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The presence of additional compact dimensions in cosmological models is studied in the context of
modified teleparallel theories of gravity. We focus the analysis on eleven dimensional spacetimes, where
the seven dimensional extra dimensions are compactified. In particular, and due to the importance that
global vector fields play within the conceptual body of teleparallel modified gravity models, we consider
the additional dimensions to be products of parallelizable spheres. The global vector fields characterizing
the different topologies are obtained, as well as the equations of motion associated to them. Using global
dynamical system techniques, we discuss some physical consequences arising because of the existence
of the extra dimensions. In particular, the possibility of having an early inflationary epoch driven by the
presence of extra dimensions without other matter sources is discussed.
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I. INTRODUCTION

Despite being somewhat counterintuitive, the possible
existence of extra spatial dimensions has a distinguished
history in theoretical physics and can be considered a well-
established idea by now. Since their introduction in the
early 1920s [1] as a tentative approach of unifying
electrodynamics and gravitation under a common geomet-
rical context, there has been a considerable and growing
interest in physical models involving more dimensions
than the three spatial dimensions and time which seem to
govern our daily experience. These interests rapidly went
far beyond the unifying purposes present in the original
models, for it was demonstrated that the inclusion of extra
dimensions could solve several long standing problems
in theoretical physics. For instance, it was argued that by
extending the number of dimensions, two of the most
important hierarchy problems could find an elegant reso-
lution; the Higgs mass hierarchy problem [2,3] and the
problem of the cosmological constant [4]. Another area in
which the existence of extra dimensions seems to play an
important role is quantum gravity. Even though no general
consensus exists toward the formulation of a consistent

quantum theory of the gravitational field, it is well known
that one of the candidates, string theory (M-theory), can be
consistently constructed in spaces with extra six (seven)
spatial dimensions [5,6].
At a purely gravitational level, the study of theories

including (or formulated on) manifolds with additional
spatial dimensions has been worked since Lovelock’s
expansion was discovered [7] (see also [8]). It emphasized
the fact that general relativity (GR) does not seem to be the
most natural theory of gravity when the number D of
spacetime dimensions is bigger than four. According to the
original philosophy surrounding GR, if we remain within
the metric description of gravity, Lovelock’s Lagrangian
is the only one assuring second order field equations
which are automatically conserved. If D > 4 the expansion
necessarily contains higher order terms in the curvature;
for instance, in five and six spacetime dimensions, the
Lagrangian density is not just the Hilbert-Einstein term, but
it contains a specific quadratic combination of curvature
terms given by the Gauss-Bonnet term. This quadratic piece
is “harmless” in D ¼ 4 in the sense that it is a topological
invariant, the Euler density, which does not contribute to
the field equations. However, when D > 4 the Gauss-
Bonnet term not only becomes dynamical, it also arises as
the curvature correction to the Einstein-Hilbert Lagrangian
coming from supersymmetric string theory [9]. This seems
to indicate that the study of classical gravitation in extra
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dimensions is well motivated from a theoretical point
of view.
Research of the previous decades has contrived a number

of modifications and extensions of Einstein’s original
theory, and many are being studied extensively in a variety
of different contexts. Among the many theories developed,
the so called fðTÞ-gravity or modified teleparallel gravity
has attracted much attention in recent years. Originally
[10], models of this type were proposed as a high energy
modification of GR in relation to the existence of strong
curvature singularities in cosmological models. It became
clear soon after that fðTÞ theories exhibit interesting
late time cosmological implications as well, as witnessed
in the study of missing matter problems, and concerning
the current acceleration stage of the universe without
introducing any exotic matter content [11–13]. Recent
developments on fðTÞ-gravity concerning cosmological
implications can be found in [14–18], for instance.
The subject of extra dimensions in fðTÞ gravity was

scarcely presented in the literature [19–23], see also
Refs. [24,25]. The reason for this relative absence of
contributions in the area is clearly understood when the
structure of the fðTÞ field equations is considered more
carefully. Unlike many of the modified gravity theories in
vogue, fðTÞ gravity is formulated in Weitzenböck space-
time which is characterized by a set of 1-forms EaðxÞ ¼
Ea
μdxμ producing torsion instead of curvature; the vielbein

field EaðxÞ, which encodes the dynamics of the gravita-
tional field, determine the structure of the spacetime by
means of a parallelization process. This means, among
other things, that the field equations are not locally Lorentz
invariant, or at least they are not in the usual sense [26], an
issue that is not fully settled yet. Of course, fðTÞ modified
gravity includes GR as a limit when fðTÞ ¼ T, in which
case one speaks of the teleparallel equivalent of GR.
Therefore the Lorentz covariance is fully restored in those
regimes or scales where the gravitational field is correctly
described by GR. However, near spacetime singularities,
for example, the structure of the fields EaðxÞ is fixed only
up to a certain subgroup of the Lorentz group which is
characteristic of the spacetime under consideration. This
poses an additional technical complication at the time of
solving the field equations. The field equations are second
order partial differential equations which determine the full
components of the vielbein EaðxÞ, and not only those
associated to the metric tensor gμν ¼ Ea

μEb
νηab.

In [27] we started the program of characterizing multi-
dimensional cosmological models with fðTÞ structure by
assuming that the compact extra dimensions consisted of
topological products of spheres. We did so by considering
cosmological manifolds of the form M ¼ FLRW4 ×Min,
where FLRW4 represents the four dimensional, spatially flat
Friedmann-Lemaître-Robertson-Walker (FLRW) spaces
which are consistent with our present day understanding
of the large scale structure of the universe. In [27] we dealt

with cases up to D ¼ 7 where the spatial extra dimensions
Min were products of spheres up to dimension three.
In this paper, in turn, we extend the analysis by focusing

on D ¼ 11, and considering Min as a seven dimensional
manifold constructed out of products of parallelizable
spheres. This restriction of considering only the paralleliz-
able spheres simplifies the subsequent analysis as there are
only three such spheres S1, S3 and S7. On one hand, the
number ns of different products of arbitrary spheres grows
rapidly as the number N of extra dimensions increases; we
actually have ns ¼ PðNÞ, the partition of N. In the general
case, this makes the problem hard to deal with for D ¼ 11,
where one would have ns ¼ Pð7Þ ¼ 15 distinct cases to
deal with. On the other hand, in view of the close
relationship between the 1-form fields EaðxÞ and the
parallelizations underlying a given manifold, the structure
of EaðxÞ turns out to be easier to deal with when Min is
itself a product of parallelizable submanifolds; the EaðxÞ
simply inherit the product structure of Min.
The paper is organized as follows: In Sec. II we present a

concise account on fðTÞ gravity. Section III is devoted to the
structure of EaðxÞ for the four different cases under con-
sideration arising by imposing the parallelizability condition
on every member of the product inMin. Albeit technical and
cumbersome, this section is crucial for finding the proper set
of field equations in every case, which can be seen as the
main contribution of this work. Some consequences of
the field equations are obtained in Sec. IV, where a global
dynamical system analysis is performed on one of the
cases exposed. More specifically Sec. III discusses the case
Min ¼ S7. Finally, we discuss our results in Sec. V. Various
Appendices are required to present some of the lengthy
equations and certain technical details which are not
essential in the main body. Appendix B briefly discusses
the remnant symmetries, which are related to the different
parallelizations admitted by a given manifold. Appendix C
contains a further example in which Min is not constructed
as a product of parallelizable spheres.
Throughout the paper, we will adopt the signature

ðþ;−;−;−; � � � ;−Þ, Latin indices a∶ð0Þ; ð1Þ;… in Ea
μðxÞ

refer to tangent-space objects while Greek μ∶0; 1;…
denote spacetime indices. Dual vector basis ea ¼ eμa∂μ

are defined according to Ea
μeνa ¼ δνμ and Ea

μe
μ
b ¼ δab.

II. BRIEF NOTES ON MODIFIED
TELEPARALLEL GRAVITY

The extended gravitational schemes with absolute par-
allelism, often referred to as fðTÞ theories, take as a starting
point the teleparallel equivalent of general relativity
(TEGR), see for instance [28,29]. We will summarize here
the basic elements needed to present the key ideas required
for the formulation of our work. For a thorough introduc-
tion to fðTÞ gravity as well as its mathematical foundations
the reader is referred to [30,31], for instance.
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The spirit underlying TEGR finds its motivation in the
equivalence between the Riemann and Weitzenböck for-
mulations of GR, which can be summarized in the equation

T ¼ −Rþ 2e−1∂νðeTσ
σνÞ; ð1Þ

where e ¼ detðeμaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgμνÞ

p
. On the left-hand side of

Eq. (1) we have the so-called Weitzenböck invariant

T ¼ SρμνTρ
μν; ð2Þ

where Tρ
μν are the local (spacetime) components of the

torsion two-form Ta¼dea¼ 1
2
Ta

μνdxμ∧dxν coming from
the Weitzenböck connection Γλ

νμ ¼ eλa∂νeaμ, and Sρλμ is
defined according to

Sρμν ¼
1

4
ðTρ

μν − Tμν
ρ þ Tνμ

ρÞ þ 1

2
δρμTσν

σ −
1

2
δρνTσμ

σ: ð3Þ

Actually, T is the result of a very specific quadratic
combination of irreducible components of the torsion
tensor under the Lorentz group SOð1; 3Þ, see [32].
Equation (1) simply says that the Weitzenböck invariant
T differs from the scalar curvature R by a total derivative;
therefore, both conceptual frameworks are totally equiv-
alent at the time of describing the dynamics of the
gravitational field. This also implies that T is the unique
combination of quadratic torsion terms which is locally
Lorentz invariant up to a surface term.
In many ways fðTÞ gravity can be viewed as a natural

extension of Einstein gravity in its teleparallel form, similar
to fðRÞ gravity in the more standard metric formulation.
It is governed by the following action in D spacetime
dimensions

S ¼ 1

16πG

Z
½fðTÞ þ Lmatter�edDx: ð4Þ

Of course GR is contained in (4) as the particular case
when fðTÞ ¼ T and D ¼ 4. The dynamical equations of
fðTÞ gravity theories are obtained after varying the action
(4) with respect to the vielbein components. The matter
fields couple to the metric in the usual way so that the field
equations become

ðe−1∂μðeSaμνÞ þ eλaTρ
μλSρμνÞf0ðTÞ þ Saμν∂μðTÞf00ðTÞ

−
1

4
eνafðTÞ ¼ −4πGeλaTλ

ν; ð5Þ

where the prime means derivative with respect to T and Tλ
ν

is the energy-momentum tensor.
As pointed out several times (see [33] for a recent

discussion), the Eqs. (5) in the general case when
f00ðTÞ ≠ 0 are sensitive to the local orientation of the
vielbein. This is because they determine the entire set of

components eμaðxÞ, and not just the subset related to the
metric tensor gμν ¼ eμaeνbη

ab. In other words, Eqs. (5) define
the spacetime structure by means of a parallelization by D
non-null and smooth vector fields eμaðxÞ. It is natural, then,
that the vielbein grid so determined is sensitive to local
boosts and rotations Λa

bðxÞ acting on it according to
eμa → eμb ¼ Λb

aeμa. These local Lorentz transformations
Λa

bðxÞ have the effect of breaking the global structure
of eμaðxÞ, turning the vielbein grid into an uncorrelated set
of orthonormal bases at different points of the tangent space
T pðMÞ, however leaving the metric invariant. It is impor-
tant to mention that the breaking of the Lorentz covariance
is relevant at scales where f00ðTÞ is considerably different
from zero, for otherwise fðTÞ → T and the full Lorentz
group is restored through TEGR. Scales where jf00ðTÞj ≫ 1
are relevant concerning the manifestation of new degrees
of freedom [31,34].
On purely mathematical terms, there exist equivalence

classes of vielbein grids, because parallelizations (if they
exist) are nonunique. In the context of fðTÞ theories this
symmetry is realized by means of the remnant group of
Lorentz transformations of a given spacetime [35], about
which we shall briefly comment in Appendix B. On an
operational level, in turn, the restricted (remnant) group
usually is not enough to impose symmetries on the vielbein
if one only knows the symmetries of the metric tensor; this
makes it complicated to anticipate the structure of the fields
eμaðxÞ by having only certain knowledge on the structure
of gμν, for infinitely many eμaðxÞ’s correspond to the same
metric gμν. In GR (or TEGR), the infinite set of eμaðxÞ is not
a problematic issue because every pair of vielbeins is
connected by a local Lorentz transformations which are
part of the symmetry of the theory. In stark contrast, within
fðTÞ gravity, it is precisely the local orientation of the
vielbein which becomes important. A simple discussion on
the importance of parallelizability in fðTÞ gravity can be
consulted in Ref. [33]. We are now ready to construct
suitable fields eμaðxÞ for a number of different cosmological
manifolds in eleven dimensions.

III. EXTRA DIMENSIONS GIVEN BY THE
TOPOLOGICAL PRODUCT OF
PARALLELIZABLE SPHERES

A. General considerations

Let us now discuss the general structure of the vielbein
field when the D dimensional manifold is given by the
topological product of parallelizable submanifolds. This is
a very subtle point in view of the lack of local Lorentz
invariance of fðTÞ theories of gravity, a point which is
particularly relevant in the strong field regime. In this
section we will obtain the proper parallel one-form fields of
the manifolds in consideration, postponing the discussion
regarding their uniqueness until Appendix B. With the
frame fields so obtained, we will proceed to compute the
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field equations for the specific cases in which the seven
extra dimensions are given by topological products of
parallelizable spheres.
In what follows, we are interested in a cosmological

setting where the four-dimensional space is described by
the flat FLRW manifold with local pseudo Euclidean
coordinates ðt; x; y; zÞ ¼ ðt; xnÞ with n ¼ 1; 2; 3. The mani-
fold structure in D dimensions is chosen to be

MD ¼ MFLRW ×Min; ð6Þ

where MFLRW ¼ R4 with a frame EðR4Þ whose compo-
nents are given by

EtðR4Þ ¼ dt; EnðR4Þ ¼ a0ðtÞdxn; ð7Þ

leading to the line element

ds2FLRW ¼ dt2 − a20ðtÞðdx2 þ dy2 þ dz2Þ: ð8Þ

It is worth mentioning that the frame defined in (7) is by
no means simply a choice. Even though many other proper
tetrads exist for the description of MFLRW, related to (7)
through transformations of the remnant group, the autopar-
allel curves of flat Euclidean space are given by straight
lines which can be generated by the coordinate basis ∂xn ,
whose dual cobasis is dxn. The Euclidean grid so obtained
is unaltered by the conformal scale factor, which only
depends on time, turning (7) into the simplest and most
transparent vierbein field describing MFLRW.
Next, it will be assumed that the topological structure

of Min is

Min ¼ Sj1 × Sj2 ×… × Sjk ;
X
k

jk ¼ D − 4; ð9Þ

where Sjk is the jk-sphere. In general Min is not a
parallelizable manifold, but it turns out to be if at least
one of the jk is odd [36] and, if this would be the case, it
was shown that explicit parallelizations can be found
[37,38]. However, it is clear that even if (at least) one
the jk is odd, the structure of the one-forms associated to a
parallelization of Min, does not inherit the product struc-
ture of the space, because just three spheres are paralleliz-
able by themselves, recall that these are S1; S3; S7, see [39].
If we fix D ¼ 11 and we work only with the three
parallelizable spheres, we have four possible structures
concerning the parallel one-form fields of Min, namely

E1ðMinÞ ¼ EðT7Þ;
E2ðMinÞ ¼ EðT4Þ × EðS3Þ;
E3ðMinÞ ¼ EðS1Þ × EðS3Þ × EðS3Þ;
E4ðMinÞ ¼ EðS7Þ; ð10Þ

where Tj ¼ S1 ×… × S1 is the j–torus. In this way, the full
spacetime vielbein will have the structure

Ea
μ ¼

0
BBBBBBBBBBBB@

0 0 0

0 a0ðtÞ 0 0 O

0 0 a0ðtÞ 0

0 0 0 a0ðtÞ

O EiðMinÞ

1
CCCCCCCCCCCCA

;

ð11Þ

where EiðMinÞ formally refers to any of the fields (10). In
turn, the full space-time metric will be given by

ds2 ¼ dt2 − a20ðtÞðdx21 þ dx22 þ dx23Þ − ds2in; ð12Þ

where ds2in is the line element corresponding to the internal
dimensions given by any of the four possible forms (10).
In order to apply these models to a cosmological setting,

we will assume a perfect fluid with energy density ρðtÞ
and pressure pðtÞ as the only matter source in the field
equations. This means we have

Tμν ¼ ðρþ pÞVμVν þ pgμν; ð13Þ

where Vμ is the tangent vector to the congruence of curves
defining the stream lines of the fluid. In the comoving
frame of the fluid, the energy-momentum tensor takes the
simple form

Tμ
ν ¼ diagðρ;−p0;−p0;−p0;−p1;…;−pD−4Þ: ð14Þ

We proceed now to characterize the global one-form fields
of any of the internal manifolds mentioned in (10), and to
obtain the field equations which are implied by them.

B. Min =T7

Let us begin with probably the simplest case, since T7 ¼
S1 ×… × S1 is just the topological product of trivially
parallelizable manifolds. In the previous article [27] we
have analyzed the structure of the vielbein field and the
relevant equations of motion for the general case given by
Tj, so we shall revisit the main results here and focus on T7.
If we consider coordinates Xj on Sj, it becomes trivial to
parallelize the full spacetime T7 by means of the vielbein
field (no summation in j)

EjðT7Þ ¼ ajðtÞdXj; 1 ≤ j ≤ 7; ð15Þ

where aj is the time dependent scale factor corresponding
to each of the spheres Sj. The Weitzenböck invariant T
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associated to the entire manifold M11 ¼ R4 × T7 [by
means of (7) and (15)] is given by

T ¼ −6
�
H2

0 þH0

X7
j¼1

Hj þ
1

6

�X7
i;j¼1

HiHj −
X7
i¼1

H2
i

��
;

ð16Þ

where we used H0 ¼ _a0=a0 and Hj ¼ _aj=aj for the
corresponding Hubble functions. The dynamics of the
various scale factors is determined by the Eqs. (5) which
in the present case give the Hubble constraint equation

f − 2Tf0 ¼ 16πGρ: ð17Þ

Next, we have the three (identical) spatial equations coming
from the standard FLRW part

2f0
��

2H0 þ
X7
n¼1

Hn

�
2

þH0

�
2H0 þ

X7
n¼1

Hn

�

þ 2 _H0 þ
X7
n¼1

_Hn

�
þ 2f00 _T

�
2H0 þ

X7
n¼1

Hn

�

þ f ¼ −16πGp0: ð18Þ

Finally there are seven additional equations which are

2f0
��

3H0 þ
X7

n¼1;n≠j
Hn

�
2

þHj

�
3H0 þ

X7
n¼1;n≠j

Hn

�

þ 3 _H0 þ
X7

n¼1;n≠j

_Hn

�
þ 2f00 _T

�
3H0 þ

X7
n¼1;n≠j

Hn

�

þ f ¼ −16πGpj: ð19Þ

As in standard cosmology, Eq. (17) coming from the
temporal coordinate is the constraint, which plays the role
of a modified Friedmann equation. Note that (19) contains
seven different equations which correspond to the seven
different pressures pj appearing in Tμ

ν . There is no a priori
reason to assume these different pressures to be the same.
This simple observation motivates the study of spaces
made up of products of higher dimensional spheres which
introduces few scale factors, in the case of S7 one will only
introduce one additional scale factor.

C. Min =T4 × S3

Next we consider the case where the parallel one-forms
have the topological structure EðMinÞ ¼ EðT4Þ × EðS3Þ. If
the coordinates on T4 are Xj, we simply have, as in (15),
that EjðT4Þ ¼ ajðtÞdXj, with 1 ≤ j ≤ 4. This means we

must now focus on the 3-sphere part of the geometry EðS3Þ.
The fact that S3 has a maximum number of global, non-null
vector fields, is a consequence of the fact that any three-
dimensional orientable manifold is parallelizable [40]. An
explicit parallelization is, however, not that trivial to find.
The usual way is to view S3 as the unit quaternions, and
then, to realize that it has a non-Abelian Lie group structure
induced by quaternion multiplication, which in turn,
induces a right translation on S3. In this way a paralleliza-
tion can be obtained by applying the right translation to a
basis of vectors at the unit element of the group. The
associated one-forms fields are obtained by means of the
standard inner product on R4. If coordinates Xj 5 ≤ j ≤ 8

are set up in R4, a globally defined basis on T �ðS3Þ (up to a
time dependent conformal factor) is

E5ðS3Þ ¼ X6dX5 − X5dX6 − X8dX7 þ X7dX8;

E6ðS3Þ ¼ X8dX5 − X7dX6 þ X6dX7 − X5dX8;

E7ðS3Þ ¼ −X7dX5 − X8dX6 þ X5dX7 þ X6dX8: ð20Þ

After changing coordinates by means of (A1), we can write
the line element of the internal dimensions as

ds2in ¼
X4
j¼1

a2jðtÞdX2
j þ a25ðtÞdΩ2

3; ð21Þ

where dΩ2
3 is the line element of the three-sphere with

coordinates ðθ1; θ2;ϕÞ

dΩ2
3 ¼ dθ21 þ sin2θ1dθ22 þ sin2θ1sin2θ2dϕ2: ð22Þ

Using the frame fields set up in this way, we can write the
torsion scalar in the following way

T ¼ 6

a25
− 6ðH2

0 þH2
5Þ − 18H5

X4
i¼0

Hi

þ ð12H5 − 4H0Þ
X4
i¼1

Hi − 2
X4
i¼0

�
Hi

X4
j¼iþ1

Hj

�
:

ð23Þ

Note that the spacetime is characterized by six different
scale factors, one scale factor of the FLRW part, one scale
factor for any of the four 1-spheres, and finally one
associated with the 3-sphere. Consequently, field equations
are rather involved and somewhat complicated. The final
result of those field equations begins with the Hubble
constraint equation
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fþf0
�
6

a25
þ6H2

0þ6ðH1þH2þH3þH4þ3H5ÞH0þ2ð3H2
5þ3ðH3þH4ÞH5þH3H4

þH2ðH3þH4þ3H5ÞþH1ðH2þH3þH4þ3H5ÞÞ−T

�
¼16πGρ: ð24Þ

Next comes the equation for the FLRW pressure term

f þ f0
�
6

a25
þ 6H2

0 þ 4ðH1 þH2 þH3 þH4 þ 3H5ÞH0 þ 4 _H0 þ 2 _H1 þ 2 _H2 þ 2 _H3 þ 2 _H4 þ 6 _H5

þ 2ðH2
1 þ ðH2 þH3 þH4 þ 3H5ÞH1 þH2

2 þH2
3 þH2

4 þ 6H2
5 þH3H4 þ 3ðH3 þH4ÞH5

þH2ðH3 þH4 þ 3H5ÞÞ − T

�
þ 2ð2H0 þH1 þH2 þH3 þH4 þ 3H5Þ _Tf00 ¼ −16πGp0: ð25Þ

The next four equations can be conveniently written in the form

f þ f0
�
6

a25
þ 6 _H0 þ 2

X4
n¼1;n≠j

_Hi þ6 _H5 þ 2ð6H2
0 þ 3

X4
n¼1;n≠j

HiH0 þ 9H5H0 þ
X4

n¼1;n≠j
H2

i þ 6H2
5

þ 3
X4

n¼1;n≠j
HiH5 þ

X3
m¼1;m≠j

X4
n¼mþ1;n≠j

HmHnÞ − T
�
þ 2

�
3H0 þ

X4
n¼1;n≠j

Hi þ 3H5

�
_Tf00 ¼ −16πGpj; ð26Þ

where j ¼ 1; 2; 3; 4. The final equation involving the pressure p5 is given by

f þ f0
�
2

a25
þ 12H2

0 þ 6ðH1 þH2 þH3 þH4 þ 2H5ÞH0 þ 6 _H0 þ 2 _H1 þ 2 _H2 þ 2 _H3 þ 2 _H4 þ 4 _H5

þ 2ðH2
1 þ ðH2 þH3 þH4 þ 2H5ÞH1 þH2

2 þH2
3 þH2

4 þ 3H2
5 þH3H4 þ 2ðH3 þH4ÞH5

þH2ðH3 þH4 þ 2H5ÞÞ − T

�
þ 2ð3H0 þH1 þH2 þH3 þH4 þ 2H5Þ _Tf00 ¼ −16πGp5: ð27Þ

D. Min = S1 × S3 × S3

Once a parallelization for S3 is obtained, as described in
the previous case, the characterization of S1 × S3 × S3

proceeds straightforwardly. Let X1 be a coordinate on
the circle, it follows that a global basis for T �ðS1Þ is given
by E1ðS1Þ ¼ a1ðtÞdX1. The parallelization of the remaining
six dimensional manifold S3 × S3 is obtained by means of
two copies of the fields given in (20). Up to time dependent
conformal factors in the corresponding 3-spheres, we have

E2ðS3Þ ¼ X3dX2 − X2dX3 − X4dX3 þ X3dX4;

E3ðS3Þ ¼ X5dX2 − X4dX3 þ X3dX4 − X2dX5;

E4ðS3Þ ¼ −X4dX2 − X5dX3 þ X2dX4 þ X3dX5; ð28Þ

for the first 3-sphere and accordingly for the second one

E5ðS3Þ ¼ X6dX5 − X5dX6 − X8dX7 þ X7dX8;

E6ðS3Þ ¼ X8dX5 − X7dX6 þ X6dX7 − X5dX8;

E7ðS3Þ ¼ −X7dX5 − X8dX6 þ X5dX7 þ X6dX8: ð29Þ

One must take note of the common coordinate (here X5).
This is necessary in order to embed the six-dimensional
manifold in R7. The internal metric in coordinates
ðX1; θ1; θ2;ϕ1; θ3; θ4;ϕ2Þ give

ds2in ¼ a21ðtÞdX2
1 þ a22ðtÞdΩ2

3;ð1Þ þ a23ðtÞdΩ2
3;ð2Þ; ð30Þ

where we used the notation

dΩ2
3;ð1Þ ¼ dθ21 þ sin2θ1dθ22 þ sin2θ1sin2θ2dϕ2

1; ð31Þ

dΩ2
3;ð2Þ ¼ dθ23 þ sin2θ3dθ24 þ sin2θ3sin2θ4dϕ2

2: ð32Þ

With the fields so obtained, we can compute the
Weitzenböck invariant

T ¼ −6ðH2
0 þH2

2 þH2
3 − a−22 − a−23

þH1ðH0 þH2 þH3Þ þ 3ðH0H2 þH0H3 þH2H3ÞÞ:
ð33Þ
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The resulting field equations in this case begin with the Hubble constraint equation

f þ 2f0ð6a−22 þ 6a−23 − TÞ ¼ 16πGρ: ð34Þ

This is followed by the four evolution equations

f þ 2f0ð2 _H0 þ _H1 þ 3 _H2 þ 3 _H3 þ ð2H0 þH1 þ 3ðH2 þH3ÞÞð3H0 þH1 þ 3ðH2 þH3ÞÞÞ
þ 2f00 _Tð2H0 þH1 þ 3ðH2 þH3ÞÞ ¼ −16πGp0; ð35Þ

f þ 6f0ð _H0 þ _H2 þ _H3 þ ðH0 þH2 þH3Þð3H0 þH1 þ 3ðH2 þH3ÞÞÞ þ 6f00 _TðH0 þH2 þH3Þ ¼ −16πGp1; ð36Þ

f þ 2f0ð3 _H0 þ _H1 þ 2 _H2 þ 3 _H3 þ ð3H0 þH1 þ 2H2 þ 3H3Þð3H0 þH1 þ 3ðH2 þH3ÞÞ − 2a−22 Þ
þ 2f00 _Tð3H0 þH1 þ 2H2 þ 3H3Þ ¼ −16πGp2; ð37Þ

f þ 2f0ð3 _H0 þ _H1 þ 3 _H2 þ 2 _H3 þ ð3H0 þH1 þ 3H2 þ 2H3Þð3H0 þH1 þ 3ðH2 þH3ÞÞ − 2a−23 Þ
þ 2f00 _Tð3H0 þH1 þ 3H2 þ 2H3Þ ¼ −16πGp3: ð38Þ

The entire set of field equations can be viewed as four dynamical equations for the four Hubble functions Hi, i ¼ 0; 1; 2; 3
subject to the constraint (34). For given fðTÞ one could attempt a dynamical systems formulation in order to understand the
dynamics of such a cosmological model, this is what will be done with the final case which is studied next.

E. Min = S7

It has been known for a long time that S7 is parallelizable, it is nonetheless surprising that explicit expressions for global
bases of vector fields in T ðS7Þ (or one-forms in T �ðS7Þ), are rarely found in the literature (see, e.g., [41]). The procedure in
order to obtain a parallelization is to view S7 as the unit octonion, and to use their multiplication rule to obtain right invariant
vector fields. Due to the fact that multiplication of unit octonions is not associative, S7 is not a Lie group, however this is not
an impediment in getting a global basis of vector fields on S7. Let us choose coordinates Xi, i ¼ 1;…; 8 in R8, a global basis
of one-forms in T �ðS7Þ can be written explicitly (up to a time dependent conformal factor) as follows

E1ðS7Þ ¼ −X2dX1 þ X1dX2 − X4dX3 þ X3dX4 − X6dX5 þ X5dX6 − X8dX7 þ X7dX8;

E2ðS7Þ ¼ −X3dX1 þ X4dX2 þ X1dX3 − X2dX4 − X7dX5 þ X8dX6 þ X5dX7 − X6dX8;

E3ðS7Þ ¼ −X4dX1 − X3dX2 þ X2dX3 þ X1dX4 þ X8dX5 þ X7dX6 − X6dX7 − X5dX8;

E4ðS7Þ ¼ −X5dX1 þ X6dX2 þ X7dX3 − X8dX4 þ X1dX5 − X2dX6 − X3dX7 þ X4dX8;

E5ðS7Þ ¼ −X6dX1 − X5dX2 − X8dX3 − X7dX4 þ X2dX5 þ X1dX6 þ X4dX7 þ X3dX8;

E6ðS7Þ ¼ −X7dX1 þ X8dX2 − X5dX3 þ X6dX4 þ X3dX5 − X4dX6 þ X1dX7 − X2dX8;

E7ðS7Þ ¼ −X8dX1 − X7dX2 þ X6dX3 þ X5dX4 − X4dX5 − X3dX6 þ X2dX7 þ X1dX8: ð39Þ

After changing to hyperspherical coordinates ðθ1;…; θ6;ϕÞ the line element in S7 becomes

ds2in ¼ a21ðtÞdΩ2
7; ð40Þ

where the line element of the 7-sphere is

dΩ2
7 ¼ dθ21 þ sin2θ1dθ22 þ � � � þ dϕ2

Y6
i¼1

sin2θi: ð41Þ

The torsion scalar T reads

T ¼ −6ðH2
0 þ 7H0H1 þ 7H2

1 − 7a−21 Þ: ð42Þ
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Finally we can state the complete set of field equations. Due
to the appearance of only one additional scale factor in this
model, we expect somewhat simpler equations than in the
previous case. This turns out to be the case as can be seen in
the following. The temporal field equation simply becomes

f þ 2f0ð42a−21 − TÞ ¼ 16πGρ; ð43Þ

while the two dynamical equations are given by

f þ 2f0ð6H2
0 þ 35H0H1 þ 49H2

1 þ 2 _H0 þ 7 _H1Þ
þ 2f00 _Tð2H0 þ 7H1Þ ¼ −16πGp0; ð44Þ

f þ 6f0ð3H2
0 þ 13H0H1 þ 14H2

1 − 2a−21 þ _H0 þ 2 _H1Þ
þ 3f00 _TðH0 þ 2H1Þ ¼ −16πGp1: ð45Þ

Compared with the previously discussed cases where the
extra dimensions contain various products of spheres, the
field equations for S7 are much simpler to deal. In what
follows we will discuss those equations in some detail and
show that they contain many desirable features when
considering applications to realistic cosmological models.

IV. SOME CONSEQUENCES
OF THE FIELD EQUATIONS

A. Early inflation powered by extra dimensions

Let us assume for the moment that the scale factors
corresponding to the internal dimensions are constant,
meaning that all Hubble functions other than H0 vanish
identically. Presumably, this could represent a good
approximation to the final stages of the evolution where
the additional dimensions no longer affect the universe,
which is then governed solely by the scale factor a0ðtÞ of
the four dimensional, spatially flat FLRW metric. In this
case, it is not hard to see that the full system of equations (5)
decouples into two sets of equations which are very
different in structure. One of the sets correspond to the
usual fðTÞ equations associated with a four dimensional,
spatially flat, FLRW cosmological model. The equations
within this set completely determine the scale factor a0ðtÞ
of the physical macroscopic dimensions. The other set of
equations, on the other hand, consists of algebraic equa-
tions relating the pressures of the internal dimensions. Let
us henceforth look into this in some detail.
If we start with the S7 case, the imposition of constant a1

lead us to torsion invariant (42) which together with its time
derivative read

T ¼ −6ðH2
0 − 7a−21 Þ; _T ¼ −12H0

_H0: ð46Þ

In turn, the equations of motion (43)–(45) can be written as

f þ 12f0H2
0 ¼ 16πGρ; ð47Þ

f þ 4f0ð3H2
0 þ _H0Þ − 48f00H2

0
_H0 ¼ −16πGp0; ð48Þ

f þ 6f0ð3H2
0 þ _H0 − 2a−21 Þ − 36f00H2

0
_H0 ¼ −16πGp1:

ð49Þ

Equations (47) and (48) have the same structure as the
cosmological field equations of a spatially flat FLRW
cosmology in four-dimensional fðTÞ gravity [11]. The
only difference comes from the Weitzenbock scalar which
includes the constant scale factor of the extra dimensions.
Hereafter, we will refer to Eqs. (47) and (48) as the 4D
reduced fðTÞ equations.
The role of the constant a1 in the expression for T can

be easily appreciated if we consider the GR case. Taking
f ¼ T; f0 ¼ 1 and f00 ¼ 0 in the system (47)–(49) we
arrive at

H2
0 þ 7a−21 ¼ 8

3
πGρ; ð50Þ

H2
0 þ

2

3
_H0 þ 7a−21 ¼ −

8

3
πGp0; ð51Þ

2H2
0 þ _H0 þ 5a−21 ¼ −

8

3
πGp1: ð52Þ

Despite the absence of the cosmological constant in the
original action, the effect of the constant scale factor of the
extra dimensions is to generate a negative “effective”
cosmological constant given by Λ ¼ −21a−21 . The sign
of Λ is fixed to be negative which comes from the
expression of the Weitzenbock scalar (46). There H2

0 and
a−21 enter with different signs.
In the general setting where the function fðTÞ is arbitrary,

we can solve Eqs. (47) and (48) for a given matter source
content, and then obtain the pressure of the internal space by
means of (49). Due to the automatic conservation of Tμν in
the external space, the two equations (47) and (48) are not
independent. Consequently it is enough to solve (47) with
ρðtÞ given by ρðtÞ ¼ ρ0ða0ðtÞÞ−3ð1þωÞ. This factorization is
possible primarily because a1 is assumed to be constant, and
therefore it is absent in the conservation equation of the fluid.
In general, we have

_ρþ
�
3H0 þ

XD−4

n¼1

Hn

�
ρþ 3H0p0 þ

XD−4

n¼1

Hnpn ¼ 0; ð53Þ

which shows, in the present situation, that the pressure p1

obtained by means of Eq. (49), has no effect whatsoever
on the energy density of the 4-dimensional Universe we
experience. This is so because H1 vanishes.
The above discussion extends nicely to the other

topologies we considered. In the T7 case, Eqs. (17)–(19)
for constant scale factors ai i ¼ 1;…; 7 become the 4D
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reduced fðTÞ equations, together with the one additional
equation

fþ6f0ð3H2
0þ _H0Þ−36f00H2

0
_H0¼−16πGpj; j¼1;…;7:

ð54Þ

In case of topology T4 × S3 the corresponding algebraic
relations are

fþ6f0ð3H2
0þ _H0Þ−72f00H2

0
_H0¼−16πGpj; j¼1;…;4:

ð55Þ

f þ 2f0ð9H2
0 þ 3 _H0 − 2a−25 Þ − 72f00H2

0
_H0 ¼ −16πGp5:

ð56Þ

The case S1 × S3 × S3 follows the similar lines.
Equations (34)–(38) show that, assuming the internal scale
factors a1; a2 and a3 to be constants, the system leads to the
4D reduced fðTÞ equations plus

f þ 6f0ð3H2
0 þ _H0Þ − 72f00H2

0
_H0 ¼ −16πGp1; ð57Þ

f þ 2f0ð9H2
0 þ 3 _H0 − 2a−2j Þ − 72f00H2

0
_H0

¼ −16πGpj; j ¼ 2; 3: ð58Þ

It is interesting to note that, in absence of any matter,
fðTÞ gravity is sometimes able to describe an early time de
Sitter accelerated stage for the macroscopic 4-spacetime
which is caused by the presence of extra dimensions. As is
clear from Eqs. (50)–(52), in GR this cannot be achieved.
Equations (50) and (51) give H2

0 ¼ −7a−21 , which is not
only nonphysical, but also inconsistent with (52).
In vacuum, Eqs. (47)–(49) considering the S7 case with

constant H0, reduce to the simple equations

f þ 12f0H2
0 ¼ 0; f þ 6f0ð3H2

0 − 2a−21 Þ ¼ 0: ð59Þ

Combining them we get a−21 ¼ H2
0=2, which is valid

for any fðTÞ model other than GR. However, the value
of H0 (or a1) depends on the function fðTÞ. For instance,
let us consider an ultraviolet deformation of the form
fðTÞ ¼ T þ αT2. Due to the fact that a−21 ¼ H2

0=2 we have
that T ¼ 15H2

0 ¼ 30a−21 [see Eq. (46)]. This means that
Eqs. (59) relate the constant α to the inflationary Hubble
rate by means of

α ¼ −
3

65H2
0

¼ −3
a21
130

: ð60Þ

Consequently, α should be negative and very small, by
virtue of the fact that H0 is large during inflation. This
simple model enables to link the typical deformation scale

α to the (squared) length scale a21 characterizing the size of
the extra dimensions during the inflationary era. In other
words small extra dimensions give rise to large inflation.
However, not every topology enables us to describe

extra dimensions-powered inflation. Note that the 4D
reduced fðTÞ equations (47) and (48) coalesce to the
single equation f þ 12f0H2

0 ¼ 0, in vacuum and for con-
stant H0. Then, the T7 topology leads to the inconsistent
(for a non-null H0) system

f þ 12f0H2
0 ¼ 0; f þ 18f0H2

0 ¼ 0: ð61Þ

Similarly the T4 × S3 case shows the same inconsistency by
means of the equations

f þ 12f0H2
0 ¼ 0; f þ 18f0H2

0 ¼ 0;

f þ 2f0ð9H2
0 − 2a−25 Þ ¼ 0: ð62Þ

Exactly the same happens when S1 × S3 × S3 is considered.
The vacuum field equations turn into

f þ 12f0H2
0 ¼ 0; f þ 18f0H2

0 ¼ 0;

f þ 2f0ð9H2
0 − 2a−2j Þ ¼ 0; ð63Þ

with j ¼ 2; 3. These results seems to suggest that the
7-sphere S7 is clearly favored on physical grounds, at least,
regarding the interpretation of the early inflationary era as
an effect produced by the presence of the extra dimensions.
This motivates us to have a closer look at the dynamical
equations of that case.

B. Dynamical systems analysis

Let us now have a closer look at the equations of motion
for the aforementioned model fðTÞ ¼ T þ αT2 which
appears to have some desirable properties regarding the
inflationary era. As in the above discussion, we consider
the vacuum equations, this means setting ρ ¼ pa ¼
pb ¼ 0. Equations (42)–(45) do contain first time deriva-
tives of the Hubble parameters H0 and H1 but do not
contain second derivatives. Therefore, we can, in principle,
reformulate these field equations as a first order system of
autonomous equations of the form

dH0

dt
¼ AðH0; H1Þ;

dH1

dt
¼ BðH0; H1Þ; ð64Þ

whereA and B are two rather complicated functions which
can be stated explicitly and are given in Appendix D, see
Eq. (D1) and (D2). In the following we will set α ¼ −0.1
since the equations are somewhat too cumbersome to deal
with generically.
Following the standard procedure of cosmological

dynamical systems, see for instance [42], we begin by
looking for the critical points of this systems. These are the
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points where the system is in equilibrium and are defined
by the vanishing of the right-hand sides of (64). The critical
points can be found numerically and the four points and
their properties are summarized in Table I.
The equilibrium points A� in Fig. 1 correspond to

cosmological solutions where one of the two scale factors
expands while the other one contracts. The stable spiral
point A− corresponds to an ever contracting universe
H0 < 0 in which the extra space S7 expands. From a
physical point of view this equilibrium point is somewhat
undesirable. On the other hand, point Aþ describes an
expanding universe H0 > 0 (with contracting S7) which is
unstable. Such a state is suitable for an early time infla-
tionary model as the universe would grow rapidly but then
change its behavior. Recall that unstable points can be
interpreted as early time attractors.
Points B� are characterized by the condition that the

extra space becomes static H1 ¼ 0, we can either have an
expanding or a contracting universe. The value of H0 at
these points is given in Eq. (60), with α ¼ −0.1.
Interestingly, the expanding solution which corresponds
to Bþ is a stable node. The deceleration parameter for the
scale factor a0 can be expressed as q ¼ −1 − _H0=H2

0 so for
all critical points we obtain qa ¼ −1, since _H0 ¼ 0 by
definition. Consequently all critical points are candidates
for either early time or late time accelerated expansion.
Going back to (60) using α ¼ −1=10 we can solve for

H0 and find H0 ¼ � ffiffiffiffiffiffiffiffiffiffi
6=13

p
which corresponds to the

values at the points B�. Therefore, the critical point Bþ
corresponds to an early time inflationary state. We note
that in this model trajectories are attracted to this state. The
point Aþ would correspond to a dark energy dominated
state. We also note that Aþ and B− are early time attractors
(unstable points) and it is becoming quite clear that the
phase space shows an intricate structure.
Therefore the global picture needs to be considered

before making detailed conclusions. Figure 1 suggests the
existence of various critical points at infinity and it will turn
out that we cannot identify trajectories in phase space
which connect points Aþ and Bþ.

Before proceeding we note that the system (64) is
invariant under the transformation t ↦ −t and H0;1 ↦
−H0;1 which explains the observed symmetries of this
system. This will becomes particularly obvious when the
global phase portrait is taken into account.
In order to show the global phase portrait of our

system, we follow the standard procedure, see e.g., [42],
of introducing the Poincaré sphere thereby compactifying
the entire phase space to the unit sphere. We introduce the
new variables

X ¼ H0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2

0 þH2
1

p ; Y ¼ H1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2

0 þH2
1

p ; ð65Þ

so that the region H0; H1 → ∞ corresponds to the boun-
dary of the unit circle. The critical points at infinity are
found by finding the roots of the function

Gmþ1 ¼ XBmðX; YÞ − YAmðX; YÞ ¼ 0; ð66Þ

where Am;Bm stand for the highest order polynomial
power in the right-hand sides of (64). However, this system
is not polynomial in the variables so we expanded the
system near infinity and extracted the leading order poly-
nomial terms in that expansion. These are quadratic in the
variables, so m ¼ 2, and are given by

A2 ¼
−15147 − 16894 sinð2θÞ þ 5245 sinð4θÞ þ 11920 cosð2θÞ þ 1979 cosð4θÞ

8ð123 − 87 cosð2θÞ þ 231 sinðθÞ cosðθÞÞ ; ð67Þ

FIG. 1. Phase portrait near the critical points. Quadratic model
fðTÞ ¼ T þ αT2 with α ¼ −0.1.

TABLE I. Critical points and eigenvalues of the model fðTÞ ¼
T þ αT2 with α ¼ −0.1.

Point H0 value H1 value Eigenvalues λ Properties

Aþ þ0.719 −0.571 1.093� 2.517i Unstable spiral
A− −0.719 þ0.571 −1.093� 2.517i Stable spiral
Bþ þ0.679 0 −3.309;−1.157 Stable node
B− −0.679 0 3.309; 1.157 Unstable node
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B2 ¼
−39345 − 43358 sinð2θÞ þ 14483 sinð4θÞ þ 32072 cosð2θÞ þ 4777 cosð4θÞ

84ð−82 − 77 sinð2θÞ þ 58 cosð2θÞÞ : ð68Þ

It turns out that these terms are independent of the
parameter α which consequently only affects the local
critical points. Given that m ¼ 2 the function G3 of (66)
will have at most pairs of roots. Each root θnðn ¼ 1; 2; 3Þ
comes with an associated root located at θn þ π. The
global phase portrait with critical points at infinity
including the previously discussed local critical points
is given in Fig. 2.
It appears that there are only two pairs of critical points

at infinity in Fig. 2. This has to do with the fact that two of
these pairs are very close to each other. The angular values
θi; i ¼ 1; 2; 3 which determine the locations of those
points on the unit circle ðcosðθiÞ; sinðθiÞÞ are approxi-
mately θ1 ¼ 2.450; θ2 ¼ 2.962 and θ3 ¼ 2.971. As men-
tioned above, these come with their associated pair located
at θi þ π.
This is not a numerical effect but a true feature of the

dynamical system. This can be seen by showing a detailed
phase portrait near these points, see Fig. 3. One sees that
both critical points θ2 and θ3 are “close” to each other,
however, they show distinct features. The lower point
attracts trajectories while the upper one repels them, a
feature which is lost when the entire phase space is shown.

From a physical point of view it is important to
point out that all critical points at infinity are located
in the second or fourth quadrant of the phase space.
This means all solutions approaching these points will
always have one contracting and one expanding Hubble
parameter, in the second quadrant we have H0 < 0 and
H1 > 0 while in the fourth quadrant we have H0 > 0 and
H1 < 0. Only the local critical points B� are different in
the sense that the Hubble parameters H1 identically
vanishes, H1 ¼ 0.
This model clearly displays a very interesting dyna-

mical behavior which contains various epochs where the
4-dimensional part of the manifold expands, the right half
of the phase space shown in Fig. 2. During the expansion
of the 4-dimensional part of the manifold, the extra
7-dimensional part will eventually contract due to the
location of the critical points at infinity. We can conclude
that the extra dimensions, in general, affect the dynamics of
the 4-dimensional part of the manifold and that inflationary
epochs are naturally part of such systems. No matter
sources are required to drive the expansion (or contraction)
and consequently one could conclude that epochs of
expansion appear naturally in such models.

FIG. 2. Global phase portrait with critical points at infinity.
Quadratic model fðTÞ ¼ T þ αT2 with α ¼ −0.1.

FIG. 3. Detailed global phase portrait near two nearby
critical points at infinity. Quadratic model fðTÞ ¼ T þ αT2

with α ¼ −0.1.
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V. CONCLUDING COMMENTS

Modified teleparallel models of gravity were studied in
eleven dimensions and applications to cosmology were
considered. The four-dimensional part of the manifold was
assumed to be the usual FLRW manifold with flat constant
time hypersurfaces while the seven extra dimensions were
assumed to be products of parallelizable spheres, that isS1; S3

and S7. Using these assumptions one is led to the following
four possible compactifications of the extra dimensions:
T7; T4 × S3; S1 × S3 × S3, and S7. For each of these cases
the corresponding structure of the 1-forms fieldwas obtained.
These vielbeins constitute the starting point for any fðTÞ
cosmological model including the above mentioned com-
pactifications, because they represent the basis responsible for
the parallelization of the manifolds under consideration, i.e.,
they define the space-time structure. Endowed with this
important information, we obtained the fðTÞ cosmological
equations for each of the cases in question.
In Sec. IV we analyzed the structure of the equations more

closely by considering the possibility of having de Sitter-like
epochs in the four dimensional FLRW submanifold due to
the presence of the extra dimensions. In the absence of any
matter content, and fixing the Hubble factors of the extra
dimensions to be vanishing, we could show that not all
topologies considered give rise to situations where the extra
dimensions can drive a period of accelerated expansion. In
fact, for the cases analyzed, S7 is clearly favored from a
theoretical point of view, in particular regarding the inter-
pretation of an early time inflationary era driven by the extra
dimensions. Due to the fact that the size of the extra
dimensions and the constant Hubble factor of the infla-
tionary stage satisfy a−21 ¼ H2

0=2, it was shown that the
dynamical equations favor the evolution towards the stable
node Bþ corresponding to large exponential growth given by
the smallness of the 7-sphere S7.
It remains unclear why only the 7-sphere naturally leads

to a vacuum inflationary stage, but it should be emphasized
that this property was anticipated at the end of Ref. [27]. As
a matter of fact, something similar happens in D ¼ 7,
where the 3-sphere plays the role of powering vacuum
inflation there, see the mentioned reference. In order to
prove that S7 is the sole topology driving inflation in
D ¼ 11, we need to consider the remaining eleven different
topological products of spheres possible. One of those, the
case S3 × S2 × S2, is considered in the Appendix C, from
where it is easy to understand, again, that S7 appears to be
the most natural choice. Continuing along those lines, we
expect to develop the appropriate techniques in order to
deal with the complete set of “nontrivial” internal space
parallelizations in the future.
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APPENDIX A: SPHERICAL COORDINATES
IN D DIMENSIONS

In obtaining explicit parallel one-forms fields for Min,
it will be very convenient to introduce hyperspherical
coordinates ðθ1; ::θj−1;ϕÞ in Sj, which are related to the
cartesian coordinates Xj in the internal space Rjþ1, accord-
ing to

Xk ¼

8>>>>><
>>>>>:

r cos θ1 if k ¼ 1

r cos θkΠk−1
p¼1 sin θp if k ¼ 2;…; j − 1

r sinϕΠj−1
p¼1 sin θp if k ¼ j

r cosϕΠj−1
p¼1 sin θp if k ¼ jþ 1

ðA1Þ

Now, by inverting these equations, we obtain the spherical
coordinates in terms of Cartesian coordinates, i.e.,

r2 ¼ X2
1 þ � � � þ X2

jþ1;

θk ¼ arccos

0
B@ XkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPjþ1

i¼k X
2
i

q
1
CA; k ¼ 1;…; j − 1;

ϕ ¼ arctan

�
Xj

Xjþ1

�
; ðA2Þ

In order to change coordinates, we will need the Jacobian of
the coordinate transformation in question. The derivatives
of the above expressions with respect to Xi are

∂r
∂Xk

¼Xk

r
;

∂θl
∂Xk

¼
8<
:
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jþ1

i¼l
X2
i−X

2
l

p
�
δkl−

XkXlP
jþ1

i¼l
X2
i

�
if k≥ l

0 if k<l:

ðA3Þ
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APPENDIX B: ON THE REMNANT GROUP OF
LORENTZ TRANSFORMATIONS AND THE
UNIQUENESS OF THE VIELBEIN FIELD

In this short section we discuss the remnant symmetries
underlying fðTÞ gravity, and their impact on the set of
parallelizations admissible for a given spacetime. Details
concerning the following exposition can be found in [35].
In general, under a Lorentz transformation of the vielbein

Ea → Ea0 ¼ Λa0
bEb, the Weitzenböck invariant T in D

spacetime dimensions transform as

T → T 0 ¼ T þ e−1dðϵi1;…;iðD−2Þ;a;bE
i1…EiðD−2ÞηbcΛa

ddΛd
cÞ;
ðB1Þ

where the wedge product ∧ is understood. Note that T is a
scalar only under the global Lorentz group (dΛd

c ¼ 0).
The remnant group AðEaÞ of a given spacetime

ðT ⋆M;EaðxÞÞ is defined as the subgroup of SOð1;D−1Þ
under which T becomes a Lorentz scalar, i.e., by demanding

dðϵi1;…;iðD−2Þ;a;bE
i1…EiðD−2ÞηbcΛa

ddΛd
cÞ ¼ 0: ðB2Þ

If we consider infinitesimal Lorentz transformations

Λa
b ¼ δab þ

1

2
σcdðxÞðMcdÞab þOðσ2Þ; ðB3Þ

where σcdðxÞ ¼ −σdcðxÞ are the DðD − 1Þ=2 parameters of
the transformations, and

ðMcdÞab ¼ δacηdb − δadηcb; ðB4Þ

the term appearing in (B2) results

Λa
ddΛd

c ≃ −
1

2
dσbdðMbdÞac ¼ ηcbdσba: ðB5Þ

In this way, the condition (B2) becomes

ϵi1;…;iðD−2Þ;a;bdðEi1 ∧ … ∧ EiðD−2Þ Þ ∧ dσab ¼ 0: ðB6Þ

Recall that, inD spacetimedimensions,wehaveD − 1 boosts
generators Kα ¼ M0α, and 1

2
ðD − 1ÞðD − 2Þ rotations

Jα ¼ − 1
2
ϵαβγMβγ.

Not much can be said about the solutions of Eq. (B6) in
general. However, for the specific case under consideration,
the structure of the parallel vector fields allow us to briefly
explore some consequences of it. Regarding the vielbein
components given in Eq. (11), we immediately note that,
due to the fact that E0 ¼ dt, we have

dðE0 ∧ ϕ̃Þ ¼ dt ∧ dϕ̃; ðB7Þ

for any of the 8–forms ϕ̃ which can be constructed by
wedge products of Ei. Solutions of the Eq. (B6) will
include, then, time dependent corresponding Lorentz gen-
erators. For instance, if

ϕ̃ ¼ E1 ∧ … ∧ E8; ðB8Þ

then a (time dependent) free rotation parameter σ910ðtÞ will
solve Eq. (B6). This is so because dσ910ðtÞ ∝ dt, and then
dðE0 ∧ ϕ̃Þ ∧ dσ910 ¼ 0. Of course, many more time de-
pendent rotations are allowed; actually, the full time
dependent group of rotations about a certain axis is
contained in (B6). It is possible to show that certain
time-dependent Lorentz boost are also contained in
AðEaÞ, see [35]. This infinite set of allowed 1-form fields,
each of them connected by remnant symmetries, are
representative of the nonuniqueness of the parallelization
process of the cosmological manifold under consideration.

APPENDIX C: Min = S3 × S2 × S2

Here, as an example of “nontrivial” internal space
parallelization, we proceed to show a case in which the
product topology of the internal dimensions is not con-
stituted by parallelizable spheres. As a consequence of the
nonparallelizability of S2, the one-form fields have not the
block structure coming from the topological product, but
instead, they will contain cross terms. Even though no
global basis exist for S2, it certainly exists for the three
dimensional manifold S1 × S2, which is orientable. Explicit
global fields for T �ðS1 × S2Þ are [43]

E1ðS1 × S2Þ ¼ a0X3dx1 − a2ðX2dX1 − X1dX2Þ;
E2ðS1 × S2Þ ¼ a0X2dx1 þ a2ðX3dX1 − X1dX3Þ;
E3ðS1 × S2Þ ¼ a0X1dx1 − a2ðX3dX2 − X2dX3Þ; ðC1Þ

where the coordinates of S1 × R3 in which we are embed-
ding S1 × S2, are ðx1; X1; X2; X3Þ. Although we have not an
S1 in the internal space, the trick consists on using the
periodic coordinate on it (here x1), to “rectify it,” and to
think about it as one of the coordinates of the external
space. Clearly, this process involves the inclusion of the
spatial section of the FRW4 space, so the block structure of
the field is broken. In this way, a global basis for the entire
eleven dimensional manifold M consists of two copies of
the sort (C1), one corresponding to S3 [see Eq. (20)], plus
the temporal part and the remaining bulk dimension.
In spherical coordinates ðθ1; θ2;ϕ1; θ3;ϕ2; θ4;ϕ3Þ we

have the internal metric

ds2in ¼ a1ðtÞ2dΩ2
3 þ a22ðtÞdΩ2

2;ð1Þ þ a23ðtÞdΩ2
2;ð2Þ; ðC2Þ

where
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dΩ2
3 ¼ dθ21 þ sin2θ1dθ22 þ sin2θ1sin2θ2dϕ2

1; ðC3Þ
dΩ2

2;ð1Þ ¼ dθ23 þ sin2θ3dϕ2
2; ðC4Þ

dΩ2
2;ð2Þ ¼ dθ24 þ sin2θ4dϕ2

3: ðC5Þ

The invariant T is given by

T ¼ −2ð9H1H0 þ 6H1H2 þ 6H1H3 þ 3H2
1 þ 6H0H2 þ 6H0H3 þ 3H2

0 þ 4H2H3 þH2
2 þH2

3 − 3a−21 − a−22 − a−23 Þ:
ðC6Þ

The fðTÞ field equations are given by:

f þ 2f0ð2a−23 þ 2a−22 þ 6a−21 − TÞ ¼ 16πGρ; ðC7Þ

4f00
�
3H1

2
þH0 þH2 þH3

�
_T þ 4f0

�
−
3

2
H1H0 þ

3

2
_H1 þ

3

2
H2

1 −H0ðH2 þH3Þ

þ _H0 þ _H2 þH2
2 þ _H3 þH2

3 þ 3a−21 þ a−22 þ a−23 −
T
2

�
þ f ¼ −16πGp0: ðC8Þ

4f00
�
H1 þ

3H0

2
þH2 þH3

�
_T þ 4f0

�
−
1

2
H1ð3H0 þ 2H2 þ 2H3Þ þ _H1

þ 3

2
_H0 þ

3

2
H2

0 þ _H2 þH2
2 þ _H3 þH2

3 þ 2a−21 þ a−22 þ a−23 −
T
2

�
þ f ¼ −16πGp1: ðC9Þ

2f00ð3H1 þ 3H0 þH2 þ 2H3Þ _T þ 2f0
�
−3H1H2 þ 3 _H1 þ 3H2

1 þ 3H0ðH0 −H2Þ

þ 3 _H0 − 2H2H3 þ _H2 þ 2 _H3 þ 2H2
3 þ 6a−21 þ a−22 þ 2a−23 −

T
2

�
þ f ¼ −16πGp2: ðC10Þ

2f00ð3H1 þ 3H0 þ 2H2 þH3Þ _T þ 2f0
�
−H3ð3H1 þ 3H0 þ 2H2Þ þ 3 _H1 þ 3H2

1

þ 3 _H0 þ 3H2
0 þ 2 _H2 þ 2H2

2 þ _H3 þ 6a−21 þ 2a−22 þ a−23 −
T
2

�
þ f ¼ −16πGp3: ðC11Þ

APPENDIX D: EXPLICIT FORMS OF FUNCTIONS A AND B

_H0 ¼ ½b2fð21ðH0 þ 2H1ÞðH0 þ 8H1Þf00 − f0Þ
þ 6f0f21ð6b2H4

0 þ 336b2H0H3
1 þH0H1ð59b2H2

0 − 46Þ þ 3H2
1ð71b2H2

0 − 28Þ − 8H2
0 þ 196b2H4

1Þf00
þ ð14 − 3b2H0ð3H0 þ 7H1ÞÞf0g�=½18b2f0ðf0 − 3ð21H0H1 þ 4H2

0 þ 14H2
1Þf00Þ�; ðD1Þ

_H1 ¼ ½6f0ð−3ð1029b2H0H3
1 þ 21H2

1ð27b2H2
0 − 16Þ

þ 4H0H1ð34b2H2
0 − 35Þ þ 4H2

0ð3b2H2
0 − 4Þ þ 686b2H4

1Þf00 − ð3b2H1ð3H0 þ 7H1Þ þ 4Þf0Þ
− b2fð3ð2H0 þ 7H1ÞðH0 þ 8H1Þf00ðTÞ þ f0ðTÞÞ�=½18b2f0ðTÞðf0 − 3ð21H0H1 þ 4H2

0 þ 14H2
1Þf00Þ�; ðD2Þ

with f ¼ T þ αT2, f0 ¼ 1þ 2αT, f00 ¼ 2α and where b is given by

b2 ¼ −
84α

1þ 12αðH2
0 þ 7H0H1 þ 7H2

1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 576α2ðH2

0 þ 7H0H1 þ 7H2
1Þ2

p : ðD3Þ
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