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Abstract: We review the direct growth of III-V quantum dot laser on Si substrates. A low 

threading dislocation density, on the order of 105 cm-2, for III-V epilayer on Si has been achieved. 
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I. Introduction 

Over the past few decades, the increasing demands of the high-throughput system have always been a puzzle for 

modern Datacenters and Data industries, which needs novel methods to bridge between the large bandwidth and low 

power consumption.  There seems to be an unbroken “wall” between the conventional copper interconnection and 

the high-throughput systems [1], which copper interconnection introduce extra heat and cooling cost to the system. 

The integration of optical interconnects on a Si platform is believed to be one of the most promising methods to 

meet this demand [2-6]. An efficient and reliable laser source still remains problematic despite great efforts have 

been devoted to Si-based light generation and modulation technologies. Group IV semiconductors, such as silicon 

and germanium, have been put forward to serving as the light-emitting source in integrated circuits. However, the 

indirect bandgap property of group IV materials, in which a phonon participates in the recombination process, 

makes them naturally incapable of accomplishing efficient radiative recombination. Although electrically pumped 

Ge/Si laser has been demonstrated, the threshold current density is extremely high (~280 kA/cm2) [7]. While III-V 

materials are direct bandgap and are believed to be one of the promising materials to realize efficient and reliable 

laser. Additionally, III-V materials have the advantage that they can be tailored for III-V emitters operating at 

various wavelengths. [1,3] Therefore, the integration of III-V compound semiconductors on Si platform is an 

attractive technology for a high efficiency but low-cost laser. Although heterogeneous integration technique has 

been well-established, monolithic integration still reminds the opportunity of low-cost and dense integration of III-V 

photonic components on Si platform. However, monolithic integration technique faces fatal challenges because of 

the distinct material properties between III-V semiconductors and group IV materials, such as lattice constant, 

thermal expansion coefficient, and chemical polarity. These differences introduce various types of defects during the 

epitaxial growth of III-V materials on Si substrate, including antiphase boundaries (APBs), threading dislocations 

(TDs), and micro-cracks, all of which could serve as non-radiative recombination centers. These non-radiative 

recombination centers will dramatically lower the laser performance.  

    Several techniques have been proposed to overcome the defects generated by the heteroepitaxial growth of III-V 

materials on Si substrates. Ge, which has a similar lattice constant as GaAs. Thus, direct growth of III-V lasers on 

Ge substrate is a significant pre-step for monolithic integration of III-V lasers on Ge/Si substrates since the epitaxial 

growth of Ge-on-Si is well-established. We have demonstrated the first QD laser grown on Ge substrates, with 

lasing at a wavelength of 1305 nm and a low threshold current density of 55.2 A/cm2 [8]. Based on this result, we 

have also described the first III-V QD laser diode monolithically grown on Ge-on-Si substrates. Room temperature 

PL at a wavelength of 1.29 μm with full-width half maximum (FWHM) of ~30 meV has been achieved [9]. 

    Although Ge buffer seems like an excellent approach for monolithic integration of III-V laser on Si substrates, 

this intermediate Ge layer would restrict the application on the integration of Si platform due to the large optical 

absorption at telecommunications wavelength. Thus, technologies for direct growth of III-V epilayer on Si substrate 

need to be put forward.  

II. QD lasers monolithically grown on offcut Si substrate 

According to the previous researches, we have proven the Si (100) wafer with 4° miscut-angle oriented towards the 

[110] plane would suppress APBs due result from the formation of double-layer steps as shown in figure 1(a) [10]. 

Except for this 4° miscut-angle substrates, several strategies have been used in order to decrease the density of TDs 

in the III-V epilayer. A 6 nm AlAs layer, known as a nucleation layer, has been grown by migration-enhanced 

epitaxy (MEE) on the Si substrate, as shown in figure 1(b), followed by a 1 µm GaAs buffer layer grown by the 

three-step growth technique. Finally, 4 sets of InGaAs/GaAs strained layer superlattice (SLSs) defect filter layers 

(DFLs) were formed before the laser structure. In situ thermal annealing of SLSs was performed aiming at 

improving the annihilation efficacy of TDs [10,11]. As a result, a high quality III-V epilayer on Si substrate with a 

low density of TDs at the order of 105~106 cm-2.  
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Figure.1. (a) High-resolution TEM of AlAs/Si interface. (b) High-resolution TEM image showing the nucleation layer. (c) TEM cross section 

image of five-layer quantum dot. (d) 1 × 1 μm2 AFM image of InAs/GaAs quantum dots. (e) PL of InAs/GaAs quantum dots 

Based on the pre-structure on the Si substrate, a standard p-i-n laser structure was grown at optimized conditions 

with the following order: a 1.4 μm n-doped AlGaAs cladding layer, followed by a 140 nm undoped AlGaAs, a five-

layer InAs/InGaAs/GaAs dots-in-well (DWELL) active region [10], another 140 nm undoped AlGaAs layer, a 1.4 

μm p-doped AlGaAs cladding layer, and finally a 300 nm highly doped GaAs as the contact layer. A high resolution 

bright-field scanning transmission electron microscope (TEM) measurement was performed to characterize the QD 

active region [12]. An active region without noticeable defects can be observed in the TEM measurement, indicating 

the TDs generated at the III-V/Si surface have been annihilated efficiently due to the strategies employed during the 

pre-structure. A typical atomic force microscopy (AFM) was also used to characterize the uncapped InAs/GaAs 

QDs grown on the III-V epilayers. A dot density of ~3.0×1010 cm-2 with good uniformity could be derived from 

AFM, which resulted in a strong room temperature photoluminescence (PL) emission at ~1300 nm with a narrow 

linewidth of ~29 meV has been achieved [12]. 

Broad-area lasers were fabricated following the standard lithography, wet etching and metallization techniques 

as described in [12]. The light-current (LI) characteristics of a typical InAs/GaAs QD laser under continuous-wave 

(c.w.) operation at room temperature was shown in figure 2(a). An extremely low threshold current density of 62.5 

A/cm2 and a high output power of over 52.5 mW has been achieved. The c.w. lasing spectrum was measured with an 

injection current density of 225 A was shown in figure 3(b). Moreover, the c.w. lasing in the ground state was 

maintained until 75 °C. As for the pulse mode, the silicon-based laser lased up to 120 °C [12].  

 
Figure.2. (a) LIV characteristics for an InAs/GaAs QD laser under c.w. operation at room temperature (b) The emission spectrum of QD 

laser under c.w. mode with a 225 A/cm2 injection current at room temperature 

III. QD laser on on-axis Si Substrate 

Si (100) substrate with a 4° miscut-angle, mentioned in the previous works, has been introduced to suppress the 

formation of APBs when growing polar materials on unipolar materials [10-12]. The offcut Si substrate makes it 

possible to grow a high quality III-V epilayer directly on the cost of the full compatibility with standard 

microelectronics fabrication. In this part, a first electrically pumped c.w. InAs/GaAs QD laser directly grown on, 

CMOS compatible, on-axis Si (100) substrate has been demonstrated, through the cooperation of the Metal-Organic 

Chemical Vapor Deposition (MOCVD) and Molecular Beam Epitaxy (MBE) machines.  

The whole QD laser structure could be divided into two parts as shown in figure 3(a). The first part comprised a 

thin GaAs nucleation layer and a GaAs buffer layer. Both the nucleation layer and buffer layer were grown by 

MOCVD [13]. The second part was the InAs/GaAs QD laser grown by MBE at the following sequence under the 

optimized condition: a GaAs buffer layer with the thickness of 600 nm, 4 sets of InGaAs/GaAs SLSs DFLs, five 

layers of DWELL structure sandwiched by a 50 nm GaAs spacing layer, surrounded by 30 nm undoped AlGaAs 

guiding layer with the upper and lower 1.4 μm p-doped and n-doped AlGaAs cladding layer, finally a 300 nm p-

doped GaAs contacting layer [14]. The GaAs buffer layer directly grown on the on-axis Si substrate by MOCVD 

and the InAs/GaAs QDs grown by MBE were characterized through AFM measurements as shown in figure 3(b) 

and (c). A small root-mean-square (RMS) roughness for the 400nm GaAs directly grown on Si (100) of 0.86 nm was 

calculated through a typical 5 × 5 μm2 AFM image. Additionally, an APB-free GaAs film layer has been achieved 

by the MOCVD [12]. The AFM image of InAs/GaAs QD indicates a good dot uniformity has been achieved with a 



typical dot density of 3×1010 cm-2. The room-temperature PL spectrum of the InAs/GaAs QD is shown in figure 3(d), 

where the wavelength emission at ~1285 with a narrow linewidth of 32 meV. 

A LI characteristic measurement of a typical InAs/GaAs QD laser grown on exact Si (100) substrate under c.w. 

operation at room temperature is shown in figure 3(e). A current threshold density of 425 A/cm2 and a single facet 

output of 43 mW were observed with an injection current density of 1.3 kA/cm2. The c.w. lasing spectrum was 

measured with an injection current density of 533 A/cm2 as the figure 3(f) shown, where the lasing peak located at 

1288 nm. 

 
Figure.3. (a) Scheme of the layer structure grown on Si (100) substrate. (b) A typical 5 × 5 μm2 AFM image of 400 nm GaAs. (c) 1 × 1 μm2 

AFM image of InAs/GaAs quantum dots grown on (001) Si substrate. (d) PL of InAs/GaAs QD on exact Si substrate. (e) LIV characteristic for 

InAs/GaAs QD laser on exact Si substrate (f) Emission spectrum of QD laser with an injection current density of 533 A/cm2. 

IV Conclusion  

We have reviewed our recent progresses in III-V quantum dot laser directly grown on Si substrates including the 

offcut Si substrate and on-axis Si substrate.  
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