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ABSTRACT
Weak lensing convergence maps – upon which higher order statistics can be calculated – can
be recovered from observations of the shear field by solving the lensing inverse problem.
For typical surveys this inverse problem is ill-posed (often seriously) leading to substantial
uncertainty on the recovered convergence maps. In this paper we propose novel methods for
quantifying the Bayesian uncertainty in the location of recovered features and the uncertainty
in the cumulative peak statistic – the peak count as a function of signal-to-noise ratio (SNR). We
adopt the sparse hierarchical Bayesian mass-mapping framework developed in previous work,
which provides robust reconstructions and principled statistical interpretation of reconstructed
convergence maps without the need to assume or impose Gaussianity. We demonstrate our
uncertainty quantification techniques on both Bolshoi N-body (cluster scale) and Buzzard
V-1.6 (large-scale structure) N-body simulations. For the first time, this methodology allows
one to recover approximate Bayesian upper and lower limits on the cumulative peak statistic
at well-defined confidence levels.

Key words: gravitational lensing: weak – methods: statistical – techniques: image process-
ing – cosmological parameters – dark matter.

1 IN T RO D U C T I O N

In an empty universe the null geodesics along which photons travel
correspond directly to straight lines. However, in the presence
of a non-uniform distribution of matter the null geodesics are
perturbed via gravitational interaction with the local matter over or
underdensity i.e. the photons are gravitationally lensed (Schneider
2005; Munshi et al. 2008; Heavens 2009; Grimm & Yoo 2018).
As this gravitational interaction is sensitive only to the total matter
distribution, and the overwhelming majority of matter is typically
dark, gravitational lensing provides a natural probe of dark matter
itself (Clowe et al. 2006).

Collections of associated photons emitted from a distant object
travel along separate geodesics which are perturbed in different
ways by the intervening matter distribution, e.g. photons travelling
closer to matter over densities will interact more strongly and
therefore be perturbed more than those farther away. As such the
geometry of a distant object is warped (Bartelmann & Schneider
2001) – i.e. colloquially the object is lensed.

Provided the propagating photons at no time come closer than one
Einstein radius to the intervening matter over and underdensities,

� E-mail: m.price.17@ucl.ac.uk

the object is weakly lensed. Weak gravitational lensing of distant
galaxies manifests itself at first order into two quantities; the
spin-0 convergence κ which is a magnification, and the spin-2
shear γ which is a perturbation to the galaxy ellipticity (third
flattening).

Both the shear γ and the convergence κ have dominant intrinsic
(i.e. in the absence of lensing effects) underlying values which
makes measurements of the lensing effect difficult. In fact, there is
no a priori way to know the intrinsic brightness of a galaxy (resulting
in an inherent degeneracy – the mass-sheet degeneracy) and so the
convergence is not an observable quantity. In fact, the standard
convergence is not gauge invariant and is therefore fundamentally
unobservable (Grimm & Yoo 2018). However, as the intrinsic
ellipticity distribution of galaxies has zero mean one can average to
recover the shearing contribution, hence the shear is an observable
quantity. As such, measurements of the shear field are taken and
inverted to form estimators of the convergence. Typically this
inverse problem is seriously ill-posed and so substantial uncertainty
on the reconstructed convergence map is introduced.

A wealth of information may be calculated directly from the
shear field (often in the form of second-order statistics; Kilbinger
2015 – such as the power spectrum as in Alsing et al. 2016; Taylor
et al. 2018) though recently there is increasing interest in extracting
non-Gaussian information from the convergence field, e.g. peak
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statistics, Minkowski functionals, extreme value statistics (Coles &
Chiang 2000; Munshi & Coles 2017; Peel et al. 2017a, 2018; Fluri
et al. 2018).

Primarily, the interest has arisen as higher order statistics of the
convergence field have been shown to provide complementary con-
straints on dark matter cosmological parameters which are typically
poorly constrained by second-order statistics (Pires et al. 2010).

However, to make principled statistical inferences from the
convergence field, the inversion from γ to κ must be treated in
a principled statistical manner – something which until recently
was missing from convergence reconstruction algorithms which
were either not framed in a statistical framework (e.g. Kaiser &
Squires 1993; VanderPlas et al. 2011; Lanusse et al. 2016; Wallis
et al. 2017; Jeffrey et al. 2018) or made assumptions of Gaussianity
(e.g. Corless, King & Clowe 2009; Schneider et al. 2015; Alsing
et al. 2016). As the information of interest in higher order
convergence statistics is non-Gaussian, assumptions of Gaussianity
in the reconstruction process severely degrade the quality of the
cosmological information.

Recently, a mass-mapping framework was developed (see Price
et al. 2018a) which addressed precisely this issue. This new sparse
hierarchical Bayesian mass-mapping formalism can be rapidly
computed, can be extended to big data, and provides a principled
statistical framework for quantifying uncertainties on reconstructed
convergence maps. Notably, it has been shown to accurately
reconstruct very high dimensional Bayesian estimators many or-
ders of magnitude faster than state-of-the-art proximal MCMC
algorithms – it was specifically benchmarked against Px-MALA
(Pereyra 2015; Durmus, Moulines & Pereyra 2018) in Price et al.
(2018b).

In this paper, we propose two novel uncertainty quantification
techniques, aimed to answer two frequently asked questions of
the recovered convergence map. The first of these questions asks
where a feature of interest in the reconstructed convergence map
could have been observed – typically this has been addressed by
bootstrapping; however we can now infer it directly in a Bayesian
manner. The second question asks given a magnitude threshold what
is the maximum and minimum number of peaks which could have
been observed, within some well-defined confidence.

The structure of this article is as follows. To begin, in Section 2 we
provide cursory introduction to weak lensing from a mathematical
perspective, with emphasis on the weak lensing planar forward
model in subSection 2.2. Following this we provide a brief overview
of Bayesian inference and the previously developed (Price et al.
2018a) sparse hierarchical Bayesian mass-mapping algorithm in
Section 3. An introduction to Bayesian credible regions, specifi-
cally the highest posterior density credible region is provided in
Section 3.1. In Section 4 we develop a novel Bayesian inference
approach to quantifying the uncertainty in reconstructed feature
location, which we then showcase on illustrative N-body cluster
simulation data in Section 5. We then introduce a novel Bayesian
inference approach for recovery of principled uncertainties on the
aggregate peak count statistic in Section 6. Following this we
showcase this Bayesian inference approach to quantify uncertainty
in the aggregate peak statistic in Section 7 on N-body large-
scale structure (LSS) illustrative simulation data. Finally we draw
conclusions in Section 8.

2 W EAK G R AVITATIONA L LENSING

In this section we provide a brief introduction to weak gravitational
lensing, with emphasis on how this effect manifests itself into

observable quantities. For a detailed background review of the field
see Bartelmann & Schneider (2001) and Schneider (2005). For
a more mathematical background of the field, with emphasis on
statistical methods see Munshi et al. (2008), Heavens (2009), and
Grimm & Yoo (2018). For a background of specifically the peak
statistics see Lin (2016).

2.1 Mathematical background

In a non-uniform distribution of matter the null geodesics along
which photons travel are no longer straight lines, instead they are
now sensitive to the local matter distribution. When many photons
are propagating from a distant object to us here and now, the local
matter distribution adjusts the geometry of the object we observe –
the object is gravitationally lensed.

Provided the trajectory of the propagating photons at no time
comes closer than one Einstein radius θE to the intervening matter
overdensities then the lens equation,

β = θ − θ2
E

θ

|θ |2 , (1)

remains effectively singular and we are in the weak lensing regime.
Equivalently one can define the weak lensing regime to be con-
vergence fields for which κ � 1 – ensuring that the shear signal
remains linear. Here the Einstein radius is given by

θE =
√

4GMlens

c2

fK (r − r ′)
fK (r)fK (r ′)

, (2)

where G is the gravitational constant, Mlens is lensing mass, c is the
speed of light in vacuo, and fK(r) is the angular diameter distance
defined as

fK (r) =
⎧⎨
⎩

sin(r) if K = 1,

r if K = 0,

sinh(r) if K = −1,

(3)

where r is the comoving distance and K is the curvature of the
universe, which has been observed to be consistent with 0 by Planck
Collaboration VI (2018).

As galaxies are naturally sparsely distributed across the sky,
most observations fall within the weak lensing regime. The weak
gravitational lensing effect can be described by a lensing potential
φ(r, ω) which is the integrated Newtonian potential 	(r, ω) along
the line of sight

φ(r, ω) = 2

c2

∫ r

0
dr ′ fK (r − r ′)

fK (r)fK (r ′)
	(r ′, ω), (4)

where ω = (θ , ψ) are angular spherical coordinates. A further
constraint exists, such that the local Newtonian potential 	(r, ω)
must satisfy the Poisson equation

∇2	(r, ω) = 3�MH 2
0

2a(r)
δ(r, ω), (5)

for matter density parameter �M, Hubble constant H0, and scale
parameter a(r). Combined, equations (4) and (5) allow one to make
inferences of cosmological parameters from observations of the
lensing potential φ(r, ω).

At linear order, gravitational lensing manifests itself as two
quantities: the spin-0 convergence field κ (magnification) and the
spin-2 shear field γ (perturbation to ellipticity). It can be shown that
(Bartelmann & Schneider 2001; Schneider 2005) these quantities
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can be related to the lensing potential φ(r, ω) by

κ(r, ω) = 1

4
(ðð̄ + ð̄ð) φ(r, ω), (6)

γ (r, ω) = 1

2
ðð φ(r, ω), (7)

where ð and ð̄ are the spin raising and lowering operators, respec-
tively, and are in general defined to be

ð ≡ − sins θ
( ∂

∂θ
+ i∂

sin θ∂ψ

)
sin−s θ, (8)

ð̄ ≡ − sin−s θ
( ∂

∂θ
− i∂

sin θ∂ψ

)
sins θ. (9)

2.2 Lensing planar forward model

Often second-order statistics (Kilbinger 2015) related to the shear
γ are computed (e.g. the shear power spectrum as in Alsing et al.
2016 and Taylor et al. 2018), though increasingly there is interest in
extracting weak lensing information from the convergence directly –
typically higher order non-Gaussian information.

Unfortunately, due to an inherent degeneracy the convergence
is not an observable quantity (Bartelmann & Schneider 2001;
Schneider 2005; Grimm & Yoo 2018) – this effect is colloquially
referred to as the mass-sheet degeneracy. However, as the intrinsic
ellipticity distribution of galaxies has zero mean, averaging many
ellipticity observations within a given pixel provides a good estimate
of the shear field.

In fact, there exists a further degeneracy between κ and γ such
that the true observable is the reduced shear g but for the context of
the paper we will assume γ ≈ g � 1 – see Mediavilla et al. (2016,
p.153), Price et al. (2018a), or Wallis et al. (2017) for details on
how to account for the non-linear reduced shear.

As both κ and γ are related to φ a relation between κ and γ can
be formed. Therefore, typically measurements of the shear field are
taken and inverted to form estimates of the underlying convergence
field. For small fields of view the flat sky approximation can be
made, which reduces the spin-raising ð and lowering ð̄ operators to
(Bunn et al. 2003)

ð ≈ −(∂x + i∂y) and ð̄ ≈ −(∂x − i∂y). (10)

From equations (6) and (7) it is clear that the forward model in
Fourier space between κ and γ is given by

γ̂ (kx, ky) = Dkx ,ky
κ̂(kx, ky), (11)

with the mapping operator being

Dkx ,ky
= k2

x − k2
y + 2ikxky

k2
x + k2

y

, (12)

where we have dropped the spin subscripts for clarity. To recover an
estimator of the convergence one must invert this forward model.

The most naive inversion technique is that of Kaiser–Squires
(KS) inversion (Kaiser & Squires 1993), which is direct inversion
in Fourier space, i.e.

κ̂KS = D−1γ̂ , (13)

where we have again dropped function arguments and subscripts
for clarity. This approach attempts to mitigate the effect of noise
by convolving the recovered convergence estimate with a broad
Gaussian smoothing kernel, which severely degrades the quality of
non-Gaussian information. This poses a somewhat serious issue as
non-Gaussian information is precisely the information that is to be

extracted from the convergence field. Therefore for higher order
convergence statistics the KS estimator is patently suboptimal.

Moreover, decomposition of spin fields on bounded manifolds is
well known to be degenerate (Bunn et al. 2003) and so inversion
of shear to convergence for masked fields is inherently ill-defined –
in particular the KS estimator is known to break down for non-
trivial masking. In fact the lensing inverse problem is often seri-
ously ill-posed, therefore motivating methods regularized by prior
information.

3 SPA RSE BAY ESIAN MASS MAPPING

Many mass-mapping algorithms have been considered (e.g.
Kaiser & Squires 1993; VanderPlas et al. 2011; Jee et al. 2016;
Lanusse et al. 2016; Wallis et al. 2017; Chang et al. 2018; Jeffrey
et al. 2018), however in the context of this paper we wish to conduct
principled statistical analysis of the reconstructed convergence map,
and so we opt for the sparse hierarchical Bayesian algorithm
presented in Price et al. (2018a) and benchmarked against MCMC
algorithms in Price et al. (2018b).

Recently a sparse hierarchical Bayesian framework for conver-
gence reconstruction was presented (Price et al. 2018a) which is
not limited to Gaussian priors – in fact the prior need not even be
differentiable. In this work we adopt this mass-mapping algorithm,
which we briefly describe below.

First, by Bayes’ theorem the posterior distribution of the conver-
gence κ reads

p(κ|γ ) = p(γ |κ)p(κ)∫
CN p(γ |κ)p(κ)dκ

, (14)

which shows how one should infer the posterior p(κ|γ ) from the
likelihood function (data fidelity term) p(γ |κ) and the prior (regu-
larization term) p(κ) (see e.g. Trotta 2017, for a clear introduction
to Bayesian inference in a cosmological setting). In the scope of this
paper we do not consider the Bayesian evidence

∫
CN p(γ |κ)p(κ)dκ

as it acts as a normalization term and so does not affect the
recovered solution. Typically the Bayesian evidence is used for
model comparison which is an avenue of study in of itself.

In a Bayesian inference problem one often wishes to find the so-
lution κ which maximizes the posterior given data and some model.
From the monotonicity of the logarithm function, maximization of
the posterior is equivalent to minimization of the log-posterior such
that

argmax
κ

{
p(κ|γ )

} ≡ argmin
κ

{−log(p(κ|γ ))
}
, (15)

where the convergence κ which maximizes the posterior is given
by κmap, where MAP stands for maximum a posteriori. Provided the
posterior is log-concave the minimization of the log-posterior takes
the form of a convex optimization problem, which can be rapidly
computed even in high-dimensional settings.

Let κ ∈ CN be the discretized complex convergence field and γ ∈
CM be the discretized complex shear field, where M is the number
of binned shear measurements and N is the dimensionality of the
recovered convergence field. Suppose we can define a measurement
operator � ∈ CM×N : κ 	→ γ which maps κ on to γ . On the plane,
the measurement operator is given by (e.g. Price et al. 2018a)

� = F−1DF, (16)

where D is the planar forward model in Fourier space as defined
in equation (12), and F (F−1) is the forward (inverse) fast Fourier
transform.
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Now suppose that some noise n is contaminating our measure-
ments, then measurements are obtained through the measurement
equation

γ = �κ + n. (17)

Within this article we will consider the typical case in which the
noise n ∼ N (0, σ 2

n ) ∈ CM , i.e. i.i.d. (independent and identically
distributed) zero mean Gaussian noise of variance σ 2

n . In this setting
the likelihood function is given by a multivariate Gaussian, which
for diagonal covariance � = σ 2

n I is given compactly as

p(γ |κ) ∝ exp

(−‖�κ − γ ‖2
2

2σ 2
n

)
, (18)

which (as in Price et al. 2018a) is regularized by a sparsity promoting
Laplace-type l1-norm wavelet prior

p(κ) ∝ exp
(

− μ‖�†κ‖1

)
, (19)

where μ ∈ R+ is the jointly inferred MAP regularization parameter
(Pereyra, Bioucas-Dias & Figueiredo 2015) – the derivation and
implementation of which may be found in Price et al. (2018a).
Sparsity promoting priors in wavelet dictionaries have explicitly
been shown to be effective in the weak lensing setting (Lanusse
et al. 2016; Peel, Lanusse & Starck 2017b; Jeffrey et al. 2018; Price
et al. 2018a).

Using these terms, the minimization of the log-posterior be-
comes

κmap = argmin
κ

{
μ‖�†κ‖1 + ‖�κ − γ ‖2

2

2σ 2
n

}
, (20)

which is then solved iteratively by implementing a proximal
forward–backward splitting algorithm (e.g. Combettes & Pesquet
2011).

Note that one can choose any convex log-priors e.g. an �2-norm
prior from which one essentially recovers Weiner filtering (see
Padmanabhan, Seljak & Pen 2003; Horowitz, Seljak & Aslanyan
2018, for alternate iterative Weiner filtering approaches).

3.1 Bayesian credible regions

In Bayesian analysis a posterior credible region Cα ∈ CN at confi-
dence 100(1 − α) per cent is a set which satisfies

p(κ ∈ Cα|γ ) =
∫

κ∈CN

p(κ|γ )ICα
dκ = 1 − α, (21)

where ICα
is an indicator function defined such that

ICα
=

{
1 if κ ∈ Cα,

0 if κ �∈ Cα.
(22)

There are in general a large number of posterior regions (hy-
pervolumes) which satisfy this integral. The decision-theoretically
optimal region – in the sense of minimum enclosed volume – is
called the highest posterior density (HPD) credible region (Robert
2001) and is defined to be

Cα := {κ : f (κ) + g(κ) ≤ εα}, (23)

where f(κ) = μ‖�†κ‖1 is the log-prior term and g(κ) = ‖	κ −
γ ‖2

2/2σ 2
n is our data fidelity term (log-likelihood function). Here

εα defines a level set (i.e. isocontour) of the log-posterior set such
that equation (21) is satisfied. In practice the true HPD credible
region is difficult to compute due to the high-dimensional integral
in equation (21), motivating computationally efficient approximate
techniques.

Recently a conservative approximation of the HPD credible set
was proposed by Pereyra (2017) which exploits developments in
probability concentration theory. The approximate HPD credible
set C ′

α is given by

C ′
α := {κ : f (κ) + g(κ) ≤ ε′

α}, (24)

with approximate level-set threshold

ε′
α = f (κmap) + g(κmap) + τα

√
N + N, (25)

where the bounding term τα = √
16 log(3/α) which in turn is

constrained to confidence α ∈ (4exp (− N/3) , 1). The error of this
approximation is bounded above by

0 ≤ ε′
α − εα ≤ ηα

√
N + N, (26)

where ηα = √
16 log(3/α) + √

1/α. This upper bound is typically
conservative, meaning the isocontour is at all times larger than
the true isocontour (i.e. this estimator will never produce an
underestimate). In Price et al. (2018b) the bound on recovered local
error bars was found to be ±10 to 15 per cent larger than the true
MCMC – yet could be computed O(106) times faster. A similar
comparison was done by Cai, Pereyra & McEwen (2018a) in a
radio interferometric setting.

The concept of approximate HPD credible regions is particularly
useful as it allows us to explore high-dimensional posteriors – many
orders of magnitude larger than state-of-the-art MCMC techniques
are currently able to accommodate – in a computationally efficient
manner.

4 BAY E S I A N PE A K LO C AT I O N S

Often one wishes to know the location of a feature of interest
within the reconstructed convergence κmap. Typically, this uncer-
tainty is assessed via bootstrapping of the recovered image for
a large number of simulated noise fields (as in e.g. Peel et al.
2017b).

With the concept of approximate HPD credible regions in mind,
we propose a novel Bayesian approach to quantifying uncertainty in
the peak location which we will refer to as the ‘Bayesian location’.

In essence the Bayesian location is computed as follows: A
feature of interest is removed from the recovered convergence
map, this feature is then inserted back into the convergence map
at a new position to create a surrogate convergence map, if this
surrogate map is within the approximate credible set then the
position at which the feature was inserted cannot be rejected, if
the surrogate is not in the approximate credible set then the position
can be rejected. This process is computed for a sample of the total
possible insertion positions, eventually providing an isocontour of
‘acceptable’ positions. This isocontour, at a well-defined confidence
level, is the Bayesian location.

4.1 Bayesian location

Suppose we recover a (MAP) convergence field κmap via opti-
mization of the objective function defined in equation (20) which
contains a feature of interest (e.g. a large peak). Let us define the
subset of pixels which contain this feature to be �Z ⊂ �, where �

is the entire image domain.
To begin with, extract the feature Z = κmapI�Z , i.e. a conver-

gence field which contains only the feature of interest. Now we
adopt the process of segmentation inpainting (Cai et al. 2018a;
Cai, Pereyra & McEwen 2018b; Price et al. 2018a) to create a
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3240 M. A. Price et al.

Figure 1. Schematic representation of the inverse nested iterations to determine the Bayesian location (see Section 4). The Bayesian location is a positional
uncertainty on a feature of interest Z within a recovered convergence field. Once a complete ring of pixels have been rejected the algorithm returns a binary
map of accepted pixels which we call the Bayesian location. Any pixel outside of this location is rejected at 100(1 − α) per cent confidence. Alternately the
probability isocontour bounding the set of acceptable pixels can be located by N-splitting circular bisection as described in Section 4.2 and Appendix A.

convergence field realization without the feature of interest Z but
with background signal replaced.

Mathematically segmentation inpainting is represented by the
iterations

κ (t+1),sgt = κmapI�\�Z + �softλ(�†κ (t),sgt)I�Z , (27)

where � is an appropriately selected dictionary – for this purpose
we simply use the Daubechies 8 (DB8) wavelet dictionary with
8-levels and λ is the soft-thresholding parameter.

Following the wavelet inpainting, in order to separate the true fea-
ture from the background residual convergence the signal which was
inpainted into the region �Z is subtracted from the extracted feature
Z – effectively accounting for the residual background signal which
would likely have been present even in the absence of the feature Z .
At this junction the surrogate convergence κ sgt is hypothesis tested
for physicality (Cai et al. 2018a; Price et al. 2018a).

If a feature is not found to be physical, the algorithm terminates at
this point as, fundamentally, it is illogical to evaluate the uncertainty

in position of an object of which you cannot statistically determine
the existence.

Now that we have successfully isolated Z we can insert it back
into the surrogate field κ sgt at a perturbed position. It is then sufficient
to check if

f (κ sgt′) + g(κ sgt′) ≤ ε′
α, (28)

where κ sgt′ represents the surrogate with the feature Z inserted at a
perturbed location.

If the inequality does hold, then the conclusion is that at
100(1 − α) per cent confidence we cannot say that the feature could
not be found at this location. If the equality does not hold then Z in
its observed form could not have been found at the new location at
100(1 − α) per cent confidence. The question then becomes, which
perturbed positions are acceptable and which are not.

With the above in mind, we propose a typical inverse nested
iterative scheme to determine the pixel-space isocontour for a given
feature in the reconstructed convergence field. Schematically this
iterative process is outlined in Fig. 1. Essentially, inverse nesting
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is: start in a ring 1-pixel from the MAP peak location in the first
iteration, moving the ring one pixel outwards after each iteration.

4.2 N-splitting circular bisection

Inverse nested iterations are sufficiently fast for low-dimensional
reconstructions (256 × 256), however as the dimensionality of the
reconstructed domain grows it becomes increasingly beneficial to
adopt more advanced algorithms to compute the Bayesian location
in an efficient manner.

We propose a novel iterative algorithm for computing the pixel-
space position isocontour which we call N-splitting circular bisec-
tion (N-splitting), the full details of which can be found in Appendix
A. A brief outline of N-splitting is given below.

Suppose we wish to compute positions on the Bayesian location
isocontour at equiangular intervals �� (defined clockwise about
the peak location) relative to the y-axis. Then we require n = 2π/��

sampling angles which are trivially given by

�i = i��, (29)

where i is an iterative factor which sets the angle for a given direction
�i.

Once �i is defined for a single direction, the distance d ′
α along

direction �i such that the objective function saturates the level-set
threshold ε′

α is found by bisection. Mathematically, this is formally
defined to be

di
α = min

d

{
d ∈ �i | f (κ sgt

d ) + g(κ sgt
d ) > ε′

α

}
, (30)

�i =
{

q1 sin(�i), q2 cos(�i) | q1, q2 ∈ R+
}

, (31)

d =
√

q2
1 + q2

2 , (32)

where �i is the subset of the real domain which lie on the line
of infinite extent along a given direction �i sourced at the peak
location, and κ

sgt
d is the surrogate convergence map constructed

by inserting the feature of interest Z into a perturbed location
[q1sin (�i), q2cos (�i)].

Once a representative set of positions on the location isocontour
are computed, the convex hull is taken – the convex hull is simply
the smallest convex set which contains all samples of the location
isocontour. The boundary of this closed convex set of acceptable
pixels is taken as the Bayesian location.

5 ILLU STR ATIVE EXAMPLE O F THE
BAY E S I A N L O C AT I O N

In this section we perform sparse Bayesian reconstructions of a
large cluster extracted from the Bolshoi N-body simulation (Klypin,
Trujillo-Gomez & Primack 2011; Lanusse et al. 2016), upon which
we construct and assess the performance of Bayesian locations for
each of the four largest subhaloes. In line with previous work of
Price et al. (2018a) and in the related article of Lanusse et al. (2016)
we refer to this extracted cluster as Bolshoi-3.

We grid the Bolshoi convergence field on to a discretized complex
map of dimension (1024 × 1024) so as to demonstrate that
the sparse Bayesian approach can construct Bayesian estimators
efficiently even when the dimension of the problem is of O(106) or
larger – dimensions at which MCMC techniques can become highly
computationally challenging.

Figure 2. Combined plot of the 99 per cent confidence Bayesian locations
at SNR = 12, 15, 17, 20 dB. The outer rings represent the noisier position
isocontours whereas as the data become cleaner the isocontour ring becomes
smaller (therefore the rings represent isocontours at SNR = 12, 15, 17, 20 dB,
from the outer rings inwards, respectively). N-splitting circular bisection
(see Section 4.2) was used to efficiently compute each isocontour. For input
SNR’s below ≈10 the smaller local features cannot be determined physically
via the initial hypothesis test, and so we truncate our analysis at SNR = 12.

5.1 Methodology

First, we construct a complex discretized set of artificial shear
measurements γ̃ ∈ CM by

γ̃ = 	κ, (33)

where κ is the input Bolshoi-3 convergence map. We then contam-
inate these mock measurements with noise n, which for simplicity
we select to be i.i.d. Gaussian noise n ∼ N (0, σ 2

n ) of zero mean
and variance σ 2

n . The variance is selected such that the SNR of the
noisy artificial shear maps can be varied, and is therefore set to be

σn =
√

‖�κ‖2
2

N
× 10− SNR

20 . (34)

The MAP convergence field κmap is recovered via the sparse
Bayesian mass-mapping algorithm using DB10 wavelets (10-
levels), and the Bayesian location for the set of 4 peaks is
constructed. For a detailed discussion of how noise levels in decibels
(dB) translate to physical quantities such as galaxy number density
see Price et al. (2018a).

5.2 Analysis and computational efficiency

To demonstrate this uncertainty quantification technique we con-
struct 99 per cent confidence Bayesian locations for the four largest
subhaloes in the Bolshoi-3 cluster, for input SNR in dB of ∈ {12,
15, 17, 20}.

In Figs 2 and 3 it is apparent that, as expected, the positional
uncertainty isocontour at 99 per cent confidence is smaller for less
noisy data, growing in proportion to the noise. In our analysis 32 N-
splitting directions (pointings) were used, though as can be seen
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3242 M. A. Price et al.

Figure 3. Left to right: Sparse Bayesian reconstructions of Bolshoi-3 peaks 1 to 4 (top to bottom, respectively) followed by Bayesian locations (see Section 4)
at 99 per cent confidence for input SNR of 20.0 to 12.0 dB – which are overlaid on the sparse Bayesian MAP recovered convergence maps κmap at the
corresponding SNR level. As the input artificial shear becomes more contaminated with noise, the relative information content decreases, and so inferred
uncertainty of the reconstructed peak positions increases, as one would logically expect. Note the asymmetry in the 99 per cent isocontour, which motivates
the N-splitting searching algorithm (see Section 4.2 and Appendix A) rather than a naive circular inference (e.g. finding the maximal x and y displacements and
assuming a circular isocontour). Finally, observe that the 99 per cent isocontour for peaks 3 and 4 are proportionally more tightly constrained than peaks 1 and
2. This is due to the local information density typically being higher in more signal dense regions – perturbations to pixels in more information dense regions
are more tightly constrained and can therefore move less distance before saturating the approximate level-set threshold ε′

α . This effect has been observed in the
context of local credible intervals as presented in Cai et al. (2018a) and introduced to the weak lensing setting in Price et al. (2018b).

in Figs 2 and 3 as few as 16 directions would easily have been
sufficient given the smoothness of the isocontour.

Computationally, reconstruction of the MAP convergence field
and computation of the Bayesian location for the complete set of
peaks took ∼5 min on a standard 2016 MacBook Air. Notably,
this is a conservative (Pereyra 2017) and tight (Price et al. 2018b)
approximate Bayesian inference in an over 106-dimensional space
on a personal laptop in minutes. Further to this, the sparse Bayesian
algorithmic structure can be easily parallelizable and so this com-
putational efficiency can be optimized further.

6 AG G R E G ATE U N C E RTA I N T Y I N P E A K
C O U N T S

Building on the notion of an approximate HPD credible region pre-
sented in Section 3.1 we now ask the question: given a reconstructed
convergence field κmap, and at a given SNR threshold K, what
is the maximum and minimum peak count at 100(1 − α) per cent
confidence.

In this article we choose to define a peak in κmap by a pixel κmap(x)
which is larger than the 8 pixels which surround it (Lin 2016). A
point of the peak statistic is computed as follows: A threshold K
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is taken on κmap, and the peak count (number of peaks which have
intensity larger than K) is taken on the subset of pixels larger than
the threshold.

Formally we define the excursion set �+⊂� as

�+ =
{

x | κmap(x) > K
}

, (35)

where � is the complete set of recovered pixels. Define a further
subset �⊂�+ as the set of peaks in �+:

�(κmap) =
{

x | κmap(x) > κmap(x′), ∀ x′ ∈ N (x)
}

, (36)

where N (x) represents the set of immediately surrounding pixels.
Note that this definition is not valid for pixels on the boundary of

the field, and so these pixels are necessarily not considered. This not
only excludes the outer edge of κmap but also any pixels surrounding
masked regions (of which there are typically many).

Conceptually, we would then like to know at a given threshold
K what is the maximum and minimum number of peaks which
could exist such that the surrogate solution κ sgt still belongs to the
approximate HPD credible set C ′

α .
Let ηmax

α be the upper bound on the number of peaks, and ηmin
α

be the lower bound on the number of peaks, for a given threshold
K, at 100(1 − α) per cent confidence. Further let η be the number
of peaks calculated from the MAP solution κmap at threshold K.
Formally these quantities are given by

η ≡ |�(κmap)|, (37)

ηmax
α ≡ max

κsgt

{
|�(κ sgt)| ∈ R+ | f (κ sgt) + g(κ sgt) ≤ ε′

α

}
, (38)

ηmin
α ≡ min

κsgt

{
|�(κ sgt)| ∈ R+ | f (κ sgt) + g(κ sgt) ≤ ε′

α

}
, (39)

where |�(κ)| is the cardinality of the peak set of a convergence field
κ .

It is not all obvious how to locate the extremum of optimization
problems given in equations (38) and (39) as they are inherently non-
linear, non-convex problems. We can, however, propose a logical
iterative approach to calculate well motivated approximations to the
upper and lower peak count limits ηmax

α and ηmin
α .

6.1 Approximate Bayesian lower bound on peak counts

It is perhaps conceptually more straightforward to minimize the
cardinality of the peak set and so we will first describe this process.

To calculate an approximate bound on ηmin
α we begin by creating

the initial peak set � from the recovered convergence κmap. The peak
in �(κmap) with lowest magnitude is located. The shortest distance
rmin from the pixel location x to a pixel x′ such that κmap(x′) =
y (where y is some magnitude at which it is assumed the peaks
influence is sufficiently small) is computed in Euclidean space as
rmin = |x − x′| – within this paper we simply set y = 0.

Let us define the region of interest �A ⊂ � to be a circular
aperture centred on the peak pixel location x with radius rmin.
Conceptually, this acts as a proxy for the area effected by a large
overdensity sourced at the location of the peak.

Now, define a down-scaling kernel SK,�A ∈ CN×N which has
the action of scaling the magnitude of the subset κmapI�A of pixels
belonging to the region of interest �A on to [0, K]. Application
of the down-scaling operator returns a surrogate solution κ sgt.
Mathematically this is

κ sgt = SK,�A

(
κmap

) = κmapI�\�A + K

max
(
κmapI�A

) (κmapI�A ).

(40)

Figure 4. Schematic representation of the iteration steps in finding the
Bayesian lower bound ηmin

α at confidence 100(1 − α) per cent of the peak
count |�| for a given MAP reconstruction κmap.

Application of SK,�A to an isolated region �A conserves the
local topology of the field – which is precisely what we want as it
means we are making no assumptions about the halo profile around a
peak. Removing a peak by application of SK,�A creates a surrogate
solution κ sgt which is likely to minimize the increase in the objective
function.

As such SK,�A is a good strategy for excluding peaks from
�(κmap) as it will likely maximize the number of peaks which
can be removed from �(κmap) before the level-set threshold ε′

α is
saturated. Thus, it will likely be near decision-theoretically optimal
at minimizing equation (39), which is precisely what we want.

A schematic of the iterative process proposed to find the Bayesian
lower bound on the peak statistic can be seen in Fig. 4. In words, the
process is as follows. Within each iteration, the lowest intensity peak
within the peak set is removed forming a new surrogate convergence
field κ sgt, the objective function is recalculated and if the objective
function is below the approximate level-set threshold ε′

α then the
lowest peak within κ sgt is now removed, so on and so forth until
the objective function rises above ε′

α , at which the iterations are
terminated and the minimum number of peaks is recovered.

6.2 Approximate Bayesian upper bound on peak counts

Now we invert our perspective in order to approximate the maximum
number of peaks which could be observed at a given threshold K
at 100(1 − α) per cent confidence. Here we will be considering the
non-linear maximization problem constructed in equation (38).
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First, we introduce the notion of the inclusion set �−, conjugate
to �+ such that �−∪�+ ≡ � and �− ∩ �+ = ∅,

�− =
{

x | κmap(x) ≤ K
}

, (41)

with this in mind, we can now cast the maximization problem into
a minimization problem analogous to that used before.

We now wish to minimize the number of peaks that belong to the
inclusion set �− which is by definition equivalent to maximizing
the number of peaks which belong to the excursion set �+ – which
is precisely what we want.

Analogously to Section 6.1 to construct our approximate bound
we calculate the further subset �−⊂�− which is defined similarly
to the relation in equation (36) such that

�−(κmap) =
{

x | κmap(x) > κmap(x′), ∀ x′ ∈ N (x)
}

, (42)

i.e. the subset of peaks below a threshold K.
In contrast to Section 6.1 we now locate the largest peak in �−.

Suppose that this peak is found at �−(x), we now construct a
circular aperture about x with radius rmin as defined before. Let this
circular aperture set of pixels be �A ⊂ �.

Now we define an up-scaling kernel S†
K,�A ∈ CN×N which has

action

S†
K,�A

(
κmap

) = κmapI�\�A + K + �

max
(
κmapI�A

) (κmapI�A ), (43)

which is very slightly different to the down-scaling operator in the
numerator of the second term. Here � is an infinitesimal quantity
added such that the rescaled peak within �A falls infinitesimally
above the threshold K and is therefore counted as a peak. In practice
we set � to be ∼10−5 and find that adjusting this quantity byO(102)
has negligible effect on the recovered uncertainties.

With these conceptual adjustments we then follow the same
iterations discussed in Section 6.1 to find the approximate Bayesian
upper bound on the peak count ηmax

α . Schematically this is given in
Fig. 5.

Finally we return the tuple
(
ηmin

α , η, ηmax
α

)
which is in the

form (minimum, most likely, maximum) at 100(1 − α) per cent
confidence.

6.3 Limitations of rescaling

Suppose the SNR threshold K is large enough such that during
iterations in schematic of Fig. 4 the cardinality of the excursion
peak set |�(κ sgt)|→ 0. In this situation even though the approximate
level-set threshold ε′

α is not saturated, the algorithm is forced to stop
as there are simply no more peaks to exclude (push down). At this
point the strategy for removing peaks becomes locally ill-defined.
Effectively this is a clipping artefact. To avoid this effect entirely, if
|�(κ sgt)| = 0 at any point within the iterations at a given threshold,
the lower bound ηmin

α at threshold K is set to 0, i.e. we are infinitely
uncertain by construction.

Analogously, consider the case when K is small enough that
during the iterations in schematic of Fig. 5 the cardinality of the
inclusion peak set |�−(κ sgt)| → 0. In this situation there are simply
no more peaks to include (pull up). Again we remove this clipping
effect by setting ηmax

α at threshold K is set to |�(κ sgt)|.
Typically these clipping effects only occur for very small K ≤ 2

or very large K ≥ 8 thresholds, and so a wealth of information can
be extracted from the intervening scales. Low thresholds clip the
upper limit ηmax

α as the cardinality of the peak set drops to 0 quickly,
but the objective function rises comparatively slowly, as this SNR
range is statistically dominated by noise. High threshold clip the

Figure 5. Schematic representation of the iteration steps in finding the
Bayesian upper bound ηmax

α at confidence 100(1 − α) per cent of the peak
count |�| for a given MAP reconstruction κmap.

lower limit ηmin
α simply due to the inherently low count of peaks at

high-SNR thresholds.
Further to this, the decision-theory approach adopted here for

locating the maximal and minimal values of the cumulative peak
statistic is based on several assumption: removing lower peaks
increases the objective function by less than larger peaks; the extent
of a peak (dark matter overdensity) is approximated by a circular
aperture; and removal of a peak has little to no effect on locations
in the image domain which are outside of this aperture. All three of
these assumptions are very reasonable.

Although further computational optimizations are not an imme-
diate concern since our approach is already highly computationally
efficient, we acknowledge that this iterative approach for removing
peaks can easily be formulated as a bisection style problem which
is likely to drastically reduce the computation time further –
particularly for low thresholds, as it mitigates the number of trivial
noise peak removal recalculations which are done in the brute force
approach presented above. In future, should computational effi-
ciency become of primary interest this speed up will be considered.

7 I LLUSTRATI VE EXAMPLE O F PEAK
UNCERTAI NTI ES

In this section we apply the sparse Bayesian mass-mapping pipeline
to high-resolution (2048 × 2048) convergence maps extracted from
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Mass mapping: peak stats and feature location 3245

Figure 6. Input 2048 × 2048 convergence map extracted from the Buzzard
N-body simulation.

the Buzzard V-1.6 N-body1 simulation (see Fig. 6), upon which we
construct the cumulative peak statistic (number of peaks above a
threshold as a function of the threshold). Additionally, we recover
the 99 per cent approximate Bayesian constraints on the peak count
at each threshold, from which we infer the 68 per cent constraint so
as to aid the reader in comparison to typical 1σ error bars quoted in
related literature.

7.1 Simulated data sets

The Buzzard V-1.6 N-body simulation convergence catalogue
(DeRose, Wechsler & Rykoff, in preparation; Wechsler, in prepa-
ration) is extracted by full ray tracing with the origin located at the
box corner – leading to a quarter sky coverage. For wide fields the
flat sky approximation breaks down (Wallis et al. 2017) and so this
quarter sky coverage was reduced to smaller planar patches.

The complete quarter sky convergence catalogue was projected
into a coarse HEALPIX2 (Górski et al. 2005) pixelization (Nside = 4).
Inside of each pixel, we further tessellated the largest square region
which we then project into a 2048 × 2048 grid. These gridded
convergence maps formed our ground truth, discretized convergence
fields.

As HEALPIX samples in such a way as to provide equal area pixels,
and the Buzzard simulation galaxy density is fairly uniform, each
extracted square region contained ∼2 × 107 galaxies leading to ∼5
galaxies per pixel.

Due to a comparatively low density of samples, Poisson noise is
prevalent, and thus extracted planar regions were passed through
a multiscale Poisson denoising algorithm. This consisted of a
forward Anscombe transform (in order to Gaussianize the Poisson
noise), several TV-norm (total-variation) denoising optimizations of
differing scale, followed by an inverse Anscombe transform (as in
Lanusse et al. 2016; Price et al. 2018b). A more involved treatment

1Obtained due to our affiliation with the LSST-DESC collaboration.
2http://healpix.sourceforge.net/documentation.php

could be applied, but this approach is sufficient to demonstrate our
peak reconstructions.

7.2 Application to Buzzard V-1.6

We select at random one of many planar patches produced for
the following application. Following the methodology presented in
Section 5.1 we generate an artificial shear catalogue which we then
contaminate with independent and identically distributed (i.i.d.)
Gaussian noise such that the SNR of mock shear measurements is
30 dB – i.e. an idealized noise level simply for illustrative purposes.

The MAP convergence estimator κmap is recovered from these
noisy mock shear measurements via our sparse Bayesian mass-
mapping framework. From κmap we then calculate σ 2 = 〈(κmap)2〉
which we then use as a measure of the noise level in the recon-
structed convergence field. Implementing the uncertainty quan-
tification technique presented in Section 6 we then construct the
cumulative peak statistic for SNR thresholds K ∈ [2σ , 8σ ) at
increments of 0.25σ with upper and lower 99 per cent approximate
Bayesian confidence limits.

Fig. 7 displays the recovered cumulative peak statistic in both
a linear and logarithmic scale. Typically, similar figures in the
literature will quote 1σ error bars, and so for comparisons sake
we convert the Bayesian 99 per cent confidence limits into the
68 per cent confidence limits which are comparable to 1σ con-
straints (in Fig. 7 we provide both confidence limits for clarity).

Complete reconstruction of the peak statistics for 24 threshold
bins, each with approximate Bayesian upper and lower bounds, for
a 2048 × 2048 resolution convergence map, with DB11 (11-level)
wavelets, took ∼2 h on a 2016 MacBook Air. This is a non-trivial
Bayesian inference in over 4 × 106 dimensions, and so 2 h is a
very reasonable computation time – though further speed-ups are
possible, e.g. we can trivially parallelize the calculations for each
threshold leading to an increase in computational efficiency by a
factor of the number of thresholds taken (in our case 24).

Additionally, the computational bottleneck is for lower thresholds
as many low-intensity peaks must be removed, and thus an adaptive
scheme could be implemented as discussed previously to avoid
unnecessary sampling of these thresholds. With the aforementioned
speed-ups, computation of the complete peak statistic is likely to
take O(minutes) on a personal laptop.

Following this initial analysis we reduce the SNR to investi-
gate the effect of increased noise on shear measurements to the
cumulative peak statistics within our Bayesian framework. We first
decrease the SNR to 25 dB, seen in Fig. 8. Following which, we then
reduce the input SNR further to 20 dB, the corresponding results
being plotting in Fig. 9. This higher noise level of 20 dB is still a
very optimistic (somewhat unrealistic) estimate of what upcoming
surveys may reach; however in this paper we are primarily focused
on demonstrating the methodology and leave detailed realistic
simulations and forecasting for future work. A detailed description
of how these noise levels in dB translate into observation constraints
(e.g. galaxy number density etc.) can be found in (Price et al. 2018a).

7.3 Analysis of peak statistic

Figs 7, 8, and 9 clearly show that as the noise level in the discretized
complex shear field increases the isocontours of the cumulative peak
statistic at 99 per cent and 68 per cent loosen noticeably. Therefore
this, unsurprisingly, indicates that cleaner measurements are likely
to give tighter constraints on cosmological parameters – though
it should be noted that increasing the number of data points (i.e.
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Figure 7. Cumulative peak statistic for a 2048 × 2048 planar convergence map extracted from the Buzzard V-1.6 simulation (see Section 7.1) contaminated
with i.i.d. Gaussian noise such that the discretized simulated shear (see Section 5.1) are of SNR 30 dB. The purple outer contours are the computed upper
and lower bounds at 99 per cent confidence, with the inner red contours representing the 68 per cent (∼ 1σ ) bounds, included to aid comparison to similar
literature which typically quote 1σ errors. Note that the information content drops for higher σ thresholds as fewer peaks are present, leading to larger relative
uncertainty as fewer samples are recovered. Further note that this example is computed in a highly idealized low-noise setting.

Figure 8. Cumulative peak statistic for a 2048 × 2048 planar convergence map extracted from the Buzzard V-1.6 simulation (see Section 7.1) contaminated
with i.i.d. Gaussian noise such that the discretized simulated shear (see Section 5.1) are of SNR 25 dB. The red inner contours represent the upper and lower
bounds at 68 per cent (∼ 1σ ) confidence, with the outer purple contours representing the computed bounds at 99 per cent confidence.

pixels) would have a similar effect to reducing the noise level per
pixel.

For an SNR of 20 dB (Fig. 9) the first feature of note is the shaded
blue region which indicates that for high thresholds the lower bound
on the number of peaks at 99 per cent confidence is consistent (and
clipped) at 0 – this is saying that at 99 per cent confidence the true
number of peaks at a threshold in the blue shaded region could be

0. Note that in the blue region the Bayesian upper bound is still
entirely valid, it is only the Bayesian lower bound which within our
novel approach is no longer well defined.

Clearly the upper and lower bounds on the peak count statistic is
dependent on the threshold one is considering and the total area over
which observations are made – for wide-field surveys, more data
are collected which is likely to reduce the variance of the statistic.
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Figure 9. Cumulative peak statistic for a 2048 × 2048 planar convergence map extracted from the Buzzard V-1.6 simulation (see Section 7.1) contaminated
with i.i.d. Gaussian noise such that the discretized simulated shear (see Section 5.1) are of SNR 20 dB. The red inner contours represent the upper and lower
bounds at 68 per cent (∼ 1σ ) confidence, with the outer purple contours representing the computed bounds at 99 per cent confidence. The shaded blue region
indicates threshold values for which at 99 per cent confidence the data cannot rule out the possibility that no peaks exist above this threshold (note that in these
regions the lower bound is technically 0 and there still exists a well-defined upper bound which is given). Comparing this plot to Fig. 7 we see that as the
noise level increases the 68 per cent and 99 per cent confidence isocontours expand (as one would expect) and that in all cases the MAP peak statistics do not
disagree at 99 per cent confidence.

In a general sense we summarize the mean (over all considered
thresholds K) order of magnitude percentage spread on the peak
statistic for the considered SNR thresholds below.

At input SNR of 20 dB, for thresholds ∈ [2σ , 6σ ) on a single
2048 × 2048 planar patch the upper and lower bounds exist and are
of O(48 per cent) at 99 per cent confidence and of O(13 per cent)
at 68 per cent.

At input SNR of 25 dB, for thresholds ∈ [2σ , 8σ ) on a single
2048 × 2048 planar patch the upper and lower bounds exist and are
of O(25 per cent) at 99 per cent confidence and of O(7 per cent) at
68 per cent.

At input SNR of 30 dB, for thresholds ∈ [2σ , 8σ ) on a single
2048 × 2048 planar patch the upper and lower bounds exist and are
of O(15 per cent) at 99 per cent confidence and of O(3 per cent) at
68 per cent.

These illustrative examples imply that for the Bayesian peak
statistic to tightly constrain the cumulative peak statistic com-
paratively larger and or cleaner data sets may be required –
or, of course, a more informative prior (though this must be
well justified). However, to reduce the shot noise introduced via
intrinsic ellipticities more galaxies must be observed within a given
pixel.

One way to increase this is to simply increase the observed
number density of galaxy observations, however to do so one must
observe galaxies at lower magnitude (for a fixed redshift), which
inherently leads to more bright distant galaxies being detected which
results in galaxy blending. Hence, increasing the number density
significantly above ∼30 gal arcmin−2 is typically quite difficult in
practice.

Alternatively, the pixelization can be adjusted to ensure that the
mean galaxy count per pixel is above a given threshold – though for
weak lensing the majority of non-Gaussian information is stored at
fine scales, which require small pixels, and so using larger pixels to
reduce the noise level is suboptimal for information extraction.

Within the definition of the up- and down-scaling kernels (see
sections 6.1 and 6.2) we define a circular aperture around a selected
peak which we define to be the extent of the peak. These regions are
roughly equivalent to superpixel regions as described in Cai et al.
(2018a). In previous work it was shown (Price et al. 2018b) that for
local credible intervals (cf. pixel level error bars) the typical error
in the approximate HPD credible region is of O(12.5 per cent), and
is conservative – note that the quoted 25 per cent mean RMSE error
is split approximately equally between the upper and lower bounds,
therefore this roughly corresponds to an mean error of 12.5 per cent
on both. Therefore the bounds drawn on the peak static here are
likely to be ∼ 12.5 per cent less tight than the true Bayesian bounds
– which could be formed if one were to reconstruct the 4 × 106

dimensional posterior via MCMC.
In this paper (particularly the second half) we are primarily

concerned with demonstrating how one may recover principled
uncertainties on aggregate statistics of the convergence map – such
as, but not limited to, the peak statistics. Hence we do not provide
detailed analysis of how these Bayesian uncertainties may affect
cosmological constraints derived from such statistics – this is saved
for future work. However it is worth mentioning that one could
either leverage these uncertainties to define the data covariance in
a Bayesian manner (as opposed to MC which is fast but may not
necessarily be fully principled, or MCMC which is O(106) times
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slower than our MAP approach) before and then running a standard
likelihood analysis, or perform a grid search in parameter space
using these uncertainties again as the data covariance. Correctly
accounting the uncertainties introduced during mass mapping has
been shown to be an important consideration for the future prospects
of statistics such as this (Lin & Kilbinger 2018).

8 C O N C L U S I O N S

Using the sparse Bayesian mass-mapping framework previously
developed (Price et al. 2018a,b) we have presented two novel
Bayesian uncertainty quantification techniques which can be per-
formed directly on weak lensing convergence maps.

The first of these techniques recovers the uncertainty in the
location of a feature of interest within a reconstructed convergence
map – e.g. a large peak – at some well-defined confidence. We call
this locational uncertainty the ‘Bayesian location’.

Additionally, for computational efficiency we develop a novel
sampling scheme of the position isocontour of a given feature which
we call ‘N-splitting circular bisection’. We find that sampling the
position isocontour in this way could be many orders of magnitude
faster in high dimensions than typical inverse nesting approaches.

To evaluate this technique, we perform sparse Bayesian recon-
structions of 1024 × 1024 convergence maps extracted from Bolshoi
N-body simulation data sets upon which we compute the Bayesian
location of the four largest subhaloes for a range of noise levels.

The second of these techniques quantifies the uncertainty in the
cumulative peak statistic of a recovered convergence map. With
this technique we can for the first time provide principled Bayesian
lower and upper bounds on the number of observed peaks at a given
signal-to-noise threshold, for a single observation, at well-defined
confidence.

We extract 2048 × 2048 convergence maps from the Buzzard
V-1.6 N-body simulation, upon which we calculate the cumulative
peak statistic with Bayesian upper and lower bounds at 99 per cent
for a range of input noise levels. We also provide the 68 per cent
confidence bounds which we infer from the 99 per cent bounds to
aid comparison to typical bootstrapping (MC) approaches.

For upcoming wide-field surveys convergence reconstruction will
likely be done natively on the sphere (a single collective sample) to
avoid projection effects, making bootstrapping approaches difficult
and at worst infeasible due to the fact that they are only asymptoti-
cally exact.

Bayesian approaches require only a single set of observations to
make exact inferences, and so extend trivially to the more complex
spherical setting. Moreover the novel uncertainty quantification
techniques presented in this paper and those presented previously
in Price et al. (2018a,b) and Cai et al. (2018a) can be rapidly
computed and support algorithmic structure which can be highly
parallelized, making them the ideal tools for principled analysis of
convergence maps.
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APPEN D IX A : N -SPLITTING C IRCULAR
B ISEC TION D ETAILS

In this appendix we consider the N-splitting circular bisec-
tion (N-splitting) algorithm for iteratively sampling the Bayesian
100(1 − α) per cent confidence isocontour of the position of a
feature in a reconstructed convergence map – or the Bayesian
Location at 100(1 − α) per cent confidence.

As in the text, we begin by defining the number of directions to
sample nT from which we then form the angular increment �� =
2π/nT. Starting from a vector n0 oriented along the positive y-axis
define the (i + 1)th pointing to be the vector,

ni+1 = R��ni , where i ∈ (1, nT ), (A1)

and whereR�� is rotation by angle �� clockwise on 2D Euclidean
space – a irreducible representation of which is the standard
clockwise rotation matrix,

Rθ =
[

cos(��) sin(��)
− sin(��) cos(��)

]
. (A2)

Now we know the direction along which we wish to sample we
construct the (i + 1)th bisection problem which is

di+1
α = min

d

{
d ∈ �i+1 | f (κ sgt

d ) + g(κ sgt
d ) > ε′

α

}
, (A3)

where κ
sgt
d is a surrogate convergence map with the feature of interest

inserted into perturbed location dni+1 and �i + 1 is subset of the real
domain which lie on the directional line centred at the original peak
location with unit vector ni+1 i.e.

�i+1 =
{

ani+1 | a ∈ R+
}

. (A4)

A pictorial representation of how the problem is set-up is provided
in Fig. A1.

For bisection we must first make an initial guess d0 which we
define to be square root of the number of pixels contained within the
mask, as this is a typical measure of the length of a masked region.
This choice is particularly logical as, if a feature of interest can be
removed entirely from its masked location without saturating the
level-set threshold ε′

α then it by definition must be inconclusive, i.e.
the data are insufficient evidence to say that the peak is physical.

To optimize the convergence of this algorithm further (for
high sampling rates, low angular increments �� ≤ π/4) we also
propagate information between pointing’s. For bisection problems
associated with pointing i > 1 the initial guess is now set to be twice
the previous optimal value d ′,i

α . This increases the computational
efficiency by ∼ 20 per cent, in most cases.

Propagating information in this way relies on the assumption
that the isocontour we are searching for is somewhat smooth and
continuous, which is the case for most convergence reconstructions.
If there is uncertainty as to the smoothness of the isocontour it is
recommended that information is not propagated and the number
of pointings is increased to correctly map the isocontour structure.

A1 Convergence properties

Standard inverse nesting algorithms iteratively sample the entire
sub-space of the reconstructed domain bounded by the isocontour
at 100(1 − α) per cent confidence, making them inefficient when
one is only interested in the boundary.

Consider the case where the isocontour of a reconstructed
512 × 512 convergence map is a circular region of radius R. Here
inverse nesting will have to sample a square region out to R, which
is to say the total number of samples Tnest will at least be R2 − 1,
where 1 is removed for the central location.

For our N-splitting algorithm we define nT pointings, and assume
that the isocontour is relatively smooth. As the first bisection
problem n0 makes a large first guess it typically takes 4–5 iterations
to converge with a single pixel accuracy. The subsequent nT − 1
bisection problems converge within 3–4 iterations. Therefore the
total number of calculations TN-split is conservatively

TN-split = 5 + 4(nT − 1), (A5)

which is essentially independent from R. There is in fact a small
inverse dependence which is incorporated in the number of itera-
tions needed for convergence, though this dependence is found to
be small.

Comparing the computational efficiency of the two algorithms
E512 where

E512 ≡ TN-split

Tnest
= 5 + 4(nT − 1)

R2
. (A6)

Typically, we find an angular separation between pointings of π /4
(i.e. 16 pointings) is sufficient to accurately recover the isocontour.
Additionally, the circular radius is typically 15–30 pixels which
indicates that

5 + 4 × 15

302
= 0.072 ≤ E512 ≤ 5 + 4 × 15

152
= 0.289, (A7)

i.e. N-splitting circular bisection on 512 × 512 dimensional recon-
structions is ∼4–14 times faster than inverse nesting.

However, in the future we will be interested in recovering high-
dimensional 2048 × 2048 convergence maps. In this setting the
number of iterations for N-splitting to converge is assumed to
change by 1–2, and the number of pointings to faithfully recover
the isocontour will be increase by a factor of ∼2. Additionally, the
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Figure A1. Representation of how the problem is broken up in N-splitting circular bisection. First the ni directions are specified (left) at equiangular separations
θ about the peak location (blue ball). Bisection iterations are conducted as in equation (A3) along each of the directions, recovering a set of samples di of the
Bayesian location isocontour at 100(1 − α) per cent confidence (right). Provided a sufficient number of samples are taken, this boundary will fully represent
the isocontour. We find typically ≈16 samples are needed for 512 × 512 convergence reconstructions though more or less may be needed depending on the
resolution and application.

radius of the circle R increases by a factor of 4. Thus,

5 + 4 × 31

1202
= 0.009 ≤ E2048 ≤ 5 + 4 × 31

602
= 0.0360, (A8)

i.e. the conservative increase in computational efficiency of N-
splitting over inverse nesting for 2048 × 2048 becomes a factor
of ≈30–112.

Further optimizations are possible, such as trivially parallelizing
the bisection problems of each pointing. Doing so removes the
scaling with the number of pointings, but now information about
starting positions cannot be propagated.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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