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a b s t r a c t 

Convolutional neural networks (CNNs) have recently led to significant advances in automatic segmenta- 

tions of anatomical structures in medical images, and a wide variety of network architectures are now 

available to the research community. For applications such as segmentation of the prostate in magnetic 

resonance images (MRI), the results of the PROMISE12 online algorithm evaluation platform have demon- 

strated differences between the best-performing segmentation algorithms in terms of numerical accuracy 

using standard metrics such as the Dice score and boundary distance. These small differences in the 

segmented regions/boundaries outputted by different algorithms may potentially have an unsubstantial 

impact on the results of downstream image analysis tasks, such as estimating organ volume and multi- 

modal image registration, which inform clinical decisions. This impact has not been previously investi- 

gated. In this work, we quantified the accuracy of six different CNNs in segmenting the prostate in 3D pa- 

tient T2-weighted MRI scans and compared the accuracy of organ volume estimation and MRI-ultrasound 

(US) registration errors using the prostate segmentations produced by different networks. Networks were 

trained and tested using a set of 232 patient MRIs with labels provided by experienced clinicians. A sta- 

tistically significant difference was found among the Dice scores and boundary distances produced by 

these networks in a non-parametric analysis of variance ( p < 0.001 and p < 0.001 , respectively), where 

the following multiple comparison tests revealed that the statistically significant difference in segmenta- 

tion errors were caused by at least one tested network. Gland volume errors (GVEs) and target registra- 

tion errors (TREs) were then estimated using the CNN-generated segmentations. Interestingly, there was 

no statistical difference found in either GVEs or TREs among different networks, ( p = 0.34 and p = 0.26 , 

respectively). This result provides a real-world example that these networks with different segmentation 

performances may potentially provide indistinguishably adequate registration accuracies to assist prostate 

cancer imaging applications. We conclude by recommending that the differences in the accuracy of down- 

stream image analysis tasks that make use of data output by automatic segmentation methods, such as 

CNNs, within a clinical pipeline should be taken into account when selecting between different network 

architectures, in addition to reporting the segmentation accuracy. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Prostate cancer is the most commonly diagnosed non-

utaneous cancer in men in many parts of the Western world and
∗ Corresponding author at: Centre for Medical Image Computing, Department of 

edical Physics and Biomedical Engineering, University College London, London, 

K. 

E-mail address: nooshin.ghavami.15@ucl.ac.uk (N. Ghavami). 

a  

a  

t  

v  

u  

ttps://doi.org/10.1016/j.media.2019.101558 

361-8415/© 2019 The Authors. Published by Elsevier B.V. This is an open access article u
s a major cause of cancer-related death internationally ( Cancer Re-

earch UK, 2015 ). Multi-parametric magnetic resonance imaging

mp-MRI) is emerging as a clinically useful tool for detecting

nd localising prostate cancer. Results from the recent PROMIS

nd PRECISION studies, for instance, suggest that mp-MRI may be

 valuable triage tool for clinically-significant disease to reduce

he number of transrectal biopsies ( Ahmed et al., 2017; Kasivis-

anathan et al., 2018 ). In addition, mp-MRI is increasingly being

sed to target suspicious regions during biopsy and therapy, with
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Histogram of the results from the PROMISE12 challenge. 
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or without the aid of a computer-assisted MRI-ultrasound (US) fu-

sion system ( Robertson et al., 2013 ). 

Deep learning methods, especially supervised classification

methods based on convolutional neural networks (CNNs), have

been successful in the field of medical imaging for segmenting

the anatomy of interest ( Litjens et al., 2017 ). For example, these

networks have produced higher accuracies for automatic prostate

segmentations from T2-weighted MRIs, compared with alternative

segmentation approaches ( Litjens et al., 2017 ). An example of these

networks include the V-Net ( Milletari et al., 2017 ), which was pro-

posed to segment the prostate gland from T2-weighted MRIs in

2016, and has since been adapted in several different applications

( Gibson et al., 2018; Han, 2017; Milletari et al., 2017; Roy et al.,

2017 ). More recently, other variations of CNNs have also been pro-

posed for prostate image segmentation, including ( Zhu et al., 2017;

Yu et al., 2017; Clark et al., 2017; Tian et al., 2017 ). At the time

of writing, all the top five prostate segmentation algorithms sub-

mitted to the PROMISE12 challenge ( Litjens et al., 2014 ; MICCAI

Grand Challenges, 2012 ) adopted CNNs, with the highest perform-

ing methods generating average Dice scores and boundary dis-

tances of 0.90 and 1.71 mm on whole gland segmentation, respec-

tively. Fig. 1 shows a histogram of the results from the PROMISE12

table, with many submitted algorithms centred around a score

of 82–89, where the score is calculated based on the average of

multiple accuracy metrics. With all these variations of CNNs for

prostate MRI segmentation, a direct quantitative comparison of dif-

ferent CNN architectures on a single large data set, especially those

with open-source implementations (not a requirement for submit-

ting to the Challenge) is important, but to date has not been avail-

able to our research community. 

Partly limited by the test data size of 30 images provided

in the PROMISE12 Challenge, the diminishing statistically signif-

icant differences among top performing segmentation algorithms

( Gibson et al., 2017a ) can complicate interpreting these differ-

ences, if any, in segmentation accuracy. In other research fields,
owever, examples of networks that demonstrated statistical dif-

erences between different architectures include the introduc-

ion of residual networks ( He et al., 2016 ) and densely con-

ected networks ( Huang et al., 2017 ). Both have demonstrated

ignificantly improved results in computer vision tasks, and have

een incorporated for medical image segmentation as shown by

havami et al. (2018a) and Gibson et al. (2018) , respectively. 

Perhaps more importantly, assessing the value of adopting dif-

erent CNN architectures in clinical applications requires evaluat-

ng their performance within a pipeline of clinical tasks. However,

he vast majority of studies in the literature on prostate MRI seg-

entation focus on evaluating the accuracy of segmentation tech-

iques in isolation without considering how segmentation errors

ropagate through subsequent computational tasks within a clini-

al workflow. Segmentation of the prostate from MRIs is important

or several potential clinical tasks. One application includes calcu-

ating the gland volume estimation which can be used for mea-

uring drug-induced prostate volume changes ( Moore et al., 2017 ),

or correlation with cancer volume ( Matsugasumi et al., 2015 ) and

or detecting significant cancer ( Thompson et al., 2016; Khalvati

t al., 2016 ). Other applications also include for longitudinal anal-

sis of patients undergoing active surveillance ( Stamatakis et al.,

013 ; Diaz et al., 2015; Ouzzane et al., 2015; Nguyen et al., 2015;

ai et al., 2017 ), and as part of segmentation-driven multi-modal

egistration to support MRI-targeted transrectal-ultrasound (TRUS)

uided biopsy and therapy ( Ouzzane et al., 2015; Narayanan et al.,

009; Onofrey et al., 2017 ). Relating the accuracy of these clinical

easures to the accuracy of the output of different MRI segmen-

ation networks (for example, those submitted to the PROMISE12

hallenge ( Fig. 1 )), with which they are computed, has not yet

een investigated, but clearly has important implications for the

election and deployment of these networks within clinical work-

ows. 

However, comparison of deep-learning-based segmentation al-

orithms also faces significant challenges such as the requirement
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f test data size, in addition to the dependency on the hyperpa-

ameter selection, including initial learning rate, model size (num-

er of layers and feature channels in each layer) and regularisa-

ion methods such as weight decay. Cross-validation for hyperpa-

ameter searching is effective in resampling the limited data (a

ommon restriction in medical image computing applications), but

s likely to produce “over-optimistic” models due to information

leeding ( Valdes and Interian, 2018 ). Arbitrary hyperparameter se-

ection would lead to less clinically meaningful comparison be-

ween merely sub-optimally-designed networks, while marginalis-

ng these hyperparameter spaces for architectural comparison is

omputationally prohibitive and has little practical value. There-

ore, we split our data into development and hold-out sets before

ptimising the hyperparameters using cross-validation on the de-

elopment set. The details of the experiment design and its im-

lementation for prostate segmentation on MRIs are provided in

ection 2 . 

In this study, our aim was to compare the prostate segmenta-

ion accuracy of six different CNN architectures, in terms of two

egmentation metrics , gland volume estimates and registration er-

ors, the latter two of which are based on the automatic segmenta-

ions, and the differences between these errors. This work aims to:

) demonstrate deviations in segmentation accuracy due to varying

etwork architectures, and 2) to estimate clinically relevant impact

hat can potentially be caused by these deviations. In turn, the con-

ributions of this work are summarised as follows: 1) A quantita-

ive comparison of six open-source segmentation algorithms is car-

ied out, each one adapted to prostate MRI segmentation, trained

sing an extensive hyperparameters tuning, and tested on an in-

ependent hold-out data set; 2) A comprehensive set of segmen-

ation accuracy results are reported and compared, over these dif-

erent networks; 3) clinically relevant results pertaining to gland

olume estimation and MRI-TRUS image registration, are reported

nd compared. Investigating the disagreement between the clin-

cally relevant results and the segmentation accuracy is of great

mportance. 

. Methods 

.1. Networks for comparison 

We chose six network architectures in this study: UNet, VNet,

ighRes3dNet, HolisticNet, DenseVNet, and Adapted UNet. Our in-

lusion criteria included relevance, availability and reproducibility,

s the implementations of these six networks are readily acces-

ible and they have been already applied on the same or closely-

elevant applications. For example (re-)implementations of the first

ve are available on the NiftyNet Platform ( Gibson et al., 2017b )

nd the Adapted UNet ( Ghavami et al., 2018a ) has been developed

n our group, with a minimal adaptation to the original 3D UNet.

hile these open-source development platforms are readily acces-

ible to the research community, it is noteworthy that there are

ther recently proposed networks such as those based on atten-

ion and region proposal mechanisms. 

The 3D UNet ( Cicek et al., 2016 ) is one of the earliest pro-

osed 3D fully convolutional neural networks originally proposed

or segmenting kidney embryos on xenopus and reported an aver-

ge intersection over union (IoU) of 0.7 for this application. The

Net ( Milletari et al., 2016 ) also adopted a volumetric CNN ar-

hitecture, focusing on prostate segmentation from MRI by which,

n average Dice score ± std and average Hausdorff distance + std

f 0.87 ± 0.03 and 5.71 ± 1.20 mm, respectively, was obtained.

Net was evaluated on the PROMISE12 dataset. HighRes3dNet is

n adapted CNN architecture based on dilated convolutions and

esidual connections ( Li et al., 2017 ), proposed for brain structures,

chieving an average Dice score ± std of 0.84 ± 0.02. HolisticNet
 Fidon et al., 2017 ) is inspired by previous holistically-nested edge

etection algorithms ( Xie and Tu, 2015 ), which uses a generali-

ation of the Dice based on Wasserstein distance as the training

oss. HolisticNet was proposed for brain tumour segmentation, re-

orting an average Dice of 0.89. Based on the VNet architecture,

enseVNet ( Gibson et al., 2018 ) was proposed to incorporate the

ensely-connected feature stacks. Compared to three other state-

f-the-art algorithms, statistically significantly higher Dice scores

or spleen, stomach, oesophagus, liver, left kidney, gall bladder

nd pancreas were achieved. Finally, we compare the 3D Adapted

Net based on the original work segmenting prostate gland from

D TRUS images ( Ghavami et al., 2018a,b ), with an average Dice

core ± std and an average boundary distance ± std of 0.91 ± 0.12

nd 1.23 ± 1.46 mm, respectively. The original 2D network was ex-

ended to 3D by replacing all 2D operations such as convolution

nd pooling with the respective 3D operations. Table 1 summarises

he experiment details of each network used in their original work,

hile Fig. 2 illustrates their network architecture. The reader is re-

erred to the original papers and published code for other network

etails, which are kept unchanged in this work, for the interest of

revity. 

.2. Segmentation metrics based on hold-out data 

For comparison of automatic segmentations with the labelled

round-truth segmentations, two commonly adopted segmentation

etrics are used, the Dice similarity coefficient (DSC) and the sym-

etric boundary distance (BD), given by: 

SC = 

2 | X ∩ Y | 
( | X | + | Y | ) 

nd 

D = 

D ( X, Y ) + D ( Y, X ) 

2 

espectively, where X and Y are the automatically predicted binary

egmentations and the manual ground-truth, respectively. The DSC

s an overlap measure with a range of [0,1]. D ( X, Y ) denotes the

verage Euclidean distance from boundary pixels in X to the clos-

st boundary pixel in Y . These two metrics are adopted to directly

easure the network generalisation ability in segmenting regions

f interest on unseen hold-out data, here, whole gland segmenta-

ion of MRIs. Both measures were calculated on the largest resam-

led images with a size of [112, 128, 64] and an isotropic voxel size

f [1, 1, 1] mm/voxel. The details of the validation experiment and

he ground-truth segmentations used in this study are described in

ections 2.4 and 3 . 

.3. Gland volume errors and estimated target registration errors 

As a potential clinical application of prostate MRI segmentation,

elative gland volume errors (GVEs) were also calculated between

he network-segmented prostate gland and the manual ground-

ruth segmentation in the validation experiments by counting the

ositive foreground voxels in the binary masks. GVE is based on

he absolute difference between V(X) and V(Y) representing the

olumes of the automatic and ground-truth segmentations, respec-

ively: 

VE = 

| V ( Y ) − V ( X ) | 
V ( Y ) 

× 100 

Although an alternative regression network directly predicting

olumes is possible, the GVE results may be useful to demon-

trate a non-end-to-end prediction performance in a clinical sce-

ario where, for example, whole gland segmentation is required

or other tasks such as localising tumours. 
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Table 1 

Information regarding the networks chosen for this comparison study. 

Network Total data size Training vs testing data size Application Comparison to other 

methods 

Statistical significance 

Testing applied in 

comparison? 

UNet 3 Xenopus samples-77 

Slices (3-fold 

cross-validation) 

51–52 per fold for training Xenopus kidney 

embryos 

2D UNet No 

25–26 per fold for testing 

(77 across all folds) 

VNet a 80 subjects (single 

training-testing-split) 

50 (training) Prostate Imorphics No 

30 (testing) ScrAutoProstate 

SBIA 

Grislies 

HighRes3dNet a 543 subjects (single 

training-testing- 

validation-split) 

443 (training) Brain Deepmedic No 

50 (testing) 3D UNet 

50 (validation) VNet 

HolisticNet a 274 subjects (single 

training-testing- 

validation-split) 

219 (training) Brain None No 

28 (testing) 

28 (validation) 

DenseVNet a 90 subjects (9-fold 

cross-validation) 

80 per fold for training Abdominal DEEDS + JLF Yes 

VNet 

10 per fold for testing (90 

across all folds) 

VoxResNet 

Adapted 

UNet 

109 subjects (10-fold 

cross-validation) 

98–99 per fold for training 2D Prostate Fine-grained RNN No 

10–11 per fold for testing 

(109 across all folds) 

a http://www.niftynet.io/ . 
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The MRI-to-TRUS image registration can assist a range of TRUS-

guided interventions, such as targeted biopsies and treatments

( Ouzzane et al., 2015 ). Many proposed registration methods rely

on matching prostate glands from (semi-) automated segmenta-

tion methods ( Hu et al., 2012; Sparks et al., 2013, 2018; Meng

et al., 2016; Oberlin et al., 2016; Kongnyuy et al., 2016; Zettinig

et al., 2015 ). For the purposes of comparison and to ensure re-

producibility, we adopt an open-source landmark-guided coherent

point drift (LGCPD) algorithm ( Hu et al., 2010 ) 1 for deformable

registration between the two point-sets representing the surfaces

of the prostate gland segmentations from MRI and TRUS images.

The latter segmentations are obtained from our previous work

( Ghavami et al., 2018a ) and remained fixed during all experiments

for comparing different MRI segmentations. The apex and base

points are identified for all the cases, used as guiding landmark

pairs with known correspondence in the LGCPD algorithm. The

registration produces a non-rigid transformation between the MRI

and TRUS and this transformation is used to propagate MRI land-

marks to the space of the TRUS landmarks. Once registered, the

root-mean-square (RMS) distance between the transformed MR

landmarks and TRUS landmarks is computed for each case as target

registration errors (TRE), for different MRI segmentations reported

in this study. The landmarks used included whole gland segmen-

tations, urethra, visible lesions, junctions between the gland, gland

zonal separations, vas deference, seminal vesicles, visible lesions,

and other patient-specific point landmarks such as calcifications

and fluid-filled cysts. A schematic of the registration workflow is

displayed in Fig. 3 . 

2.4. Experiment design for network comparison 

In real-world applications, network hyperparameters are opti-

mised before further clinical testing and adoption. To facilitate a

comparison that is informative to clinical practice, it is desirable to

find the optimum hyperparameter configurations prior to compar-

ing these six networks described in Section 2.1 . It is also important

to note that estimating segmentation performance directly from a

hyperparameter optimisation procedure, e.g. estimated DSCs from

a cross-validation, is subject to overfitting, which can introduce

bias towards the entire data set used for the hyperparameter-
1 https://github.com/YipengHu/matlab- common- tools/tree/master/GuidedCPD . 

 

p  
ptimising cross-validation. Therefore, we separated the data into

evelopment and hold-out sets. The development set is used for

yperparameter searching, whereas the hold-out set is used to re-

ort independent results on a dataset completely unseen during

he network development (including searching for hyperparameter

alues). 

We adopted an exhaustive grid-search for tuning hyperparam-

ters based on cross-validation (referred to as hyperparameter

earching). First, each of the tested hyperparameters is sampled

t a uniform interval from a respective pre-defined range; Second,

ach permutation of these sampled hyperparameters (hereafter re-

erred to as “hyperparameter configuration”) is tested in a k-fold

ross-validation experiment (here, k = 5). The details of the tested

yperparameter configurations are described in Section 3.3 ; Third,

mong these hyperparameter configurations, segmentation perfor-

ance is evaluated by averaging the DSCs obtained from the k-fold

etwork-training in the cross-validation; Finally, for each of the six

etwork architectures, the hyperparameter configuration with the

ighest average DSC is selected. The division of the data used in

his procedure is outlined in Fig. 4 , and the data used in this study

s described in Section 3 . 

The networks with the respectively-optimised hyperparameters

re then tested on the hold-out data, for the purposes of compar-

son. All the segmentation (DSCs and BDs) and clinical measures

GVEs and TREs) described in Sections 2.2 and 2.3 were computed

cross all patients in the hold-out set. Both the two clinical mea-

ures (GVEs and TREs) and the segmentation measures (DSCs and

Ds) are compared using a one-way analysis-of-variance (ANOVA)

est at significance level of 0.05, among those produced by differ-

nt networks. The ANOVA was followed by a multiple comparison,

airwise t -test of each pair of networks to see where the signifi-

ance in the group means lies, if any significance is obtained us-

ng the ANOVA test. This multi-group testing procedure was also

erformed using non-parametric tests, i.e. using a Kruskal–Wallis

KW) test to test multiple group distributions. 

. Experiments 

.1. Imaging data and ground-truth segmentations 

The complete data used for this work consisted of T2-weighted

rostate MRIs taken from three different studies, SmartTarget

http://www.niftynet.io/
https://github.com/YipengHu/matlab-common-tools/tree/master/GuidedCPD
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Fig. 2. Architecture of the six networks used for this comparison study. Different coloured arrows represent different architecture parts of the networks to visualise similar- 

ities and differences between them. 

Fig. 3. Segmentation-based registration pipeline. 
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Fig. 4. k -fold cross-validation example. 
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Biopsy Trial ( Hamid et al., 2018 ), INDEX Trial ( Dickinson et al.,

2013 ) and the PICTURE Trial ( Simmons et al., 2013 ). 232 MRI vol-

umes were available from the same number of patients. These tri-

als share the same imaging protocols. Original image size and voxel

size range from [256, 256, 25] to [512, 512, 30] and [0.35, 0.35, 3]

to [0.86, 0.86, 3.6], respectively. All images were scanned using ei-

ther a 1.5T or 3T Avanto TM Siemens scanner. Intensity values were

normalised to zero-mean and unit-variance intensities for individ-

ual volumes. 

For all 232 MRI volumes, manual segmentation of the prostate

capsule boundary in consecutive transverse slices of each MRI vol-

ume was carried out by an expert clinical observer (either a radi-

ologist or a urologist specialised in MRI-targeted procedures, ver-

ified by a senior radiologist). These segmentation labels provided

the ground-truth for segmentation in both training and testing (de-

velopment data) and validation (hold-out data), in this study. 

Among the 232 image and segmentation data, 59 patient data

from those taken from the SmartTarget Biopsy Trial ( Hamid et al.,

2018 ) were used as the hold-out data set and were not used dur-

ing the hyperparameter searching. These patients had TRUS images

available for further testing the subsequent MRI-TRUS image regis-

tration application in addition to the volume estimation results. 

3.2. Implementation and network training 

From the networks described in Section 2.1 , for four of these;

VNet, DenseVNet, HighRes3dNet and HolisticNet, the source code

from NiftyNet ( Gibson et al., 2017b ) were directly used, while we

implemented the published UNet ( Cicek et al., 2016 ) and Adapted

UNet ( Ghavami et al., 2018a ) in TensorFlow 

TM ( Abadi et al., 2016 )

which is also made publicly available. Each network was trained

with a 12GB NVIDIA 

R © Pascal TM TITAN Xp general-purpose graphic

process unit (GPU) on a high-performance computing cluster. The

networks were run for 15,0 0 0 iterations. During each 5-fold cross-

validation for hyperparameter searching, the remaining 173 pa-

tients were split into five folds, each containing 33–35 ( ∼20%) pa-

tient data. Given a hyperparameter configuration, each of these five

folds was left out for testing, with the network trained using the

other 138–140 ( ∼80%) training data. This was then repeated un-

til every patient data was tested once, as shown in Fig. 4 . This

cross-validation procedure was repeated for each hyperparameter

configuration (described in Section 3.3 ). Once the optimum hyper-

parameters were determined, five segmentations were predicted

using the networks trained in the cross-validation on each of the

59 hold-out data. These five segmentations were then combined

to generate the final segmentation using majority voting at each

voxel, from which the segmentation accuracy and clinical metrics

(described in Sections 2.2 and 2.3 , respectively) were computed. 

3.3. Hyperparameter configurations 

To enable a computationally-feasible architecture comparison,

four hyperparameters were varied to find the optimum combina-

tion of them for each network in this study, including input im-

age size (after resampling from the original MRIs), initial learning
ate of the Adam optimiser, regularisation weight of L 2 -norm on

etwork parameters (weight decay) and number of initial feature

hannels. Table 2 summarises the four hyperparameters tested in

his study, each with four different configurations, leading to a to-

al of 256 hyperparameter configurations for each network. 

The detailed values for these configurations are summarised in

able 2 . The input images were resampled, from the centres of the

mage volumes, with respect to four different isotropic voxel sizes,

1, 1, 1] mm/voxel, [1.5, 1.5, 1.5] mm/voxel, [2, 2, 2] mm/voxel and

2.5, 2.5, 2.5] mm/voxel, with an empirically-set field of view. This

esulted in the four sets of image sizes shown in the first row

f Table 2 . The field-of-view was cropped to reduce the compu-

ational burden using an estimate of a fixed physical region that

s large enough to contain the entire prostate gland and most of

he surrounding anatomical structures. The same field-of-view was

sed for all datasets in this study. The number of initial feature

hannels represents a measure of network size ( Bonmati et al.,

018 ) and, together with input image size, are constrained by GPU

emory. Although the minibatch size could also affect the net-

ork training ( Radiuk, 2017; Smith et al., 2017 ), this was found to

e relatively insignificant in our initial experiment. In this study,

inibatch sizes, 2, 4, 8 and 16 were fixed according to four de-

reasing input image sizes, in order to maximise the usage of the

PU memory. 

The other hyperparameters for each model architecture is kept

he same as in the original publications. For the brevity of this pa-

er, the reader is referred to the respective original publications

nd open-source code. 

. Results 

.1. Hyperparameter searching 

Two-hundred and fifty-six different hyperparameter configura-

ions were tested for the UNet and Adapted UNet, with the 5-fold

ross-validation. The initial number of feature maps was not rel-

vant for the other four networks, which had fixed model archi-

ectures without considering the change in the number of feature

aps. Therefore, 64 hyperparameter configurations were tested for

he VNet, HighRes3dNet, HolisticNet and DenseVNet. Based on the

ighest DSC values obtained from these experiments, the hyperpa-

ameter configurations found for each network is listed in Table 3 .

he networks trained with these hyperparameter configurations

ere used for the subsequent comparison reported here. The high-

st DSC values in addition to the 10th, 50th and 90th percentiles of

he obtained DSC values from these experiments are also provided

n Table 3 . 

.2. Segmentation accuracy 

Fig. 5 shows a comparison of example images overlaid with typ-

cal segmented prostate boundaries generated automatically from

he trained networks, to illustrate qualitatively different levels of

egmentation performance at 25th, 50th and 75th percentiles of

SC. The DSC and BD values are summarised in Table 4 and Fig. 6 .

he range of the median DSC was between 0.86 and 0.90, and the

edian BD ranged between 1.9 mm and 2.4 mm across the six net-

orks. However, the one-way ANOVA test shows a statistically sig-

ificant difference between the DSC, but not for the BD, with a p-

alue of 0.005 and 0.32, respectively, whereas the non-parametric

ruskal-Wallis test shows a statistically significant difference be-

ween both the DSC and the BD with p-value < 0.001 in both

ases. The subsequent multiple comparison, based on Tukey’s hon-

st significance test, shows that, for the DSC, the difference was

aused by the UNet, which produced, for example, p- values of 0.01,
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Table 2 

Different hyperparameter configurations used for the hyperparameters tuning of the different 

networks. 

Training Hyperparameter Value. 1 Value. 2 Value. 3 Value. 4 

Input image size [112, 128, 64] [80, 96, 48] [48, 64, 32] [32, 48, 16] 

Initial learning rate 10 −2 10 −3 10 −4 10 −5 

Weight decay 0 10 −2 10 −4 10 −6 

Number of initial channels 4 8 16 32 

Table 3 

The selected hyperparameter configurations for each of the segmentation networks. 

Network Input image size Initial learning rate Weight decay Number of initial channels 3D DSC max [10th,50th,90th] percentile 

VNet [32, 48, 16] 10 −4 10 −4 n/a 0.87 [0.84, 0.85, 0.87] 

HighRes3dNet [32, 48, 16] 10 −2 0 n/a 0.87 [0.73, 0.84, 0.87] 

HollisticNet [32, 48,16] 10 −2 10 −6 n/a 0.87 [0.19, 0.68, 0.87] 

DenseVNet [32, 48, 16] 10 −3 0 n/a 0.85 [0.76, 0.82, 0.85] 

UNet [48, 64, 32] 10 −2 10 −6 8 0.89 [0.67, 0.85, 0.88] 

Adapted UNet [48, 64, 32] 10 −3 10 −6 32 0.89 [0.67, 0.85, 0.88] 

Table 4 

Segmentation performance metrics, prostate volume calculations and target registration errors between the manual and automatic segmentation for each network. 

Network 3D DSC mean ± std 

[25th,50th,75th] percentiles 

Boundary distance (mm) 

mean ± std 

[25th,50th,75th] percentiles 

Relative GVE 

difference (%) 

mean ± std 

[25th,50th,75th] 

percentiles 

Target registration 

Error (mm) 

mean ± std 

[25th,50th,75th] 

percentiles 

Number of parameters 

UNet 0.84 ± 0.07 2.52 ± 1.48 11.29 ± 9.62 2.72 ± 0.51 294 k 

[0.83,0.86,0.88] [1.73,2.07,2.57] [3.65,9.83,16.03] [2.30,2.82,3.05] 

VNet 0.88 ± 0.03 2.45 ± 0.91 10.71 ± 6.42 2.84 ± 0.59 71,044 k 

[0.87,0.89,0.90] [1.78,2.36,2.88] [6.32,10.44,14.25] [2.43,2.91,3.18] 

HighRes3dNet 0.89 ± 0.03 2.33 ± 0.81 10.15 ± 7.54 2.86 ± 0.58 809 k 

[0.88,0.89,0.91] [1.71,2.21,2.73] [4.77,8.70,13.66] [2.36,2.92,3.26] 

HolisticNet 0.88 ± 0.12 2.56 ± 3.22 9.60 ± 13.49 2.98 ± 1.25 4241 k 

[0.88,0.90,0.92] [1.62,2.04,2.50] [2.77,6.51,13.66] [2.36,2.85,3.20] 

Dense VNet 0.88 ± 0.03 2.47 ± 0.66 10.78 ± 8.65 2.83 ± 0.57 867 k 

[0.86,0.88,0.90] [2.00,2.37,2.92] [4.04,7.06,15.80] [2.30,2.91,3.18] 

Adapted UNet 0.87 ± 0.03 1.96 ± 0.61 8.99 ± 5.61 2.66 ± 0.45 9401 k 

[0.85,0.88,0.90] [1.52,1.86,2.22] [4.33,8.40,12.44] [2.33,2.61,3.02] 

Table 5 

p -values between the different networks for the DSCs, BDs, GVEs and TREs. 

Networks DSC p-value (tukey-kramer) BD p-value (tukey-kramer) GVEs p-value (tukey-kramer) TRE p-value (tukey -kramer) 

UNet vs VNet 0.01 1.00 0.96 0.95 

UNet vs HighRes3dNet 3.97e −3 0.99 0.83 0.92 

UNet vs HolisticNet 0.03 1.00 0.29 0.42 

UNet vs Dense VNet 0.03 1.00 0.43 0.97 

UNet vs Adapted UNet 0.15 0.38 0.64 1.00 

VNet vs HighRes3dNet 1.00 1.00 1.00 1.00 

VNet vs HolisticNet 1.00 1.00 0.83 0.92 

VNet vs Dense VNet 1.00 1.00 0.93 1.00 

VNet vs Adapted UNet 0.96 0.54 0.99 0.77 

HighRes3dNet vs HolisticNet 0.99 0.97 0.95 0.95 

HighRes3dNet vs Dense VNet 1.00 1.00 0.99 1.00 

HighRes3dNet vs Adapted UNet 0.84 0.79 1.00 0.71 

HolisticNet vs Dense VNet 1.00 1.00 1.00 0.89 

HolisticNet vs Adapted UNet 0.99 0.30 1.00 0.19 

Dense VNet vs Adapted UNet 0.99 0.48 1.00 0.83 
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F  

d  
 × 10 −3 and 0.03, compared with VNet, HighRes3dNet and Holis-

icNet, respectively. No statistically significant difference was found

etween the other networks ( p -values ranged from 0.84 to 1.00).

he detailed pairwise multiple comparison results are also sum-

arised in Table 5 . 

Further investigations on the seemingly underperforming UNet

evealed two outlier cases that produced DSC values lower than

.65. Example slices for these cases are shown in Fig. 7 . As re-

orted in Section 4.1 and Table 3 , a median DSC of 0.89 was ob-

ained from the UNet training, which was not inferior to train-

ng errors from other networks, and indicates a clear example
 w  
f parameter overfitting. A further discussion of the effect from

hese outliers on the subsequent clinical tasks are discussed in

ection 4.3 . 

.3. Volume estimate errors and target registration errors 

Using the segmentations reported in the previous section, the

elative GVE and TRE values are also summarised in Table 4 and

ig. 6 . These networks estimated the gland volumes with a me-

ian relative GVE between 6.5% and 10.4%, and the median TREs

ere lower than 3 mm. Most interestingly, no statistically signifi-
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Fig. 5. Automatic segmented prostate boundaries generated by different CNNs for 6 patients. The columns correspond to different patients and the rows correspond to 

different networks, with the last row showing the overlay of all networks. The first two columns are patients with DSC closest to the 25th percentiles, middle two columns 

are patients with DSC closest to 50th percentiles and the following two columns are patients with DSCs closest to the 75th percentiles. Blue shows the segmentation from 

HighRes3dNet, green from HolisticNet, brown from VNet, magenta the segmentation from DenseVNet, yellow the segmentation from the adapted UNet, cyan from UNet and 

red the manual segmentation. 
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cant difference was found among these networks using the one-

way ANOVA test, either in GVE ( p -value = 0.34) or in TREs ( p -

value = 0.26). This lack of significance was also confirmed by the

non-parametric Kruskal–Wallis test, with a p -value of 0.60 and

0.39 for the GVE and TRE, respectively. Additional pairwise mul-

tiple comparison results are summarised in Table 5 . 

A subject-level comparison of the segmentation accuracy, mea-

sured by the DSC, and the corresponding registration accuracy,

measured by the TRE, is illustrated in Fig. 8 . The results show lit-

tle visual correlation between these two measures in any tested

networks; a Pearson’s correlation coefficient of 0.015 was obtained
etween the DSC and TRE. The two outlier cases with the UNet

as reported in Section 4.2 ), which were predominantly responsi-

le for the significant difference in segmentation performance, did

ot reduce the registration accuracy, with corresponding TREs of

.94 mm and 3.27 mm. In these cases, the adverse effect from the

elatively poor segmentation was probably mitigated by multiple

andmarks and deformation regularisation used in the registration

lgorithm, demonstrating that, in the current settings, a difference

etween DSC values would not make a difference in clinical use of

he segmentation such as MRI-to-TRUS registration tested in this

tudy. 
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Fig. 6. Box and Whisker plots of different measurement metrics for each of the segmentation networks. 

Fig. 7. Overlay images of the automatic boundary segmentations from the UNet on top of the original prostate image for two outlier patients producing DSCs of smaller 

than 0.65. 

Fig. 8. Plot showing relationship between DSCs and TREs for patients across all six networks, represented by the six different coloured points. 

5
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. Discussion and conclusion 

In this study, six recently-proposed CNNs were compared to

egment prostate glands in MRIs. The segmentation performance

n terms of the DSC region overlap measure and the BD was quan-

ified for 232 patient datasets with expert labels provided by ex-
erienced clinicians. Although the original purpose of our work

as not to recommend any particular network architecture over

ny other, an extensive comparison including 3840 trained mod-

ls was carried out to ensure a practically-feasible and fair com-

arison of network generalisation. The results are reported from a

old-out dataset, after completing parameter searching based on
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cross-validation. Furthermore, two real clinical tasks were tested

in which the automatically-predicted segmentations were used for

prostate volume estimation and multimodal image registration.

The results, in terms of the relative GVE and TRE, were also com-

pared statistically among all the networks. We believe that this it

is the first time that a comparison experiment based on a single

data set of this size has been reported for MRI-TRUS prostate seg-

mentation. It is also the first study to investigate how errors in

MRI prostate segmentation influence the accuracy of clinical work-

flow tasks where the segmented boundaries are input data. One

such task is the estimation of the prostate volume. As briefly men-

tioned in Section 1 , this measure is important for investigating

the effect of a drug therapy on the prostate over time. For exam-

ple, Moore et al. (2017) showed a 15% reduction in prostate vol-

ume and 34% reduction in tumour volume in patients given dutas-

teride, a drug for treating prostatic hyperplasia. From the results

of our experiments, the median difference in GVE of between 6.5%

and 10.4% using segmentations produced automatically by differ-

ent networks (see Table 4 ) would be significant in this application.

Furthermore, as our results suggest, the GVE would not necessarily

be reduced by selecting another network tested in this study that

segments the prostate boundary more accurately. 

For the MRI-to-TRUS registration application, all of the net-

works tested resulted in a median TRE between 2.6 mm and

2.9 mm, which is comparable to other segmentation-based regis-

tration methods in the literature ( Narayanan et al., 2009; Hu et al.,

2012; Zettinig et al., 2015 ). As shown by Van de Ven et al. (2013) ,

a TRE of 3.1 mm or less is required to detect a clinically significant

tumour volume. From the results presented in Table 4 , the percent-

age of patients with a TRE smaller than 3.1 mm was 80%, 64%, 71%,

67%, 73% and 82% for UNet, VNet, HighRes3dNet, HolisticNet, Dense

VNet and Adapted UNet respectively. 

Moreover, we believe that the results from this work may cor-

roborate the findings of a number of previous studies in which

caution has been raised over the interpretation of the value of

some segmentation metrics, and the resulting league table po-

sitions in segmentation challenges ( Gibson et al., 2017a; Reinke

et al., 2018 ). With evidence from the prostate segmentation in

MRIs, we found that a statistically significant difference in the DSC

between segmentations produced by two CNNs, does not neces-

sarily lead to any detectable impact in other computational tasks

within a clinical workflow that use these segmentations. As shown

in Table 5 , unlike in the DSC results, no statistically significant dif-

ference in BDs was found between the networks in this work using

the ANOVA. This itself raises interesting questions for further com-

parison such as, “Does BDs correlate with GVEs more than it does

with DSCs?” or “Is BD a better predictor of TRE than DSC is?”. 

Our conclusions need to be considered with limitations such as

data size, access to segmentation networks that are designed for

these clinical applications and the choice of method using these

segmentations. For instance, the registration algorithm used in this

work is an open-source algorithm that produced acceptable reg-

istration results, but it may be interesting to compare with other

methods with or without using segmentations. Also, in this work,

we have focused on the performance of the segmentation net-

works in accuracy. Other aspects of the networks which could po-

tentially also influence the clinical adoption, such as training- and

inference time, have not yet been optimised and compared. 

With the increasing use of deep learning in medical imaging,

especially with different networks which are proposed to be used

in clinical practice, representing prediction uncertainty is of im-

portance. The uncertainty can arise from noisy data, the sampling

of training data, and uncertainty in the model parameters and the

network structure ( Gal, 2016 ). Although outside the current scope

of this paper, it would be interesting to investigate and compare

 

he impact of network uncertainties both on segmentation accu-

acy and subsequent clinical metrics in future research. 

Established segmentation error metrics, such as the Dice Score,

re useful for formulating loss functions for training learning-based

lgorithms, and for evaluating and comparing the segmentation ac-

uracy of different network architectures. Therefore, the develop-

ent of new architectures that are demonstrated to be more ac-

urate using such measures remains a well-justified and important

ngineering goal. However, by reporting the quantitative results in

eal clinical applications investigated in this work, we hope it will

nfluence the scope of future research and development to con-

ider carefully the accuracy of specific downstream tasks of inter-

st within a computational pipeline for the specific clinical appli-

ation of interest. This work serves as a starting point for this shift

y demonstrating that any found statistical significance cannot be

eneralised to downstream clinical tasks without further valida-

ion. 
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