. The D2 ALF spaces can also be
thought of as the moduli spaces of centred charge 2 SO(3) monopoles on R3 with two singularities
endowed with their natural L2–metric [14]. The fact that all these constructions yield equivalent
families of ALF metrics was shown only recently by Chen–Chen [11].

Despite this rich theory of ALF gravitational instantons, until now it has remained unclear how
they can appear as models for the formation of singularities in collapsing sequences of hyperkähler
metrics on the K3 surface. The aim of this paper is to exploit singular perturbation methods to
construct examples of Ricci-flat metrics on the K3 surface collapsing to a 3-dimensional limit and
exhibit ALF gravitational instantons as the “bubbles” appearing in the process.
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Theorem 1.1. Every collection of 8 ALF spaces of dihedral type M1, . . . ,M8 and n ≤ 16 ALF
spaces of cyclic type N1, . . . , Nn satisfying

8∑
j=1

χ(Mj) +
n∑
i=1

χ(Ni) = 24

arises as the collection of “bubbles” forming in a sequence of hyperkähler metrics on the K3 surface
which collapse to T 3/Z2 with bounded curvature away from n+ 8 points.

We refer to Theorem 6.17 for a more precise statement.
In [26] Gross–Wilson studied hyperkähler metrics on elliptic K3 surfaces with fibres of small

size. They considered the generic case when all singular fibres (24 of them) are of Kodaira type I1
(i.e. a pinched torus). The hyperkähler metric is approximated by a semi-flat metric on the locus
of the smooth fibres and by a certain (incomplete) explicit hyperkähler metric, the Ooguri–Vafa
metric, in the neighbourhood of each singular fibre. As the size of the fibres converges to zero, the
K3 surface collapses to a metric on S2 (the base of the elliptic fibration) with 24 singular points.
To the knowledge of the author, besides Gross–Wilson’s work, Theorem 1.1 is the only study of
collapsing sequences of hyperkähler metrics on the K3 surface.

Now, one way to make precise Page’s observations in [44] about the Kummer construction for
a degenerating family of tori is to consider a gluing construction in which one glues 8 copies
of the D2 ALF space to the Z2 quotient of the trivial circle bundle T 3 × S1 over the flat 3-
torus. The proof of Theorem 1.1 is also based on a gluing construction. In order to allow for
more general ALF spaces to appear as rescaled limits, the main idea is to replace T 3 × S1 with
an (incomplete) background hyperkähler metric on a non-trivial circle bundle over a punctured
3-torus. The tool to construct such a background metric is the Gibbons–Hawking construction
of hyperkähler metrics with a triholomorphic S1 symmetry, i.e. an isometric circle action that
also preserves the 2-sphere of complex structures compatible with the metric. The S1–invariant
hyperkähler metrics we seek are explicitly given in terms of a positive harmonic function h on T 3

with prescribed singularities at a finite number of points. For most configurations of punctures the
harmonic function h becomes negative somewhere. However, by multiplying h by a small number
ε > 0 (which geometrically corresponds to making the circle fibres have small length) it is possible
to construct highly collapsed hyperkähler metrics ggh

ε outside of an arbitrarily small neighbourhood
of the punctures. Furthermore, the construction of this background metric can be made invariant
under the action of an involution.

The key observation now is that the asymptotic model of any ALF metric (up to a double cover in
the dihedral case) can be written in Gibbons–Hawking coordinates. By choosing the configuration
of punctures appropriately it is then possible to glue in copies of ALF spaces to extend the Gibbons–
Hawking metric ggh

ε to an approximately hyperkähler metric gε: close to a fixed point of the Z2–
action on T 3 we glue in an ALF space of dihedral type (this explains why we need 8 of them
in Theorem 1.1); close to a puncture which is not a fixed point of the Z2–action we glue in an
ALF space of cyclic type. The Euler characteristic constraint in the statement of Theorem 1.1 is
necessary for the resulting 4-manifold to have the same Euler characteristic as the K3 surface, but it
can also be reinterpreted as the necessary and sufficient condition for the existence of the harmonic
function h in the first place.

The approximate solution gε is then deformed into an exact hyperkähler metric by means of
the Implicit Function Theorem. Since some of the ALF spaces are not biholomorphic to their
asymptotic model outside a compact set, it is necessary to set up the problem as a gluing problem
for hyperkähler structures, rather than the most standard procedure (as in the classical Kummer
construction) of first constructing a complex surface using complex geometry and then solving a
complex Monge–Ampère equation on this given complex manifold.
Remark. At least in some form this “Gibbons–Hawking approximation” of hyperkähler metrics on
the K3 surface seems to be known to physicists in the context of the duality between M theory
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compactified on the K3 surface and Type IIA String theory compactified on T 3/Z2. For example, in
[45] Sen discusses the physical interpretation of dihedral ALF spaces thought of as a “superposition”
of Taub–NUT spaces and the Atiyah–Hitchin manifold, cf. Remark 3.7.
Remark. One can also wonder what happens when, instead of T 3/Z2, we start from an arbitrary
closed flat 3-orbifold with only isolated singularities modelled on R3/Z2. Any such orbifold is the
quotient of a closed orientable flat 3-manifold by an orientation-reversing isometric involution with
finitely many fixed points. Indeed, let X be a flat 3-orbifold with only m isolated singularities
each modelled on R3/Z2. Then there are m disjoint open subsets Uj ⊂ X each isometric to a ball
centred at the origin in R3/Z2, such that X∗ = X \

⋃m
j=1 Uj is a flat 3-manifold with boundary.

X∗ is not orientable since each boundary component is a two-sided RP2. By gluing m flat 3-balls
to the oriented double-cover of X∗ along the m disjoint round 2-spheres forming its boundary, we
define a closed flat orientable 3-manifold X̃ with X = X̃/ι for an orientation-reversing isometric
involution ι with m isolated fixed points, cf. [23, Lemma 1.7]. There are six closed orientable flat 3-
manifolds: in the notation of [49, §3.5] they are G1 = T 3, Gi = T 3/Zi for i = 2, 3, 4, G5 = T 3/Z6 and
G6 = T 3/(Z2 × Z2). Luft–Sjerve [36] have shown that only G1,G2 and G6 admit an involution with
finitely many fixed points (8, 4 and 2 of them, respectively). By working on the 3-torus equivariantly
with respect to a finite group action, the Gibbons–Hawking construction yields (incomplete) Ricci-
flat metrics on circle bundles over any (punctured) flat 3-manifold X̃. These metrics are hyperkähler
only when X̃ = T 3, Kähler if X̃ = Gi for i = 2, 3, 4, 5 and have generic holonomy when X̃ = G6,
since only G1 has b1 = 3 and b1(Gi) = 1 in all other cases except for G6, which has purely torsion
first homology. By the result of Luft-Sjerve, only when X̃ = G1,G2 or G6 we are able to construct
background Ricci-flat metrics that can be extended to complete metrics by gluing in copies of ALF
spaces of cyclic and dihedral type. On the other hand, Hitchin [28, Theorem 1] showed that the
only Ricci-flat 4-manifolds covered by the K3 surface are the Enriques surfaces (quotients of a K3
surface by an involution without fixed points) with their Kähler Ricci-flat metrics and the quotient
of an Enriques surface by an anti-holomorphic involution without fixed points. Carrying out our
gluing construction equivariantly with respect to a finite group action then allows us to produce
collapsing sequences of Ricci-flat metrics on an Enriques surface (the metrics are Kähler in this
case) and its quotient by an anti-holomorphic involution: the collapsed limit is G2/Z2 and G6/Z2,
respectively, and ALF gravitational instantons appear as “bubbles”.

We leave aside for future work the question of understanding the relation between the metric
degenerations described in this paper and degenerations of a compatible complex structure on the
K3 surface. Similarly, it would be very interesting to understand to what extent the collapsing
behaviour exhibited in this paper is typical of an arbitrary sequence of Ricci-flat metrics on the K3
surface collapsing to a 3-dimensional limit.

We give instead an application of our gluing construction to the theory of minimal surfaces.
It is well known that holomorphic submanifolds of a Kähler manifold minimise volume in their
homology class. A classical problem in minimal surface theory is to understand to what extent
area minimising surfaces (and more generally stable minimal surfaces) in Kähler manifolds must
be (anti)holomorphic. For example, in 1993 Yau asked whether it is possible to classify all stable
minimal 2-spheres in a simply connected Kähler Ricci-flat manifold [50, Question 64]. In [39] Micallef
showed that every stable minimal surface in a flat 4-torus must be holomorphic for some complex
structure compatible with the metric. For some time there was hope to prove a similar result in
the case of the K3 surface endowed with a hyperkähler metric. Eventually, Micallef–Wolfson [38]
showed that this is not the case. A simple application of our gluing construction allows us to
give an alternative (simpler) counterexample: there exist hyperkähler metrics on the K3 surface
that admit a strictly stable minimal sphere which is not holomorphic with respect to any complex
structure compatible with the metric, cf. Theorem 7.1. In [37, Proposition 5.5] Micallef–Wolfson
show that the double cover of the Atiyah–Hitchin manifold, the rotationally symmetric D1 ALF
space, contains a strictly stable minimal 2-sphere Σ with self-intersection −4. By the adjunction
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formula Σ cannot be holomorphic with respect to any complex structure compatible with the
hyperkähler metric. Using the rotationally symmetric D1 ALF space as one of the building blocks
in our gluing construction allows us to construct (non-holomorphic) stable minimal spheres with
self-intersection −4 in the K3 surface. These examples are optimal since Donaldson [17, Proposition
26] (cf. also [38, Theorem 5.1]) has shown that in a hyperkähler 4-manifold any compact minimal
surface that is not holomorphic with respect to any complex structure and has self-intersection
larger than −4 cannot be stable.

Plan of the paper. As we have already mentioned, in this paper we will need to glue hyperkähler
structures rather than solving a complex Monge–Ampère equation on a given complex manifold.
In Section 2, following Donaldson [18], we explain how to set up the problem of deforming approx-
imately hyperkähler metrics based on the notion of definite triples.

Section 3 is a detailed summary of the theory of ALF spaces: we give precise definitions, describe
detailed asymptotics for such metrics and recall the construction and classification of examples.

In Section 4 we use the Gibbons–Hawking ansatz to construct (incomplete) hyperkähler metrics
on circle bundles over a punctured 3-torus. In Section 5 we use ALF spaces of cyclic and dihedral
type together with the metrics constructed in Section 4 to produce families of approximately hy-
perkähler metrics. In Section 6 we use analysis to deform these approximate solutions into exact
hyperkähler metrics. This is done by means of an Implicit Function Theorem in weighted Hölder
spaces. As usual in gluing problems, most of the work goes into showing that the relevant linear
operator has no small eigenvalues as ε→ 0 and the geometry degenerates.

Finally, Section 7 contains the proof of Theorem 7.1 about the existence of non-holomorphic
strictly stable minimal spheres.

Acknowledgements. The author wishes to thank Bobby Acharya, Mark Haskins and Johannes
Nordström for an inspiring conversation at the Mathematisches Forschungsinstitut Oberwolfach
in February 2015 which was the original inspiration for this work. He also wishes to thank Mark
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paper is based on work partially supported by the National Science Foundation under Grant No.
DMS-1440140 while the author was in residence at the Mathematical Sciences Research Institute
in Berkeley, California, during the Spring 2016 semester, and Grant No. DMS-1608143.

2. Definite triples and hyperkähler structures on 4-manifolds

The standard approach in the Kummer construction of Kähler Ricci-flat metrics on the K3
surface is to proceed in two steps. First one constructs a complex surface with vanishing first Chern
class by blowing up the singularities of a flat orbifold T 4/Z2. On this given complex manifold
one then constructs a Kähler Ricci-flat metric by solving a complex Monge-Ampère equation.
Some of the building blocks we are going to use in the gluing construction of this paper are not
biholomorphic to their asymptotic model outside a compact set. This will force us to adopt a
different strategy and glue hyperkähler structures all together. In this initial preliminary section
we explain how Donaldson [18] suggested an approach to this problem, based on the notion of
definite (or hypersymplectic) triples.

Recall that the space of 2-forms on an oriented 4-dimensional vector space carries a natural
non-degenerate bilinear form of signature (3, 3).

Definition 2.1. Let (M4, µ0) be an oriented 4-manifold with volume form µ0. A definite triple is
a triple ω = (ω1, ω2, ω3) of 2-forms on M such that Span(ω1, ω2, ω3) is a 3-dimensional positive
definite subspace of Λ2T ∗xM at every point x ∈M .
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Given a triple ω of 2-forms on (M,µ0) we consider the matrix Q ∈ Γ
(
M, Sym2(R3)

)
defined by

(2.2) 1
2 ωi ∧ ωj = Qij µ0.

ω is a definite triple if and only if Q is a positive definite matrix.
To every definite triple ω we associate a volume form µω by

(2.3) µω = (detQ)
1
3 µ0

and the new matrix Qω = (detQ)−
1
3 Q which satisfies (2.2) with µω in place of µ0. Note that the

volume form µω and the matrix Qω are independent of the choice of volume form µ0. We refer to
µω and Qω as the associated volume form and intersection matrix of the definite triple ω.

Now, let (M4, µ0) be an oriented 4-dimensional manifold. It is well known that the choice of
the 3-dimensional positive definite subspace Λ2

+T
∗
xM of Λ2T ∗xM for all x ∈M is equivalent to the

choice of a conformal class on M . Thus every definite triple defines a Riemannian metric gω by
requiring that Span(ω1, ω2, ω3)|x = Λ+T ∗xM for all x ∈M and dvgω = µω.

Definition 2.4. A definite triple ω is said
(i) closed if dωi = 0 for i = 1, 2, 3;
(ii) an SU(2)–structure if Qω ≡ id;
(iii) hyperkähler if it is both closed and an SU(2)–structure.

The metric gω associated to a hyperkähler triple is hyperkähler, in the sense that it has holonomy
contained in Sp(1) ' SU(2).

2.1. The deformation problem. In Section 5 we will construct closed definite triples ω which
are approximately hyperkähler, in the sense that the intersection matrix Qω is close to the identity.
We now explain how to formulate the problem of deforming such a triple ω into a hyperkähler
structure.

Let ω be a closed definite triple on a 4-manifold M and assume that ‖Qω − id‖C0 < σ for some
small σ > 0. We want to deform ω into a hyperkähler triple, i.e. we look for a triple of closed
2-forms η = (η1, η2, η3) on M such that

(2.5) 1
2 (ωi + ηi) ∧ (ωj + ηj) = δij µω.

Decompose η into self-dual and anti-self dual parts η = η++η− with respect to gω. The self-dual
part can be written in terms of a M3×3(R)–valued function A by

η+
i =

3∑
j=1

Aij ωj .

Denote by η− ∗ η− the symmetric (3 × 3)–matrix with entries (1
2 η
−
i ∧ η

−
j )/µω. Then we can

rewrite (2.5) as

(2.6) Qω +Qω A
T +AQω +AQω A

T + η− ∗ η− = id.
Now, consider the map

M3×3(R) −→ Sym2(R3); A 7−→ Qω A
T +AQω +AQω A

T

and its differential A 7→ Qω A
T +AQω. Since Qω is arbitrarily close to the identity, this linear map

induces an isomorphism Sym2(R3)→ Sym2(R3) for σ sufficiently small. We can therefore define a
smooth function F : Sym2(R3)→ Sym2(R3) such that Qω AT +AQω +AQω A

T = S if and only
if A = F(S).

Remark. When ω is hyperkähler (thus Qω = id) the kernel of A 7→ Qω A
T + AQω corresponds to

infinitesimal hyperkähler rotations.
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Hence we reformulate (2.6) as

(2.7) η+ = F
(
(id−Qω)− η− ∗ η−

)
.

Now, let H+
ω be the space of self-dual harmonic 2-forms with respect to gω. If a solution of (2.6)

exists on a compact manifoldM thenM must be either a 4-torus or a K3 surface with the standard
orientation and therefore H+

ω is 3-dimensional. Since ω1, ω2, ω3 are closed and self-dual (therefore
harmonic) and linearly independent (since ω is a definite triple) we deduce that H+

ω consist of
constant linear combinations of ω1, ω2, ω3.

By Hodge theory with respect to gω we can finally rewrite (2.7) as the elliptic equation

(2.8) d+a+ ζ = F
(
(id−Qω)− η− ∗ η−

)
, d∗a = 0,

for a triple a of 1-forms on M and a triple ζ ∈ H+
ω ⊗ R3. Here 2 d+a = da + ∗da is the self-dual

part of da.

Remark. Note that in general it is necessary to deform the cohomology classes of ω1, ω2, ω3 since
every hyperkähler triple must satisfy

1
2〈 [ωi] ∪ [ωj ], [M ] 〉 = δij Volgω (M).

The linearisation of (2.8) is the operator
(
Ω1(M)⊕H+

ω

)
⊗R3 →

(
Ω0(M)⊕ Ω+(M)

)
⊗R3 defined

by

(2.9) (a, ζ) 7−→ (d∗a, d+a+ ζ).

Note that on a compact manifold this operator is always surjective with kernel consisting of har-
monic 1-forms since the images of d and ∗d and H+ are L2–orthogonal.

3. ALF gravitational instantons

In this section we collect known results about gravitational instantons of type ALF, with an
emphasis on their asymptotic geometry. ALF gravitational instantons will appear as local models
for the geometry of high curvature regions in sequences of hyperkähler metrics on K3 collapsing to
a 3-dimensional limit.

A gravitational instanton is a complete hyperkähler 4-manifold (M, g) with decaying Rieman-
nian curvature at infinity. The minimum requirement (automatically satisfied for rescaled limits
of Einstein metrics on 4-manifolds with bounded Euler characteristic by the Chern–Gauss–Bonnet
formula) is that (M, g) has finite energy ‖Rm‖L2 . In order to say something about the structure of
gravitational instantons it has often been necessary to strengthen this finite energy assumption to
faster than quadratic curvature decay |Rm| = O(r−2−ε), ε > 0 (or a slightly weaker finite weighted
energy assumption). Note however that there are examples of gravitational instantons which do
not satisfy this stronger decay assumption [27, Theorem 1.5].

Since hyperkähler manifolds are in particular Ricci-flat, gravitational instantons have only one
end and constrained volume growth: the volume of a geodesic ball of radius r can grow at most as
r4 and at least linearly. An initial rough classification of gravitational instantons can be given
in terms of their volume growth. The gravitational instantons of maximal volume growth are
the ALE spaces classified by Kronheimer [32] following earlier work of Eguchi–Hanson, Gibbons–
Hawking and Hitchin. Under the assumption of faster than quadratic curvature decay (or a slightly
weaker finite weighted energy assumption) Minerbe [41, Theorem 0.1] has shown that if we as-
sume Vol

(
Br(p)

)
= O(ra) for some 3 ≤ a < 4 and all p, then a = 3. Minerbe also described the

asymptotic geometry of gravitational instantons of cubic volume growth and faster than quadratic
curvature decay: they are all ALF spaces, in the following sense.
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Definition 3.1. A gravitational instanton (M, g) is called ALF if there exists a compact set
K ⊂ M , R > 0 and a finite group Γ < O(3) acting freely on S2 such that M \ K is the total
space of a circle fibration π : M \K → (R3 \BR)/Γ and the metric is asymptotically a Riemannian
submersion
(3.2) g = π∗gR3/Γ + θ2 +O(r−τ )
for a connection θ on π and some τ > 0. There are two possibilities for the finite group Γ: if Γ = id
we say that M is an ALF gravitational instanton of cyclic type; if Γ = Z2 we say that M is an ALF
gravitational instanton of dihedral type.

We are interested in refining these asymptotics. In order to describe a more precise model for
the end of an ALF gravitational instanton it is necessary to recall the explicit construction of
4-dimensional hyperkähler metrics with a triholomorphic circle action known as the Gibbons–
Hawking ansatz. We will use this same ansatz later in the paper to construct (incomplete) hyper-
kähler metrics on circle bundles over a punctured 3–torus.

3.1. The Gibbons–Hawking ansatz. The Gibbons–Hawking ansatz describes 4-dimensional hy-
perkähler metrics with an isometric S1–action that also preserves the whole hyperkähler structure.
Such an S1–action is therefore called triholomorphic.

Let U be an open set of R3 and π : P → U be a principal U(1)–bundle. Suppose that there
exists a positive harmonic function h on U such that ∗dh is the curvature dθ of a connection θ on
P . Then
(3.3a) ggh = hπ∗gR3 + h−1θ2

is a hyperkähler metric. Indeed, we can exhibit an explicit hyperkähler triple ωgh that induces the
metric ggh. Fix coordinates (x1, x2, x3) on U ⊂ R3 and define

(3.3b) ωgh
i = dxi ∧ θ + h dxj ∧ dxk.

Here and in the rest of the paper we use the convention that for every i = 1, 2, 3 the indices j, k
are chosen so that εijk = 1. One can check explicitly that ωgh defines an SU(2)–structure and it
induces the Riemannian metric ggh. Moreover, the requirement that ωgh is also closed is equivalent
to the abelian monopole equation
(3.4) ∗ dh = dθ

The fibre-wise circle action on P preserves ωgh and π is nothing but a hyperkähler moment map for
this action. Conversely, every 4-dimensional hyperkähler metric with a triholomorphic circle action
is described by (3.3).

The basic example of the Gibbons–Hawking construction is given in terms of so-called Dirac
monopoles on R3. Fix a set of distinct points p1, . . . , pn in R3 and consider the harmonic function

h = λ+
n∑
j=1

kj
2|x− pj |

,

where λ > 0 and k1, . . . , kn are constants. Since R3 \ {p1, . . . , pn} has non-trivial second homology,
we must require kj ∈ Z for all j in order to be able to solve (3.4). If these integrality constraints are
satisfied then ∗dh defines the curvature dθ of a connection θ (unique up to gauge transformations)
on a principal U(1)–bundle P over R3 \ {p1, . . . , pn} which restricts to the principal U(1)–bundle
associated with the line bundle O(kj) → S2 on a small punctured neighbourhood of pj . The pair
(h, θ) is a solution of (3.4) which we call a Dirac monopole with singularities at p1, . . . , pn.

The Gibbons–Hawking ansatz (3.3) associates a hyperkähler metric ggh to every Dirac monopole
on the open set where h > 0. When kj > 0 then ggh is certainly defined on the restriction of P to
a small punctured neighbourhood of pj . By a change of variables one can check that ggh can be
extended to a smooth (orbifold) metric modelled on C2/Zkj by adding a single point. In particular
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ggh is a complete metric whenever λ ≥ 0 and kj = 1 for all j = 1, . . . , n. One can check that ggh

is an ALE metric when λ = 0 and an ALF metric of cyclic type when λ > 0. Note also that when
λ > 0 we can always rescale the metric so that λ = 1.

3.2. Families of ALF gravitational instantons. We are now going to use the Gibbons–Hawking
ansatz to define a refined asymptotic model for ALF gravitational instantons.

Let Hk be the total space of the principal U(1)–bundle associated with the line bundle O(k)
over S2 radially extended to R3 \BR for any R > 0. θk will denote the SO(3)–invariant connection
on Hk. The Gibbons–Hawking ansatz (3.3) yields a hyperkähler metric

(3.5) gk =
(

1 + k

2ρ

)
(dρ2 + ρ2gS2) +

(
1 + k

2ρ

)−1
θ2
k

on Hk for all k ∈ Z. Here ρ is a radial function on R3. We denote by ωk the associated hyperkähler
triple defined by (3.3b). Note that we could replace the harmonic function 1 + k

2ρ with λ + k
2ρ for

any λ > 0 but we can always reduce to the case λ = 1 by scaling.
Finally, on H2k we consider the Z2–action which is defined as the simultaneous standard involu-

tions on the base R3 and the fibre. Here the involution on the fibre S1 = R/2πZ is the one induced
by the standard involution on the universal cover R. Throughout the paper we refer to this as the
standard involution of S1.

Definition 3.6. Let (M4, g) be an ALF gravitational instanton of cyclic type. By scaling assume
that the length of the circle fibres at infinity is 1.

(i) We say that M is of type Ak for some k ≥ −1 if there exists a compact set K ⊂M , R > 0
and a diffeomorphism φ : Hk+1 →M \K such that

|∇lgk+1(gk+1 − φ∗g)|gk+1 = O(r−3−l)

for every l ≥ 0.
(ii) We say that M is of type Dm for some m ≥ 0 if there exists a compact set K ⊂M , R > 0

and a double cover φ : H2m−4 →M \K such that the group Z2 of deck transformations is
generated by the standard involution on H2m−4 and

|∇lg2m−4(g2m−4 − φ∗g)|g2m−4 = O(r−3−l)

for every l ≥ 0.

By [11, Theorem 1.1] every ALF gravitational instanton is either of type Ak for some k ≥ −1
or Dm for some m ≥ 0 (the constraints k ≥ −1 and m ≥ 0 follow from [40, Theorem 0.1] and [8,
Corollary 3.2], respectively).

Remark. In the cyclic case Chen–Chen [11, Theorem 1.1] have a worse decay O(r−2) of an ALF
metric of type Ak to gk+1. However, from the explicit description of cyclic ALF gravitational
instantons as multi-Taub–NUT spaces, as we will recall below, it is clear that one can always
change coordinates by a translation on R3 so that every Ak ALF space satisfies the stronger decay
stated in Definition 3.6 (i).

3.2.1. ALF spaces of cyclic type. We saw that gravitational instantons of type Ak can be construc-
ted from Dirac monopoles on R3 with k + 1 singularities via the Gibbons–Hawking ansatz. These
are usually called multi-Taub–NUT metrics. The case k = 0 is the Taub–NUT metric on R4 and
k = −1 is R3× S1 with its flat metric. Minerbe [42, Theorem 0.2] has shown that every ALF space
of cyclic type must be isometric to a multi-Taub–NUT metric.

From their explicit description one can easily compute basic information about cyclic ALF spaces:
the fundamental group π1(M), the second Betti number b2(M), the Euler characteristic and the
dimension of the moduli spaceM of Ak metrics:
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k π1(M) b2(M) χ(M) dim(M)
−1 Z 0 0 0

k > −1 1 k k + 1 3k
Here we assume that the asymptotic length of the circle fibre is normalised to be 1 so that dim(M)
does not include rescalings.

3.2.2. ALF spaces of dihedral type. ALF metrics of dihedral type are not globally given by the
Gibbons–Hawking construction and in most cases are not explicit. A number of different construc-
tions have appeared over the past 30 years, but only recently Chen–Chen [11, Theorem 1.2] have
shown that all these constructions yield equivalent families of ALF metrics. We distinguish the
cases m = 0, 1, 2 and m ≥ 3.
m = 0: The D0 ALF manifold is the moduli space of centred charge 2 monopoles on R3 with its

natural L2–metric, known as the Atiyah–Hitchin manifold. The metric admits a cohomo-
geneity one isometric action of SU(2) and is explicitly given in terms of elliptic integ-
rals [5, Chapter 11]. The Atiyah–Hitchin manifold is diffeomorphic to the complement of a
Veronese RP2 in S4 and therefore it retracts to RP2. The Atiyah–Hitchin metric does not
admit deformations as a D0 ALF metric except for scaling.

m = 1: The double cover of the Atiyah–Hitchin manifold is a D1 ALF space. As a smooth manifold
it is diffeomorphic to the complement of RP2 in CP2, or equivalently to the total space
of O(−4) over S2. Exploiting the rotational invariance of the metric it can be shown [37,
Proposition 5.5] that the 2-sphere in the interior is a strictly stable minimal sphere which
is not holomorphic with respect to any complex structure compatible with the metric, a
fact that will play a crucial role in the proof of Theorem 7.1. This rotationally invariant D1
ALF metric admits a 3-dimensional family of D1 ALF deformations, sometimes referred
to as the Dancer metrics.

Remark. The fact that the double cover of the Atiyah–Hitchin manifold admits a 3-parameter family
of D1 ALF deformations can also be shown using methods similar to the ones developed in this
paper. Indeed, it is known [30, §5.4] that the rotationally invariant D1 ALF metric admits a unique
L2–integrable (in fact, exponentially decaying) anti-self-dual harmonic form η. This form yields
a 3-dimensional space of infinitesimal hyperkähler deformations and an extension of the analysis
needed for the proof of Theorem 6.17 could be used to integrate these infinitesimal deformations to
genuine D1 ALF metrics. In fact Dancer [16] has constructed a 3-parameter family of hyperkähler
deformations of the rotationally invariant D1 ALF metric using Nahm’s equations and hyperkähler
quotient techniques: there exists a hyperkähler 8-manifold N constructed as a moduli space of
solutions to Nahm’s equations which admits a triholomorphic U(1)–action. Denote by µ : N → R3

the corresponding hyperkähler moment map. Dancer identifies the rotationally symmetric D1 ALF
metric with the hyperkähler quotient µ−1(0)/U(1). By varying the level set of the moment map he
then obtains a 3-parameter family of hyperkähler deformations of the Atiyah–Hitchin metric. By
a general formula for the infinitesimal deformation of the symplectic form of a symplectic quotient
corresponding to varying the level set of the moment map [21], the infinitesimal deformations
of the Atiyah–Hitchin metric corresponding to Dancer’s metrics coincide with those determined
by the L2 harmonic form η, which is interpreted in this context as the curvature of the natural
hyperholomorphic connection on the U(1)–bundle µ−1(0) → µ−1(0)/U(1) induced by the Levi–
Civita connection of N .

m = 2: D2 ALF metrics were constructed by Hitchin [29, §7] using twistor methods, by Dancer [15,
pp. 88-89] using a hyperkähler quotient construction and by Biquard–Minerbe [8, Theorem
2.4] using a non-compact version of the Kummer construction: one considers the quotient
of R3×S1 by an involution and resolves the two singularities gluing in copies of the Eguchi–
Hanson metric.
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Remark. Biquard–Minerbe [8, Theorem 2.4] use singular perturbation methods to solve a complex
Monge–Ampère equation on the minimal resolution of (R3 × S1)/Z2. Using the more general ap-
proach adopted in this paper to glue hyperkähler structures one could extend their construction to
recover a 6-dimensional family of D2 ALF metrics.

m ≥ 3: Dm ALF metrics (for all m ≥ 1) appeared in the work of Dancer [15, 16] on finite di-
mensional hyperkähler quotients of moduli spaces of solutions to Nahm’s equations and in
the work of Cherkis–Kapustin [14] on moduli spaces of singular monopoles on R3. A con-
struction based on twistor methods and the generalised Legendre transform was given by
Cherkis–Hitchin [13]. In the case m ≥ 3 a more transparent construction due to Biquard–
Minerbe [8, Theorem 2.5] yields Dm ALF metrics by desingularising the quotient of the
Taub–NUT metric by the binary dihedral group Dm of order 4(m − 2) using ALE di-
hedral spaces. Using complex Monge–Ampère methods Auvray [6] has then constructed
3m-dimensional families of Dm ALF metrics on the smooth 4-manifold underlying the
minimal resolution of C2/Dm.

Remark 3.7. The gluing construction presented in this paper could be extended to the non-compact
setting to yield yet another construction of dihedral ALF metrics. Indeed, as suggested by Sen [45],
one considers a Gibbons–Hawking metric obtained from the harmonic function

h = λ− 2
|x|

+
m∑
i=1

1
2|x− xi|

+ 1
2|x+ xi|

for m distinct points x1, . . . , xm ∈ R3 \ {0}. Observe that for λ > 0 sufficiently large h > 0 outside
an arbitrarily small neighbourhood of the origin. Since the configuration of punctures is invariant
under the standard involution of R3, this (incomplete) metric descends to a hyperkähler metric on
a Z2 quotient. For λ sufficiently large one can then complete this metric by gluing in a copy of the
D0 ALF space close to the origin. This approximate solution could then be deformed to an exact
hyperkähler metric in a way similar to the proof of Theorem 6.17.

We summarise some of the properties of a Dm ALF gravitational instanton M in the following
table:

m π1(M) b2(M) χ(M) dim(M)
0 Z2 0 1 0

m > 0 1 m m+ 1 3m
As in the cyclic case,M is the moduli space of Dm ALF metrics modulo scaling.

4. Gibbons–Hawking ansatz on a punctured 3-torus

In this section we use the Gibbons–Hawking ansatz (3.3) to construct families {ggh
ε }ε>0 of (in-

complete) hyperkähler metrics on circle bundles over a punctured 3-torus modulo an involution.
The parameter ε > 0 essentially determines the length of the circle fibres. As ε→ 0 the metric ggh

ε

collapses to the flat orbifold T 3/Z2 with bounded curvature away from the punctures. The family
{ggh
ε }ε>0 will serve as the model for a family of hyperkähler metrics on the K3 surface collapsing to

a 3-dimensional limit in the region where the collapsing occurs with bounded curvature. In the next
section we will use ALF gravitational instantons as models for high curvature regions to extend the
metric ggh

ε to a complete almost hyperkähler metric.

4.1. Dirac monopoles on a punctured torus. Let T = R3/Λ be a 3-torus for some lattice
Λ ' Z3. Endow T with a flat metric gT.

Let τ : T→ T be the standard involution x 7→ −x on T and denote by q1, . . . , q8 its fixed points.
For each j = 1, . . . , 8 choose a non-negative integer mj . Fix a τ–symmetric configuration of a
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further 2n distinct points p1, τ(p1), . . . , pn, τ(pn). Sometimes we will use the notation −pi for τ(pi).
Denote by T∗ the punctured torus

T∗ = T \ {q1, . . . , q8, p1, τ(p1), . . . , pn, τ(pn)}.
Finally choose integer weights k1, . . . , kn > 0 and assume the following balancing condition holds:

(4.1)
8∑
j=1

mj +
n∑
i=1

ki = 16.

In particular, n ≤
∑n
i=1 ki ≤ 16.

For each j = 1, . . . , 8 let ρj denote the distance function from the point qj with respect to gT.
Similarly, by abuse of notation we let ρi denote the distance function from ±pi in T/τ . By restricting
the branched double cover T→ T/τ to a sufficiently small ball centred at ±pi in T/τ we will also
regard ρi as the distance function on T from the point pi or τ(pi).

We look for a Dirac monopole (h, θ) on T∗ with the following singular behaviour: h is a harmonic
function on T∗ with prescribed singularities at the punctures

(4.2) h ∼ 2mj − 4
2ρj

as ρj → 0, h ∼ ki
2ρi

as ρi → 0.

Proposition 4.3. Assume the balancing condition (4.1) is satisfied.
(i) There exists a harmonic function h on T∗ with prescribed singular behaviour (4.2) such

that ∗gTdh is the curvature dθ of a connection θ on some principal U(1)–bundle P → T∗.
(ii) The moduli space of Dirac monopoles (h, θ) on P is isomorphic to R × T̂, where T̂ is the

dual torus parametrising flat U(1)–connections on T.
(iii) The involution τ lifts to the involution τ̃ of the U(1)–bundle P which acts simultaneously

as τ on T∗ and as the standard involution on the circle fibres.

Proof. The necessary and sufficient condition for the existence of the harmonic function h is

(4.4)
8∑
j=1

(2mj − 4) + 2
n∑
i=1

ki = 1
2π lim

σ→0

ˆ
∂Tσ
∗dh = 0,

where Tσ denotes the complement of the union of small balls of radius σ centred at the punctures.
Thus if (4.1) is satisfied, a harmonic function h with the singular behaviour (4.2) does indeed exists
and is unique up to the addition of a constant.

By Lefschetz–Poincaré duality H2(T∗) ' H1
c (T∗). The latter group sits in a long exact sequence

0→ H0(T)→ Z2n+8 → H1
c (T∗)→ H1(T)→ 0,

where Z2n+8 is generated by the 2n + 8 punctures and we have used the isomorphism H1(T∗) '
H1(T) given by the reduced Mayer–Vietoris sequence. Thus H2(T∗) is (2n+ 10)–dimensional and
maps onto H2(T) with kernel spanned by the classes of 2n + 8 spheres centred at the punctures.
Note that the sum of these 2n+ 8 homology classes vanishes.

Because of (4.2), 2n+7 of the 2n+10 integrality constraints on i
2π ∗dh to represent the first Chern

class of a line bundle are automatically satisfied since we chose 2mj − 4, ki ∈ Z. The remaining 3
constraints can be reinterpreted in terms of the position of the punctures following the arguments
in the proof of [9, Proposition 3.5]:

8∑
j=1

(2mj − 4) qj +
n∑
i=1

ki
(
pi + τ(pi)

)
∈ Λ.

Since the points qj belong to the half-lattice 1
2Λ this condition is automatically satisfied.

We have therefore proved the existence of a principal U(1) bundle P → T∗ endowed with a
connection θ with curvature ∗dh. Since by the reduced Mayer–Vietoris sequence H1(T∗) ' H1(T) 6=
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0, θ is uniquely determined up to a flat connection, i.e. a point of the dual torus T̂. This concludes
the proof of (i) and (ii).

By uniqueness up to the addition of a constant the harmonic function h is τ–invariant and
therefore can be thought of as defined on T∗/τ . Since τ∗(∗dh) = − ∗ dh, we can lift τ (uniquely
up to gauge transformations) to an involution τ̃ of the circle bundle P by requiring that τ̃ acts
simultaneously as τ on T∗ and as the standard involution on the circle fibres. �

4.2. Collapsed S1–invariant hyperkähler metrics. Fix once and for all a Dirac monopole
(h, θ) amongst the ones produced by Proposition 4.3. Via the Gibbons–Hawking ansatz (3.3) we
now use (h, θ) to construct (incomplete) hyperkähler metrics with a triholomorphic circle action
with orbits of small length.

Fix a (small) positive number ε > 0 and define
(4.5) hε = 1 + εh.

The Gibbons–Hawking ansatz (3.3) with potential ε−1hε yields a hyperkähler structure on P |Uε ,
where Uε is the open set of T∗ where hε > 0. After multiplying the metric by ε to normalise the
diameter, the hyperkähler triple ωgh

ε and the induced metric ggh
ε are

(4.6) ωgh
ε,i = ε θi ∧ θ + hε θj ∧ θk, ggh

ε = hε π
∗gT + ε2h−1

ε θ2.

Here (θ1, θ2, θ3) is a triple of closed 1-forms on T such that gT = θ2
1 + θ2

2 + θ2
3. Note that the

hyperkähler structure ωgh
ε is τ̃–invariant and therefore defines an induced hyperkähler structure on

the quotient Mgh
ε = (P |Uε) /τ̃ . For ease of notation, we will denote the induced hyperkähler triple

and metric on Mgh
ε with the same symbols.

In the rest of the section we study the properties of the hyperkähler manifold Mgh
ε . We aim to

(i) study the local structure of the metric ggh
ε close to the punctures, (ii) determine the set where

hε > 0, and (iii) understand the limit of gghε as ε→ 0.
The following asymptotic expansions for the harmonic function hε close to the punctures are

standard. In the case of a fixed point of the involution τ the improved decay follows from the fact
that linear harmonic functions on R3 are not Z2–invariant.

Lemma 4.7. There exists 0 < ρ0 < 1
4 inj gT such that the balls B2ρ0(qj), j = 1, . . . , 8, and

B2ρ0(±pi), i = 1, . . . , n, in T are all disjoint and such that the following holds.
(i) For j = 1, . . . , 8 there exists λj ∈ R such that in B2ρ0(qj)

hε = (1 + ελj) + ε(mj − 2)
ρj

+O(ε ρ2
j ).

(ii) For each i = 1, . . . , n there exists λi ∈ R and a linear function `i on R3 with |`i| ≤ Cρ
such that in B2ρ0(±pi)

hε = (1 + ελi) + εki
2ρi

+ ε `i +O(ε ρ2
i ).

Moreover, ρ0, λj , λi, `i depend continuously on the position of the punctures p1, . . . , pn and on the
flat metric gT and f = O(ε ρ2) means that there exists a constant C depending continuously on
these data such that |∇kf | ≤ Cερ2−k for k = 0, 1, 2.

Since we chose ki > 0 for i = 1, . . . , n certainly a punctured neighbourhood of ±pi is contained
in the set Uε where hε > 0. As already mentioned, the Gibbons–Hawking metric can be extended
by adding a single point to a smooth orbifold metric modelled on C2/Zki . The obvious way to
smooth out such an orbifold singularity is to replace the “multiplicity” ki point pi with ki points
each with weight 1. Then the Gibbons–Hawking ansatz yields a smooth metric that is modelled on
a rescaled Taub–NUT space in a neighbourhood of pi. However we prefer to leave the freedom to
choose ki > 1 so that we can consider configurations of punctures that “degenerate” as ε→ 0 and
see an Aki−1 ALF space appearing as a rescaled limit.
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Remark. One could also consider (but we will not pursue this in the paper) more general degen-
erating families of punctures with various clusters of points coalescing at different rates as ε → 0.
One would expect “bubble trees” of ALF and ALE spaces appearing as rescaled limits in this case,
cf. [2, Remark 5.2].

Next, we consider the structure of ggh
ε in a neighbourhood of qj . By Lemma 4.7 (i) certainly hε is

positive in a punctured neighbourhood of qj whenever mj > 2. In this case the Gibbons–Hawking
metric onMgh

ε can be extended to a smooth orbifold metric with a singularity of the form C2/Dmj ,
where Dmj is the binary dihedral group of order 4(mj−2). In contrast with the previous case, there
is no explicit way to remove this singularity, but for fixed ε > 0 one can imagine using the methods
of [8, §2.4] to resolve this singularity by gluing in a rescaled ALE dihedral space. However, we are
interested in the limit ε → 0 and in the next section we will directly glue in a Dmj ALF space to
resolve this singularity.

Similarly, when mj = 2 one can choose ε sufficiently small so that 1 + ελj > 0. Note that in
this case hε and the U(1)–bundle P are well defined at qj . After quotienting by τ̃ , the Gibbons–
Hawking metric ggh

ε becomes an orbifold metric modelled on (R3 × S1)/Z2. As before, the two
orbifold singularities could be resolved by (i) fixing ε > 0 and gluing in two copies of the Eguchi–
Hanson metric, or (ii) letting ε→ 0 and gluing in a single copy of a D2 ALF metric. We will follow
the second approach.

Remark 4.8. Note that if mj = 2 for all j = 1, . . . , 8 then n = 0 by (4.1) and the bundle P extends
over every puncture: in fact P is a 4-torus and our construction reduces to the usual Kummer
construction along a family of 4-tori collapsing to a 3-dimensional torus. This is the case considered
by Page in [44].

It remains to study the case when mj = 0, 1 for some j. Assume this is the case for j = 1, . . . , k
for some 1 ≤ k ≤ 8. Then k = 0 if and only if mj ≥ 2 for all j = 1, . . . , 8. Since

∑8
j=1mj =

16−
∑n
i=1 ki ≤ 16− n, we must have k ≥ 1 as soon as n ≥ 1 or n = 0 and mj > 2 for some j, i.e.

in every case except for the usual Kummer construction. The case mj = 0, 1 is “bad” in the sense
that hε → −∞ as ρj → 0.

Lemma 4.9. There exists ε0 > 0 depending continuously on p1, . . . , pn and gT such that for every
ε < ε0 we have hε > 1

2 on the complement of
⋃k
j=1B8ε(qj).

Proof. Restrict attention to the ball B2ρ0(qj). First note that 1 + ε (mj−2)
ρ ≥ 1− 2ε

ρ = 3
4 for ρ = 8ε.

Now choose ε0 > 0 so that ε(λj + C ε2

64) ≤ 1
4 for all ε ≤ ε0. Here λj , C are the constants of Lemma

4.7 (i). We conclude that hε > 1
2 on ∂B8ε(qj) for ε < ε0. Since hε blows up to +∞ at the punctures

qk+1, . . . , q8,±p1, . . . ,±pn the maximum principle completes the proof. �

In other words, by choosing ε small enough we can assume that hε > 0 outside an arbitrarily
small neighbourhood of the points q1, . . . , qk where mj = 0, 1.

Finally, we consider the limit ε→ 0.

Lemma 4.10. As ε → 0 the harmonic function hε converges to the constant function 1. More
precisely, given k ≥ 0 and α ∈ (0, 1) fix β > 0 with β−1 > k + 1 + α. Then ‖hε − 1‖Ck,α → 0 as
ε → 0 on the complement of the union of balls of radius εβ around the punctures. In particular,
Mgh
ε collapses to the flat orbifold T/τ with bounded curvature away from the punctures.

Proof. The first statement is a simple application of Lemma 4.7, since close to each puncture we
have

ρk|∇k(hε − 1)| ≤ Cερ−1,

where ρ is the distance from the puncture. It follows that away from the punctures ggh
ε is Ck,αloc –close

to the Z2–quotient of gT + ε2θ2 for any k ≥ 0 and ε sufficiently small. �
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5. Approximate hyperkähler metrics

In this section we patch together ALF gravitational instantons and the incomplete hyperkähler
structure ωgh

ε of the previous section to construct a closed definite triple ωε which is approximately
hyperkähler. In the next section we will use analysis to deform ωε into a genuine hyperkähler
structure for each ε > 0 sufficiently small.

5.1. The 4-manifold Mε. Let ωgh
ε be the hyperkähler triple defined in (4.6). By Lemma 4.9

for ε > 0 small enough we think of ωgh
ε as defined on Mgh

ε , a smooth manifold with boundary
obtained by restricting the line bundle P to the complement of (arbitrarily) small balls centred
at the punctures and then taking the quotient by the involution τ̃ . The boundary of Mgh

ε has
n + 8 components, each of which has a collar neighbourhood diffeomorphic either to H2mj−4/Z2
for j = 1, . . . , 8, or Hki for i = 1, . . . , n.

For each j = 1, . . . , 8 let Mj be the smooth 4-manifold underlying a Dmj ALF space and for
each i = 1, . . . , n let Ni be the smooth manifold underlying an Aki−2 ALF space. We construct a
smooth 4-manifold Mε by cutting the ends of Mj and Ni and gluing the resulting manifolds with
boundary to Mgh

ε in a neighbourhood of qj or ±pi, respectively.
We will construct an approximate hyperkähler structure on Mε in the next subsection. Here we

pause for a moment to determine the Betti numbers of Mε. While we will not use this result in an
essential way in the rest of the paper, it is interesting to note how the balancing condition (4.1)
appears naturally in the calculation of the Euler characteristic of Mε.
Proposition 5.1. The Betti numbers of the compact orientable 4-manifold Mε are

b1(Mε) = 0, b+2 (Mε) = 3, b−2 (Mε) = 19.

Proof. Decompose Mε into the union of a piece P/τ̃ , an Aki−1 ALF space for each i = 1, . . . , n and
a Dmj ALF space for each j = 1, . . . , 8. These pieces are identified along their common boundaries,
which are homology spheres. Note that all the pieces have vanishing first Betti number. Indeed, all
ALF spaces expect R3× S1 have finite fundamental group. On the other hand, the Gysin sequence
for the circle fibration P → T∗ yields 0 → H1(T∗) → H1(P ) → H0(T∗), where the last arrow is
the zero map unless P = T∗×S1. The exact sequence is equivariant with respect to the Z2–actions
induced by τ and τ̃ on H1(T∗) ' H1(T) and H1(P ), respectively, and the Z2–action generated by
−1 on H0(T∗) ' R. Since there are no fixed points for the Z2–actions on H1(T∗) and H0(T∗), we
deduce that H1(P/τ̃) ' H1(P )Z2 is trivial.

Now, since all components have vanishing first Betti number, the reduced Mayer–Vietoris se-
quence yields b1(Mε) = 0. The Euler characteristic is also easily calculated:

χ(Mε) = χ(P/Z2) +
n∑
i=1

χ(Aki−1) +
8∑
j=1

χ(Dmj ) =
n∑
i=1

ki +
8∑
j=1

mj + 8 = 24

by the balancing condition (4.1).
It remains to calculate the signature τ(Mε). Below we will construct a definite triple ωε on Mε

which is close to defining a hyperkähler structure. By changing the basis of Λ+T ∗Mε one can always
deform this triple to a genuine SU(2)–structure (without requiring any differential constraint). In
particular, Mε can be endowed with an almost complex structure J with c1(Mε, J) = 0. Since
c2(Mε, J) = χ(Mε) = 24, Hirzebruch’s Signature Theorem and the equality of characteristic classes
p1 = c2

1 − 2c2 yield τ(Mε) = −16. �

Remark. In Remark 4.8 we noted that the case where n = 0 and mj = 2 for all j = 1, . . . , 8 reduces
to the usual Kummer construction. Hence we know that Mε is diffeomorphic to the K3 surface in
this special case. It seems likely one can prove that the diffeomorphism type ofMε does not depend
on the configuration of punctures satisfying the balancing condition (4.1). Since we are going to
construct a hyperkähler metric on Mε, the calculation of the Betti numbers will anyway imply that
Mε is always diffeomorphic to the K3 surface.
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5.2. The definite triple ωε. We are now going to define an approximately hyperkähler triple ωε
on the 4-manifold Mε.

For each j = 1, . . . , 8 denote by ωqj ,ε the hyperkähler triple obtained by first applying the
Gibbons–Hawking ansatz (3.3) using the harmonic function ε−1hqj , where

(5.2) hqj = (1 + ελj) + ε(mj − 2)
ρ

,

and then multiplying the metric by ε. By abuse of notation we think of ωqj ,ε as defined both on
the circle bundle H2mj−4 → R3 \ B8ε(0) as well as on its quotient by the involution that acts as
the simultaneous standard involution on R3 and the circle fibres.

Similarly, for each i = 1, . . . , n let ωpi,ε be the hyperkähler triple obtained up to a factor of ε
from the Gibbons–Hawking ansatz using the harmonic function ε−1hpi , where

(5.3) hpi = (1 + ελi) + ε ki
2ρ + ε `i.

Here λj , λi and `i are the constants and linear functions appearing in Lemma 4.7. We will assume
that ε is small enough to guarantee that 1

2 < 1 + ελi, 1 + ελj <
3
2 .

For all j = 1, . . . , 8 let (Mj ,ωMj
) be a complete Dmj ALF space with asymptotic length of

the circle fibre 2π(1 + ελj). By Definition 3.6 there exists a compact set K ⊂ Mj , R0 > 0 and a
diffeomorphism Mj \K ' H2mj−4/Z2 such that, after the rescaling x 7→ εx on the base R3/Z2 of
the asymptotic circle fibration,

ε2ωMj
= ωqj ,ε + η

qj ,ε

for ρ > εR0 with η
qj ,ε

= O(ε3ρ−3) and similar estimates on the derivatives.
For each i = 1, . . . , n let (Ni,ωNi) be a complete Aki−1 ALF space. By the classification of

ALF spaces of cyclic type [42] the hyperkähler structure on Ni is explicitly given via the Gibbons–
Hawking ansatz starting from a harmonic function on R3 with ki singularities. We can add to
this function the smooth harmonic function ε2`i. Over a ball in R3 of radius much smaller than
ε−2 we can regard the resulting hyperkähler structure as a small perturbation of the ALF Aki−1
hyperkähler structure ωNi . By abuse of notation we denote this perturbed hyperkähler structure
with the same symbol ωNi . The advantage of this modification is that now ε2ωNi approaches
ωpi,ε with a smaller error: by Definition 3.6 there exists a compact set K ⊂ Ni, R0 > 0 and a
diffeomorphism Ni \K ' Hki |R3\BR0

such that, after the rescaling x 7→ εx on the base R3 of the
circle fibration,

ε2ωNi = ωpi,ε + η
pi,ε

with (by scaling) η
pi,ε

= O(ε3ρ−3) and similar estimates on the derivatives.

Remark. While not strictly necessary, the choice of perturbing Ni by a linear function makes the
exposition more uniform. In particular, the closed definite triple we will construct below fails to be
hyperkähler by the same amount in a neighbourhood of qj and ±pi.

We will assume that ε is chosen so small as to make sure that εR0 � ρ0, where ρ0 > 0 was fixed
in Lemma 4.7. By choosing R0 larger if necessary we can assume that the harmonic functions hqj
and hpi in (5.2) and (5.3) are as close to constant functions as we please for εR0 ≤ ρ ≤ ρ0. Then
the hyperkähler triples ωqj ,ε and ωpi,ε define metrics gqj ,ε and gpi,ε which are uniformly equivalent
to gT + ε2θ2 in the regions εR0 ≤ ρj , ρi ≤ 2ρ0. In the rest of the section all norms and covariant
derivatives will be computed with respect to this metric.

A crucial observation is that we can take η
pi,ε

and η
qj ,ε

to be exact.
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Lemma 5.4. (i) For all i = 1, . . . , n there exists a triple api,ε of 1-forms on Hki such that

|∇kapi,ε| ≤ Cε
3
(1
ρ

)2+k

and ε2ωNi = ωpi,ε + dapi,ε.
(ii) For all j = 1, . . . , 8 there exists a triple aqj ,ε of Z2–invariant 1-forms on H2mj−4 such that

|∇kaqj ,ε| ≤ Cε
3
(1
ρ

)2+k

and ε2ωMj
= ωqj ,ε + daqj ,ε.

Proof. The proof is identical in the two cases and therefore we work on Hm for some m ≥ 0,
possibly restricting to Z2–invariant forms when m is even. By scaling we can also assume that
ε = 1.

It is enough to prove that every closed 2-form η with η = O(ρ−3) can be written as η = da with
|∇ka| = O(ρ−2−k).

Since the restriction of Hm to an exterior domain in R3 is diffeomorphic to (R,∞)× Σ with Σ
an homology sphere, we can write η = dρ∧ α+ β for some ρ–dependent 1-form α and 2-form β on
Σ with |α|+ |β| = O(ρ−3).

The condition dη = 0 implies ∂ρβ−dΣα = 0. We then define a = −
´∞
ρ α. The Lemma follows. �

By a similar radial integration, Lemma 4.7 (i) implies that in the regions εR0 ≤ ρj ≤ 2ρ0 and
εR0 ≤ ρi ≤ 2ρ0, respectively, we can write

(5.5a) ωgh
ε = ωqj ,ε + dagh

qj ,ε, ωgh
ε = ωpi,ε + dagh

pi,ε

for triples agh
qj ,ε and a

gh
pi,ε of 1-forms such that

(5.5b) |∇kagh
qj ,ε| ≤ Cερ

3−k
j , |∇kagh

pi,ε| ≤ Cερ
3−k
i

for k = 0, 1, 2, 3.
Now, let χqj and χpi be cut-off functions with the following properties:

(5.6)
χqj ≡ 1 for ρj ≤ ε

2
5 , χqj ≡ 0 for ρj ≥ 2ε

2
5 , |∇χqj | ≤ Cρ−1

j ,

χpi ≡ 1 for ρi ≤ ε
2
5 , χpi ≡ 0 for ρi ≥ 2ε

2
5 , |∇χpi | ≤ Cρ−1

i .

We finally define a triple of closed 2-forms on Mε by

(5.7) ωε =



ε2ωMj
if ρj ≤ ε

2
5 ,

ωqj ,ε + d
(
χqj aqj ,ε + (1− χqj )agh

qj ,ε

)
if ε

2
5 ≤ ρj ≤ 2ε

2
5 ,

ε2ωNi if ρi ≤ ε
2
5 ,

ωpi,ε + d
(
χpi api,ε + (1− χpi)agh

pi,ε

)
if ε

2
5 ≤ ρi ≤ 2ε

2
5 ,

ωgh
ε if ρj ≥ 2ε

2
5 and ρi ≥ 2ε

2
5 for all i, j.

Remark. When ki = 1 there is no need to glue in an A0 ALF space (R4 endowed with the Taub–
NUT metric), since ωgh

ε already extends smoothly over ±pi. It is however useful (we will use this
in setting up the analysis for the deformation problem) to think of a rescaled Taub–NUT space
localised around ±pi.
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5.2.1. The error. We conclude this section by quantifying the failure of ωε = (ω1
ε , ω

2
ε , ω

3
ε ) to define

a hyperkähler structure. Since by construction dωiε = 0 for all i = 1, 2, 3, we only have to check
that ωε is a definite triple and estimate the difference between the associated intersection matrix
and the identity.

In the regions ρj ≤ ε
2
5 , ρi ≤ ε

2
5 and when ρi, ρj ≥ 2ε

2
5 for all i, j the triple ωε defines a genuine

hyperkähler structure. In the transition regions ε
2
5 ≤ ρj ≤ 2ε

2
5 and ε

2
5 ≤ ρi ≤ 2ε

2
5 we have,

respectively,
ωε − ωqj ,ε = O(ε2−

1
5 ), ωε − ωpi,ε = O(ε2−

1
5 ).

Since ωqj ,ε and ωpi,ε are hyperkähler triples, we conclude that ωε is a definite triple for ε sufficiently
small.

Let µε, gε and Qε be the volume form, metric and intersection matrix associated to the definite
triple ωε as in Section 2. Using Lemma 5.4, (5.5), (5.6) and the definition of ωε we calculate that

(5.8) |Qε − id| ≤ Cε2−
1
5

in every transition region ε
2
5 ≤ ρj ≤ 2ε

2
5 , j = 1, . . . , 8, and ε

2
5 ≤ ρi ≤ 2ε

2
5 , i = 1, . . . , n. Outside the

transition regions Qε ≡ id.

6. Perturbation to hyperkähler metrics

In the previous section we have constructed a 4-manifoldMε together with a closed definite triple
ωε which is approximately hyperkähler in the sense that the intersection matrix Qε associated with
ωε differs from the identity by arbitrarily small terms as ε → 0. We would like to deform ωε into
a genuine hyperkähler triple using analysis. Since the geometry of Mε degenerates as as ε → 0 we
need to take some care in applying the Implicit Function Theorem.

As explained in Section 2 we can reformulate the problem in terms of an elliptic PDE. Let gε be
the Riemannian metric on Mε defined by ωε. Denote by H+

ε the space of self-dual harmonic forms
with respect to gε. By Proposition 5.1 H+

ε is 3-dimensional spanned by ωiε, i = 1, 2, 3. The equation
we want to solve is (2.8), i.e.

(6.1) d+a+ ζ = F
(
(id−Qε)− d−a− ∗ d−a

)
, d∗a = 0,

for a triple a of 1-forms on Mε and a triple ζ ∈ H+
ε ⊗ R3.

The linearisation of (6.1) is an isomorphism since b1(Mε) = 0 by Proposition 5.1. Our main task
is to show that its inverse has bounded norm as ε → 0 and to control the non-linearities in (6.1)
by introducing appropriate Banach spaces.

6.1. The linear operator d∗ + d+ for collapsing Gibbons–Hawking metrics. Before intro-
ducing weighted Hölder spaces and proving the main estimates, it is helpful to look more closely
at the linearisation of (6.1). It involves the operator D = d∗ + d+ : Ω1(Mε) → Ω0(Mε)⊕ Ω+(Mε),
where adjoints and projections are computed using the metric gε.

We are interested in understanding the behaviour of the operator D (in particular, the presence
of small eigenvalues) for a sequence of collapsing metrics in the Gibbons–Hawking form (3.3a).

Consider then the metric
ggh
ε = hε gT + ε2h−1

ε θ2

of (4.6) over the circle bundle π : P → Uε ⊂ T∗. By Lemma 4.9 the open sets Uε form an exhaustion
of T∗ as ε→ 0.

We first consider the geometry of ggh
ε and in particular calculate its Levi–Civita connection.

Let ξ be the vertical vector field normalised so that θ(ξ) = 1. As before let θ1, θ2, θ3 denote closed
1-forms on T such that gT = θ2

1 + θ2
2 + θ2

3. Let ξ1, ξ2, ξ3 be the dual vector fields with respect to gT.
We will not distinguish between a vector tangent to T and its horizontal lift to P with respect to
the connection θ. In particular, [ξi, ξj ] = −dθ(ξi, ξj) ξ as vector fields on P .
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Since θ([ξ, ξi]) = −dθ(ξ, ξi) = 0 and π∗[ξ, ξi] = [π∗ξ, ξi] = 0, we have [ξ, ξi] = 0. The Koszul
formula

2〈∇XY,Z〉 =〈[X,Y ], Z〉 − 〈[Y,Z], X〉+ 〈[Z,X], Y 〉
+X · 〈Y, Z〉+ Y · 〈X,Z〉 − Z · 〈X,Y 〉

then allows to calculate the Levi–Civita connection ∇ of the metric ggh
ε :

∇ξξ = −1
4ε

2∇Th−2
ε , ∇ξiξ = ∇ξξi = −1

2h
−1
ε (ξi · hε) ξ + 1

2ε
2h−2
ε (ξiydθ)]T ,

∇ξiξj = −1
2dθ(ξi, ξj) ξ + 1

2h
−1
ε

(
(ξi · hε) ξj − (ξj · hε) ξi − δij∇Thε

)
.

Here ∇T and ]T denote gradient and musical isomorphism with respect to the flat metric gT and
we used the fact that hε is S1–invariant. Since ∇ is a metric connection, we calculate the covariant
derivatives of the 1-forms θ, θi by duality. Since we will need this later, we write out formulas for
∇ξθ and ∇ξθi:

(6.2) ∇ξθ = 1
2h
−1
ε dhε, ∇ξθi = −1

2ε
2h−3
ε (ξi · hε) θ + 1

2ε
2h−2
ε (ξiydθ).

Now, the cotangent bundle of Mgh
ε is trivial as it is spanned by θ, θ1, θ2, θ3. Thus we can write

every 1-form a as
(6.3) a = ε a0 θ + a1 θ1 + a2 θ2 + a3 θ3

for functions a0, a1, a2, a3. Note that

|a|2
ggh
ε

= hε |a0|2 + h−1
ε

(
|a1|2 + |a2|2 + |a3|2

)
.

A direct computation using the fact that θi is closed for i = 1, 2, 3 and (ε−1hε, dθ) is a solution
of the monopole equation (3.4) with respect to the flat metric gT shows that

(6.4)
d∗a = −h−1

ε

( 3∑
i=1

ξi · ai + 1
εh

2
ε ξ · a0

)
,

2 d+a =
3∑
i=1

(
ξi · a0 + h−1

ε (ξj · ak − ξk · aj) + h−1
ε (ξi · hε) a0 − 1

ε (ξ · ai)
)
ωgh
ε,i ,

where ωgh
ε,i , i = 1, 2, 3, is the hyperkähler triple ωgh

ε of (4.6).
By Fourier analysis along the circle fibres we define projections Π0 and Π⊥ onto S1–invariant

and oscillatory components of functions. Via the trivialisation (6.3) Π0 and Π⊥ extend to 1-forms.
Since hε is S1–invariant we see from (6.4) that the operator D respects this decomposition.

For any fixed τ ∈ (0, 1) restrict attention to the region in Mgh
ε where ρj , ρi ≥ c ε

1−τ
2 for all

i = 1, . . . , n and j = 1, . . . , 8. Then

(6.5) ‖hε − 1‖C0 ≤ Cε
1+τ

2 , ‖∇Thε‖C0 ≤ Cετ

by Lemma 4.10. We conclude that the operatorD of (6.4) acting on S1–invariant 1-forms approaches
the Dirac operator
(6.6) D0 : Ω0(T)⊕ Ω1(T)→ Ω0(T)⊕ Ω1(T), (f, γ) 7→ (d∗γ, df + ∗dγ)
of the flat torus T.

Moreover, using the expressions (6.2) for ∇ξθ and ∇ξθi we find

(6.7)
ε2h−1

ε |∇a|2ggh
ε
≥ |∇ξa|2ggh

ε
≥ hε|ξ · a0|2 + h−1

ε

3∑
i=1
|ξ · ai|2

− Ch−4
ε |∇Thε|2gT

(
hε|a0|2 + h−1

ε

3∑
i=1
|ai|2

)
.
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Thus in the region where ρj , ρi ≥ c ε
1−τ

2 for some τ ∈ (0, 1) we have

(6.8) ‖Π⊥a‖C0(S1) ≤ Cε ‖∇a‖C0(S1)

on each circle fibre for all ε sufficiently small. Indeed, on one side |Π⊥a|2 ≤
∑3
i=1 |ξ · ai|2. On the

other side, for ε small enough (6.5) implies that

hε|a0|2 + h−1
ε

3∑
i=1
|ai|2

is uniformly equivalent to
∑3
i=0 |ai|2 and Ch−4

ε |∇Thε|2gT can be made as small as needed to absorb
the last term in (6.7).

These two observations—the convergence of the operator D to the Dirac operator D0 of the flat
3-torus as ε→ 0 and the strong control of the oscillatory part of 1-forms—will be crucial in the rest
of the section. We will exploit the same remarks when considering blow-downs of ALF gravitational
instantons. Let (M, gM ) be a complete ALF space. Given a sequence Ri → ∞ consider the blow
down R−2

i gM . Since by Definition 3.6 R−2
i gM is asymptotic (up to a double cover in the dihedral

case) to the rescaled Gibbons–Hawking metric(
1 +R−1

i

k

2ρ

)
gR3 +R−2

i

(
1 +R−1

i

k

2ρ

)−1
θ2,

as i → ∞ the behaviour of the operator D with respect to the metric R−2
i gM is the same as the

one observed for the metric ggh
ε as ε → 0 with the flat R3 in place of the flat 3-torus T. Namely,

on the region ρ ≥ cR
− 1−τ

2
i (6.8) holds with ε = R−1

i and the operator D converges to the Dirac
operator D0 of flat space R3.

Remark. The behaviour of natural differential operators (the Laplacian acting on p-forms, the Dirac
operator) associated with Riemannian metrics collapsing with bounded curvature and diameter have
been studied by many authors, cf. for example [34,35]. The concrete situation we are interested in
is a simple case of this more general theory and it seemed more appropriate to exploit the explicit
nature of the Gibbons–Hawking metric rather than appealing to these more general results.

In order to control the growth of differential forms close to the punctures on T∗ and on the end
of an ALF space we will now introduce weighted Hölder spaces.

6.2. Weighted Hölder spaces. We work on the Riemannian 4-manifold (Mε, gε) constructed in
Section 5. The aim of this subsection is to introduce weighted Hölder spaces and prove a weighted
Schauder estimate for the operator D = d∗ + 2 d+ associated with the metric gε.

For R0 sufficiently large and ε = ε(R0) sufficiently small we define a weight function ρε as follows:
we set

(6.9) ρε =



ε if ρj ≤ R0ε,

ρj if 2R0ε ≤ ρj ≤ ρ0,

ε if ρi ≤ R0ε,

ρi if 2R0ε ≤ ρi ≤ ρ0,

1 if ρj , ρi ≥ 2ρ0 for all j = 1, . . . , 8, i = 1, . . . , n,

and let ρε interpolate smoothly and monotonically between the various regions. By abuse of notation
we think of ρε as defined both on Mε and on Mgh

ε or its double cover P |Uε .
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Definition 6.10. For each δ ∈ R, k ∈ Z≥0 and α ∈ (0, 1) define the weighted Hölder norm Ck,αδ
by

‖a‖
Ck,α
δ

=
k∑
j=1
‖ρ−δ+jε ∇ja‖C0

+ sup|x−y|<inj gεmin
{
ρε(x)−δ+k+α, ρε(y)−δ+k+α

} |∇ka(x)−∇ka(y)|
|x− y|α

.

Here all norms and covariant derivatives are computed with respect to the metric gε and ∇ka(x)
and ∇ka(y) are compared using parallel transport along the unique geodesic connecting x and y.
Similarly set ‖a‖C0

δ
= ‖ρ−δε a‖C0 .

The following simple estimate for products in C0,α
δ−1 will be used to control the non-linearities.

Lemma 6.11. For every δ < 1 there exists a constant C > 0 independent of ε such that

‖u v‖
C0,α
δ−1
≤ Cεδ−1‖u‖

C0,α
δ−1
‖v‖

C0,α
δ−1
.

Proof. From the definition of the C0,α
δ−1–norm it is immediate to check that

‖u v‖
C0,α
δ−1
≤ C‖ρδ−1

ε ‖C0‖u‖C0,α
δ−1
‖v‖

C0,α
δ−1
.

Since ρε ≥ c ε and δ − 1 < 0 the result follows. �

We now consider the operator D = d∗+d+ acting on 1-forms of class C1,α
δ . We prove the following

weighted Schauder estimate.

Proposition 6.12. For every δ ∈ R there exists a constant C > 0 independent of ε such that

‖a‖
C1,α
δ
≤ C

(
‖Da‖

C0,α
δ−1

+ ‖a‖C0
δ

)
.

Proof. In order to prove this estimate it is convenient to cut the manifold Mε in various pieces and
analyse the geometry separately in each of them. The global estimate follows by combining the
“local” estimates obtained in each of these pieces.

Consider first the region ρj ≤ 2R0ε for some j = 1, . . . , 8. The rescaled metric ε−2gε is isometric
to a compact region in the Dmj ALF space (Mj , gMj ).

Now, given a 1-form a on Mε, restrict a to the region ρj ≤ 2R0ε and define ã = ε−1−δa. The
standard Schauder estimate for the elliptic operator D associated with the metric gMj is

‖ã‖C1,α ≤ C (‖Dã‖C0,α + ‖ã‖C0) .

Since |ã|ε−2gε = ε−δ|a|gε and the norms ∇ã and Dã are related in a similar way to those of ∇a and
Da, the weighted Schauder estimate follows immediately.

The same argument can be applied in the region ρi ≤ 2R0ε: the role of Mj is now played by a
small perturbation (cf. the beginning of Section 5.2) of the Aki−1 ALF space Ni.

Consider now the transition region R0 ε ≤ ρj ≤ ρ0 for some j = 1, . . . , 8. We can work on the
double cover H2mj−4 and restrict to Z2–invariant forms. Scaling by ε as above we reduce to consider
the restriction of H2mj−4 to the region R0 ≤ ρ ≤ ρ0

ε in R3 endowed with a metric

g =
(

1 + ελj + mj − 2
ρ

)
gR3 +

(
1 + ελj + mj − 2

ρ

)−1
θ2 +O(ρ−3) +O(ε3ρ2).

Moreover, after rescaling the weight function ρε coincides with the radial function ρ on R3.
Fix a number σ ∈ (0, 1). For each point x let π(x) be its image in R3 and set R = σρ(x). Up to

changing R0 and ρ0 into (1− σ)R0 and (1 + σ)ρ0 we can assume that BR(π(x)) is contained in the
annulus R0 ≤ ρ ≤ ρ0

ε and that the restriction of H2mj−4 to this ball is trivial. We can then work
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on a “square” BR × [−R,R] in the universal cover of H2mj−4|BR . Rescaling the metric by R−2,
applying standard Schauder estimates, rescaling back and multiplying by R−δ we obtain

‖a‖
C1,α
δ

(BR) ≤ C
(
‖Da‖

C0,α
δ−1(BR) + ‖a‖C0

δ
(BR)

)
.

The case of the region R0ε ≤ ρi ≤ ρ0 is completely analogous.
Finally, in the region where ρj , ρi ≥ 1

2ρ0 the weight function ρε is uniformly equivalent to the
constant 1 and therefore weighted spaces coincide with standard Hölder spaces. Moreover the
harmonic function hε is C∞–close to the constant 1. The metric gε is therefore C∞–close to the
metric g∞ = gT+ε2θ2. The Schauder estimate for forms supported in this region is immediate since
we can restrict to small balls in the torus T on which the circle bundle P is trivial and then work
on the universal cover, which has bounded geometry. �

6.3. The linear estimate. We can now prove the main result about the linearisation of (6.1): the
operator D has uniformly bounded inverse.

Proposition 6.13. For ε sufficiently small and δ ∈ (−2, 0) there exists C independent of ε such
that

‖a‖
C1,α
δ
≤ C‖Da‖

C0,α
δ−1
.

Proof. By contradiction assume that there exists a sequence εi → 0 and 1-forms ai on Mεi such
that ‖ai‖C1,α

δ
= 1 but ‖Dai‖C0,α

δ−1
→ 0.

First of all we show that for every compact set K in Mgh
ε contained in the complement of balls

of radius of order O(ε
2
5
i ) around the punctures we must have ‖ai‖C1,α

δ
(K) → 0.

Over K we can work on the double cover of Mgh
ε and regard ai as Z2–invariant forms. Write

ai = εifi θ+ γi, for a function fi and a 1-form γi such that ξyγi = 0 (recall that ξ is the vector field
dual to θ). Over K we can also decompose ai = Π0ai + Π⊥ai. Observe that for any 0 < τ < 1 (6.8)
implies that

ε
1−τ

2
i ‖Π⊥ai‖C0

δ
≤ ‖Π⊥ai‖C0

δ−1
≤ Cεi‖a‖C1,α

δ−1

provided ρj , ρi ≥ c ε
1−τ

2
i . Since the gluing regions occur for ρj ∼ ε

2
5
i and ρi ∼ ε

2
5
i we can choose τ > 0

sufficiently small so that these assumptions are satisfied on Mgh
ε . Thus ‖Π⊥ai‖C0

δ
(K) → 0.

By the Arzelá–Ascoli Theorem we can therefore assume that (fi, γi) converges to (f0, γ) ∈
Ω0(T)⊕ Ω1(T). By (6.4) (f0, γ) satisfies
(6.14) ∗ dγ + df0 = 0 = d∗γ

on T. The control on ‖ai‖C1,α
δ

guarantees that |f0|+ |γ| ≤ Cρδ close to the punctures.
We want to conclude that f0 is constant and γ is a smooth harmonic 1-form on T. By trivialising

the cotangent bundle of the 3-torus T by harmonic 1-forms θ1, θ2, θ3 we can write γ = f1θ1 +f2θ2 +
f3θ3. Then f0, f1, f2, f3 are harmonic functions on the punctured 3-torus with controlled blow-up
rate at the punctures. Since δ > −2, close to each puncture we must have fi = λi + ciρ

−1 + O(ρ)
for some constants λi, ci. However, ci must vanish for all i = 0, 1, 2, 3 if (f0, fi) is a solution of the
first order system (6.14) and not only of the second order PDE this implies. Hence the functions
fi are bounded harmonic functions on T and must be constant.

However, by Z2–invariance of the 1-forms ai the functions fi must be odd with respect to the
involution τ on T and must therefore vanish. Thus (f0, γ) = 0 and the Schauder estimate of
Proposition 6.12 implies that ‖ai‖C1,α

δ
(K) → 0.

Next we look at what happens close to one of the punctures. By what we have just proved and
the assumption ‖ai‖C1,α

δ
(Mε) = 1, there exists at least a j = 1, . . . , 8 or i = 1, . . . , n such that

‖ai‖C1,α
δ

= 1 in the region ρj ≤ ε
2
5 or ρi ≤ ε

2
5 . We fix attention to such a region. Rescaling the
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metric by ε−2
i and replacing ai with ãi = ε−δ−1

i ai, from now on we will work on a Dm or an Ak−1
ALF space. Denote either of these non-compact manifolds by M . Because of the behaviour of the
weighted Hölder norm in Definition 6.10 under rescaling, we have ‖ãi‖C1,α

δ
= ‖ai‖C1,α

δ
= 1. For ease

of notation we replace ãi with ai until the end of the proof.
By the Arzelá–Ascoli Theorem over every compact set of M we can extract a subsequence of

{ai} that converges to a solution a of Da = 0 on M . Moreover, |a| ≤ Cρδ. Since δ < 0 we conclude
that a = 0. Indeed, the equation Da = 0 in particular implies that 4a = 0. Since M is Ricci-flat,
the Weitzenböck formula yields |a|4|a| ≤ 0 and therefore |a| = 0 by the maximum principle.

Now, if ‖ai‖C0
δ

(M) → 0 then the Schauder estimate of Proposition 6.12 would yield a contradiction
to the assumption ‖ai‖C1,α

δ
= 1. Assume therefore that there exists some ν > 0 such that ‖ai‖C0

δ
≥ ν.

Since ai → 0 in C1,α
δ (K) for every compact setK ⊂M there must exists a sequence of points xi ∈M

going off to infinity (in particular Ri := ρ(xi)→∞) such that |ai(xi)| ≥ νρ(xi)δ.
Now rescale the metric onM by R−2

i and replace ai by R−δ−1
i ai. Then (M,R−2

i gM ) is converging
to the tangent cone C at infinity of M , i.e. either C = R3 or C = R3/Z2 depending on whether M
is of cyclic or dihedral type.

As in the first step of the proof, we can use (6.4) and (6.8) to conclude that R−δ−1
i ai sub-converges

over compact subsets of C \ {0} to a pair (f0, γ) ∈ Ω0(C)⊕ Ω1(C) such that

∗dγ + df0 = 0 = d∗γ,

|f0|+ |γ| ≤ Cρδ and (|f0|+ |γ|)(x0) = ν > 0 for some x0 ∈ C \ {0}. As before, the fact that δ > −2
implies that f0, γ are bounded close to the origin in C. The fact that δ < 0 then forces (f0, γ) to
vanish. However this contradicts the fact that (|f0|+ |γ|)(x0) > 0. �

6.4. The non-linear problem. We are now ready to deform the triple ωε into a genuine hyper-
kähler triple by using the following Implicit Function Theorem.

Lemma 6.15. Let Φ: E → F be the smooth function between Banach spaces and write Φ(x) =
Φ(0) +L(x) +N(x), where L is linear and N contains the non-linearities. Assume that there exists
constants r, C, q such that

(i) L is invertible with ‖L−1‖ ≤ C;
(ii) ‖N(x)−N(y)‖F ≤ q‖x+ y‖E‖x− y‖E for all x, y ∈ Br(0) ⊂ E;
(iii) ‖Φ(0)‖F < min

{
r

2C ,
1

4qC2

}
.

Then there exists a unique x ∈ E with ‖x‖E ≤ 2C‖Φ(0)‖F such that Φ(x) = 0.

In our situation we set
E :=

(
C1,α
δ (T ∗Mε)⊕H+

ε

)
⊗ R3,

where H+
ε denotes the space of self-dual harmonic forms with respect to gε, i.e. constant linear

combinations of ω1
ε , ω

2
ε , ω

3
ε . We endow E with the product of the C1,α

δ –norm and the norm on the
finite dimensional vector space H+

ε ⊗ R3 ' R9 induced by the L2–norm. Similarly we set

F := C0,α
δ−1(R⊕ Λ+T ∗Mε)⊗ R3

endowed with the C0,α
δ−1–norm.

The operator Φ is the one defined by (6.1). Thus Φ(0) = −F(id−Qε), L(a+ ζ) = Da+ ζ and
the non-linear term is

N(a+ ζ) = F (id−Qε)−F
(
id−Qε − d−a ∗ d−a

)
.

We need to check that the hypotheses of Lemma 6.15 are satisfied.
We use Proposition 6.13 to show that L has uniformly bounded inverse for δ ∈ (−1

2 , 0).
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Lemma 6.16. For δ ∈ (−1
2 , 0) and ε sufficiently small there exists a constant C > 0 independent

of ε such that for every triple of self-dual 2-forms ξ ∈ C0,α
δ−1 there exists a unique (a, ζ) ∈ E with

‖a‖
C1,α
δ

+ ‖ζ‖ ≤ C‖ξ‖
C0,α
δ−1
.

and L(a, ζ) = ξ.

Proof. First of all, note that the 2-forms ωiε have uniformly bounded C0,α
δ−1–norm. Indeed, outside

the gluing regions ωε is a hyperkähler triple and thus ωiε is parallel and bounded. On the gluing
regions, ωε differs from the hyperkähler triple ωqj ,ε or ωpi,ε by terms of order O(ερ2 + ε3ρ−3) (with
similar estimates on their derivatives). Finally, ρ−δ+1

ε is bounded above since δ < 0.
Now, let ω̃ be an L2–orthonormal triple of harmonic self-dual forms with respect to gε. Consider

the positive definite matrix B defined by

Bij =
ˆ
Mε

ωiε ∧ ωjε = 2
ˆ
Mε

(Qε)ij dvgε .

Since Qε is close to the identity and Volgε(Mε) = O(ε) we have B = ε(id + T ) for some matrix T
with ‖T‖ → 0 as ε→ 0. Then since ω̃ = Aω for a matrix A with AAᵀ = B−1 we have

‖ω̃‖
C0,α
δ−1
≤ Cε−

1
2 ‖ωε‖C0,α

δ−1
≤ Cε−

1
2 .

Finally, observe that for every u ∈ C0,α
δ−1 we have

‖u‖L2 ≤ ‖ρδ−1
ε ‖L2‖u‖C0

δ−1
≤ C(ε

1
2 + εδ+1)‖u‖C0

δ−1
.

Indeed, using the definition (6.9) of ρε and the construction of ωε it is not difficult to estimate
‖ρδ−1

ε ‖L2 ≤ C(ε
1
2 + εδ+1).

Now let π : C0,α
δ−1(Λ+T ∗Mε)→ H+

ε be the L2–orthogonal projection

π(ξ) =
3∑
i=1

λi ω̃i, λi =
ˆ
ξ ∧ ω̃i,

and regard id− π as a map C0,α
δ−1(Λ+T ∗Mε)→ C0,α

δ−1(Λ+T ∗Mε). By the remarks above we have

|λi| ≤ C(ε
1
2 + εδ+1)‖ξ‖

C0,α
δ−1
, ‖π(ξ)‖

C0,α
δ−1
≤ C(1 + εδ+

1
2 )‖ξ‖

C0,α
δ−1
.

Thus if δ ≥ −1
2 the projections π and id − π are uniformly bounded. Proposition 6.13 and the

surjectivity of L then yield the result. �

Next, we consider the non-linear term N . Note that this does not involve the harmonic part ζ.
The function F is pointwise smooth with uniformly controlled norm for ε sufficiently small. Using
the Taylor expansion of F at id − Qε and Lemma 6.11 to control products we can therefore find
uniform constants r, C > 0 independent of ε such that assumption (ii) in Lemma 6.15 is satisfied
with q = Cεδ−1.

Finally,
‖F(id−Qε)‖C0,α

δ−1
≤ C‖id−Qε‖C0,α

δ−1
≤ Cε2+ 1

5−
2
5 δ.

Indeed, setting ρ = ρj for j = 1, . . . , 8 or ρ = ρi for some i = 1, . . . , n, in the region ε
2
5 ≤ ρ ≤ 2ε

2
5

we have |id−Qε| = O(ερ2 + ε3ρ−3) by (5.8) and ρε = ρ by (6.9).
Thus assumption (iii) in Lemma 6.15 is therefore satisfied as soon as ε2+ 1

5−
2
5 δ � ε1−δ, i.e.

ε
3
5 (δ+2) � 1.

If δ > −2 this condition is satisfied for ε > 0 sufficiently small.
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Theorem 6.17. Let (T, gT) be a flat 3-torus with standard involution τ : T→ T. Let q1, . . . , q8 be
the fixed points of τ and let p1, τ(p1), . . . , pn, τ(pn) be further 2n distinct points. Denote by T∗ the
punctured torus T \ {q1, . . . , q8, p1, . . . , τ(pn)}.

Let m1, . . . ,m8 ∈ Z≥0 and k1, . . . , kn ∈ Z≥1 satisfy
8∑
j=1

mj +
n∑
i=1

ki = 16.

For each j = 1, . . . , 8 fix a Dmj ALF space Mj and for each i = 1, . . . , n an Aki−1 ALF space Ni.
Then there exists a 1-parameter family of hyperkähler metrics {gε}ε∈(0,ε0) on the K3 surface

with the following properties. We can decompose the K3 surface into the union of open sets Kε ∪⋃8
j=1M

ε
j ∪

⋃n
i=1N

ε
i such that

(i) (Kε, gε) collapses to the flat orbifold T∗/Z2 with bounded curvature away from the punc-
tures;

(ii) for each j = 1, . . . , 8 and k ≥ 0, (M ε
j , ε
−2gε) converges in Ck,αloc to the Dmj ALF space Mj;

(iii) for each i = 1, . . . , n and k ≥ 0, (N ε
j , ε
−2gε) converges in Ck,αloc to the Aki−1 ALF space Ni.

Proof. Given data as in the statement we constructed a 4-manifold Mε and a 1-parameter family
of closed definite triples ωε which are approximately hyperkähler. For ε sufficiently small we can
apply Lemma 6.15 to find unique aε ∈ C1,α

δ (T ∗Mε) for δ ∈ (−1
2 , 0) and ζ

ε
∈ H+

ε such that
‖aε‖C1,α

δ
+ ‖ζ

ε
‖ ≤ Cε

11−2δ
5 and ωε + daε + ζ

ε
is a hyperkähler structure on Mε. In particular, since

b1(Mε) = 0 by Proposition 5.1, Mε must be diffeomorphic to the K3 surface.
Away from the gluing regions aε satisfies d+aε = F(d−aε ∗ d−aε) − ζε, d

∗aε = 0. Note that we
can write F(d−aε∗d−aε) as a smooth function Q(x, y, z) of x ∈ Ω and y, z ∈ Λ−T ∗xΩ⊗R3 evaluated
at y = z = d−aε(x). By the chain rule we deduce that derivatives of order k of aε solve a linear
equation of the form (D + Ak)u = fk, where the operator norm of Ak : C1,α → C0,α is controlled
by ‖aε‖Ck,α and ‖fk‖C0,α is controlled by ‖aε‖Ck,α and ‖ζ‖Ck,α .

For domains Ω ⊂⊂ Ω′ contained either in compact sets of Mgh
ε or in regions where ρi ≤ Rε or

ρj ≤ Rε for some R > 0 and ε sufficiently small, the proof of Proposition 6.12 shows that we have
a uniform interior elliptic estimate

‖u‖C1,α(Ω) ≤ C
(
‖Du‖C0,α(Ω′) + ‖u‖C0,α(Ω′)

)
.

If ‖aε‖Ck,α(Ω′) is sufficiently small the we can replace D with D +Ak in this estimate and obtain

(6.18)
‖aε‖Ck+1,α(Ω) ≤ C

(
‖ζ

ε
‖Ck,α(Ω′) + ‖aε‖Ck,α(Ω′)

)
≤ C

(
ε−

1
2 ‖ζ

ε
‖+ ‖aε‖Ck,α(Ω′)

)
,

since, as in the proof of Lemma 6.16, we have

‖ζ
ε
‖Ck,α(Ω′) ≤ Cε−

1
2 ‖ζ

ε
‖.

Now, taking into account that ρε ≥ cε and δ < 0 we have

‖aε‖C1,α ≤ Cεδ−1‖aε‖C1,α
δ

= O(ε
3
5 (δ+2)), ε−

1
2 ‖ζ

ε
‖ = O(ε

17−4δ
10 ).

Since δ + 2 > 0 we can use (6.18) inductively to prove that in regions Ω as above ‖aε‖Ck+1,α(Ω) =
O(ε

3
5 (δ+2)) for all k ≥ 0. Taking Ω contained in Mgh

ε implies that on compact sets of Mgh
ε the

hyperkähler metric induced by ωε + daε + ζ
ε
is arbitrarily Ck,α–close to gT + ε2θ2 as ε → 0.

Similarly, by taking Ω contained in regions where either ρi ≤ R0ε or ρj ≤ R0ε and observing that
‖ε−2σ‖Ck,α(ε−2gε) = ‖σ‖Ck,α(gε) for every 2-form σ, we deduce that the rescaled metric ε−2gε is
arbitrarily Ck,α–close to gNi or gMj , respectively, as ε→ 0. �
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By varying all parameters involved in the construction we can in fact realise a whole open set in
the moduli space of hyperkähler metrics on the K3 surface. Indeed,

(i) the moduli space of flat tori is 6-dimensional;
(ii) the choice of punctures p1, . . . , pn yields additional 3n parameters;
(iii) once the punctured torus and weights are fixed, the moduli space of abelian Dirac mono-

poles with prescribed singularities is 4-dimensional (one has to choose ε and the 3 moduli
of a flat connection);

(iv) each Dmj ALF space contributes 3mj parameters and every Aki−1 ALF space contributes
3(ki − 1) parameters.

Hence the total number of parameters in the construction is

6 + 3n+ 4 + 3
8∑
j=1

mj + 3
n∑
i=1

ki − 3n = 10 + 3× 16 = 58,

which is exactly the dimension of the moduli space of Ricci-flat metrics on the K3 surface (without
any normalisation on volume).

7. Stable minimal surfaces

In this final section we exploit our gluing construction of hyperkähler metrics on the K3 surface
to deduce some information about their submanifold geometry.

It is well known that holomorphic submanifolds of a Kähler manifold are volume minimising. It
is a classical problem in the theory of minimal submanifolds in Kähler manifolds to understand to
what extent volume minimising submanifolds must be holomorphic or anti-holomorphic.

In [39] Micallef showed that every stable minimal surface in a flat 4-torus must be holomorphic
with respect to a complex structure compatible with the metric. (Note however that this is no
longer the case for higher dimensional tori [4].) In view of Micallef’s result it was thought for some
time that a similar result could hold for the K3 surface endowed with a hyperkähler metric. Partial
results in this direction were established by Micallef–Wolfson [37, Theorem 5.3] and motivation for
the conjecture came from the fact that, given an arbitrary hyperkähler metric on the K3 surface,
every homology class can be represented by the sum of surfaces each of which is holomorphic with
respect to some complex structure compatible with the metric. However, Micallef–Wolfson [38] have
eventually shown that no analogue of the result for 4-tori holds for the K3 surface. Indeed they
found a class α ∈ H2(K3,Z) and a hyperkähler metric g on the K3 surface such that the volume
minimiser in α decomposes into a sum of branched minimal surfaces Σ1 ∪ · · · ∪Σk not all of which
can be holomorphic with respect to some complex structure compatible with g.

We can use our gluing construction to construct further (simpler) examples of strictly stable
minimal spheres with respect to some hyperkähler metric on the K3 surface which cannot be
holomorphic for any complex structure compatible with the metric.

Theorem 7.1. There exist hyperkähler metrics on the K3 surface that contain a strictly stable
minimal sphere which is not holomorphic with respect to any complex structure compatible with the
metric.

Proof. In [37, Proposition 5.5] Micallef–Wolfson show that the double cover of the Atiyah–Hitchin
manifold, the rotationally symmetric D1 ALF space, contains a strictly stable minimal 2-sphere Σ
with [Σ] · [Σ] = −4. Since every holomorphic curve Σ of genus γ in a hyperkähler 4-manifold must
have [Σ] · [Σ] = 2γ−2 by the adjunction formula, this minimal 2-sphere cannot be holomorphic with
respect to any complex structure. One can also use the isometric action of SU(2) on the Atiyah–
Hitchin metric to prove this fact: the SU(2) action preserves the metric but rotates the complex
structures (equivalently, the hyperkähler triple) and the minimal 2-sphere is an SU(2)–orbit. Hence
the periods

´
Σ ωi are forced to vanish.



ALF SPACES AND COLLAPSING METRICS ON THE K3 SURFACE 27

Now, consider an approximate hyperkähler metric gε obtained in Section 5 by using the rota-
tionally symmetric D1 ALF space as one of the building blocks. Thus gε contains a strictly stable
minimal sphere Σ with [Σ] · [Σ] = −4.

Because of strict stability, Σ has no Jacobi fields. Then we can invoke White’s Implicit Function
Theorem for minimal immersions with respect to variations of the ambient metric [48, Theorem 2.1]
to deform Σ into a minimal immersion with respect to the hyperkähler metric produced by Theorem
6.17 starting from gε. As before, this minimal 2-sphere cannot be holomorphic with respect to any
complex structure because of its self-intersection number. It is strictly stable by continuity of the
spectrum of the Jacobi operator. �

Remark 7.2. By work of Chen–Li [12, Corollary 3.7] each of these minimal spheres is the image of
a smooth harmonic map u from S2 into the K3 surface satisfying the first-order equation
(7.3) du ◦ JS2 = − (x1 J1 ◦ du+ x2 J2 ◦ du+ x3 J3 ◦ du) .
Here (x1, x2, x3) defines the standard embedding of S2 as the unit sphere in R3 and (J1, J2, J3) is
the triple of parallel complex structures associated to a hyperkähler structure on the K3 surface.
By taking the radial extension f of u to R3 and further extending f by translation invariance to a
map F from H = R3×R into the K3 surface we obtain the first known examples of (homogeneous)
Fueter and triholomorphic maps with codimension-3 singular set and compact target. A triholo-
morphic map is a harmonic map between hyperkähler manifolds satisfying a quaternionic del-bar
equation. Triholomorphic maps (and their dimensional reduction to Fueter maps from 3-manifolds
into hyperkähler manifolds) arise in different contexts related to gauge theory in higher dimensions,
cf. for example [20, §6] and [22], the hyperkähler Floer theory of [31] and the definition of enu-
merative invariants of hyperkähler manifolds [46]. For these geometric applications it is essential to
understand the regularity theory of limits of smooth triholomorphic maps. The importance of the
existence or non-existence of homogeneous triholomorphic maps with a singular set of codimension
3 was stressed in the recent work of Bellettini–Tian [7, Remark 1.2]. We also note that since for
the minimal spheres Σ of Theorem 7.1 the integrals

´
Σ ωi all vanish, one can further show that

the solutions to (7.3) that we produce are also balanced, i.e.
´
S2 xi |∇u|2 = 0 for i = 1, 2, 3, and

therefore the Fueter and triholomorphic tangent maps f and F obtained from Theorem 7.1 are
stationary harmonic maps, i.e. critical points of the Dirichlet energy with respect to variations
both of the domain and the target.
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