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a b s t r a c t 

This paper outlines real-world control challenges faced by modern-day biopharmaceutical facilities 

through the extension of a previously developed industrial-scale penicillin fermentation simulation ( Ind- 

PenSim ). The extensions include the addition of a simulated Raman spectroscopy device for the purpose 

of developing, evaluating and implementation of advanced and innovative control solutions applicable 

to biotechnology facilities. IndPenSim can be operated in fixed or operator controlled mode and gener- 

ates all the available on-line, off-line and Raman spectra for each batch. The capabilities of IndPenSim 

were initially demonstrated through the implementation of a QbD methodology utilising the three stages 

of the PAT framework. Furthermore, IndPenSim evaluated a fault detection algorithm to detect process 

faults occurring on different batches recorded throughout a yearly campaign. The simulator and all data 

presented here are available to download at www.industrialpenicillinsimulation.com and acts as a bench- 

mark for researchers to analyse, improve and optimise the current control strategy implemented on this 

facility. Additionally, a highly valuable data resource containing 100 batches with all available process and 

Raman spectroscopy measurements is freely available to download. This data is highly suitable for the de- 

velopment of big data analytics, machine learning (ML) or artificial intelligence (AI) algorithms applicable 

to the biopharmaceutical industry. 

© 2019 Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 
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. Introduction 

Penicillin fermentation monitoring and control has been car-

ied for the last three decades ( Mou and Cooney, 1983 ; Min et al.,

995 and Lee et al., 2004a ; Luo and Bao, 2018 ). However the

iopharmaceutical sector as a whole is still significantly lagging

ehind other sectors in their adoption of advanced process con-

rol (APC), particularly in their use of innovative process analytical

echnology (PAT) solutions ( Tomba et al., 2013 ). This is more ev-

dent in comparison to other highly sophisticated industries such

s oil & gas, semi-conductor and automotive where automation

nd lean manufacturing are better engrained into company prac-

ice and culture. A major push from industrial regulators to rectify

his has been the implementation of the Quality by Design (QbD)
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nd PAT initiatives set out by the FDA in 2004 and 2009, respec-

ively ( FDA 2004, FDA 2009 ). However, a major challenge remain-

ng is the expertise and confidence required to adopt and imple-

ent these novel control solutions throughout industrial biophar-

aceutical processes. Over the last 25 years the development of

rst principles mathematical models mimicking complex industrial

rocesses have aided in the development and deployment of APC

olutions ( Downs and Vogel, 1993; Lyman and Georgakis, 1995;

irol et al., 2002; Jeppsson et al., 2007; Kontoravdi et al., 2010;

iparissides et al., 2011; Benyahia et al., 2012; Gernaey and Gani,

010; Goldrick et al., 2014; Papadakis et al., 2018 ). The ability to

est and validate a novel control strategy on a simulation subse-

uent to implementation on a real process has the potential to rev-

lutionise control theory and applications of advanced controllers

hroughout the biopharmaceutical sector ( Randek and Mandenius,

018 ; Yuan et al., 2009 ). A limitation of current biopharmaceuti-

al mathematical models is their inability to address the current

ontrol challenges of a modern-day biopharmaceutical facility. In
BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Summary of all model inputs and outputs recorded by IndPenSim . Automatic control is dependent on PID control loops whereas manual control is a recipe-driven 

approach maintaining a fixed profile throughout the batch which can be manually adjusted by operator intervention. 
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the future era of Industry 4.0, which envisions a highly intelli-

gent data-driven manufacturing environment incorporating a mul-

titude of advanced on-line process analytics ( Sami Sivri and Oztaysi

2018 ), the need for a modern-day biopharmaceutical simulation is

paramount. 

The simulation described in this paper aims to address the cur-

rent and future challenges of biopharmaceutical process manufac-

turing through the extension of a highly complex industrial-scale

penicillin fermentation, referred to as IndPenSim . The simulation

was developed using the historical batch records of a 10 0,0 0 0 litre

penicillin fermentation utilising a high-yielding industrial strain of

Penicillium chrysogenum and accurately simulates all the available

process inputs and outputs ( Goldrick et al. 2015 ). IndPenSim can

be operated in multiple modes enabling the generation of large

volumes of realistic fermentation data. The simulation mimics a

real process through its ability to include delays in off-line assay

measurements, manual operator intervention of feeding strategies,

inaccurate sensor readings and random deviations in growth and

production levels. Furthermore, a realistic Raman spectroscopy de-

vice has been integrated within IndPenSim . The inclusion of this

device aims to support the current and future development of in-

novative and advanced control strategies on biopharmaceutical fa-

cilities. Furthermore, a data set containing 100 batches ( ∼ 2.5 GB)

is available to download at www.industrialpenicillinsimulation.com

which aims to act as a valuable resource for big-data analytics, ma-

chine learning (ML) and artificial intelligence (AI) approaches. 

1.1. Overview of IndPenSim 

IndPenSim acts as a standalone application (freely available to

download at www.industrialpenicillinsimulation.com ). A summary

of all the process inputs and outputs recorded by IndPenSim are

shown in Fig. 1 . Table 1 outlines the measurement frequency and

primary control strategy of these main process variables in addi-

tion to the functional relationship between each variable. Automat-

ically controlled variables; i.e. temperature ( T ) and pH ( pH ), are

regulated using a feed-back proportional integral derivative (PID)

loop. Manually controlled variables; i.e. substrate flowrate ( F s ) and

phenylacetic acid flowrate ( F PAA ), are manipulated using a recipe

driven approach which follows a fixed profile throughout the batch

(Recipe driven) or are controlled by an operator that manipulates

this fixed profile throughout the batch (Operator dependant). This

mode of control replicates the observed control actions of the op-

erators manually adjusting F s and F paa throughout the batch as de-

scribed in Goldrick et al. (2015) . The batch length can be fixed
o a constant value (Fixed), typically 230 h or dependent on de-

ays in downstream process operation (Variable). A summary of a

ve-year campaign outlining the annual production metrics gener-

ted by IndPenSim is summarised in Table 2 . Each campaign was

perated in a different mode and no advanced control algorithms

ere implemented during any campaign. IndPenSim calculates the

nnual production metrics using the assumption that the facility

as a 24-hour operating period and operates 336 days per year.

he remaining 29 days are used for an annual shut-down pe-

iod, allowing for routine maintenance activities to be carried out.

 three-day turn around period for bioreactor cleaning and re-

noculation is required following each batch. A target production

ield of 20 0 0 kg of penicillin is required in each batch. Any batches

chieving yields below this specification are considered below tar-

et batches and an investigation into their poor performance is re-

uired. 

.2. IndPenSim control objectives 

IndPenSim considers the growth, morphology, metabolic pro-

uction and degeneration of a large-scale Penicillium chryso-

enum fermentation in addition to modelling all the required

n-line and off-line variables. The details regarding the mathe-

atical structure of the model have been previous described in

oldrick et al. (2015) . The primary focus of this paper is to demon-

trate the ability of this simulation to act as a benchmark for the

evelopment and validation of novel control solutions applicable

o biopharmaceutical processes. Currently this fermentation pro-

ess has no advanced process control strategies in place and there-

ore presents significant process improvement opportunities. The

rimary goal of any control strategy is to ensure an economically

iable process through increased product yields and reduced oper-

ting costs ( Montague et al., 1989 ), therefore the following control

bjectives have been defined: 

• Develop a control strategy to maximise annual penicillin pro-

duction and reduce variation in batch yields in comparison to

the five campaigns outlined in Table 2 . 
• Identify the critical process parameters (CPPs) and critical qual-

ity attributes (CQAs) influencing penicillin production. 
• Develop an enhanced control strategy for pH and temperature

variables to minimise their fluctuations in comparison to the

existing PID control loops. 
• Develop a control strategy that manipulates one or more of the

following flowrates: substrate, nitrogen or phenylacetic acid, to

http://www.industrialpenicillinsimulation.com
http://www.industrialpenicillinsimulation.com
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Table 1 

Summary of measurement frequency, primary control variables, functional relationships and control strategies for recorded process variables. 

Variable reference 

Measurement 

frequency 

Primary control 

variables Functional relationship Control strategy 

Dissolved oxygen ( DO 2 - mg L −1 ) 12 min F g ,RPM Pressure, O 2, og , 

Viscosity,T,V,F oil 

> 10% of saturation 

Weight ( W - kg) 12 min F water ,F s ,F a/b ,F PAA, F dis P,X,V Maintain between 7 ×10 4 

and 11 ×10 4 kg 

pH ( pH ) 12 min F a/b P;X;V PID control algorithm 

Temperature ( T - K ) 12 min F c P,X,V PID control algorithm 

Off-gas measurements (CO 2,og & O 2, og -%) 12 min F g, RPM O 2 , CO 2 Not controlled 

Penicillin ( P - g L −1 ) 12 h ( + 4 delay) F S ,F oil ,F PAA ,F N X,PAA, DO 2 ,S Maximise production 

Biomass ( X - g L −1 ) 12 h ( + 4 delay) F S ,F oil ,F PAA ,F N P,PAA,N,S,pH,T, CO 2 Maximise production 

Phenylacetic acid ( PAA - mg L −1 ) 12 h ( + 4 delay) F PAA P,X,V Maintain between 600 

and 1800 mg L −1 

Nitrogen ( N - mg L −1 ) 12 h ( + 4 delay) N shots, F oil ,F PAA P,X,V Maintain above 

300 mg L −1 

Viscosity ( μ - cP) 12 h ( + 4 delay) F water P,X,V Maintain below 100 cP 

Substrate ( S - g L −1 ) No off-line 

measurements available 

F s ,F oil P,X,V Maintain between 

5 × 10 −3 and 

1 × 10 −3 g L −1 

Table 2 

A summary of the annual production metrics recorded by IndPenSim operated using different control strategies throughout a five-year production period. 

Campaign summary Campaign 1 (Year 1) Campaign 2 (Year 2) Campaign 3 (Year 3) Campaign 4 (Year 4) Campaign 5 (Year 5) 

Control strategy Operator dependant Recipe driven Operator dependant Recipe driven Operator dependant 

Fixed or variable batch length Fixed Variable Variable Fixed Fixed 

Average batch length (hours) 230 ± 0 239 ± 27 239 ± 32 230 ± 0 230 ± 0 

Number of batches 26 25 26 26 26 

Number of below target batches 2 8 6 2 5 

Average Penicillin yield per batch (kg) 2882 ± 745 2578 ± 769 2950 ± 888 2912 ± 786 2816 ± 796 

Annual production (kg × 10 3 ) 74,939 64,458 76,690 75,716 73,228 

 

 

 

 

 

 

2

2

 

t  

h  

a  

t

 

 

 

 

 

 

 

 

 

 

 

2

 

e  

a  

e  

R  

i  

t  

G  

K  

(

a  

s  

i  

t  

s  

m  

m  

r  

m  

n

2

 

a  

a  

b  

m  

d  

t  

F  
maintain these variables within their acceptable ranges defined

in Table 1 . 
• Utilise the spectra recorded by the Raman spectroscopy de-

vice to develop a soft-sensor enabling an on-line prediction of

phenylacetic acid, biomass or penicillin concentration in real-

time. 
• Develop a control strategy that calculates the optimum harvest

time for each batch to maximise annual penicillin yields gener-

ated throughout a yearly campaign. 

. Material and materials 

.1. Simulation software 

IndPenSim was written in Matlab R2018b and is freely available

o download at www.industrialpenicillinsimulation.com where the

istorical batch records of campaigns 1-5 outlined in Table 2 are

lso available. IndPenSim has the following capabilities and func-

ionality: 

• Batch to batch variation of both the biomass and penicillin con-

centration as well as in-batch fluctuations 
• Option to add disturbances on inlet concentrations of the sub-

strate ( c s ), oil ( c oil ), acid/base molar concentration ( c a/b ) and

Phenylacetic acid concentration ( c PAA ). 
• Ability to adjust the current sequential batch control strategy

for F s , F oil , F g , RPM, F dis and F PAA . 
• Option to include inhibition effects on the growth rates during

DO 2 , N and PAA limitation as well as during excessive PAA and

CO 2 concentrations and sub-optimal T and pH operation. 
• Includes a pre-defined delay (4 h) in the off-line measurements

of P, N, PAA and μapp . 
• Option to include process faults including agitator trip, aeration

faults, substrate faults and sensor errors. 
• Option to record Raman spectra throughout the batch, enabling

real-time predictions of the critical quality attributes and criti-
cal process parameters provided an accurate calibration model

is developed and the spectra is pre-processed correctly. 

.2. Raman spectroscopy simulation development 

This section describes the development of an empirical math-

matical model to simulate a realistic PAT analyser, specifically

 Raman spectroscopy device. The simulated spectra were gen-

rated and validated through a detailed analysis of experimental

aman spectra recorded on a 5 litre fungal fermentation produc-

ng a commercially available antibiotic. Further details describing

he materials and methods of this fermentation are outlined in

oldrick et al. (2018) . The Raman spectroscopy device used was a

aiser 10 0 0 RXN system implementing an indium gallium arsenide

InGaAs) detector array with a spectral range of 20 0–240 0 cm 

−1 

nd a resolution of 3 cm 

−1 . The Raman spectroscopy analyser was

et-up to record a spectrum every 30 min based on 9 averages us-

ng an integration time of 180 s. In total 540 spectra were recorded

hroughout the 260-hour fermentation, highlighted in Fig. 2 A. The

imulated PAT analyser described here aims to mimic the three

ain characteristics that define this experimentally recorded Ra-

an spectra. These are outlined by Bocklitz et al. (2011) as fluo-

escence baseline increase, Raman spectrum peaks and noise. The

odelling of random cosmic spikes on Raman spectroscopy was

ot considered in this work. 

.2.1. Non-linear spectra profile and baseline increase 

Raman spectra recorded on fermentation systems contain char-

cteristic peaks related to media components and cell culture in

ddition to the characteristic non-linear shape associated with the

ackground signal of the Raman spectroscopy device. This was

odelled by taking the first spectrum of the experimental Raman

ata set and using this as a template for all spectra generated by

his simulated PAT analyser, the reference spectrum is shown in

ig. 2 B. The fluorescence increase shown in the experimental Ra-

http://www.industrialpenicillinsimulation.com


4 S. Goldrick, C.A. Duran-Villalobos and K. Jankauskas et al. / Computers and Chemical Engineering 130 (2019) 106471 

Fig. 2. A summary outlining the development of the Raman spectroscopy simulation. A) Highlights the experimental spectra recorded by a 993 nm Raman spectroscopy. B) 

Highlights the non-linear reference spectrum implemented as the starting spectrum in this simulation. C) Highlights the non-linear characteristic peak increase related to 

fermentation compositional changes in penicillin, substrate and phenylacetic acid. D) Highlights an example of the typical noise added to each simulated spectrum. E) Shows 

an example of the simulated spectra developed in this work. 
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man spectra is visible in Fig. 2 A where the baseline intensity of

the spectra collected during the start (0-45 h) can be compared

with that collected at the end of the fermentation (215-240 h).

To model this fluorescence increase ( �F luorescenc e Exp 
) in the experi-

mental spectra the average change in intensity from one spectrum
to the next was calculated as: 
r  
F luorescenc e Exp 
( n ) = 

∑ v =2250 

v =250 

( Spectra ( n + 1 ) − S pectra ( n ) ) 

20 0 0 

(1)

Where �F luorescenc e Exp 
represents the average change in baseline

ntensity of two consecutive spectra between the wavelengths ( v )

50–2250 cm 

−1 . Taking the cumulative sum of the calculated fluo-

escence increase results in an average fluorescence profile of the
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G

ermentation. In these empirically simulated Raman spectra, the

uorescence increase ( �F luorescenc e Sim 
) was assumed to be the result

f compositional changes to the fermentation broth. The compo-

itional changes assumed to have the largest influences were the

iomass ( X ), penicillin ( P ), viscosity ( μ) and batch time ( t ), which

re defined as: 

 t=240 

t=0 
�F luorescenc e Sim 

= α1 X + α2 P + α3 μ + α4 t (2)

The coefficients ( α1, 2, 3, 4 ) were calculated using a step-wise

inear regression function that minimised the error between the

alculated experimental fluorescence increase and the simulated

orescence. The fluorescence increase was found to be accurately

odelled by these four variables with the product concentration

dentified as having the largest influence on the experimentally

ecorded fluorescence. The finalised coefficients ( α1, 2, 3, 4 ) wer e

qual to −0.002 ( X ), 1.05 ( P ), −0.07 ( μ) and -0.2 ( t ). It was ob-

erved in Fig. 2 A that fluorescence had a greater influence on the

ower wavelengths in comparison to the higher wavelengths. To ac-

ount for this nonlinearity an exponential function was multiplied

y each spectrum to mimic this as shown in Eq. (5) . This expo-

ential function is defined in this work as β , further details can be

ound in Goldrick (2015) . 

.2.2. Non-linear characteristic peak increase related to fermentation 

omposition 

The simulated Raman spectra needs to take into account the

haracteristic peaks related to changes in component concentra-

ions throughout the batch. Previous work on the use of Ra-

an spectroscopy for on-line monitoring of biological processes

as simulated these characteristic peaks as Gaussian functions

 Oh et al., 2012 ). Furthermore, Gauassian functions have also been

emonstrated to represent specific molecules in chemical analysis

tilising Raman spectroscopy ( Kneipp et al., 1999 ). Therefore, Gaus-

ian functions were used to represent the substrate ( S ), penicillin

 P ) and phenylacetic acid ( PAA ) concentrations in this simulation.

he position of the substrate and phenylacetic acid peaks were se-

ected based on analysis of the Raman spectra containing media

piked with high concentrations of phenylacetic acid and substrate

s outlined in Goldrick (2015) . The penicillin peak positions were

hosen based on Raman spectra of Penicillin G samples shown in

larke et al. (2005) . These peaks were represented by a Gaussian

istribution function defined as: 

f 
(
P ea k ( P/S/PAA ) 

)
= 

1 √ 

2 πσ 2 
e −

( Peak ( P/S/PAA ) −μP/S/PAA ) 
2 

2 σ2 (3) 

Where Peak (P/S/PAA) is the specific wavelength related to either

hanges in penicillin ( P ), substrate ( S ) or phenylacetic acid ( PAA ), σ
s the standard deviation of either Peak(P) or Peak(S) or Peak(PAA)

nd μ represents the peak mean. These component peaks are

hown in Fig. 2 C. 

.2.3. Signal-to-noise ratio 

Noise is an inherent disturbance to any sensor. For Raman spec-

roscopy noise generally results from thermal effects, instrument

ead-out errors or random cosmic rays. The magnitude of the noise

as modelled by calculating the signal-to-noise ratio (SNR) of the

pectra. The SNR assumes the Raman spectra collected in close

uccession to each other should be almost identical with the main

ifference between these two signals being the result of noise

ithin the signals ( Grimbergen et al., 2010 ). By calculating the

ean and standard deviation of each consecutive spectra the SNR

s calculated as follows: 

NR = 

S̄ 

σdi f f 

(4) 
Where S̄ is the mean Raman intensity and σ diff is the standard

eviation of spectrum divided by 
√ 

2 . The SNR was calculated for

0 spectra and equalled 50 counts (intensity). The magnitude of

his was used to add noise to each individual spectrum based on

 random walk noise generation. A typical example of the noise

dded to each spectra is shown in Fig. 2 D. 

The final simulated spectrum ( Sim. Spectra ) is summarised as: 

im. Spectra = Re ference Spectra 

+ ( δ1 �Fluorescence + δ2 P eaks ( S, P, PAA ) + δ3 Noise ) × β (5) 

Where the δ1, 2, 3 are coefficients related to the intensity of each

haracteristic component of the simulated spectra. δ1 is the fluo-

escence increase due compositional changes in biomass, penicillin,

iscosity and also batch time. δ2 is related to the intensity increase

ased off current concentrations of penicillin ( P ), substrate ( S ) and

henylacetic acid ( PAA ) in the bioreactor and δ3 is the intensity

ssociated with the noise added to each spectrum. β relates to

he exponential function to account for non-linear increase of the

ower wavelengths of the spectra. 

A demonstration of the robustness of the simulated Raman

pectra to accurately predict the penicillin concentration during

outine and abnormal operation is demonstrated in Fig. 3 . In total,

our batches were simulated that contained a low filtered pseudo

andom binary signal (PRBS) added to the substrate feed rate ( F s )

o mimic realistic process deviations as shown in Fig. 3 A. The first

atch was used to build the PLS model taking the interpolated off-

ine penicillin concentration as the response. The spectra was pre-

rocessed as described in Section 4 . The PLS model selected four

atent variables as optimum, accounting for 99% of the variance in

he X-data (spectral data) and the 98% of variance in the Y-data

atrix (interpolated penicillin concentration). A calibration batch

as simulated and resulted in highly comparable predictions of

he off-line penicillin concentration with the root mean square er-

or (RMSE) equal to + /- 0.1 g L −1 . Two addition batches were sim-

lated containing a process disturbance in the substrate flow rate

 F s ) as demonstrated in Fig 3 A. The resultant drop in penicillin con-

entration as a result of these process disturbances is evident from

ig. 3 B. The PLS predictions of penicillin during these process dis-

urbances is highly comparable with the off-line penicillin concen-

ration measurements shown in Fig 3 B. The ability of the spectra to

e utilised as a real-time measurement of penicillin during normal

nd abnormal operation represents a significant opportunity to de-

elop and implement advanced process control algorithms on this

enchmark simulation. However, it must be noted that the simu-

ated Raman spectroscopy was built using spectra collected at the

 L scale and does not account for any potential process hetero-

eneities or additional process issues that may be present at the

0 0,0 0 0 scale. 

. Theoretical section 

The following section outlines the multivariate data analysis

MVDA) techniques applied in this manuscript. A batch-wise un-

olding algorithm was initially implemented to decompose the data

et into a structured format enabling the main sources of variation

etween each batch to be highlighted ( Nomikos and Macgregor

995 ). Both principal component analysis (PCA) and partial least

quares (PLS) were implemented to reduce the high dimensional-

ty of this large unfolded data allowing for easier data interpre-

ation and better visualisation of hidden correlations. These two

echniques have been demonstrated extensively in the monitor-

ng and control of industrial fermentation systems ( Lennox et al.,

0 01 ; Ündey et al., 20 03 ; Kourti et al. 2005 ; Chiang et al., 2006 ;

oldrick et al., 2017 ). 
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Fig. 3. A) Outlines the substrate flow rate ( F s ) for the calibration and validation batches used to generate the PLS model for predicting the penicillin in addition to two 

batches containing process disturbances. B) Represents the off-line penicillin concentration of the four batches compared to the on-line PLS penicillin predictions. 
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3.1. Principal component analysis (PCA): On-line and off-line 

monitoring 

The application of PCA for the on-line and off-line moni-

toring of industrial biopharmaceutical data is well described by

Gunther et al. (2007) . In summary, prior to applying PCA the data

was mean centred and scaled to unit variance. PCA is described

mathematically as: 

X = 

∑ R 

r=1 
t r p 

′ 
r + E (6)

Where X represents the two-dimensional data set and t r , p r 

and E represent scores, loadings and residuals, when R principal

components are retained. The scores ( t vector) represents a single

batch and can quantify the overall variability of each batch anal-

ysed by the PCA model. The loadings ( p vector) represents the

time-series variance of each variable in comparison to the aver-

age trajectory of each variable considering all batches in the PCA

model. PCA is a well suited and established method to compare

new batches to previously recorded normal operating conditions

(NOC) batches. The comparability is defined by calculating the

new batch scores ( t new 

) by projecting the new batch data ( x new 

)

onto the previously generated PCA model generated using the NOC

batches: 

t new 

= x new 

P 

(
P 

′ P 

)−1 
(7)

This generated score enables off-line monitoring of the newly

generated batches. To help identify any abnormal operation two

statistical metrics are typically used. The first is the Hotelling T 2 

statistic that captures the difference in the systematic part of the

model and is calculated as: 

T 2 new 

= t new 

(
T 

′ T 

I − 1 

)
t ′ new 

(8)

Where I is the number of NOC batches used to generate the

PCA model. Any batches that behave abnormally can be detected

through analysis of the confidence limit of the T 2 α defined by

Lee et al. (2004b) as: 

T 2 α = 

(
R (I − 1 

I − R 

)
F R,I−R,α (9)

Where F R,I-R, α is the F -distribution assuming a confidence limit

equal to α taking R principal components and using I batches to

build the model. A second method to detect abnormal behaviour
s to analyse the residual error of the PCA model, this is quantified

y the sum of squared residuals (SPE) or Q statistic: 

 new 

= e new 

e 
′ 
new 

(10)

 new 

= x new 

− t new 

P ′ (11)

Typically these residuals follow a chi squared distribution

 χ2 ) with a confidence limit approximated by Jackson and Mud-

olkar (1979) as: 

 α = θ1 

( 

z α
(
2 θ2 h 

2 
0 

)0 . 5 

θ1 

+ 1 + 

θ2 h 0 ( h 0 − 1 ) 

θ2 
1 

) 

1 
h 0 

(12)

 = 

EE 

′ 
I − 1 

(11a)

i = trace 
(
V 

i 
)

f or i = 1 , 2 , 3 (13)

 0 = 1 − 2 θ1 θ2 

3 θ2 
2 

(14)

With V representing the covariance matrix of E , z α is standard-

sed normal variable with confidence limit equal to α. A major

enefit of applying PCA to analyse biopharmaceutical data is its

bility to be used for on-line monitoring. The PCA model gener-

ted from the NOC batches can be used to evaluate batch progres-

ion in real-time and utilise this information to alleviate faults and

nhance control operations. This PCA projection method utilises a

ortion of the loading matrix corresponding to the current lapsed

ime of the current batch until current sampling time k to calculate

he new score vector t new 

(k) for the selected number of principal

omponents of the model. 

 new 

( k ) = x new 1: Jk P 1: Jk 

(
P 

′ 
1: Jk P 1: Jk 

)−1 
(15)

Where x ne w 1: Jk 
is the available batch data up until current time

oint k and P 1: JK is the loadings matrix of the NOC batches calcu-

ated using data up to time point k . Both the T 2 new 

(k ) and e new 

( k )

re calculated from Eqs. (8) and ( 11 ), respectively, using the time

arying covariance matrix S ( k ) and the loadings matrix P 1: Jk . The

n-line SPE enables the distance between the PCA model generated

y the NOC batches and the progression of the new batch and is

alculated as: 

P E new 

( k ) = 

J ∑ 

j=1 

e 2 new, jk ( k ) (16)
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The SPE and T 2 can act as an on-line indicator of overall system

erformance. High SPE or T 2 indicates that the process is behav-

ng abnormally enabling real-time fault detection. To localise the

oot cause of any abnormal behaviour the variable contributions

owards the SPE and T 2 can be evaluated at any time point k as

ollows: 

 T jk 
2 = 

∑ A 

a =1 
S −1 

aa ( k ) t new,a ( k ) x new, jk P jk,a (17) 

 SP E jk = e 2 new, jk ( k ) (18) 

Where S aa ( k ) is the a th digonal element of the time-varying co-

arance matrix at time point k. 

.2. Partial least squares (PLS) model development 

Partial least squares modelling is similar to PCA in its ability to

educe large data sets into low-dimensional vector spaces. How-

ver, this technique enables the prediction of a response variable,

 , using the predictor variables contained within X . The PLS model

s generated from a set of regression vectors maximising the co-

ariance between the X and Y data. Similar to PCA the initial step

n building a PLS model was to construct the X data by unfolding

ll the available variables within each batch using a batch-wise un-

olding algorithm ensuring the X and Y data have an equal number

f rows. The PLS model was generated through a non-linear iter-

tive partial least squares (NIPALS) algorithm ( Wold et al., 1987 ).

his algorithm generates an outer-relationship that identifies the

ain sources of variance within each of the data and links them

ogether through an inner-relationship. The outer relationships are

enerated by decomposing the newly unfolded X and Y data into R

atent score variables [ t , u ], loading vectors [ p, q ], weights W and

he model residual matrices E and F. t , u , p , and q can be com-

ined into T , U , P , Q and W as defined below ( Wold et al., 1987 ):

 = 

∑ R 

r=1 
t r p 

′ 
r + E ... X = TP 

′ + E (19) 

 = 

∑ R 

r=1 
u r q 

′ 
r + F ... Y = UQ 

′ + F (20) 

A vector of inner-relationships ( B ) is generated that relates the

cores of the X data to the Y data, which is defined as: 

 = U 

′ T 

(
T 

′ T 

)−1 
(21) 

The PLS model implements an iterative procedure for each la-

ent variable to reach convergence and once the procedure is com-

lete, a matrix of regression coefficients ( β) can be generated as

ollows: 

= W 

(
P 

′ W 

)−1 
diag ( B ) (22) 

Where, W = ( U 

−1 X ) ′ . The cumulative sum of the regression co-

fficients predicts the response variable ( ̂  Y ) from the X data taking

 latent variables, which was equal to: 

ˆ 
 = X 

R ∑ 

r=1 

β (22a) 

. Soft-sensor development 

The generation of the PAA soft-sensor involves generating a

LS model as described in Section 3.2 taking the Raman spectra

nd off-line phenylacetic acid ( PAA ) concentration as the X and Y

ata, respectively. The Raman spectra recorded by IndPenSim was

enerated every 12 min and recorded data along the wavenum-

er 250–2250 cm 

−1 resulting in a large two dimensional matrix.

he wavenumbers of interest that contain information related to
he PAA concentration in the bioreactor were equal to 1540:1580

nd 1950:2050 cm 

1 , identified through analysis of Raman spectra

ecorded from fermentation media spiked with various concentra-

ions of PAA ( Goldrick 2015 ). The selected wavenumbers of the Ra-

an spectra were pre-processed using a standard Savitzky-Golay

moothing technique using a 15-point average and taking the first

erivative, this pre-processed data was taken as the X data. The

AA off-line concentrations were taken as the Y data in the PLS

odel and were interpolated using a cubic-spline function to en-

ure an equal number of rows as the X data. The selection of

he optimum number of latent variables was based on a cross-

alidation operation employing a leave-one-out protocol ( Martens

nd Naes 1992 ). 

. Results and discussion 

.1. Quality by Design and PAT application 

Monitoring and control of penicillin fermentation processes has

een around for decades and essential to ensure the production

f high yields and product quality remains within specification

 Mou and Cooney, 1983 ; Min et al., 1995 and Lee et al., 2004a ;

uo and Bao, 2018 ). The recent Quality by Design (QbD) initia-

ive represents a paradigm shift in biopharmaceutical manufac-

uring involving a systematic approach to process optimisation

nabled through enhanced process understanding and innovative

ontrol strategies. The primary focus of this approach is to ensure

 predefined product quality target is confidently and consistently

chieved for all batches regardless of inherent process disturbances

nd batch-to-batch fluctuations. To accelerate the adoption of this

ystematic approach the regulatory bodies have launched the pro-

ess analytical technology (PAT) framework ( FDA 2004 ) to promote

he application of advanced sensors integrated through innovative

ontrol solutions. Table 2 highlights the need for an improved con-

rol strategy for IndPenSim as both the recipe driven and opera-

or dependent control strategies resulted in significant deviations

n annual penicillin production for each of the five campaigns.

o demonstrate how a QbD methodology can be correctly imple-

ented for process improvements the three different stages of the

AT framework were implemented using IndPenSim: 

Design stage : To identify the critical process parameters (CPPs)

nd subsequent critical quality attributes (CQAs), all the process

ata recorded in campaign 5 were analysed using multivariate data

nalysis (MVDA). This campaign is summarised in Table 2 and re-

ulted in 26 batches with 5 of those batches failing to meet the re-

uired target penicillin production yield of 20 0 0 kg. All batches im-

lemented an operator dependant control strategy and had a fixed

atch length equal to 230 h. The operator controlled flowrates of

ubstrate ( F S ) and phenylacetic acid ( F PAA ) for this campaign are

hown in Fig. 4 A and B. The significant deviations in these primary

ontrol variables results in highly varied penicillin and biomass

rofiles, as shown in Fig. 4 C and D, respectively. The need to im-

rove the control strategy implemented on this process is high-

ighted by the five batches that failed to meet the penicillin de-

and at harvest shown in Fig. 4 C and D. To fully exploit the avail-

ble information recorded throughout this campaign and identify

he CPPs influencing the observed deviation in penicillin yields a

artial least square (PLS) regression model was implemented to

nalyse the data. This PLS model was identified using the selected

ariables shown in Fig. 5 B taking the final penicillin yield at har-

est as the response variable. The development of the PLS model

equired the data to be restructured using a batch-wise unfolding

lgorithm enabling the main sources of variation between the vari-

bles to be identified. The PLS model was generated using three

atent variables that captured 47.7% of the total variance in the X-

ata and 98.7% of the total variance in the Y-data. All 26 batches
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Fig. 4. Summary of variable profiles for campaign 5 with A highlighting the substrate flow rate ( F s ), B: Phenylacetic acid flow ( F PAA ), C: Biomass ( X ) and D: Penicillin ( P ). The 

failed batches shown in C and D are highlighted by red dashed lines. 

Fig. 5. A The scores generated from a PLS model of the above target batches (Penicillin yield > 20 0 0 kg) are represented by green circles and the below target batches 

(Penicillin yield < 20 0 0 kg) are represented by the red crosses. The 1st latent variable represents 31.0% and 76.4% of the variance of the X and Y data, respectively, similarly 

the 2nd latent represents 8.7% and 19.9% of these data. B represents the variable contribution plot showing the normalised weight of each variable calculated using the 1st 

latent variable from the PLS model. 
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were used to build the PLS model with cross validation imple-

mented to determine the appropriate number of latent variables

to retain. Fig. 5 A shows the first and second latent variables of this

PLS model and highlights a clustering between the “below” and

“above” target batches. This clustering indicates that the below tar-

get batches have similar characteristics in the data. To investigate

the primary variables influencing these differences in penicillin
 b
ields the summed contribution ( 
K ∑ 

k =1 

β2 
jk 

) of each process variable

s shown in Fig. 5 B for the first latent variable. The large contribu-

ion of the off-line concentrations of phenylacetic acid ( PAA offline )

ndicates this variable is highly influential in the final penicillin

ields. Therefore, this variable was selected as the primary CPP to

e considered for the Analyse Stage. 
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Fig. 6. A Calibration and validation batches of the off-line PAA samples and the corresponding predictions using a PLS model combined with the Raman spectroscopy 

analyser. B Summary of F PAA for the calibration and validation batches and the APC batch with F PAA controlled using the soft-sensor developed here. C Outline of PAA 

controlled using the APC strategy implemented here where the set-point for PAA was equal to 1250 mg L −1 . D Profile of Penicillin concentrations during the calibration, 

validation and APC controlled batches. 
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Analyse stage: The current control strategy for PAA concentra-

ion is to maintain this variable between 600 and 1800 mg L −1 

hrough manipulation of the phenylacetic flow rate ( F PAA ). How-

ver, due to the infrequent nature of the off-line measurements of

AA combined with a timely 4-hour delay period for this assay, the

ontrol of this CPP remains suboptimal. The challenge of control-

ing this variable within these limits is highlighted through analy-

is of the annual production records recorded for each campaign.

he Analyse stage therefore confirmed a real-time measurement

ould significantly improve the control of this key process variable.

o address this, the inclusion of a Raman spectroscopy analyser

ithin IndPenSim was implemented to investigate whether a soft-

ensor could be developed to enable real-time predictions of PAA .

o facilitate the Analyse stage a calibration batch was performed

n IndPenSim that included the simulated PAT analyser recording

 Raman spectrum every 12 min as described in Section 2.2 . The

outinely measured off-line PAA concentrations were also recorded

very 12 h and used to develop the soft-sensor. The soft-sensor

as built using a PLS model as described in Section 3.2 . The sub-

equent predictions of PAA generated by the soft-sensor are highly

omparable to the off-line concentrations of PAA for the calibration

atch shown in Fig. 6 A. To demonstrate these predictions in real-

ime a validation batch was ran using the soft-sensor built from

ata recorded in the calibration batch. The validation batch en-

bled on-line predictions of the PAA concentration and was shown

o be comparable to the off-line PAA samples as shown in Fig. 6 A.

he ability to measure the PAA in real-time on IndPenSim therefore

nables the Control stage to be implemented which is the final and

ost important step in the PAT framework. 

Control stage : The final stage of the PAT framework involved

he implementation of a proportional integral (PI) control loop that

anipulated the F PAA to maintain PAA at its set-point. The raw soft-

ensor signal, shown in Fig. 6 A, contains some high frequency fluc-

uations that may be problematic for the controller. To account for

his, the signal was initially filtered using a three point moving av-
rage thus minimising any unnecessary control actions. Fig. 6 B and

 highlights this APC solution in operation, where the PI controller

as switched on after 25 h and manipulates the F PAA to maintain

he PAA concentration at its set-point of 1250 mg L −1 . This APC so-

ution was implemented on the IndPenSim for a year and the an-

ual penicillin yield was compared against the previous campaigns,

hich implemented recipe driven and operator dependant control

trategies. Implementing this APC strategy resulted in significant

mprovements in the annual production yields of penicillin. In to-

al 26 bathes were operated through the year and there were no

atches that failed to meet the production targets of 20 0 0 kg. The

verage penicillin yield per batch was 3517 ± 315 kg which repre-

ents a 20% overall increase in annual penicillin yields compared to

he average of the previous five campaigns. The significant increase

n penicillin production demonstrates the benefits of following the

bD methodology and implementing an APC solution utilising the

aman spectroscopy analyser. 

.2. Fault detection 

Faults are an inherent hindrance to every manufactur-

ng facility with early detection and subsequent isolation

ssential to minimise any significant process deviations

 Venkatasubramanian et al., 2003 ). Early detection of faults

uring biopharmaceutical processes are necessary to ensure all

rocess variables remain within a tight operating window ensur-

ng strict target product requirements are maintained. Monitoring

ll available measurements is significantly challenging due to

he increasing number of on-line and off-line variables recorded

n industrial manufacturing facilities. Many biopharmaceutical

ompanies rely on MVDA to help efficiently monitor the multitude

f available process measurements enabling faster detection of

rocess faults ( Nomikos and Macgregor 1995 ). This approach was

pplied here to provide a benchmark for detecting abnormal

rocessing conditions within IndPenSim . 
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Fig. 7. Outline of the nominal trajectories of representative batches (Batches 1–17) from Campaign 4 in additional to time-series profiles of batches 18–21 containing known 

faults. A: Aeration fault (Batch 18), B: pH sensor drift fault (Batch 19), C: Substrate fault (Batch 20) and D: Coolant fault (Batch 21). The nominal Biomass ( X ) and Penicillin 

( P ) profiles are shown in E and D, respectively with the profiles shown for each of the four batches containing faults. 
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This section demonstrates the application of IndPenSim to gen-

erate known faults during batches. Two standardised MVDA based

fault detection algorithms were implemented to identify these

faults. The data set generated from Campaign 4 excluding the 2

below target batches and an additional 5 batches that were con-

sidered to be sub-optimal. Campaign 4 represents a typical cam-

paign controlled through a recipe driven control strategy with a

fixed batch length and yielded a highly diverse data set. In total

there were 17 batches taken as normal operating conditions (NOC)

batches with batches 18-21 containing known faults. A compari-

son between the nominal trajectories and the batches with faults

are shown in Fig. 7 with A highlighting the aeration fault, B the

pH sensor drift fault, C the substrate fault and D the coolant fault.
he nominal biomass ( X ) and penicillin ( P ) profiles calculated by

veraging all 17 batches are shown in Fig. 7 E and F, respectively

n addition to highlighting the effect of the process faults on these

wo CPPs. PCA was selected here based on its ability to compress

he large volume of data to a much smaller set of linearly uncor-

elated principal components (PCs) enabling direct visualisation of

ll variables suitable for process monitoring fault detection ( Lee

t al., 2004b ). The 17 NOC batches from Campaign 4 were unfolded

o form the X data structure and generate the PCA model retain-

ng three principal components as defined in Section 3.1 . All 22 of

he on-line variables recorded by IndPenSim were used in the PCA

odel, the utilisation of only on-line variables enables faults to be

etected in real-time. 
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Fig. 8. A Plot of Q statistic for each of the 21 batches with the NOC batches represented by diamonds and the batches with faults represented by squares. B A summary of 

the SPE recorded for each of the 17 nominal batches with the UCL highlighted. C–F A summary of the SPE k for each of the four batches with faults with the UCL highlighted. 
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To evaluate the comparability of the NOC batches with those

ontaining faults the T 2 ( Eq. (8) ) and Q ( Eq. (10) ) statistic were

alculated. The Q statistic is shown in Fig. 8 A and highlights a

lear distinction between the NOC batches and batches with faults.

ach of the batches containing faults are above the Q statistic 95%

onfidence limit calculated from Eq. (12) –( 14 ) indicating abnormal

ehaviour. The highest Q statistic is batch 17 which contains the

eration fault shown in Fig. 7 E and F to have largest deviation in

enicillin and biomass concentrations in comparison to the nomi-

al trajectories. In contrast the T 2 statistic, shown in Fig. 9 A, indi-

ates all batches to be within the 95% confidence limit calculated

sing Eq. (8) . Gunther et al. (2007) described similar results with

he off-line Q statistic outperforming the T 2 statistic in its ability to
uccessfully identify the batches with faults in comparison to NOC

atches. Typically, the T 2 is better at identifying systematic errors

etween batches whereas the Q statistic is better at identifying a

ew event that the previous PCA model has not seen which is the

ase for the faults described in this work. However, both the T 2 

nd Q statistics have successfully identified abnormal process be-

aviour on various different industrial processes ( Westerhuis et al.,

0 0 0 ; Birol et al., 2002 ). 

A second major advantage of generating these PCA models is

heir ability to monitor and detect the root cause of any abnormal

rocess behaviour in real-time by analysing the SPE and T 2 using

qs. (8) and ( 16 ). These are shown for the NOC batches in Fig. 8 B

nd 9 B respectively with the 95% upper control limit (UCL) shown.
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Fig. 9. A Plot of T 2 statistic for each of the 21 batches with the NOC batches represented by diamonds and the batches with faults represented by squares B A summary of 

the T 2 recorded for each of the 17 nominal batches with the UCL highlighted. C–F A summary of the time-series T 2 for each of the four batches with faults with the UCL 

highlighted. 
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Monitoring both the SPE and T 2 chart in real-time enables any pro-

cess deviations from nominal trajectories to be subsequently iden-

tified. The current monitoring system signals an alarm after the

SPE or T 2 exceeds an upper control limit (UCL). The SPE UCL as-

sumes a χ2 distribution calculated using Eqs. (12) –( 14 ) taking the

confidence limit α equal to 95%. The χ2 distribution is the most

widely implemented for monitoring the mean vector of a pro-

cess ( Rakitzis and Antzoulakos, 2011 ). The SPE of the four batches

with faults are shown in Figs. 8 C to 8 F. These figures highlight

the ability of SPE to quickly identify abnormal process behaviour

for the aeration faults which occur at hours 20-24 and 100-110.

Calculating the variable contribution to the SPE at time 20.2 us-

ing Eq. (18) highlights a significant contribution from the aeration

rate ( F g ), as shown in Fig. 10 A. Additional variable contributions

are shown for the carbon dioxide off-gas ( CO2 offgas ), the dissolved
xygen ( O 2 ) and the carbon evolution rate ( CER ). The drop in the

eration during this time period shown in Fig. 7 A, results in a sig-

ificant drop in the dissolved oxygen and effects the mass balance

ecoded by the CO2 offgas and CER measurements explaining their

ontribution to the SPE during this fault. The pH sensor fault oc-

urs on batch 19 at approximate hour 50, however the on-line SPE

nly violates the UCL at hour 104. The variables contributions at

his time are shown in Fig. 10 B indicating the error is primarily

ue to deviations in pH . The relative delay in detecting this er-

or is most likely due to the high frequency noise associated to

he pH process variables highlighted in Fig. 7 B. Furthermore, the

enicillin and biomass concentrations were not directly influenced

y the pH sensor drift as shown in Fig. 7 E and F. The substrate

ault behaves in a similar fashion to the aeration fault and is eas-

ly detected by the SPE in Fig. 8 C. The subsequent analysis of the



S. Goldrick, C.A. Duran-Villalobos and K. Jankauskas et al. / Computers and Chemical Engineering 130 (2019) 106471 13 

Fig. 10. Variable contribution plot of SPE statistic for A recorded at time point 20 h for batch 18 (aeration fault), B recorded at time point 104 h for batch 19 (pH fault), C 

recorded at time point 20 h for batch 20 (substrate fault), D recorded at time point 100.2 h for batch 21 (coolant fault). 
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ontributions shown in Fig. 10 C indicates a problem with substrate

ow rate ( F s ). The coolant fault results in a temperature shift high-

ighted in Fig. 7 D and behaves similarly to the pH fault with a de-

ay in the UCL violation as shown in Fig. 8 D. The variable contribu-

ions for this time point are shown in Fig. 10 D and clearly highlight

n error with the temperature. This UCL violation occurs approxi-

ately when the temperature is 298.25 K which is 0.25 K above its

et-point. This enables significant time for corrective action as it

s only when the temperature increases to 298.5 K that a drop in

enicillin production is observed as shown in Fig. 7 F. The on-line

 

2 are shown in Fig. 9 B–F and do not the highlight any process de-

iations with all the T 2 remaining below 95% confidence limit. The

rocess faults in this work are better captured through the analy-

is of the SPE which summarised the variation not captured by PCA

n contrast to the T 2 statistic which is better suited to describing

eviations described by the PCA model. 

. Conclusion 

The industrial-scale penicillin simulation ( IndPenSim ) developed

n this paper aims to act as a benchmark simulator to develop,

valuate and validate novel and advanced control strategies, ap-

licable to real-world biopharmaceutical manufacturing facilities.

he paper outlines a number of highly challenging control objec-

ives to enhance overall yield and productivity requiring the devel-
pment of adaptive and innovative control solutions. Furthermore,

sing the simulator all process improvements or modifications can

e effectively com pared and evaluated against the annual produc-

ion yields generated by the previous five campaigns implement-

ng operator dependant and recipe driven control strategies. The

odifications to IndPenSim that are introduced in this paper rep-

esent the first bioprocess simulation to include a PAT device that

ccurately mimics the spectra recorded by a Raman spectroscopy

evice. The inclusion of this device represents a significant oppor-

unity to help drive FDA’s goal of enhancing process understanding

nd supporting innovative control solutions utilising real-time sen-

ors. The capabilities and functionality of IndPenSim were demon-

trated through two case studies. The first involves implementing

ll three stages of the PAT initiative using the Raman spectroscopy

robe to enhance control of phenylacetic acid, previously identi-

ed as a CPP. The application of this control strategy resulted in

 significant increase in yield improvements, increasing the an-

ual penicillin yields to 3517 kg representing a 20% increase when

ompared to the previous five campaigns. Furthermore, this control

trategy reduced the number of below target batches to zero em-

hasising the importance of implementing advanced controllers on

iopharmaceutical processes. The second case study involved the

valuation of two benchmark fault detection algorithms to iden-

ify the occurrence of known faults. The SPE statistic significantly

utperformed the T 2 statistic in it’s ability to identify and locate
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the root cause of process faults during abnormal process operation.

IndPenSim and all data presented here are available to download

at www.industrialpenicillinsimulation.com and acts as an open re-

source for researchers to analyse, improve and optimise the current

control strategy implemented on this facility. 
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