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Abstract 36 

The classic epileptic encephalopathies, including Infantile Spasms (IS) and Lennox-Gastaut 37 

Syndrome (LGS), are severe seizure disorders that usually arise sporadically. De novo 38 

mutations in genes mainly encoding ion channel and synaptic proteins have been found to 39 

account for over 15% of patients with IS or LGS. The contribution of autosomal recessive 40 

genetic variation, however, is less well understood. We implemented a rare variant 41 

transmission-disequilibrium test (TDT) to search for autosomal recessive epileptic 42 

encephalopathy genes in a cohort of 320 outbred patient-parent trios that were generally 43 

pre-screened for rare metabolic disorders. In the current sample, our rare variant 44 

transmission-disequilibrium test did not identify individual genes with significantly 45 

distorted transmission over expectation after correcting for the multiple tests. While the rare 46 

variant transmission-disequilibrium test did not find evidence of a role for autosomal 47 

recessive genes, our current sample is insufficiently powered to assess the overall role of 48 

autosomal recessive genotypes in an outbred epileptic encephalopathy population. 49 

 50 

Keywords: Epileptic encephalpathy; infantile spasms; transmission-disequilibrium test 51 

(TDT); recessive genotypes 52 
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INTRODUCTION 54 

Epileptic encephalopathies are severe and therapy-resistant epilepsies of childhood, which 55 

frequently lead to developmental delay and multiple associated medical issues. Infantile 56 

Spasms (IS) and Lennox-Gastaut Syndrome (LGS) represent two of the more common 57 

broad subtypes of epileptic encephalopathies. Many novel genes for epileptic 58 

encephalopathies have been discovered in the last five years, fueled by the access to whole-59 

exome sequencing. In particular, exome sequencing has highlighted the important role of de 60 

novo mutations with current estimates suggesting that over 15% of classical epileptic 61 

encephalopathy cases are explained by a de novo mutation in an established epileptic 62 

encephalopathy gene.1; 2 Up to a further 3% have been reported to be explained by likely 63 

pathogenic de novo copy number variants (CNVs).3 64 

While the role of de novo genetic variation in epileptic encephalopathies is increasingly 65 

understood, the role of recessive genetic variation, outside of recessive neurometabolic 66 

disorders such as lysosomal disorders, amino acid or organic acid imbalances, congenital 67 

disorders of glycosylation, and some mitochondrial diseases, remains unclear.  In our 68 

current study we systematically assessed autosomal recessive inheritance in 320 IS or LGS 69 

patient-parent trios who did not have a likely disease-causing de novo mutation among one 70 

of the established dominant epileptic encephalopathy genes.1; 2 In general, the 320 cases 71 

studied here had already been intensively studied for neurometabolic disorders using 72 

biochemical assessments. 73 

 74 

 75 
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SUBJECTS and METHODS 76 

Cohort 77 

Three-hundred and twenty epileptic encephalopathy trios were recruited through multiple 78 

international consortia, including 57 IS or LGS trios unpublished in our earlier studies.1; 2 79 

Patients did not have a clearly identified metabolic or genetic cause for their epilepsy based 80 

on clinically available testing, which varied across institutions. This collection of 320 trios 81 

did not include: a) patients previously found to have a de novo mutation in an established 82 

dominant epileptic encephalopathy gene, and b) trios where exome sequencing was based 83 

on a lymphoblastoid cell line (LCL) source for at least one of the three family members. 84 

The overall cohort was not enriched for consanguineous parents. Only two parent pairs 85 

showed an identity-by-descent (IBD) > 0.125, both < 0.15, which is approximately 86 

equivalent to 3rd degree relatives.4 87 

Among the 320 trios; two families reported multiple affected children. For one of these 88 

families both the proband and affected sibling were investigated through exome sequencing 89 

while for the second family only the proband and parents were studied. Sequencing 90 

methods used to generate the sequence data have been previously described.1; 2 91 

 92 

Transmission Disequilibrium Tests 93 

For the transmission test we used two approaches that we have previously introduced.5; 6 94 

First, we tested for an autosomal homozygous or compound heterozygous effect using 95 

coreTDT.6 In computing the test, we selected loss-of-function and missense single 96 

nucleotide substitution variants (SNVs) found at a global population minor allele frequency 97 
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below five percent (MAF<0.05). The loss-of-function variants were defined as stop gain, 98 

stop lost, start lost and canonical splice acceptor and donor site variants. For the missense 99 

variants we used our in-house Analysis Tool for Annotated Variants (ATAV) platform to 100 

identify the possibly and probably damaging variants based on a maximum Polyphen-2 101 

HumDiv and HumVar prediction score7 of greater than 0.4333. This test was applied to 102 

each autosomal gene individually as well as collectively across a set of 99 autosomal 103 

recessive neurometabolic genes published by van Karnebeek and colleagues.8 104 

Second, we tested for a general effect of inherited autosomal variation by using a rare 105 

variant TDT that uses information from an independent collection of population controls 106 

(6503 EVS9 plus 1,303 IGM sequenced controls) to weight the contribution of variants to 107 

the final test statistic.5 In this analysis, qualifying variants were defined using the same 108 

PolyPhen-2 thresholds as above and were again required to have a global MAF less than 109 

5%. Given that population stratification can impact the power of the test but not the type I 110 

error, we restricted this second analysis to trios with European ancestry (n=286 trios). 111 

 112 

RESULTS 113 

We assessed the role of inherited rare variation using the population control-weighted rare-114 

variant TDT.5 This test was applied to each autosomal gene across 320 eligible trios. No 115 

gene reached exome-wide significance after correcting for the 17,816 consensus coding 116 

sequence (CCDS release 14) autosomal genes (adjusted α = 2.81 × 10ି଺, Table 1). Though 117 

population stratification cannot affect the false positive rate of the test, it can affect the 118 
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power.5 We also conducted an analysis that was restricted to the 286 trios of European 119 

ancestry. Again, no gene reached the exome-wide significance level (Table 1).  120 

We then tested for the presence of a recessive effect in each autosomal gene across the 320 121 

trios. After quality control, only 3,472 autosomal genes were found to have at least one 122 

informative family, i.e., contain qualifying variants within the gene and that could, 123 

potentially, lead to homozygous or compound heterozygous offspring. None of these 3,472 124 

genes achieved significance after correcting for the number of genes tested (adjusted α = 125 1.44 × 10ିହ). The 10 most significant genes are listed in Table 2. 126 

To investigate whether there is any evidence of recessive neurometabolic involvement in 127 

this sample, we also applied the coreTDT to the 99 autosomal recessive neurometabolic 128 

genes,8 looking for an enrichment of homozygous or compound heterozygous offspring 129 

across the entire gene set. No enrichment was found (p = 0.51). 130 

A power simulation was conducted to evaluate the types of effects that we could exclude 131 

based on this analysis. In these simulations, we conditioned on the parental genotype 132 

information contained in this IS/LGS population sample and characterized the distribution 133 

of offspring genotypes given this information and the fact that the offspring is affected. 134 

This distribution is a function of the number of causal genes, for which the family is 135 

informative, which is related to the density of causal genes within the actual gene set, and 136 

the relative risk of the offspring developing disease given that they have two affected gene 137 

copies (Supplementary Methods). Offspring are randomly sampled from this distribution 138 

and the resulting dataset is analyzed via coreTDT.6 Since only 54 families are informative 139 

for at least one of the 99 autosomal recessive neurometabolic genes, and only 20 genes 140 



8 
 

have at least one informative family, our analyses are effectively restricted to these 54 141 

families and 20 genes. We vary the proportion of informative genes that are actually 142 

disease causal and the relative risk and identify combinations of these parameters that attain 143 

at least 80% power (Figure 1). As can be seen, even when the compound heterozygous or 144 

homozygous qualifying variants are fully penetrant, the causal gene proportion must be 145 

larger than 40% to attain 80% power. When the proportion of causal genes is larger, e.g., 146 

80%, we will have high power to detect an effect even with a relatively low relative risk.   147 

Using established standards to identify pathogenic recessive genotypes10; 11, one trio was 148 

found to have inherited two SPATA5 pathogenic variants in a compound heterozygous 149 

manner.12  The proband’s phenotype is consistent with the SPATA5 disease literature, and 150 

both pathogenic variants (p.Tyr559* and p.Arg84Gln) have previously been described as 151 

pathogenic among patients with SPATA5 encephalopathy.12 152 

 153 

DISCUSSION 154 

A number of rare recessive disorders can present with an epileptic encephalopathy, 155 

particularly neurometabolic disorders; the latter are generally identified by biochemical 156 

analyses of blood, urine or CSF. We performed a global, hypothesis-free test to assess the 157 

role of autosomal recessive genetic variation in 320 patients with classic epileptic 158 

encephalopathies undiagnosed with standard clinical workups. Our sample of patient-parent 159 

trios did not identify a genome-wide significant departure in the observed number of 160 

offspring with recessive genotypes from that expected for any specific gene, or among 99 161 

genes compiled for autosomal recessive neurometabolic disorders.  162 
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Many classical recessive metabolic disorders are routinely identified through biochemical 163 

screening prior to research study enrollment. Within our sample of 320 trios we did not find 164 

any genetic neurometabolic disorders that were missed through the conventional 165 

biochemical screening. From a clinical perspective, we emphasize that evaluation for these 166 

treatable causes should continue to be pursued. We did, however, identify a single case 167 

among the 320 with a known pathogenic recessive genotype in SPATA5,12 a recently 168 

described gene for a recessive condition characterized by seizures, microcephaly, 169 

intellectual disability, and hearing loss. 170 

The role of various dominant epilepsy genes including ALG13, CDKL5, DNM1, GABRB3, 171 

SCN1A, SCN2A, and STXBP1, for epileptic encephalopathies was securely established 172 

through exome sequencing of 356 trios and subsequent genome-wide assessments for 173 

excess de novo mutations identified in individual genes.1; 2 No single gene passes a 174 

comparable threshold among the 320 trios studied here when assessing autosomal recessive 175 

genotypes. We demonstrate that the current sample of 320 trios is insufficiently powered to 176 

appropriately estimate what overall contribution autosomal recessive epilepsy genes have 177 

on the epileptic encephalopathies. Using a similar approach, a recent study on 4,125 178 

patient-parent trios with various developmental disorders identified two novel autosomal 179 

recessive disease genes exceeding genome-wide significance,13 emphasizing the 180 

importance of acquiring larger numbers to more confidently interpret the current lack of 181 

signal for very rare genetic epilepsies with recessive inheritance. Large-scale collaborative 182 

initiatives like the Epilepsy Genetic Initiative (EGI) and the Epi25 effort will aid the efforts 183 

to analyze genomic data on this scale.  184 
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FIGURE LEGEND 295 

Figure 1. coreTDT power simulation conditional on the parental genotype of 54 296 

informative families and 20 informative genes in the compound heterozygous analysis. 297 

Presents the combination of the relative risk and the proportion of disease causal genes 298 

among these 20 informative genes, under which the tests can achieve 80% power. 299 
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Table 1. Top 10 genes from the analysis of rvTDT with 320 and subsequently with the subset of 301 

286 European ancestry trios. 302 

Test Gene Number of SNVs# Uncorrected p-value 

Analysis of 

rvTDT with 

320 trios 

ABCA13 52 1.17E-05 

CENPO 4 0.00236 

DST 51 0.00297 

IPPK 5 0.00198 

PCF11 10 0.00032 

SCAPER 5 0.00137 

SLC46A3 6 0.00185 

STEAP4 4 0.00291 

TRAF3IP1 7 0.00292 

ZNF878 7 0.00252 

Analysis of 

rvTDT with 

286 trios 

ABCA13 52 0.00025 

SCAPER 5 0.00046 

ANKZF1 11 0.00079 

DST 51 0.00123 

TRAF3IP1 7 0.00172 

STEAP4 4 0.00247 

SBSN 12 0.00295 

OR2B2 5 0.00298 

SAP130 8 0.00326 

SCARF1 11 0.00344 
#Representing the number of qualifying variants found in this gene across all families. P-value is 303 

based on the linear combination test with population controls. Adjusted α correcting for the 304 

number of genes is p < 2.81 × 10ି଺. 305 

  306 
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Table 2: Top 10 autosomal genes from the analysis of coreTDT with 320 trios 307 

Gene Number of SNVs# Uncorrected p-value 

PGM2L1 4 0.00195 

CEP120 8 0.00391 

CR1 25 0.00756 

C14ORF177 4 0.01288 

CNTRL 24 0.01563 

DACT1 8 0.01563 

KATNB1 10 0.01563 

SYNJ1 17 0.01563 

ZNF677 11 0.01563 

KIAA1614 15 0.01973 

#Representing the number of qualifying variants found in this gene across all families. Adjusted 308 

α correcting for the number of genes is p < 2.81 × 10ି଺. 309 

 310 

 311 

  312 
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Supplementary Methods 313 

 314 

Power Simulation 315 

Let  ܩ௙, ,௠ܩ  ௢ be the number of gene copies harboring a qualifying mutation in the trio’s father, 316ܩ

mother and offspring, respectively. We condition our power analysis on the observed parental 317 

genotype and study our ability to identify signal given a differing proportion of causal genes (out 318 

of the total number of genes considered), ߛ, and differing relative risks, ܴ, of being diseased 319 

given two gene copies (of a causal disease gene) are affected versus less than two copies are 320 

affected. Since the analysis is conditional on the observed parental data, only a subset of genes 321 

and families are informative. 6  Specifically, only 20 genes across 54 families can have 322 

compound genotypes that lead to informative transmissions, i.e., ܩ௙ = ௠ܩ = ௙ܩ , 1 = 1, ௠ܩ = 2 323 

or ܩ௙ = 2, ௠ܩ = 1. 46 families are informative for only one gene and eight families are 324 

informative for two genes. In each of these eight families, the two genes are located on different 325 

chromosomes, so we assume that the transmissions of each gene are independent.  326 

  327 

Let ܦ௢ = 1 indicate the fact that the offspring is affected. Let ܥ be an indicator of whether the 328 

gene whose transmission is being considered is among the set of disease causal genes or not. 329 

When a family is informative for two genes disease causal indicators are given for each gene by 330 ܥଵ and ܥଶ. Note, we assume the disease risk for samples with multiple affected disease genes are 331 

the same with those with only one affected disease gene.  332 

 333 

To simulate trios under the alternative, we first randomly select 20ߛ genes as disease causal and 334 

then generate offspring as follows. 335 
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 336 

If the family is informative for only one gene, the distribution of both offspring’s gene copies 337 

being affected is given by  338 

Pr൫ܩ௢ = 2หܩ௙ = 1, ௠ܩ = ௢ܦ,1 = 1, ܥ = 1൯ = ܴܴ + 3 

Pr൫ܩ௢ = 2หܩ௙ + ௠ܩ = ௢ܦ,3 = 1, ܥ = 1൯ = ܴܴ + 1 

Pr൫ܩ௢ = 2หܩ௙ = 1, ௠ܩ = ௢ܦ,1 = 1, ܥ = 0൯ = 0.75 Pr൫ܩ௢ = 2หܩ௙ + ௠ܩ = ௢ܦ,3 = 1, ܥ = 0൯ = 0.5. 
 339 

If the family is informative for two genes and no more than one of them are disease causal, the 340 

compound genotype the two genes can be computed independently of one another using the 341 

equation above.  When both genes are disease causal, their transmissions are not independent 342 

given the offspring is affected. In this case the compound genotypes of the offspring, for the two 343 

genes, can be given by, 344 

Pr൫ܩ௢ଵ = 2, ௢ଶܩ = 2หܩ௙ଵ = ௠ଵܩ = ௙ଶܩ = ௠ଶܩ = 1, ௢ܦ = 1, ଵܥ = ଶܥ = 1൯ = ܴ7ܴ + 9 

Pr൫ܩ௢ଵ = 2, ௢ଶܩ ≠ 2หܩ௙ଵ = ௠ଵܩ = ௙ଶܩ = ௠ଶܩ = 1, ௢ܦ = 1, ଵܥ = ଶܥ = 1൯ = 6ܴ7ܴ + 9 

 345 

Pr൫ܩ௢ଵ = 2, ௢ଶܩ = 2หܩ௙ଵ = ௠ଵܩ = 1, ௙ଶܩ = 1,= ௠ଶܩ = 2, ௢ܦ = 1, ଵܥ = ଶܥ = 1൯ = ܴ5ܴ + 3 

Pr൫ܩ௢ଵ = 2, ௢ଶܩ ≠ 2หܩ௙ଵ = ௠ଵܩ = 1, ௙ଶܩ = 1,= ௠ଶܩ = 2, ௢ܦ = 1, ଵܥ = ଶܥ = 1൯ = ܴ5ܴ + 3 

Pr൫ܩ௢ଵ ≠ 2, ௢ଶܩ = 2หܩ௙ଵ = ௠ଵܩ = 1, ௙ଶܩ = 1,= ௠ଶܩ = 2, ௢ܦ = 1, ଵܥ = ଶܥ = 1൯ = 3ܴ5ܴ + 3, 
 346 
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where ܩ௢ଵ, ,௠ଵܩ ,௢ଶܩ ௙ଵ andܩ ,௠ଶܩ  ௙ଶ denotes the trio’s compound genotypes at the first and 347ܩ

second gene, respectively. We apply coreTDT to each simulated dataset and for each 348 

combination of ߛ and ܴ, we use 1000 replicates to estimate the power. The combination of ߛ and 349 ܴ which obtains 80% power are presented in Figure 1.  350 
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