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ABSTRACT: The fatigue limit state (FLS) often drives the design of offshore wind turbine (OWT) 

substructures. Numerical assessment of fatigue damage over the life of a structure is computationally 

expensive, due to the need for time-history simulation of a large number of environmental conditions. This 

makes structural reliability for FLS a challenging task as it also requires numerical sampling of random 

variables to model uncertainty in the estimation of fatigue damage. This paper proposes using Gaussian 

process regression to build surrogate models for fatigue damage caused by different environmental 

conditions. A case study demonstrates how the proposed approach reduces the computational effort 

required to evaluate the FLS. Finally, a structural reliability calculation using the surrogate model highlights 

the large scatter in fatigue life prediction due to parameter uncertainty.

1. INTRODUCTION 

Offshore wind power is a growing form of 

electricity generation. This is particularly true in 

Europe where most current offshore wind farms 

(OWFs) utilize offshore wind turbines (OWTs) on 

monopile foundations to harvest wind energy and 

generate electricity. The design of these structures 

is currently specified by prescriptive codes, e.g., 

IEC 61400-3 (International Electrotechnical 

Commission 2009). These codes mainly 

implement the load-resistance factor design 

(LRFD) approach to achieve a certain safety level 

in structural components. LRFD is a semi-

probabilistic approach, although the implied safety 

is not always intelligible to design engineers. 

Specifically, current codes prescribe safety factors 

and different load combinations to account for 

structural demand- and capacity-affecting 

uncertainties, and to ensure ‘safe’ designs over a 

range of limit states. These factors are currently 

adapted from the offshore Oil & Gas industry and 

onshore wind turbines, and have not been 

specifically calibrated for OWT. 

The fatigue limit state (FLS) often drives the 

design of OWTs (Hubler et al. 2018). Code 

provisions, e.g. (International Electrotechnical 

Commission 2009), allow a single combination of 

wave parameters to be analyzed for each mean 

wind speed, typically distributed into 2m/s bins. 

This is a simplification, as environmental 

parameters vary within bins, and have a complex 

correlation structure (Hubler et al. 2018). 

Additionally, 60 minutes worth of simulated OWT 

behavior is required for each set of environmental 

conditions, to ensure a stable estimation of damage 

accumulating over a turbine’s 20-year design life. 

This makes assessment of an OWTs FLS 

computationally expensive, and often prevents a 

full structural reliability assessment. However, the 

use of reliability analysis would allow better 

calibration of design-code safety factors and would 

also allow for potentially more optimized 

structures (e.g., in terms of costs) through an 

explicit probability-based design approach. The 

current, state-of-practice approaches employed to 

reduce the computational burden for FLS are 

summarized in the following section. 
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This paper introduces a fatigue reliability 

calculation relying on a surrogate modelling 

technique for efficient fatigue load-case 

calculation. The proposed approach also allows 

one to quantity the variability introduced by 

modelling fatigue parameters as random variables. 

An illustrative application, combining case-study 

environmental conditions and an archetype OWT, 

are introduced in Section 2, and these are used in 

Section 3 to develop a Gaussian process (GP) 

surrogate model for FLS analysis. The output from 

the model is discussed in Section 4.  

1.1. Analysis reduction approaches for FLS 

The structural response of an OWT to 

environmental loading is commonly calculated 

using computer-based simulators, which require a 

set of input parameters unique to the OWT and 

environmental conditions being assessed. The 

OWT response is predicted through a series of 

empirical or numerical relationships (Vorpahl et al. 

2013). From a high-level perspective, the simulator 

can be thought of as a ‘black box’ which takes a 

vector of unique inputs (x) and produces an output 

(y) captured by: 

 

𝑦 = 𝑓(𝑥) (1) 

 

Time-domain simulation is commonly used to 

implement Eq. (1) in practice, but, as discussed, it 

is computationally expensive. Efforts to reduce the 

computational demand of fatigue analysis for 

OWTs fall into two categories; either making the 

analysis more efficient or reducing the total 

number of simulations required using: 

 Load-case reduction; 

 Surrogate models; 

 Simplified frequency domain models. 

 

Load-case reduction attempts to reduce the 

computational burden of evaluating a limit state by 

reducing the number of considered load-cases, by 

combining those that produce similar damage 

estimates. This avoids using a statistical model to 

directly predict response. However, the full 

structural simulation needs run once (Kuhn 2001). 

It therefore does not provide a sufficient saving in 

terms of computational load to allow for numerical 

sampling. 

Surrogate models replace the simulator in 

Eq.(1) with an estimator 𝑓(𝑥), which can be fit 

statistically to outputs from simulator runs at a 

generic set of inputs (Rasmussen and Williams 

2006). Complex linear surrogate model can capture 

a larger range of behavior than simplified linear 

models, at the cost of increased complexity and 

specificity of the model to the training data. One 

highly flexible type of model consists of a 

regression built on the use of GPs, which fits an 

adaptable form to sets of observed data. For 

instance, (Huchet et al. 2017) found that a GP 

model was suitable for estimating the FLS of four 

‘response topologies’ (analytical surfaces 

representing different types of possible response: 

peaked, crested and double peaked) evaluated 

using the OWT design codes. The GP was fitted to 

mean wind speed and wind-wave misalignment. 

Similarly, (Brandt et al. 2017) used a GP model fit 

to wave height, peak spectral period, mean wind 

speed, wind turbulence, wind direction and wave 

direction with small bias. GPs have been fitted to 

all environmental parameters of a conventional 

FLS assessment without introducing large model 

uncertainty. A different approach by (Häfele et al. 

2018) consisted of using a GP to summarize fatigue 

damage against different geometrical parameters to 

optimize an OWT jacket sub-structure. GP 

regression has therefore been used in two different 

contexts: (1) representation of fatigue damage 

directly against environmental conditions; and (2) 

to represent lifetime fatigue damage against 

geometrical properties of the turbine.  

The simplified frequency-domain based 

models are not used in detailed design (Seidel et al. 

2016) as they don’t model the complex interaction 

between control system and mean wind speed.  

Surrogate models provide a suitable solution, 

allowing the use of expensive time-domain 

simulation with a built-in estimation of 

uncertainty. However, the different assumptions 

encoded within a GP have not been compared for 

OWT on monopiles. Additionally, GPs have not 
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been used to date to represent the fatigue damage 

for input into a structural reliability analysis. 

2. GAUSSIAN PROCESSES APPLIED TO 

OWT FATIGUE ASSESSEMENT  

2.1. Fatigue damage calculation 

Fatigue damage is cumulative, increasing over a 

structures operating life as it responds to variable 

loading. In structural design, fatigue damage is 

commonly estimated by assuming that the number 

of load cycles to fatigue failure (N) resulting from 

constant amplitude loading is a function of the 

applied stress range (S) and is represented by an 

SN-curve (DNV GL 2016). The effect of variable-

amplitude loading, caused by stochastic 

environmental conditions, can be estimated by (1) 

assuming the ratio of the number of applied cycles 

to the tolerable number of cycles consumes a fixed 

proportion of fatigue life; and (2) that the 

proportion of fatigue life consumed by a load 

spectrum can be evaluated by summing the fatigue 

life exhausted by each individual stress cycle (i.e., 

Miners rule): 

 

𝐷𝑗 = ∑
𝑛𝑗𝑖

𝑁𝑗𝑖

𝑁𝑠𝑡𝑟

𝑖=1

=
1

𝐾𝜇

∑
𝑛𝑗𝑖

𝑆𝑗𝑖
−𝑚

𝑁𝑠𝑡𝑟

𝑖=1

 (2) 

 

Where 𝐷𝑗  is the total fatigue damage 

calculated over all 𝑖 stress ranges (𝑁𝑠𝑡𝑟) occurring 

during an analysis (indexed 𝑗); 𝑚 is the slope of the 

SN curve; and 𝐾𝜇 is a constant that determines the 

location of the x-axis (the number of cycles to 

failure axis) intersection of the SN curve. To 

calculate the stress range (𝑆𝑗𝑖) and the number of 

applied cycles (𝑛𝑗𝑖)  in Eq. (2), a structural 

simulation is run at a specific combinations of 

environmental parameters and stresses at the 

seabed are extracted. The fatigue damage (Dj,life) 

is then scaled linearly from the analysis length 

(𝑇𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠) to the life of the structure (𝑇𝑙𝑖𝑓𝑒): 

 

𝐷𝑗,𝑙𝑖𝑓𝑒 =
𝑇𝑙𝑖𝑓𝑒

𝑇𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠

⋅ 𝐷𝑗 (3) 

2.2. Fatigue limit state equation 

A limit state function, G, defines whether a 

structure satisfies the performance target defined 

by the limit state being assessed. In the FLS, this is 

whether the fatigue damage accumulated during 

the OWT life is large enough to threaten the 

structure. In Eq. (3), fatigue damage is calculated 

for a single environmental state which is assumed 

to persist over the entire life of the OWT. However, 

in practice, a large variety of environmental 

conditions occur. The damage predicted by Eq. (3) 

(𝐷𝑗,𝑙𝑖𝑓𝑒)  is weighted by the probability of 

occurrence of the corresponding environmental 

conditions (𝑃𝑗): 

 

𝐺(𝑥𝛿 , 𝑥𝑆𝑁) = 𝑥𝛿 − 𝑥𝑆𝑁 [∑ 𝐷𝑗,𝑙𝑖𝑓𝑒 ⋅ 𝑃𝑗

𝑁𝑠𝑚𝑝

𝑗=1
] (4) 

 

If 𝐺(𝑥𝛿 , 𝑥𝑆𝑁)  is below zero, the OWT is 

assumed to fail during its life, as the accumulated 

fatigue damage is larger than the fatigue damage 

capacity. Uncertainty in the fatigue capacity (𝑥𝛿) 

and SN curve (𝑥𝑆𝑁) parameters are captured by 

modelling them as random variables. The 𝑁𝑠𝑚𝑝 

term is the number of samples.  

The probability of failure can then be 

evaluated by plain Monte Carlo sampling the 

uncertain variables and averaging over the number 

of limit state samples (𝑁𝐿𝑆𝑠𝑚𝑝): 

 

𝑃𝑓 =
1

𝑁𝐿𝑆𝑠𝑚𝑝

∑ 𝐼(𝐺𝑖(𝑥𝛿 , 𝑥𝑆𝑁))
𝑁𝐿𝑆𝑠𝑚𝑝

𝑖=1

(5) 

 

In Eq. (5), 𝐼(⋅) is an indicator function which 

has a value of one if the limit state sample 

𝐺𝑖(𝑥𝛿 , 𝑥𝑆𝑁)  is negative (the structure fails). The 

probability of failure 𝑃𝑓  is then equivalent to an 

expectation over the indicator function . 

2.3. Surrogate model definition 

The damage term in Eq. (4) can be evaluated using 

a surrogate model instead of the computationally 

expensive structural simulation. GP regression is 

used here, assuming that the observed data is 

drawn from an underlying stochastic process. 
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Estimates for new data can then be generated by 

conditioning the process on the observations. 

When applied to a practical regression problem, the 

GP reduces from an infinite dimensional process to 

a finite dimensional multivariate Gaussian 

distribution, due to the marginalization feature of 

Gaussian distributions (e.g., Rasmussen and 

Williams 2006).  

Predictions of unknown test values (𝑦∗) are 

generated by conditioning the GP on training 

observations, comprising pairs of output 

observations (𝒚)  and input environmental 

conditions (𝒙). This results in a multivariate 

conditional Gaussian distribution defined by a 

mean (𝜇𝒙∗) and a covariance (𝛴𝒙∗) function: 

 

Pr(𝑦∗|𝒙∗, 𝒙, 𝒚) ~𝑁(𝜇𝒙∗ , Σ𝒙∗) 

𝜇𝒙∗ = 𝐤𝒙∗,𝒙(𝐤𝒙,𝒙 + 𝜎𝑛
2𝑰)

−1
𝐲             (6) 

Σ𝒙∗ = 𝐤𝒙∗,𝒙∗ − 𝐤𝒙∗,𝒙(𝐤𝒙,𝒙 + 𝜎𝑛
2𝑰)

−1
𝐤𝒙,𝒙∗ 

 

In Eq. (6), 𝜎𝑛
2  models the noise about the 

observed values and 𝑰  is an identity matrix that 

assigns the it to diagonal terms of the  𝒌𝑥,𝑥 matrix. 

The training observation values 𝒚  at input 

locations 𝒙 enter directly into the conditional mean 

prediction equation as a linear combination of 

training sample observations (𝒚). 

The value of each entry in the covariance 

matrix can be calculated using a kernel, i.e., a 

function modelling the relationship between the 

input data. The form of the kernel function is 

variable and encodes assumptions about the 

relationship of the response at different location in 

the regression. One common choice is the squared-

exponential kernel function (Rasmussen and 

Williams 2006) which is defined based on the 

magnitude of the distance between two input 

vectors, and results in a smooth regression surface. 

In this paper the GP, given in Eq. (6), is 

conditioned on observations of fatigue damage 

predicted using a computationally expensive time-

domain dynamic analysis. In this context 𝒙 is a set 

of environmental conditions and 𝒚  is the vector 

corresponding to fatigue damage values (𝐷𝑗,𝑙𝑖𝑓𝑒) 

predicted using the analysis model. Prediction of 

lifetime fatigue damage (𝑦∗) can be made for sets 

of input environmental conditions (𝒙∗) that have 

not been explicitly evaluated. 

 
Table 1: Probability distributions used to model 

environmental conditions at the FINO 3 site. 
Variable Distribution Dependency Limits 

𝑉𝑤 Weibull N/A [4;24] 

𝑇𝑖 Weibull; Gamma 𝑉𝑤 [0.01;0.18] 

𝐻𝑠 Gumbel; Weibull 𝑉𝑤 [0.01;7] 

𝑇𝑝 Bimodal Gumbel 𝐻𝑠 [1;15] 

𝜃𝑤𝑖𝑛𝑑 
Non-parametric 

KDE 
𝑉𝑤 

[0;180] 
𝜃𝑤𝑎𝑣𝑒 

Non-parametric 

KDE 
𝐻𝑠; 𝑇𝑝 

 

  

  
Figure 1. Environmental conditions measured at the 

FINO 3 site. The mean of each distribution is 

identified by an 'x', the 0.05 and 0.95 quantiles by a 

circle, and the mode by a red line. 

3. ILLUSTRATIVE APPLICATION 

3.1. Case-study site 

This study uses environmental data measured at the 

FINO3 met-mast, located in the German sector of 

the North Sea. Measured site environmental data 

was post-processed into joint-environmental 

distributions by (Hübler et al. 2017). The 

environmental conditions utilized in this work 

were: the mean wind speed (𝑉𝑤) , turbulence 
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intensity (𝑇𝑖) , peak spectral period (𝑇𝑝) , 

significant wave height (𝐻𝑠), wind inflow angle 

(𝜃𝑤𝑖𝑛𝑑) and wave inflow angle (𝜃𝑤𝑎𝑣𝑒). The full 

set of dependencies are summarized on Table 1, 

and the non-angle variables are plotted on Figure 

1, to show the dependencies and variation of 

conditions within 2m/s mean wind speed bins. In 

the subsequent analysis the wind and wave inflow 

angle were combined into a single variable, 

misalignment (𝜃𝑚𝑖𝑠) , reducing the number of 

environmental variables to five. 

3.2. OWT numerical model 

The 3-bladed NREL 5MW OWT on monopile sub-

structure (Jonkman et al. 2009) is used as the 

reference structure in this study. A list of full 

dimensions and material properties are provided by 

(Jonkman et al. 2009). The turbine is operational 

between mean wind speeds 3m/s to 25m/s and the 

rated rotor speed is 12.1rpm. The structural 

response of the OWT to different environmental 

conditions is calculated in the time-domain using 

the aero-hydro-elastic wind turbine simulation 

package FAST (Jonkman and Jonkman 2015). 

Within the structural model the OWT foundations 

were modelled using the apparent fixity method 

(Zaaijer 2006). 

Analysis time series were generated in 10-

minute-long sets. The stress time history is 

repeated 36 times, generating a 6-hour long time 

series. This mitigates against the observed 

increases in predicted fatigue damage with 

increased analysis length which is due to the effect 

of unclosed cycles in the rainflow counting 

algorithm (Hübler et al. 2017), as ratio of unclosed 

to closed cycles is reduced by duplicating the stress 

time history. The rainflow counting algorithm is 

then used to extract the magnitude and number of 

different stress ranges occurring within the 6-hour 

stress time history, allowing fatigue damage to be 

estimated using Eq. (2).  

Fatigue damage is calculated for a single weld 

located at the mudline. The weld is a transverse 

butt weld with no weld toe grinding (DNV class D 

(DNV GL 2016)) and it is assumed to be protected 

from corrosion by cathodic protection. The DNV 

SN curves are bi-linear in the log scale. To simplify 

the limit state calculation, only the initial part of the 

SN curve is used, making the curve linear. Fatigue 

damage is estimated using this method at 12 

locations equally distributed around the piles 

mudline cross-section, with the largest value being 

extracted for use in the fatigue life calculation. 

 

 
Figure 2. DNV SN curve, showing experimental mean, 

standard deviations and design curve.  

3.3. Uncertainty – SN curves 

The linear damage accumulation approach 

contains uncertainty in both the SN curve and the 

tolerable damage at failure (DNV GL 2016). In 

current design, the SN curve is fit to data from 

experimental tests and a linear relationship is fitted 

to the data. However, these tests exhibit large 

variability and in fatigue design, the 10th percentile 

of experimental typically data is used as a “design 

curve”. This introduces a large quantity of 

conservatism into designs according to this 

method, as indicated on Figure 2. In Eq. (4), the 

fatigue curve parameters were included as random 

variables, to capture the uncertainty in the 

experimental data (DNV GL 2015). The tolerable 

damage (𝑥𝛿)  term is modelled as a lognormal 

random variable with normal mean equal to one 

and normal standard deviation 0.3; the SN 

uncertainty (𝑥𝑆𝑁) is modeled as a lognormal with 

mean -0.91 and standard deviation 0.46; the effect 

of such assumption on the SN curve is shown in 

Figure 2.  

3.4. Training/Testing data 

Training sets were used to fit the GP models and a 

validation set was used to compare the quality of 



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 

Seoul, South Korea, May 26-30, 2019 

 6 

different surrogate models. The training and 

validation set were each generated using a sample 

of 1,000 analyses (each with 6 seeds) drawn 

randomly from the input environmental 

distributions. These samples were constructed 

sequentially by taking 1,000 uniformly distributed 

random numbers for each variable and using the 

inverse cumulative distribution functions (iCDF). 

3.5. Statistical model fitting 

The GP model is fitted to the training data by using 

maximum likelihood estimation. Different 

assumptions concerning the form of the GP were 

tested, as described by (Rasmussen and Williams 

2006), including: 

 Kernel function: squared exponential (SE), 

Matern 3/2, Matern 5/2 and rational quadratic. 

 Underlying function on which the GP is fit: 

none and linear function. 

 Inputs: not standardized and standardized (i.e. 

inputs converted to approximate standard 

normally distributed form). 

 

An estimation of total lifetime fatigue damage 

can then be generated by integrating damage at 

individual environmental conditions (𝐷𝑗,𝑙𝑖𝑓𝑒) 

across the site joint probability distribution (the 

term inside the square brackets in Eq. (4)). The 

damage integration is solved using Monte Carlo 

sampling with 1,000,000 random samples drawn 

from the GP and joint PDF between the upper and 

lower bounds on Table 1.  

Each combination of kernels was tested, with 

the accuracy of the resulting GP evaluated using 

three metrics: (1) Bias; 𝐵𝑖𝑎𝑠 = 𝔼[𝑦̂𝑖 − 𝑦𝑖] , 

indicating whether the predictor consistently 

under- or over- predicts results. (2) Mean squared 

error; 𝑀𝑆𝐸 =
1

𝑛−𝑝
∑(𝑦̂𝑖 − 𝑦𝑖)

2 , measuring the 

expected error. (3) Coverage of the 50% and 95% 

confidence intervals, e.g. for a well-calibrated 

model around ~50% of the validation observations 

should fall within the 50% confidence intervals. 

The metrics rely on: estimate at the 𝑖𝑡ℎ ∈ [1, 𝑛] 
validation point (𝑦̂𝑖) ; the observed value at each 

validation point (𝑦𝑖)  predicted using FAST; and 

the number of dimensions of the predictor (𝑝) , 

which is 5. 

4. RESULTS 

4.1. Goodness of fit / Kernels 

All combinations of kernel function, basis 

function, and standardization listed in Section 3.5 

are tested, with a summary of the key results in  

Table 2. Validation from the SE and Matern 5/2 

kernels, shown on Figure 3, confirm the slightly 

reduced bias and scatter observed with the Matern 

kernel; however, the coverage metrics were 

slightly worse. The Matern 5/2 was best with both 

sample sets and is used in remainder of this paper. 

These findings agree with (Häfele et al. 2018) who 

found this kernel represented joint fatigue loads for 

an OWT on a jacket substructure well. 

 

  
Figure 3. Validation plots for two GP models in terms 

of design equivalent load (DEL) (Seidel et al. 2016). 

4.2. Number of samples 

The computational burden required to run the 

6,000 structural simulations is large. Additionally, 

the standard GP algorithm retains all training 

points, making models with large training samples 

slower. Any reduction in the required number of 

samples has a double benefit. However, in 

advance, it is not clear whether reducing the 

number of samples or seeds will have a greater 

impact on the accuracy of the surrogate model. The 

number of seeds will change the number of 

analyses at a specific set of input conditions and 

may improve the coverage metrics (as noise at each 

input point will be defined better). Whereas 

changing the number of samples will affect the 

sampling quality over the input conditions, which 

should effect the mean square error. 
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Different numbers of random samples and 

seeds were tested by drawing sets of 1,000 

bootstrapped samples from the full set of analysis 

results ( 1,000 ⋅ 6 ); the consequent scatter in 

goodness of fit metrics were assessed for these 

reduced analysis sets. The results, presented on 

Figure 4, suggest that both the number of samples 

and seeds can be reduced without a large impact on 

the mean squared error and the coverage. In the 

remainder of this paper an analysis set is used 

consisting of two seeds (because of coverage and 

MSE metrics) and 300 samples (because of MSE). 

4.3. Reliability calculation 

Reliability assessment was implemented using Eq. 

(5), evaluated with 2,000,000 limit state samples. 

Modelling the SN random variable resulted in 

predictions of lifetime fatigue damage with scatter, 

shown on Figure 5, with CoV 0.063. The limit state 

values, also include randomness in tolerable 

damage, plotted on Figure 6, also showing a best 

fit GEV distribution. The probability of failure 

over a 20-year design life is 8.63e-4. Scatter in the 

limit state is caused by the uncertainty in the SN 

curve and tolerable damage, and the best fit GEV 

has a CoV of 0.394, indicating high uncertainty 

introduced by modelling tolerable damage as a 

random variable. Within the limit state equation, 

the two random variables act against each other: 

the SN curve randomness increases capacity (as the 

design curve is conservative), whereas modelling 

tolerable damage as random reduces capacity 

(because the median is below one).  

This results in ~22% of limit state samples 

falling below the limit state predicted using the 

design SN curve and damage tolerance of 1. 
 

Table 2: Kernel parameters and fitting metrics for a subset of the GP used to represent fatigue damage. 
No samples 1000*6 300*2 

Gaussian process 

type 

SE 

kernel 
[gprMdl

] 

Matern 

5/2 

kernel 
[gprMdl1

] 

SE 

kernel 
[gprMdl

] 

Matern 

3/2 

kernel 
[gprMdl1

] 

Matern 

5/2 

kernel 
[gprMdl1

] 

Rational 

quadratic 

kernel 
[gprMdl12] 

Standardised

; matern 5/2 

kernel 
[gprMdl14] 

Basis 

function 

matern 

5/2 

kernel 
[gprMdl1

] 

Standardised;basi

s function matern 

5/2 kernel  
[gprMdl16] 

Sigma: 4.128 3.412 4.297 3.429 3.830 3.290 3.830 3.439 3.191 

LengthScale1 (Vw) 2.428 4.745 29.949 66.325 39.538 

[ N
/A

 ] 

9.659 30.533 0.760 

LengthScale2 (Ti) 0.513 0.848 0.704 1.095 0.809 30.391 0.490 0.002 

LengthScale3 (Hs) 1.823 2.930 2.115 2.321 1.963 1.928 0.933 0.542 

LengthScale4 (Tp) 0.946 1.705 1.291 2.596 1.849 1.202 1.118 0.276 

LengthScale5 

(θMis) 
55.194 75.197 52.879 98.203 78.049 1.740 44.711 117.778 

SigmaF 32.382 35.309 34.303 31.323 29.726 58.929 29.726 15.562 14.693 

LogLikelihood -6312 -6036 -1891 -1855 -1871 -1857 -1871 -1853 -2113 

Bias -0.455 0.059 -0.354 -0.246 -0.246 -0.192 -0.246 -0.153 0.644 

MSE 45.322 29.513 41.270 37.012 36.515 40.064 36.515 39.471 204.410 

 Coverage: 95% 
0.935 0.931 0.925 0.927 0.927 

1. 0.93

0 
0.927 0.925 0.949 

50% 0.669 0.682 0.627 0.642 0.639 0.649 0.639 0.639 0.643 

   
Figure 4. Impact of number of samples and number of seeds on GP accuracy, showing: 90% coverage (left), 50% 

coverage (middle) and MSE (right).
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Figure 5. Histogram of 20-year fatigue damage values 

when SN uncertainty is modelled. 

 
Figure 6. Histogram of limit state values when fatigue 

material parameters were modelled as random 

variables. 

5. CONCLUSION 

GP regression is a suitable method for reducing the 

computational burden of evaluating the FLS for 

OWT structures. It results in a statistical model that 

is interpretable and, additionally, also allows 

efficient reliability assessment. In this paper, the 

SN uncertainty and tolerable fatigue damage were 

modelled as random variables, indicating the large 

scatter these parameters introduce into evaluation 

of the fatigue limit state.  
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