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ABSTRACT: Ground-motion models (GMMs) are used in probabilistic seismic hazard analysis (PSHA)
to estimate the probability distribution of earthquake-induced ground-motion intensity measures (IMs).
Accounting for spatial correlation and cross-IM correlation in ground-motion data has important implica-
tions on seismic hazard and risk assessment outputs. The current practice estimates the spatial correlation
separately from the GMM estimation process, which may result in inconsistent and inefficient estimators
of parameters in the spatial correlation models and GMMs. Moreover, several correlation models between
different IMs have been calibrated and validated based on the NGA-West and NGA-West2 databases and
advanced GMMs. However, modeling the correlation between different IM types has not been ade-
quately addressed by current, state-of-the-art GMMs for Italy. To address those issues, this study first
develops a series of new Italian GMMs with spatial correlation for 31 amplitude-related IMs, including
peak ground acceleration (PGA) and peak ground velocity (PGV) and 5% damped elastic pseudo-spectral
accelerations (PSA) at 29 periods ranging from 0.01 s to 4 s. The model estimation is performed through
a recently-developed one-stage non-linear regression algorithm proposed by the authors, known as the
Scoring estimation approach. Based on the newly-developed GMMs, this study finally proposes a set of
analytical correlation models between the selected IMs for the considered Italian dataset.

1. INTRODUCTION ment. The cross-IM correlation is often required for
the performance-based seismic design and assess-
ment of structures, for instance, in the definition of
target IMs to be used for ground-motion simulation,
selection, and modification (e.g., the generalized
conditional intensity measure or GCIM (Bradley,
2010), the conditional spectrum or CS (Lin and
Baker, 2015)). These correlations can be addressed
in the GMM estimation stage or in a subsequent
stage after the GMMs are estimated.

A typical GMM is presented as a mixed-effect
nonlinear model with a certain spatial correlation
structure (Jayaram and Baker, 2010) and can be
written in a vector form as in Eq.(1),

Ground-motion models (GMMs) are empirical
models describing the probability distributions of
intensity measures (IMs) at a site, given an earth-
quake of a certain magnitude occurred at a nearby
location. GMMs are widely used in probabilistic
seismic hazard analysis (PSHA). The dependence
between various IMs from a single event at multi-
ple sites plays a crucial role in PSHA of spatially-
distributed systems (e.g., portfolios of structures
and lifelines). Such a dependence is due to a com-
mon source and a wave traveling paths and due to
the similar distance to fault asperities (Park et al.,
2007). Jayaram and Baker (2009) and Weather-
ill et al. (2015), among others, have shown that Y, =f(X;,b)+n,+¢&, i=1,....N, (1)
the spatial correlation in ground motions has im-

portant implications for seismic hazard/risk assess- where Y;=log;,IM;=(log;,IM;y,...,log;, IM,-ni)Tis
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an n; x 1 logarithmic IM vector at sites je{1,...,n;}
of earthquake i; f(X;, b)=[f(X;1,b), ..., f (X, b)] "
is an n;x1 vector of ground-motion prediction
functions f(X;j, b) of coefficients b and predic-
tors X;; (e.g., magnitude and distance); 1,=n;1,,
and (7;)i=1,..n are independent and identically
distributed inter-event errors with E(n;) = 0 and
var(n;) = 72 for all ic{l,....,N} with 1, is an
n;x1 vector of ones; (&;)i—i,.n are n;x1 inde-
pendent intra-event error vectors with E(€&;)=0 and
cov(€;)=02Q;(®), where Q;(®) is the correlation
matrix of earthquake i with unknown parameters @;
(Ni)i=1,...~ and (&;);—1,.. n are assumed to be mu-
tually independent; N is the number of earthquakes;
n; is the number of stations for earthquake i.

To account for the spatial correlation, the jj’-th
entry of Q;(®), Q; (@), is
Q, i (@) =p(&j(sij), &j(siy)) (2)

where p(&;(sij), &(siy)) represents the spatial
correlation between €;; and &;; at locations s;; and
s;j of stations j and ;' during earthquake i. As-
suming the field of €; is stationary and isotropic,
the spatial correlation only depends on the distance

between stations j and j', d; jj'» such that,

p(&i(sij): & (sip)) = p(dijp). (3)
There are many correlation functions available in

the literature (e.g., Rasmussen and Williams, 2006),
one example is the exponential model,

p(d; ;i) =exp(—d; jy/h), (4)
where £ is the range parameter in km, at which the
spatial correlation is around 0.37.

Numerous GMMs are developed for Europe and
Italy, including Akkar and Bommer (2010); Bindi
et al. (2014) for Europe and Bindi et al. (2011)
for Italy (hereafter, AB10, BMLA14 and ITA10).
However, due to the complexity in the estimation
process, these GMMs do not account for the spatial
correlation in their analysis (i.e., Q;(@) = I;, where
I; is an n; X n; identity matrix for earthquake 7).

To evaluate the spatial correlation in European
and Italian ground motions, Esposito and Iervolino
(2012) have studied the semivariograms computed
from the residuals of AB10 and ITA10, respec-
tively. The spatial correlation function they used is
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similar to Eq. (4) but with a factor three in the nu-
merator, which estimates the effective range A, the
distance at which the spatial correlation is around
0.05. The relation between the effective range h
and the range parameter s is h = 3h (Zimmerman
and Michael, 2010). Moreover, Esposito and ler-
volino (2012) developed a predictive model for 4 as
a function of the structural period T'.

To incorporate the spatial correlation into the
GMM estimation, Jayaram and Baker (2010)
adopted the framework of the classical geostatisti-
cal method (Zimmerman and Michael, 2010) and
proposed a multi-stage algorithm, which, however,
may result in an inconsistent estimator of @, thus,
resulting in estimators of b (although consistent)
statistically inefficient and estimators of 7> and >
both inconsistent and statistically inefficient. Also,
the multi-stage algorithm may suffer from slow
convergence and it is sensitive to the initial pa-
rameter values. Furthermore, the multi-stage algo-
rithm can not account for more advanced (e.g., non-
stationary) spatial correlation functions. Recently,
Ming et al. (2019) introduced a one-stage nonlinear
algorithm for GMMs with spatial correlation, also
known as the Scoring estimation approach. This
method is proved to be statistically rigorous, nu-
merically stable, and capable of estimations of var-
ious spatial correlation models.

Once the GMMs with spatial correlation are esti-
mated, they can be used to develop analytical cross-
IM correlation models. Several cross-IM corre-
lation models have been calibrated and validated
based on the NGA-West and NGA-West2 databases
(Baker and Cornell, 2006; Bradley, 2011, 2012;
Baker and Bradley, 2017) and advanced GMM:s.
Furthermore, Cimellaro (2013) studied the corre-
lation in spectral ordinates for Europe based on
595 records of events from 1973 to 2003 in Europe
and Middle East with M,,>5 and R;p<100 km, us-
ing the GMMs without spatial correlation proposed
by Ambraseys et al. (2005). However, modeling
the correlation between different IM types has not
been adequately addressed by current, state-of-the-
art ground-motion models for Italy.

Based on the discussion above, this study first de-
velops a series of new Italian GMMs with spatial
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correlation for various amplitude-based IMs. The
model estimation is performed through the Scoring
estimation approach recently proposed by the au-
thors. Given these newly-developed GMMs, this
study finally proposes a set of analytical correla-
tion models between the selected IMs for the Ital-
ian dataset. It is worth noting that the developed
one-stage estimation approach can also account for
the cross-IM correlation and this feature is currently
under investigation by the authors, especially in
terms of implications on the GMM estimates.

The Italian case is of special interest in this study
because the Italian data is principally from earth-
quakes in extensional regions that are poorly repre-
sented in global databases (Scasserra et al., 2009)
and past practice in Italy has been to use local
GMMs based on limited datasets that cannot re-
solve many significant source, path, and site effects.

2. DATASET

The dataset is extracted from the European Strong-
Motion (ESM) flatfile (Lanzano et al., 2018) and
the following selection criteria are applied,

events occurred within Italy;

events with moment magnitude M,, > 4
events with at least two recording sites.
recording station with Joyner-Boore distance
(i.e., the closest distance to the surface projec-
tion of the rupture plane) R;p < 250 km;

e recording stations are free-field;

e removing records without information of M,,,
fault types, or Vg3p (i.e., the average shear-
wave velocity in the upper 30 m of the soil);

e remove stations with redundant site informa-
tion (e.g., co-located sites).

The selected dataset includes 7,843 records from
233 earthquakes of 4 < M,, < 6.9 in Italy from 1976
to 2016. The geographical distribution of the se-
lected dataset is shown in Figure 1, together with
the M,, — R;p distribution and the site classifications
according to Eurocode 8 (CEN, 2004). 66% of the
selected data are caused by the rupture of normal

1

UIf the finite-fault model is available, Rz is computed
based on the fault geometry from ESM; if not, for M,, > 5.5,
Rjp is estimated from epicenter distance R.p,; by empirical
relationship (Stucchi et al., 2011), otherwise the earthquake
source is assumed to be a point source and Ryp = Rp;.
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Figure 1: (a) Geographical distribution of 233 events
4 < M,, <6.9 in Italy from 1976 to 2016. The epicen-
ters are in circles, whose size is scaled by event M,,,.
(b) M,,-R;p distribution. The ECS site classification is
shown: ‘-’ for class A ; ‘o’ for class B; ‘1]’ for class C;
‘X’ for class D; ‘x’ for class E.

faults, 23% caused by the reverse faults and 11%
by strike-slip faults; most data is collected from sta-
tions of site class B/stiff soil.

3. METHODOLOGY

3.1. Model specification

The GMMs are developed for 31 amplitude-
based IMs: peak ground acceleration (PGA) in
cm/s?, peak ground velocity (PGV) in cm/s and
5% damped elastic pseudo-spectral accelerations
(PSA) in cm/s? at 29 periods ranging from 0.01
s to 4 s. The RotD50 IM definition proposed by
Boore (2010) is used, consisting of the median
single-component horizontal ground motion across
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all non-redundant azimuths. It is noted that AB10,
ITA10 and BMLA14 used the geometric mean IM,
however, the difference between the two definitions
is limited (Boore, 2010).

For consistency with Ming et al. (2019), the func-
tional form, f(X;j, b), is the same as AB10 and is
similar to ITA10, as follows,

f(Xij,b) = by + by My +bs My,

+ (by + bs Mw,i) logy m

+D78s,ij+bgSa,ij+boFn;i+bioFR,,

)

where M,, is the moment magnitude; R;p is the
Joyner-Boore distance in km; Sg and Sy are the
dummy variables for soil type, such that (Ss,S4) =
(1,0) for soft soil, (Ss,S4) = (0, 1) for stiff soil and
(Ss,S4) = (0,0) for rock; Fy and Fg are the dummy
variables for style-of-faulting, such that (Fy, Fg) =
(1,0) for normal fault, (Fy, Fg) = (0, 1) for reverse
fault and (Fy, Fg) = (0,0) for strike-slip fault. The
spatial correlation function is set as Eq.(4).

3.2.  Estimation algorithm

The Scoring estimation approach, which is a mod-
ified Newton—Raphson algorithm, is briefly intro-
duced here. Details can be found in Ming et al.
(2019). The unknown parameters in the GMM, de-
noted by a¢=(b", 72,62, @")" as the complete vec-
tor of model parameters are estimated by maximiz-
ing the log-likelihood function, /(@), as follows,

l(a) = ——Z%l o
_ %[Y —f(X,b)]'C1(8)[Y — (X, b)]

In(27) — %ln\C(6)| o

where Y=(Y/,...,Y5) '; covariance matrix C(8) is
a block diagonal matrix of C,'=‘Czlnani+GzQ,~(a));
£(X,b)=[f(X1,b)",....f(Xy,b)"]".

The Scoring estimation approach finds the esti-
mate of @& that maximizes /(@) in equation (6) via
the general updating equation in equation (7):

a“V=ag®irt@“s@”) @
where a(k) is the estimate of & at iteration k, and
_Jdl(a) _ [dl(a) dl(ax)
S(a) = Sa Ila)=E [ e da |- (8)

The updating equation for the Scoring estima-
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tion approach are obtained by replacing the nega-
tive Hessian matrix in the Newton—Raphson algo-
rithm, —H(et), by the Fisher information matrix,
I(a) (Fisher, 1925). In summary, the steps of the
Scoring estimation approach are as follows,

1. Set initial values a(l);

2. Given @V , update parameters by Eq. (7);

3. Repeat step 2 until /(@) in Eq. (6) is maxi-

mized and the estimates converge.

3.3.  Computation of cross-IM correlation
Once the GMMs with spatial correlation have been
estimated, the cross-IM correlation can be esti-
mated by the empirical Pearson correlation coeffi-
cients. Following Baker and Cornell (2006), this
study have applied the following steps to compute
the empirical correlation coefficients:

1. Compute the inter- and intra-event residuals

for each IM,
1, 1€ ' [Yi—f(Xi, b)]
L+l o,
& =Y, f(Xi,b) -7

2. Scale the residuals by the estimated standard

deviations,

~

9)

ni=1/%, &=E&/C (10)
3. Compute the empirical correlation coefficient,
p(IMy,IMp) =
~ (1) =(2 N ~~(1) %)\ 2(1) 2
P(TI( )J’I( ))?(1)1(2)+p(£( ),e( ))6(1)6(2)

(1) (2
Gtotal Gtotal

(11)
where ﬁ(ﬁ(l),ﬁ(z)) and 5(5(1),5(2)) are the
correlation coefficients of the inter- and intra-
event residuals of a pair of IMs of interest, re-
spectively; Gjprq1 = V O2 + T2.

Although the current practice estimates the
GMMs for each IM individually and then assess
the cross-IM correlation separately, several stud-
ies (e.g., Goda and Hong, 2008; Arroyo and Ordaz,
2010) have shown that it is possible but challenging
to incorporate the spatial cross-IM (i.e., considering
both spatial correlation and cross-IM correlation at
the same time) in the GMM estimation process, re-
quiring often stricter assumptions. This aspect is
currently under investigation by the authors.
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3.4. Modeling of cross-IM correlation
The analytical correlation model between various
IMs and structural period is developed through the
following steps (Baker and Cornell, 2006),
1. Apply the Fisher z transformation to the em-
pirical correlation coefficients

1 (14p
=3 (13)

where z is the transformed data with a constant
standard deviation var(z) = 1/4/YY n;—3
2. Propose a parametric correlation model p(¢);

3. Estimate the parameters ¢ by nonlinear least
squares and the objective function is

bt (o239 o

where K is the number of IMs.

4. RESULTS AND DISCUSSIONS

4.1. GMMs with spatial correlation

The estimated GMM parameters are presented in
Table 1.The median predictions for PGA, PGV and
PSA(T=1.0) for stiff soil assuming Vs30=580 m/s
for a normal fault event are visually compared to
AB10, ITA10 and BMLA14 in Figure 2. The me-
dian predictions for PGA and PSA(T'=1.0) are very
consistent with the reference GMMs (i.e., gener-
ally lie within +1 6, of the derived models).
The median predictions for PGV are similar to that
of ITA10. Generally, the newly-developed GMMs
seem fairly consistent with the literature.

The distribution of residuals from the derived
model against distance and magnitude are inves-
tigated, although they are not reported here due
to space limitations, showing there is no distance-
and magnitude-dependency in either inter- or intra-
event residuals and implying an overall good fitting.

The parameters in the spatial correlation are es-
timated by the Scoring estimation approach devel-
oped by the authors as a by-product of the GMM
estimation. To compare the results with existing
studies, the effective range 7 computed from £ (i.e.,
h = 3h) is compared to the predictive models of Ja-
yaram and Baker (2009) for cluster sites scenario
and the model of Esposito and Iervolino (2012) for

(12)
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Italy, as shown in Figure 3. It is shown that the
overall trend of % obtained in this study is consis-
tent with the two reference models. However, the
effective range h derived in this study is generally
smaller than those of the existing models. This
may be due to the use of the classical geostatisti-
cal method, which generally tends to overestimate
the parameters in spatial correlation (Ming et al.,
2019). Moreover, Ming et al. (2019) demonstrated
that, although both the multi-stage algorithm and
the Scoring estimation approach produce consistent
estimators of b, the estimators of 7 and ¢ produced
by the multi-stage algorithm are inconsistent and it
seems to underestimate T and overestimate ¢ com-
pared to the Scoring estimation approach.

4.2.  The empirical correlation coefficient

The empirical correlation coefficients for PSA for
multiple period pairs, 77 and 7; between 0.01 s and
4 s, are shown in Figure 4, which are compared to
three existing cross-IM correlation models: Cimel-
laro (2013) for Europe, applicable for 0.05s <7 <
2.5 s; Akkar et al. (2014) for Europe and the Mid-
dle East, applicable for 0.01 s < T < 4 s; Baker
and Jayaram (2008) for worldwide shallow crustal
regions, applicable for 0.01 s <7 < 10s. The com-
parison is not reported here due to space limitations.

The results show that the empirical PSA-PSA
correlation coefficients derived in this study follow
a similar trend as the existing models except for the
Cimellaro (2013) model. Baker and Bradley (2017)
have reported that the model of Cimellaro (2013)
may have a numerical error since it produces neg-
ative correlations for some period pairs. In gen-
eral, the observed PSA correlation coefficients in
the Italian data are slightly higher than the consid-
ered studies, particularly, when the separation be-
tween 7| and 75 is large (e.g., 0.01 s and 4 s).

The empirical PGA-PSA and PGV-PSA corre-
lation coefficients are shown in Figure 5. The
results are compared to several studies (Bradley,
2011, 2012; Baker and Bradley, 2017). As shown
in Figure 5, the PGA-PSA correlations are simi-
lar to that in the NGA-West2 dataset (Baker and
Bradley, 2017) and the models of Bradley (2011).
Regarding the PGV-PSA correlation, the trend ob-
tained in this study are similar to the NGA-West2
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Table 1: Estimated parameters for the ground-motion models proposed in this study

M by by b3 by b5 b(, by bg bg b]o T (e} h
PGA 3.524 0.247 -0.020 | -3.936 | 0.351 12.417 0.228 0.160 | -0.060 0.080 0.247 0.370 8.476
PGV 0.742 0.188 0.015 -3.089 | 0.286 8.529 0.308 | 0.144 | -0.021 0.037 0.261 | 0.301 3.788
0.010 3.544 0.244 | -0.019 | -3.943 | 0.352 12.438 | 0.228 | 0.160 | -0.060 0.080 0.247 | 0.370 8.333
0.025 3.770 0.191 -0.016 | -3.995 | 0.359 12.220 | 0.224 | 0.156 | -0.059 0.082 0.248 | 0.372 7.730
0.040 4.340 0.099 | -0.014 | -4.198 | 0.387 11.956 | 0.212 | 0.148 | -0.054 0.091 0.249 | 0.385 7.596
0.050 4.668 0.048 | -0.013 | -4.303 | 0.399 11.931 | 0.211 | 0.155 | -0.055 0.096 0.243 | 0.401 9.919
0.070 4.975 0.034 | -0.013 | -4.401 | 0.404 12.404 | 0.215 | 0.157 | -0.070 0.092 0.237 | 0.420 12.964
0.100 4.941 0.099 | -0.015 | -4.345 | 0.379 14.067 | 0.212 | 0.163 | -0.088 0.090 0.244 | 0.430 12.816
0.150 3.667 0.445 | -0.032 | -3.867 | 0.290 15.633 | 0.192 | 0.160 | -0.087 0.099 0.248 | 0.416 9.761
0.200 2.584 0.687 | -0.042 | -3.454 | 0.225 16.378 | 0.190 | 0.162 | -0.088 0.094 0.251 | 0.394 6.343
0.250 1.710 0.793 | -0.039 | -3.011 | 0.165 15.061 | 0.195 | 0.132 | -0.076 0.083 0.260 | 0.366 2.080
0.300 1.214 0.808 | -0.034 | -2.748 | 0.137 13.969 | 0.220 | 0.140 | -0.076 0.059 0.257 | 0.357 2.396
0.350 0.867 0.802 | -0.026 | -2.538 | 0.109 13.637 | 0.246 | 0.141 -0.071 0.048 0.255 | 0.346 1.927
0.400 0.573 0.786 | -0.019 | -2.387 | 0.096 12917 | 0.260 | 0.138 | -0.068 0.042 0.258 | 0.337 1.360
0.450 0.170 0.834 | -0.021 -2.274 | 0.090 12.086 | 0.280 | 0.146 | -0.068 0.031 0.261 0.333 1.375
0.500 | -0.131 | 0.861 | -0.020 | -2.174 | 0.081 11.509 | 0.293 | 0.149 | -0.069 0.025 0.265 | 0.329 1.405
0.600 | -0.481 | 0.838 | -0.012 | -2.020 | 0.068 10.626 | 0.312 | 0.151 -0.053 0.015 0.269 | 0.324 2.227
0.700 | -0.648 | 0.764 | -0.002 | -1.913 | 0.066 9.487 0.319 | 0.153 | -0.038 0.010 0.276 | 0.316 2.922
0.750 | -0.844 | 0.785 | -0.002 | -1.869 | 0.063 9.292 0.323 | 0.152 | -0.032 0.006 0.278 | 0.314 3.375
0.800 | -0.884 | 0.753 0.002 -1.850 | 0.066 8.990 0.326 | 0.151 | -0.031 | -0.001 | 0.281 | 0.312 3.823
0.900 | -1.235 | 0.798 0.000 -1.786 | 0.064 8.238 0.331 | 0.145 | -0.024 | -0.007 | 0.286 | 0.310 3.682
1.000 | -1.329 | 0.754 0.006 -1.753 | 0.068 7.660 0.343 | 0.144 | -0.013 | -0.006 | 0.291 | 0.307 3.877
1.200 | -1.602 | 0.744 0.008 -1.720 | 0.076 7.043 0.355 | 0.143 | -0.002 | -0.017 | 0.298 | 0.305 4.463
1.400 | -1.827 | 0.726 0.013 -1.670 | 0.077 6.393 0.356 | 0.137 0.004 -0.020 | 0.301 0.303 5.485
1.600 | -1.869 | 0.684 0.016 -1.714 | 0.091 6.070 0.365 | 0.133 0.008 -0.022 | 0.304 | 0.300 5.599
1.800 | -1.782 | 0.580 0.029 -1.692 | 0.089 5.903 0.358 | 0.129 0.011 -0.026 | 0.306 | 0.300 6.547
2.000 | -1.887 | 0.572 0.030 -1.689 | 0.091 5.858 0.345 | 0.127 0.021 -0.020 | 0.308 | 0.299 7.921
2.500 | -2.114 | 0.596 0.026 -1.785 | 0.114 5.873 0.324 | 0.115 0.042 -0.014 | 0.320 | 0.298 9.095
3.000 | -2.113 | 0.531 0.032 -1.822 | 0.122 6.108 0.314 | 0.112 0.061 -0.017 | 0.330 | 0.298 8.906
3.500 | -2.166 | 0.500 0.035 -1.843 | 0.126 6.275 0.304 | 0.101 0.081 -0.010 | 0.337 | 0.298 9.585
4.000 | -2.088 | 0.438 0.039 -1.914 | 0.141 6.361 0.305 | 0.101 0.094 0.000 0.340 | 0.301 9.688
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Figure 2: Median predictions for (a) PGA, (b) PSA(T=1.0), and (c) PGV for stiff soil assuming Vs3o = 580 m/s

for a normal fault event.
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Figure 3: Comparison of effective
range h for different models.
data (Baker and Bradley, 2017) and the models of
Bradley (2012), though the derived PGV-PSA cor-
relation is higher than the reference models. Fur-
thermore, the empirical PGA-PGV correlation co-

Figure 4: Contours of empirical
PSA-PSA correlation.

Figure 5: Empirical PGA-PSA and

PGV-PSA correlation.

efficient is 0.861 in this study, which is slightly

higher than 0.733 obtained in Bradley (2012).
These results show that the correlations observed

in this study have a higher (in terms of absolute
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value) correlation than the reference models, which
implies different features in the Italian data from
that in the global data. This may be due to the
poor representation of normal fault events in global
dataset (e.g., 19% normal fault events and 7% of
total records NGA-West2 dataset).

4.3. The cross-IM correlation models
The results in the previous sections show there is
a need for correlation models calibrated based on
the Italian data. In this section, a set of analytical
cross-IM correlation models is developed.
Following Baker and Jayaram (2008), the PSA-
PSA correlation model is as follows: if T < 0.1,
p = Cy; else if Tpin > 0.1, p = Cy; else if Tiax <
0.2, p = min(C,,C3) ; else p = C3, where Ty =
max (7, 73), Tmin = min(7y,T») and

Ci =1—cos [m/2—0.2351 In(Tnax /Tmin) | , (14)

1
C =1-0.0617|1—

2 { 1+ exp(100Tpax —5)]

(15)
Tmax — Tmin
Tmax —0.0099 /’

T Tin
G =C1+0.3131(\/C1—C1) 14 cos 01 .
(16)

Following Bradley (2011, 2012), the analytical
correlation models between PGA/PGV and period
T is as follows, fort,_; < T <1t,,

5= (¢ 12L¢2) (& ;Pz) tanh {¢4ln (%)}

(17)
where the parameters ¢, are shown in Table 2.

5. CONCLUSIONS

This paper develops a series of GMMs with spa-
tial correlation for 31 amplitude-based IMs by
a recently-developed one-stage non-linear regres-
sion algorithm proposed by the authors. The es-
timated model parameters, including the effective
range of the spatial correlation function, are con-
sistent with the literature. Based on the newly-
developed GMM, the empirical correlation between
various IMs observed in the considered dataset are
computed and compared to the existing correlation
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Table 2: The estimated parameters in Eq. (17)

M | n I 91 ) [12] [
0 | 0.01 - - - -
PGA 1 0.2 1.000 | 0.950 | 0.045 2.225
2 4 1.000 | 0.344 | 0.783 0.824
0 | 0.01 - - - -
PGV 1 0.1 0.859 | 0.722 | 0.045 2.533
2 0.5 0.711 0912 | 0.203 1.681
3 4 0917 | 0.686 1.450 1.306

models, which implies that the correlation features
in the Italian data have not been adequately ad-
dressed by literature. Finally, this study proposed a
set of analytical correlation models between the se-
lected IMs for the considered Italian ground-motion
data. The results of this study can be used to im-
prove hazard/risk assessment exercises in Italy.
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