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Abstract—In this paper, we study a wireless-powered mobile
edge computing (MEC) system, where the access point (AP)
cooperates with an unmanned aerial vehicle (UAV). The AP
broadcasts energy to the UAV, while the UAV broadcasts part
of its harvested energy to the UEs and helps the UEs compute
their offloaded tasks or further offload to the AP for computing.
The weighted sum completed task-input bits (WSCTB) of UEs is
maximized by optimizing the task allocation, the UAV’s energy
transmit power and trajectory, under the information-causality
constraints, the energy-causality constraints, and the UAV’s
trajectory constraints. The formulated WSCTB maximization
problem is non-convex, and a block coordinate descending
algorithm is proposed to solve it iteratively. In the simulation
results, the UAV’s trajectory and the achieved performance are
given to verify the effectiveness of the proposed algorithm in
comparison with some practical baselines.

Index Terms—Mobile edge computing, UAV, wireless power
transfer, task allocation, trajectory optimization.

I. INTRODUCTION

The blowout growth of intelligent mobile devices in ac-
company with various computation-intensive applications have
driven the computing requirement of these devices increasing
dramatically. In this case, the resource-limited mobile user
equipment (UEs) are not always capable of handling the
computation tasks related to these applications. To deal with
this issue, the mobile edge computing (MEC) has emerged as
a promising technology to provide cloud computing services
for UEs at the edge of communication networks [1], e.g., at
the access points (APs). The energy efficiency and latency are
two important criteria for MEC works [2–5], where the energy
computation or the latency (or the cost including both the
energy and latency) for completing the UEs’ computation tasks
is minimized by jointly optimizing the radio and computing
resource allocation. However, the traditional battery-based
UEs cannot take full advantage of the edge computing when
their energy is running out, and thus the technology of wireless
power transfer (WPT) has been leveraged in a mass of works
[6–8] to improve the efficiency of MEC.

For the conventional MEC architectures, the AP plays a vital
role in helping the UEs compute their offloaded tasks. In order
to relieve the burden of the AP for computing and improve
users’ experience, the unmanned aerial vehicle (UAV)-enabled
MEC has drawn great attention [9–11], mainly due to the
attractive advantages of the UAVs, such as flexible movement,
line-of-sight (LoS) connections, and moderate computing and
caching capabilities, etc. [12]. Similarly, the WPT has also
been leveraged to improve the efficiency of UAV-enabled

MEC [13]. However, most of the existing UAV-enabled MEC
works only rely on the UAV to compute UEs’ offloaded task.
Actually, the cooperation among the AP and the UAV is some-
times necessary since the AP can not always provide good
connections to some edge users and the size-constrained UAV
may lack of resources. In this paper, a wireless-powered UAV-
assisted MEC architecture is studied to explore the advantages
of cooperation between the UAV and the AP.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A wireless-powered UAV-assisted MEC system is consid-
ered in this work, which consists of an AP, a cellular-connected
UAV, and K ground UEs, all being equipped with single
antenna. The AP broadcasts radio frequency (RF) energy to
the UAV during the task completion time. Part of UAV’s
harvested energy will be further broadcasted to the UEs, and
the remaining part will be used for computing and transmis-
sions. Suppose that each UE has a large mount of bit-wise-
independent computation task-input data, and the UAV acts
as a MEC server as well as a relay to help the UEs compute
their task-input data or further offload their data to the more
powerful server at the AP for computing. It is assumed that
the energy and the task information transmissions are operated
simultaneously over orthogonal frequency bands, while the
different kinds of task information transmissions are operated
over the same frequency band, with the bandwidth B. In this
paper, we assume the direct links between the UEs and the AP
are negligible due to, e.g., severe blockage, and thus the UEs
cannot directly harvest energy from the AP or offload their
task-input bits to the AP unless with the help of the UAV.
A. Node Locations and the Channel Model

In this paper, we consider a scenario where the UAV flies
at a fixed altitude, denoted as H , during the task completion
time. The locations of the AP and all the UEs are fixed on the
ground with zero altitude. Hence, we adopt a two-dimensional
(2D) Euclidean coordinate to represent the horizontal locations
of the UEs, the AP and the UAV, whose coordinates are
measured in meters. The AP is fixed at the origin of the
coordinate, i.e., (0,0). Let K = {1, . . . ,K} denote the set
of the UEs, and vk = (xk, yk) is the horizontal location
of UE k ∈ K. The initial and final horizontal locations of
the UAV are assumed to be preset as uI = (xI, yI) and
uF = (xF, yF), respectively. The total task completion time
T is equally divided into N time slots with T = Nτ , where
τ is the slot duration and chosen to be sufficiently small to
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Fig. 1. The TDMA structure of the whole task completion time T .

guarantee an approximately unchanged UAV’s location during
each slot. Let N = {1, · · · , N} denote the set of the N time
slots. At the n-th time slot, the UAV’s horizontal location
can be further denoted as u[n] = u(nτ) = (x[n], y[n]) with
u[0] = uI and u[N ] = uF, which should satisfy the maximum
speed constraint, i.e., v[n] = ∥u[n]−u[n−1]∥/τ ≤ vmax with
vmax as UAV’s predetermined maximum speed.

The wireless channels between UE k ∈ K and the UAV
as well as that between the UAV and the AP are assumed to
be dominated by LoS links. Thus, the corresponding channel
power gains at time slot n can be respectively given as

hk[n] = h0d
−2
k =

h0

∥u[n]− vk∥2 +H2
, k ∈ K, n ∈ N , (1)

hAP[n] = h0d
−2
AP =

h0

∥u[n]∥2 +H2
, n ∈ N , (2)

where h0 is the channel power gain at a reference distance
of d0 = 1 m; dk and dAP are the horizontal plane distances
between the UAV and UE k as well as the AP at time slot n.
B. Computing Methods for UEs’ Task-Input Data

UEs’ computation tasks are composed of a large amount
of task-input data (bits), and we use Ck to represent the
number of required CPU cycles for computing 1-bit of UE
k’s input data.1 Note that the UEs’ task-input data are bit-wise
independent and can be arbitrarily divided to facilitate parallel
computation in three ways: local computing at UEs, data
offloaded to the UAV for computing, and data further offloaded
to the AP for computing. In order to avoid interference among
the UEs during offloading when using the later two computing
methods, we adopt the time-division multiple access (TDMA)
protocol as shown in Fig. 1. Each slot n ∈ N is divided into
K durations, and the operations related to UE k ∈ K are all
executed in the k-th duration tk[n] ∈ [0, τ ]. The tk[n] duration
is then be equally divided into two parts, one for UE k’s
offloading to the UAV, the other for UAV’s further offloading
to the AP, denoted as toffk [n] and toffU,k[n], respectively. Next,
we will give some details of the three computing methods.

1) Local Computing at the UEs: Local computing at the
UEs can be performed simultaneously with wireless transmis-
sions. Denoting the CPU frequency of UE k during time slot n
as fk[n] (cycles/second), the computation bits and the energy
consumption of UE k during slot n can be expressed as

Lloc
k [n] = τfk[n]/Ck, k ∈ K, n ∈ N , (3)

1In our considered scenario, we assume that the output data sizes of the
computation tasks are quite small that can be ignored especially compared
with the input data sizes of the tasks.

Eloc
k [n] = τκkf

3
k [n] ≡

κkC
3
k

τ2
(Lloc

k [n])3, k ∈ K, n ∈ N , (4)

where κk is the effective capacitance coefficient of UE k [14].
2) Data Offloaded to the UAV for Computing: Let Loff

k [n]
denote the offloaded bits of UE k ∈ K to the UAV at slot
n ∈ N . Then the energy consumption can be expressed as

Eoff
k [n] = P off

k [n]toffk [n] ≡ N0t
off
k [n]

hk[n]

(
2

Loff
k [n]

Btoff
k

[n] − 1

)
, (5)

where P off
k [n] is UE k’s transmit power and N0 is the noise

power at the UAV2. Denote the CPU frequency of the UAV
in UE k’s duration tk[n] as fU,k[n]. Thus the completed
computation bits and the related energy consumption of the
UAV can be respectively expressed as

LU,k[n] = tk[n]fU,k[n]/Ck, (6)

EU,k[n] = tk[n]κUf
3
U,k[n] ≡ κUC

3
ktk[n]

(LU,k[n]

tk[n]

)3
, (7)

where κU is the effective capacitance coefficient of the UAV.
3) Task Offloaded to the AP for Computing: The UAV

will further offload part of UEs’ offloaded tasks to the more
powerful AP for computing. Let Loff

U,k[n] denote UE k’s task-
input bits been offloaded from the UAV to the AP at slot n.
Thus, the corresponding energy consumption of the UAV for
offloading UE k’s task-input data at time slot n is

Eoff
U,k[n] = P off

U,k[n]t
off
U,k[n] ≡

N0t
off
U,k[n]

hAP[n]

(
2

Loff
U,k[n]

Btoff
U,k

[n] − 1

)
, (8)

where P off
U,k[n] is the transmit power of the UAV.

During each time slot n ∈ N , the UAV can only compute or
offload the task-input data that has already been received from
the UEs. By assuming that the processing delay for decoding
and computing preparation at the UAV is one time slot, then
we have the following information-causality constraint:

n∑
i=2

(
LU,k[i] + Loff

U,k[i]
)
≤

n−1∑
i=1

Loff
k [i], (9)

for n ∈ N2 = {2, · · · , N} and k ∈ K. It is easy to see that the
UEs should not offload at the last slot, while the UAV should
not compute or further offload at the first slot.

C. Energy Consumption and Harvesting Model

Except the transmission and computation energy consump-
tion mentioned above, the propulsion energy consumption of
the UAV for flying should also be considered, expressed as
Efly

U [n] = ζ∥v[n]∥2 for n ∈ N , where ζ is an efficiency
parameter related to UAV’s flying energy consumption. As-
suming that the AP broadcasts the energy with a constant
power P0, we can then obtain the harvested energy of the
UAV at each time slot n ∈ N as ÊU[n] = ηUhAP[n]P0τ ,
where 0 < ηU ≤ 1 is the energy conversion efficiency for the
UAV. Suppose that the energy transmit power of the UAV at
time slot n is PU[n]. Thus the energy consumption of the UAV

2Without loss of generality, we assume that the noise power at any nodes
in the system (the UAV, the AP and all the UEs) is set the same as N0.



for WPT and the corresponding harvested energy at UE k ∈ K
can be respectively expressed as EWPT

U [n] = PU[n]τ and
Êk[n] = ηkhk[n]PU[n]τ with the energy conversion efficiency
0 < ηk ≤ 1 at slot n ∈ N .

Combining with the analysis in the above subsections, we
can obtain the total energy consumption of UE k ∈ K and the
UAV in each time slot n ∈ N as

Ek[n] = Eloc
k [n] + Eoff

k [n], k ∈ K, (10)

EU[n] =

K∑
k=1

(
EU,k[n] + Eoff

U,k[n]
)
+ Efly

U [n] + EWPT
U [n]. (11)

Hence, we can respectively obtain the following energy har-
vesting causality constraints for UE k and the UAV

n∑
i=1

Ek[i] ≤
n∑

i=1

Êk[i], k ∈ K, n ∈ N , (12)

n∑
i=1

EU[i] ≤
n∑

i=1

ÊU[i], n ∈ N . (13)

D. Problem Formulation
In this paper, we try to maximize the weighted sum complet-

ed task-input bits (WSCTB) of UEs by optimizing the UAV’s
energy transmit power {PU[n]}; UEs’ local computing task
sizes {Lloc

k [n]}, offloading task sizes {Loff
k [n]}; the UAV’s

computing task sizes {LU,k[n]}, further offloading task sizes
{Loff

U,k[n]}; along with the UAV’s trajectory {u[n]}. To this
end, the WSCTB maximization problem is formulated as

max
L,PU,u

K∑
k=1

wk

(
N∑

n=1

Lloc
k [n] +

N−1∑
n=1

Loff
k [n]

)
(14a)

s.t.

n∑
i=2

(
LU,k[i] + Loff

U,k[i]
)
≤

n−1∑
i=1

Loff
k [i], n ∈ N2, k ∈ K,(14b)

N∑
n=2

(
LU,k[n] + Loff

U,k[n]
)
=

N−1∑
n=1

Loff
k [n], k ∈ K, (14c)

n∑
i=1

Ek[i](L,u) ≤ ηkτ

n∑
i=1

hk[i]PU[i], n ∈ N , k ∈ K, (14d)

n∑
i=1

EU[i](L,PU,u) ≤ ηUτP0

n∑
i=1

hAP[i], n ∈ N , (14e)

PU[n] ≥ 0, n ∈ N (14f)

Lloc
k [n] ≥ 0, n ∈ N , k ∈ K, (14g)

Loff
k [N ] = 0, Loff

k [n] ≥ 0, n ∈ N1, k ∈ K, (14h)
LU,k[1] = 0, LU,k[n] ≥ 0, n ∈ N2, k ∈ K, (14i)

Loff
U,k[1] = 0, Loff

U,k[n] ≥ 0, n ∈ N2, k ∈ K, (14j)
u[0] = uI, u[N ] = uF, (14k)
∥u[n]− u[n− 1]∥ ≤ Vmaxτ, n ∈ N , (14l)

where {wk ≥ 0}k∈K is the set of UEs’ weights for the
completed task sizes and N1 = {1, · · · , N−1}. We denote the
optimization variables L , {Lk[n]}k∈K,n∈N with Lk[n] ,
{Lloc

k [n], Loff
k [n], LU,k[n], L

off
U,k[n]}, PU , {PU[n]}n∈N , and

u , {u[n]}n∈N . In the WSCTB maximization problem,
(14c) is the UEs’ computation task allocation constraints to
make sure that all the UEs’ computation task-input data has
been computed; (14d) and (14e) present the energy harvesting
causality constraints for the UEs and the UAV, respectively.

III. ALGORITHM DESIGN

The formulated problem in (14) is non-convex because of
the non-convex constraints (14d) and (14e), where the vari-
ables L and PU are strongly coupled with the UAV’s trajectory
u. In order to properly address these issues, we leverage a two-
step block coordinate descending algorithm to optimize the
computational task allocation variables in L and the UAV’s
energy transmit power in PU, as well as the UAV’s trajectory
u iteratively. The details of the two-step block coordinate
descending algorithm for solving the WSCTB maximization
problem (14) at the (χ + 1)-th (χ = 0, 1, 2, · · · ) iteration are
presented in the following sub-sections.
A. Computation Task and UAV’s WPT Power Allocation

Here, we consider a sub-problem of the original WSCTB
maximization problem (14) by fixing the UAV’s trajectory u
as the value obtained in the χ-th iteration, i.e., uχ, denoted as
the computation task and UAV’s power allocation (CTUPA)
problem. Once u is given, the channels {hk[n]}k∈K,n∈N and
{hAP[n]}n∈N defined in (1) and (2) are known. Hence, the
CTUPA problem (P1) can be expressed as

(P1) : max
L,PU

K∑
k=1

wk

(
N∑

n=1

Lloc
k [n] +

N−2∑
n=1

Loff
k [n]

)
(15a)

s.t. (14b) − (14j), (15b)

which is a convex optimization problem with respect to (w.r.t.)
L and PU. In order to gain more insights of the solution, we
leverage the Lagrange method [15] to solve problem (P1), and
the optimal solution is given in the following theorem.

Theorem 1. The optimal solution of problem (P1) related
to UE k ∈ K is given in (16)-(20) at the top of the next page,
where γ∗

k,n ≥ 0, ξ∗k,n ≥ 0 and ρ∗n ≥ 0 for k ∈ K, n ∈ N are
respectively the optimal Lagrange multipliers associated with
the inequality constraints (14b), (14d) and (14e) in problem
(P1), while λ∗

k for k ∈ K are the optimal Lagrange multipliers
associated with the equality constraints in (14c).

Proof. See Appendix A.

The optimal Lagrange multipliers of the inequality con-
straints (14b), (14d), (14e) can be obtained by a subgradient-
based algorithm, while those related to the equality constraints
(14c) can be obtained by the bi-section search method.
B. UAV Trajectory Design

In this section, a sub-problem for designing the UAV’s
trajectory u is considered by assuming that L and PU are fixed
as the optimized values obtained in the (χ + 1)-th iteration
through Theorem 1. Updating UE k’s offloading bits at time
slot n as a function of u[n] for k ∈ K, n ∈ N1 as

Loff
k [n](u[n]) = toffk,χ+1[n]B log2

(
1 +

P off
k [n]h0/N0

∥u[n]− vk∥2 +H2

)
. (21)

Hence, the UAV trajectory design problem (P2) is written as

(P2) : max
u

K∑
k=1

wk

N−1∑
n=1

Loff
k [n](u[n]) (22a)

s.t. (14d), (14e), (14k), (14l). (22b)



Lloc∗
k [n] =

τ

Ck

√
wk

3κkCk

∑N
i=n ξ∗k,i

, n ∈ N , (16)

Loff∗
k [n] =


Btoffk [n]

[
log2

[
Bhk[n]

(
wk + λ∗

k +

N−1∑
i=n+1

γ∗
k,i

)]+
− log2

(
N0 ln 2

N∑
i=n

ξ∗k,i

)]+
, n ∈ N1,

0, n = N,

(17)

L∗
U,k[n] =

 tk[n]

√√√√ 1

3κUC3
k

∑N
i=n ρi

[
−

N−1∑
i=n

γ∗
k,i − λ∗

k

]+
, n ∈ N2,

0, n = 1,

(18)

Loff∗
U,k [n] =

BtoffU,k[n]

[
log2

[
BhAP[n]

(
−

N−1∑
i=n

γ∗
k,i − λ∗

k

)]+
− log2

(
N0 ln 2

N∑
i=n

ρi

)]+
, n ∈ N2,

0, n = 1,

(19)

P ∗
U[n] =

P low
U [n], if

N∑
i=n

ρ∗i >

K∑
k=1

(
ηkhk[n]

N∑
i=n

ξ∗k,i

)
, n ∈ N

P up
U [n], otherwie, n ∈ N ,

(20)

where P low
U [n] = max

{[ n∑
i=1

Ek[i](L∗,u)

ηkτhk[n]
−

n−1∑
i=1

hk[i]PU[i]

hk[n]

]+}
k∈K

and P up
U [n] =

[
1
τ

n∑
i=1

(
ηUτP0hAP[i]− Eself

U [i](L∗,u)
)
−

n−1∑
i=1

PU[i]

]+
with Eself

U [n](L∗,u) =
K∑

k=1

(
EU,k[n]+Eoff

U,k[n]
)
+Efly

U [n] in (20) denote a lower bound and a upper bound solution of PU[n], respectively.

Note that the objective function is not concave and the con-
straints (14d), (14e) are not convex because of the non-concave
items {Loff

k [n](u[n])} and {hk[n](u[n])}, {hAP[n](u[n])}.
To address this issue, we leverage the successive convex
approximation (SCA) algorithm to obtain an efficient solution
of problem (P2). In the (m+1)-th (m = 0, 1, 2, · · · ) iteration,
the non-concave item Loff

k [n](u[n]) in the objective function
is approximated by its concave lower bound as follows

Loff
k [n](u[n]) ≥ L̃off

k [n](u[n]) (23)

= toffk [n]B

{
log2

(
1 +

P off
k [n]h0/N0

d2k(um[n])

)
− (24)

P off
k [n]h0

N0 ln 2

∥u[n]− vk∥2 − ∥um[n]− vk∥2

d2k(um[n])
(
d2k(um[n]) + P off

k [n]h0/N0

)}, (25)

which is obtained through the first-order Taylor expansion of
Loff
k [n](u[n]) around the optimized point at the m-th iteration,

denoted as um[n], w.r.t. the convex item ∥u[n] − vk∥2.
We define d2k(um[n]) = ∥um[n] − vk∥2 + H2. Similarly,
ηUτP0hAP[n] and ηkτPU[n]hk[n] in the constraints (14d),
(14e) are approximated by their concave lower bounds below

ηUτP0hAP[n] ≥ ηUτP0h̃AP[n], n ∈ N , (26)

ηkτPU[n]hk[n] ≥ ηkτPU[n]h̃k[n], k ∈ K, n ∈ N , (27)

where h̃AP[n] = h0
2∥um[n]−v0∥2+H2−∥u[n]−v0∥2

(∥um[n]−v0∥2+H2)2 and h̃k[n] =

h0
2∥um[n]−vk∥2+H2−∥u[n]−vk∥2

(∥um[n]−vk∥2+H2)2 . The approximated problem
of (P2) in the (m+ 1)-th iteration is convex w.r.t. the UAV’s
trajectory u, and we use the software CVX [16] to solve it.

IV. SIMULATION RESULTS

In this section, simulation results are given to show the
UAV’s trajectory and the performance of the proposed algo-

TABLE I
SIMULATION PARAMETERS

Parameter Symbol Value
System bandwidth B 40 MHz
Task completion time T 5 seconds
Number of time slots N 50
Number of ground UEs K 4
The channel power gain h0 −30dB
The noise power N0 −60dBm
The AP’s WPT power P0 150 dBm
Altitude of the UAV H 10 m
UAV’s maximum speed Vmax 20 m/s
UAV’s flying energy efficiency ζ 0.2
The switched capacitance κU, κk(k ∈ K) 10−28

Required CPU cycles per bit Ck (k ∈ K) 1000 cycles/bit

rithms. The basic simulation parameters are listed in Table I
unless specified otherwise, and the UEs’ horizontal locations
are set as [v1,v2,v3,v4] = [(10, 10), (−10, 10), (−10,−10),
(10,−10)] in the following figures.

Fig. 2 depicts the UAV’s trajectory under different scenarios
with varied initial and final locations and UEs’ weights for the
completed task size. The results show that the WSCTB of UEs
are highly depends on the UEs’ weights of the completed task
size, i.e., w. The UAV tends to fly close to the UEs with lager
weights so as to improve the WSCTB of UEs.

In Fig. 3, the performance of the proposed solution is
presented in comparison with two baselines: the ’Direct trajec-
tory’ and ’Semi-circle trajectory’, denoting two schemes with
the specified given trajectory. The WSCTB of UEs w.r.t. the
time duration T and the number of time slots N are depicted in
(a) and (b), respectively, in the case of w = [0.7, 0.1, 0.1, 0.1].
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Fig. 2. The trajectories of the UAV with different initial and final locations
of the UAV and different weight vectors for the UEs: uI = (−10,−10),
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Fig. 3. The WSCTB of the UEs w.r.t. the time duration: T in (a) with N = 50
and the number of time slots N in (b) with T = 5 s.

It is easy to see that the proposed solution can achieve
significant performance improvement compared with the two
schemes without trajectory design, indicating the importance
of the UAV’s trajectory optimization.

V. CONCLUSION

A wireless-powered UAV-assisted MEC architecture is in-
vestigated in this paper, where the UAV serves as an energy
relay, an information relay as well as a MEC server to provide
the UEs with sustainable energy supply and help them offload
or compute tasks. The WSCTB of the UEs is maximized by
jointly optimizing the UE’s task allocation, the UAV’s energy
transmit power and the trajectory. The simulation results show
that the proposed algorithm can achieve great performance
improvement in comparison with two basedlines.
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APPENDIX A: PROOF OF THEOREM 1

The task allocation parameters Lloc
k [n], Loff

k [n], LU,k[n] and
Loff
U,k[n] given in Theorem 1 can be obtained by leveraging

the Lagrange duality method in company with the Karush-
Kuhn-Tucker (KKT) conditions [15]. With the obtained L∗,
the optimization of the UAV’s energy transmit power PU[n]
is a liner programming. It is clear that a lower bound of PU[n]
can be obtained from the constraints in (14d), i.e.,

PU[n] ≥ max

{ n∑
i=1

Ek[i](L
∗,u)

ηkτhk[n]
−

n−1∑
i=1

hk[i]PU[i]

hk[n]

}
k∈K

, P low
U [n].

(A.1)

Also, a upper bound of PU[n] can be obtained from (14e) as

PU[n] ≤
1

τ

n∑
i=1

[
ηUτP0hAP[i]− Efly

U [i]− (A.2)

K∑
k=1

(
EU,k[i] + Eoff

U,k[i]
)]

−
n−1∑
i=1

PU[i] , P up
U [n],

Hence, we can obtain the solution of {PU[n]} in (20) through
the KKT conditions by using the Lagrange method.
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