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Inequality of household consumption and
air pollution-related deaths in China
Hongyan Zhao1,2,10, Guannan Geng 2,10, Qiang Zhang1, Steven J. Davis1,3,4, Xin Li 5, Yang Liu1, Liqun Peng2,

Meng Li1, Bo Zheng 2, Hong Huo6, Lin Zhang 7, Daven K. Henze 8, Zhifu Mi 9, Zhu Liu 1,

Dabo Guan 1 & Kebin He2

Substantial quantities of air pollution and related health impacts are ultimately attributable to

household consumption. However, how consumption pattern affects air pollution impacts

remains unclear. Here we show, of the 1.08 (0.74–1.42) million premature deaths due to

anthropogenic PM2.5 exposure in China in 2012, 20% are related to household direct

emissions through fuel use and 24% are related to household indirect emissions embodied in

consumption of goods and services. Income is strongly associated with air pollution-related

deaths for urban residents in which health impacts are dominated by indirect emissions.

Despite a larger and wealthier urban population, the number of deaths related to rural

consumption is higher than that related to urban consumption, largely due to direct emissions

from solid fuel combustion in rural China. Our results provide quantitative insight to

consumption-based accounting of air pollution and related deaths and may inform more

effective and equitable clean air policies in China.
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Outdoor air pollution in China has caused more than
1 million premature deaths per year in recent years1,2,
and considerable research effort has thus been

devoted to identifying its sources3–7 and cost-effective mitigation
options8–11. It is known that direct emissions from households
(i.e., fuel combustion for home cooking, and/or independent
heating) substantially contribute to the PM2.5 pollution-related
premature deaths in China3,4,12–14. Yet household consumption
may also indirectly impact human health via air pollution vir-
tually embodied in goods and services consumed7,15–17, and
regional clean air policies which focus on direct sources may thus
encourage leakage of polluting activities to other regions which
may have less resources to control emissions and provide health
services18. Whereas previous studies have examined the embo-
died water use19,20, energy consumption21,22, and emissions23–26

of regions’ household consumption (including the roles of
income, geography, culture, age, household size, regional poli-
cies27–29), no previous studies have quantified air pollution-
related deaths embodied in household consumption. In addition
to linking the locations of consumed goods to sources of air
pollution, such a consumption-based accounting of air pollution
deaths also requires tracking the physical transport of that pol-
lution in the atmosphere and estimating the related deaths.
Herein, we distinguish air pollution deaths related to emissions
directly produced by a household from those related to emissions
embodied in goods consumed by a household as direct and
indirect, respectively.

Using a combination of four economic and physical models
and province-level income and consumption statistics, we
quantify the air pollution health impacts from both direct and
indirect emissions of household consumption for 12 income
groups (5 for rural and 7 for urban) over 30 provinces in
mainland China. We use a detailed inventory for anthropogenic
emissions in China (MEIC: http://www.meicmodel.org/), house-
hold consumption statistics, and a multi-regional input–output
model of the Chinese economy to quantify direct and indirect
pollutant emissions from household daily consumption by var-
ious income groups, and we then identify and isolate the con-
tributions of these emissions to outdoor PM2.5-related premature
deaths by using the GEOS-Chem adjoint model combined with
the integrated exposure-response (IER) concentration-response
relationships6,30,31. Our work provide quantitative estimates of air
pollution and related deaths attributed to household consumption
from a consumption-based perspective and reveal their differ-
ences according to income levels and locations of the residents.
The findings of this study provide implications on targeted and
equitable air pollution mitigation plans in China.

Results
PM2.5-related deaths attributable to household consumption.
Figure 1 shows the estimated shares of premature deaths due to
anthropogenic PM2.5 air pollution in China in 2012 according to
consumption activities. Of the 1.08 (95% CI: 0.74–1.42) million
deaths, 20% (212 thousand; 95% CI: 144–279) are related to direct
emissions from fuel consumption in households for cooking and
heating (hereinafter referred to as direct emissions), and 24% (271
thousand; 95% CI: 184–358) are related to emissions embodied in
household consumption of goods and services (herein-
after referred to as indirect emissions). The remaining 56% of
deaths are linked to emissions embodied in other consumption
types (i.e., capital investment, government consumption, exports,
and cross-boundary transport) and are not discussed further in
this work. The majority of deaths related to direct emissions
occur in rural household due to massive use of solid fuels (e.g.,
crop residues, wood, and coal) for cooking and heating in rural

areas, while deaths related to indirect emissions are dominated by
urban household consumption. On average, the number of deaths
attributed to rural consumption is higher than that related to
urban consumption when considering both direct and indirect
emissions.

Household consumption related deaths of 12 income groups.
Figure 2 and Supplementary Table 1 show the relationship of
income and air pollution-related deaths due to consumption by
settings (i.e., rural or urban) and emission types (i.e., direct or
indirect). For each setting, bars in Fig. 2 are ordered from the
poorest on the left to the richest on the right (per capita income
plotted in gray line above in Fig. 2). For direct emissions, poor
rural residents are related to more deaths than richer rural resi-
dents as poorer households tend to consume more solid fuel than
richer households. Deaths due to direct emissions of extremely
poor rural residents are 20% greater than those due to direct
emissions of high-income rural residents (Fig. 2), and the poorest
10% of rural residents are related to 21% of air pollution-related
deaths from direct emissions (see Fig. 3c). Compared with rural
households, direct emissions from urban households have much
less health impacts and are less correlated with income levels
because most Chinese urban households have access to clean
fuels32. Health impacts associated with indirect emissions
increase remarkably with income level for both rural and urban
households. Residents in the highest income brackets of rural and
urban areas are related to 2.3 and 3.5 times more deaths than
residents in the lowest income groups, respectively. This phe-
nomenon has also been reported on other environmental foot-
prints from household consumption, such as carbon emissions25

and water use19, which could be attributed to resource-intensive
consumption patterns of rich families.

Taking direct and indirect emissions both into account,
residents in the highest income brackets of rural and urban areas
are related to 1.1 and 3.3 times more deaths than residents in the
lowest income groups, respectively. Figure 3 further shows the
inequality of air pollution-related deaths due to consumption and
income earned by Chinese households in 2012. The richest 10%
of residents earn 29% of total household income and are linked to
13% of air pollution-related deaths. In comparison, the poorest
10% of residents earn only 1% of total household income yet
are linked to 11% of air pollution-related deaths. While the
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Fig. 1 Outdoor PM2.5-related premature deaths attributed to sources and
consumption activities in 2012 in China. Total number of PM2.5-related
premature deaths attributed to anthropogenic emissions, and their
attribution to final demand categories from supply chain perspective.
Source data are provided as a Source Data file
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Fig. 2 Per capita intensity for household consumption related premature deaths of 12 income groups. The income groups are ordered from the poorest on
the left to the richest on the right for rural and urban households, respectively. The per capita income for each income group are shown in gray dot lines.
Error bars present uncertainty ranges (95% CI) of the estimates. Source data are provided as a Source Data file
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Fig. 3 Lorenz curves for air pollution-related deaths attributable to consumption and income earned for households. a Lorenz curve for premature deaths
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distribution of indirect impacts is consistent with the income
(Fig. 3c), the impacts from direct emissions are inversely
distributed to income level (Fig. 3d), meaning that air
pollution-related deaths are more evenly distributed than income
earned nationwide; whereas the Gini coefficient in 2012 was 0.418
(Fig. 3b), the analogous inequality coefficient of air pollution-
related deaths in the same year is only 0.014 (Fig. 3a). Differences
in consumption patterns also affect the spatial distribution of air
pollution-related deaths.

Regional differences in household consumption related deaths.
Figure 4 shows the differences in air pollution-related deaths
attributed to household consumption in seven different regions of
China (see region definitions in Supplementary Table 2 and
Supplementary Fig. 1). Regions are ordered from the poorest
average per capita income on the top to the richest at the bottom
(Fig. 4a). Air pollution-related deaths due to household emissions
in each region are shown by the bars in Fig. 4c, with local (within
region) deaths indicated on the left, and the magnitude and
location of deaths resulting in other regions indicated by the
colored bars on the right. The disparity between numbers of
regional deaths from direct emissions could be explained by
variety in meteorological conditions33 and differences in solid fuel
consumption due to different temperature and income levels34,35.
Health impacts from direct emissions are higher than that from
indirect emissions in poorer and colder regions such as South-
west, Northwest, and Northeast, while impacts from direct
emissions are significantly lower than that from indirect emis-
sions in east coastal regions (Yangtze River Delta and Southeast)
which are richer and warmer. Cross-regional impacts from direct
emissions are more concentrated in downwind regions. In con-
trast, indirect emissions lead to more broad cross-regional health
impacts than direct emissions due to widespread supply chains
across the whole country: 48% of deaths related to household
indirect emissions occur in a different region from where the
household consumption occur, with this share ranging from 31%
in the Southwest to 65% in the Northwest (Fig. 4c). Among
different regions, consumption of goods and services in Central,
North, and Yangtze River Delta regions are linked to the most
deaths due to massive consumption in these regions (Supple-
mentary Fig. 2). Consumption in the relatively poor Northwest

region nonetheless results in substantial deaths in other regions
because its indirect emissions are concentrated in population-
dense areas such as the North and Central regions.

Discussion
This work develops the quantitative relationship between
household consumption and air pollution-related premature
deaths for the first time. Using the newly established method, we
separate the air pollution-related deaths from direct and indirect
consumption for urban and rural residents in China. Although
substantial contribution of solid fuel use on air pollution in China
has been investigated36–38, we find unexpected higher contribu-
tion of rural household consumption to air pollution-related
deaths in China. These findings further emphasize the great
importance of mitigating emissions from direct emissions of rural
households, given that current policies focus more on urban
pollution. Indeed, our results likely underestimate air pollution-
related deaths by rural households because of neglecting the
impacts of indoor air pollution from solid fuel use. Policies that
promote clean energy (e.g., natural gas and electricity use) in rural
households could provide a perfect solution, however, the high
prices, lack of accessibilities to natural gas, and traditional con-
sumption behaver might hinder the promotion of such policy39.
Because urban residents also suffer the pollution from rural
emissions and have higher willingness to pay for alleviating
pollution, providing price subsidy within a certain time period
might be a possible solution given that urban residents pay more
taxes than rural residents. The price of clean energy will be
eventually accepted by rural residents with economy developed
and income increased.

Our results indicate that income and thus the scale of house-
hold expenditures are closely related to the air pollution-related
deaths related to the consumption of urban households in China.
For example, we estimate that 10,000 very rich urban consumers
account for 5.4 premature air pollution-related deaths (95% CI:
3.81–7.0) per year—a factor of 3.3 times more than 10,000
extremely poor urban consumers (1.6 deaths, 95% CI: 1.2–2.1).
This is within the line of other studies related to income and
environmental impacts; impacts of rich urban consumers are
higher than poor consumers by a factor of 3.8–9.5 for different
environmental indicators (i.e., CO2 emissions, air and water
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pollutant emissions, and water use)19,24,25,40. Our work provides
additional insight to this discussion by adding air pollution-
related premature deaths as a new indicator.

Our work provides unprecedented quantitative insight into the
supply chain patterns that link final consumption to air pollution-
related premature deaths. For example, by tracking the health
impacts along the supply chains, we show that the cross-regional
health impacts of emissions embodied in household consumption
of goods and services are much greater than the effects of
atmospheric transport across regional boundaries. Moreover, we
highlight systematic differences in the impacts of household
consumption on residents according to their income level and
location. These findings point to targeted opportunities for pol-
lution abatement, such as direct emissions from solid fuels
burned by rural households, but more importantly offer a basis
for clean air policies that avoid and redress socio-economic and
regional inequities. Reducing emissions throughout the supply
chains will require some combination of improved air pollution
control technologies, changes in energy mix, and changes in the
location of manufacturing41. To the extent these changes must be
undertaken by less economically developed regions and house-
holds, consumption-based policies may better support the needed
technology transfer and capital investment while at the same time
encourage more sustainable consumption behaviors.

Our study is subject to a number of uncertainties and limita-
tions from the use of multiple datasets and complex models. A
detailed, quantitative uncertainty analysis for each step of this
study is conducted and presented in Supplementary Discussion
and the overall uncertainty ranges (95% CI) associated with
mortality estimates are presented in Figs. 2 and 4. First, bottom-
up emission inventories are uncertain due to the lack of complete
data of activity rates and local-measured emission factors42. The
MEIC emission inventory used in this study has been widely
applied in chemical transport models and validated against
observations43,44. Second, incomplete income and expenditure
data at provincial level contribute to the uncertainties in esti-
mating emissions consumed by each income group. Improvement
of statistics reporting system or conducting filed surveys could
remedy this situation in the future. Third, sensitivities of emis-
sions to PM2.5 exposures are simulated from the GEOS-Chem
model and its adjoint, which are also subject to uncertainties due
to incomplete knowledge of chemical and physical processes. We
compare the modeled and the satellite-derived PM2.5 concentra-
tions and reasonable correlations are found for most regions in
China (Supplementary Fig. 3). Last but not least, the IER function
used in mortality estimates are developed based on cohort
studies in western countries and may introduce additional
uncertainties when applying for China due to differences in PM2.5

toxicities, population adaption, and healthcare levels. Using
concentration–response relationships developed from local
cohort studies could improve the estimates of premature mor-
talities in the future.

Methods
Integrated modeling framework. This work combines data and models from
multiple sources to quantify the premature deaths due to PM2.5 pollution related to
household consumption activities of 12 income groups in 30 provinces of mainland
China, as depicted in Supplementary Fig. 4. The datasets used in this study include
a bottom-up emission inventories of major air pollutants obtained from the Multi-
resolution Emission Inventory of China (MEIC39,45: http://www.meicmodel.org/),
the Multi-Regional Input–Output (MRIO) table of China from Mi et al.46, income
and expenditure data over China at national and provincial level from national and
provincial statistical yearbooks47–49, as well as satellite-based ground-level PM2.5

mass concentrations over China from Geng et al.50. All the data are for the year
of 2012.

Production-based emission inventory. The MEIC model, which is developed and
maintained by Tsinghua University, provides the production-based anthropogenic

emissions of sulfur dioxide (SO2), nitrogen oxides (NOx), ammonia (NH3), black
carbon (BC), organic carbon (OC), and anthropogenic PM2.5 dust used in this
study. These atmospheric pollutant emission inventories are used to estimate the
direct and indirect emissions from Chinese household consumption, and as the
inputs for GEOS-Chem model and its adjoint.

The MEIC is a bottom-up emission inventory framework which covers 31
provinces in mainland China and includes more than 700 anthropogenic emitting
sources. It is improved based on the bottom-up emission inventory developed by
the same group42, which uses technology and process-based methods to resolve the
quantitative relationship between emissions and technology turnover. Detailed
description of the technology-based methodology and the source classifications can
be found elsewhere39,45. The sources of the underlying data used in the MEIC
model, including the activity rates, technology penetration data, and emission
factors, are summarized in Zheng et al.39.

Direct and indirect emissions from household consumption. Emissions caused
by household consumption activities come from both household direct energy use
(fuel combustion for home cooking, and/or independent heating, and private car;
i.e., direct emissions) and their expenditure on goods and services which use energy
and other resources as intermediate inputs (i.e., indirect emissions)51.

Household direct emissions by region or provinces can be obtained from the
MEIC model directly. For rural households, direct emissions include residential
biomass/fossil fuel combustion, and private car emissions; for urban households,
direct emissions only include fossil fuel combustion, and private car emissions. All
direct emissions are emitted locally.

Household indirect emissions are produced and emitted throughout the supply
chains among sectors and regions who take part in the production process of
household consumed goods or services. Here, we use the MRIO model of China46

to attribute provincial emissions to household consumption. The MRIO table
includes 30 provincial-level administrative divisions (Tibet, Macao, Hong Kong,
and Taiwan are not included) and 30 aggregated sectors. Detailed information
about the 30 sectors are provided in Supplementary Table 3.

The MRIO analysis starts with the monetary flows between sectors and regions:
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where xr is the vector of total economic output for each sector in province r; Ar,s is
the direct requirement coefficient matrix in which the columns reflect the input
requirement by sector in region r to produce one unit of output of the sector in
region s; yr;st is the final demand vector of category t for each sector that are finally
produced in region r and consumed in region s. Here t= 1, 2⋯5, means rural
household consumption, urban household consumption, government
consumption, capital investment, and exports, respectively. Equation (1) can also
be abbreviated as:

x ¼ Ax þ y ð2Þ
where x, A, and y are the block matrix or vector in Eq. (1). Solving for total output
we can get:

x ¼ I� Að Þ�1y ð3Þ
where I is the identity matrix, and (I−A)−1 is the Leontief inverse matrix.

Combined with the emission intensity by sector, pollutant emissions embodied
in the trade flow can be calculated as:

e ¼ bf I� Að Þ�1y ð4Þ

where bf is the diagonalization of the vector of region-specific pollutant emissions

for unit output by sector. The region-specific pollutant emissions used to produce bf
are obtained from the MEIC model, and the mapping process between sectors
defined in the MEIC inventory and the MRIO model for each province can be
found in our previous studies15,17.

Then, region- and sector-specific emissions attributed to final demand t in
region s can be calculated as:

est ¼ bf I� Að Þ�1
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.
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where est ¼ ðe1;st ; e2;st ; e3;st ¼ e30;st Þ; er;st is a sector-specific vector for emissions
occurred in region r caused by final demand t in region s; yr;st is the finished
products produced in region r consumed in region s belonged to category t.

Then, total emissions from household consumption can be written as:

cest ¼
X
r

X
l

er;sl;t þ dest ð6Þ

where cest is the total emissions from household consumption of region s for final
demand t (rural or urban household consumption); er;sl;t is the emissions of sector l
in region r caused by final demand t in region s, and dest is the household direct
emissions in region s for final demand t.

Tracing household consumption emissions to income groups. In this section,
we trace the estimated emissions from urban and rural household consumption to
various income groups according to their expenditure on daily consuming products
or direct energy consumption.

The income and expenditure data used in this study are obtained from national
and provincial statistic yearbooks47–49. The statistical yearbooks report average
incomes and consumption expenditure patterns for different income groups in a
province based on the sampling survey conducted by the National Bureau of
Statistics of China. Usually, the total households are split into 12 income groups (7
urban and 5 rural) according to the household numbers. The seven urban income
groups are extremely poor (10% of the urban household number), poor (10%),
lower middle (20%), middle (20%), middle high (20%), rich (10%), and very rich
(10%). The five rural income groups are poor (20% of the rural household
number), lower middle (20%), middle (20%), middle high (20%), and rich (20%).

The income and expenditure data from statistic yearbooks have two limitations
that need to be adjusted before our analyses. First, these data are not available for
all the 30 provinces considered in our study. In 2012, only 90% and 43% provinces
report the average incomes by groups for urban and rural households, respectively;
only 83% and 40% provinces report the consumption expenditure patterns by
groups for urban and rural households, respectively. Second, there are
inconsistency in the average incomes of the income groups between different
provinces, because regions or provinces in China experience different development
stages. For example, the poor group of rural household in Beijing has similar
average income value with the middle group of rural household in Heilongjiang.
This might introduce biases when conducting a national analysis.

To solve the problems mentioned above, first, we make an assumption that
those provinces with no grouped income or expenditure data have similar income
or expenditure patterns with the national average or their neighboring provinces.
Using the province-averaged income data adopted from the national statistical
yearbook as scale factor, and the grouped income data from the national average or
the neighboring provinces as proxies, we split the ungrouped data into 12 groups.
Results are shown in Supplementary Fig. 5. Similar approach are used for the
consumption expenditure data. Second, we range all income groups from 30
provinces according to their average incomes for urban and rural separately.
Following the protocol by the statistic yearbooks, we allocate them into seven urban
and five rural groups according to the resident numbers (Supplementary Fig. 6)
instead of the household numbers. The resident numbers of each income groups
are calculated using the following equation:

rnjs ¼
Ps

pphs
´ fracjs ´ pph

j
s ð7Þ

where rnjs is the resident number of income group j in province s; Ps is the total
urban or rural population in province s; pphs is the province-average persons per
household for province s; pphjs is the average persons per household of income
group j in province s; fracjs is the household fraction (10 or 20%) of income group j
in province s.

Using the consumption expenditure patterns for different income groups in
each province, we can trace the indirect emissions estimated in the previous section
to different income groups. The national statistical yearbook has relatively detailed
sectors for household consumption, while provincial statistical yearbooks only
report limited aggregated sectors. Therefore, we first allocate the aggregated sectors
from the provincial data into detailed sectors using national data as proxies. Then
we map them into the 30 sectors in the MRIO table. The mapping processes can be
found in Supplementary Table 3, which is similar to that in Wiedenhofer et al.25.
Sector-specific per capita household expenditure of various income groups by
provinces for rural and urban, separately:

v ¼

v11 v21
v12 v22

..

.

v130

..

.

v230

2
66664

3
77775 ð8Þ

where v1s is a 30 × 5 matrix for sector-specific per capita expenditure of five rural
income groups in province s; v2s is a 30 × 7 matrix for sector-specific per capita
expenditure of seven urban income groups in province s. All these data are based
on the original groups of each province.

Rural and urban household consumption of region s can be split into income
group i as:

yr;s1;i ¼ nisðv1s Þ′=
X5
i¼1

ðni
sðv1s Þ′Þ

" #
′ � yr;s1 ; i ¼ 1 � � � 5 ð9Þ

yr;s2;i ¼ uisðv2s Þ′=
X7
i¼1

ðuisðv2s Þ′Þ
" #

′ � yr;s2 ; i ¼ 1 � � � 7 ð10Þ

where yr;s1;i is the sector-specific finished products produced in region r and
consumed by rural households in region s which are allocated to the new national
income group i. nis ¼ n1;is n2;is n3;is n4;is n5;is

� �
is the rural population in region s

assigned to the new national group i, and its element nj;is means people belonged to
the original group j in region s and are allocated to national income group i.
Similarly, uis and uj;is have the counterpart meanings for urban households. The *
means the hadamard product of the two vectors. Emission embodied in the
corresponding groups can be calculated as:

es1;i ¼ bf I� Að Þ�1

y1;s1;i

..

.

yr;s1;i

..

.

y30;s1;i

0
BBBBBBBBB@

1
CCCCCCCCCA
; i ¼ 1 � � � 5 ð11Þ

es2;i ¼ bf I� Að Þ�1

y1;s2;i

..

.

yr;s2;i

..

.

y30;s2;i

0
BBBBBBBBB@

1
CCCCCCCCCA
; i ¼ 1 � � � 7 ð12Þ

where est;i ¼ ðe1;st;i ; e2;st;i ; e3;st;i ¼ e30;st;i Þ, and er;st;i is a sector-specific vector for emissions
occurred in region r caused by rural (t= 1) and urban (t= 2) households in region
s which belongs to national income group i.

For household direct emissions, different approaches are used for different
emission sources when tracing them into income groups. For urban household fossil
fuel and private car emissions, we use the household expenditure on residential
energy consumption (residence for rural household listed in Supplementary Table 3)
and the emissions from urban and rural household consumption (transport and
communication in rural household), respectively, as proxies to allocate them into
various income groups, similar as the process for indirect emissions (Eqs. (9–12)).
For rural biomass consumption emissions, we use a correlation equation between
biomass consumption and income per capita adopted from Peng et al.34 to allocate
the emissions into various rural income groups. This correlation equation is fitted
using hierarchical regression based on the survey-based per capita income and
biofuel consumption, which is shown below:

tbio;j ¼ 0:7072´ α�0:18
j ð13Þ

where αj is the per capita income of income group j; tbio;j is the biomass consumption
for people at the income group j. Usually, the poor households tend to consume
more biomass and less commercial fuel52. More details about this correlation
equation can be found in Peng et al.34.

Then rural household biomass combustion emissions in region s can be
allocated to national group i as:

esbio;i ¼ ni
sðtsbioÞ′=

X5
i¼1

ðnisðtsbioÞ′Þ � esbio; i ¼ 1 � � � 5 ð14Þ

where tsbio ¼ ½tsbio;1 tsbio;2 tsbio;3 tsbio;4 tsbio;5� is the per capita biomass consumption of
different income groups. Note that tsbio;j used here is based on per capita income of
the original groups in each province. esbio indicates the biomass consumption
related emissions of rural households in region s.

Based on the allocating processes described above, we finally get the province-
and sector-specific emissions induced by household consumption of income group
i in region s: cest;i . Then, emissions attributed to income group i in region s can be
allocated to grid cells based on the sector-specific spatial distribution from the
MEIC inventory. The attributed ratios are:

βr;st;i;k ¼ cer;st;i;k:=e
r
k ð15Þ

where erk is the sector-specific emission vector for species k produced in region r;
βr;st;i;k is the sector-specific ratios of emissions occurred in region r induced by
household consumption of income group i in region s.

As mentioned above, income group and expenditure pattern data are missing for
some provinces in the statistical yearbooks, and we use data from the national average
or the neighboring provinces to estimate the grouped data in these provinces. This
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assumption might introduce uncertainties in our results. To determine the
uncertainties brought by such assumption, we conduct several sensitivity scenarios. In
each scenario, we use data from the national average or one of the provinces that have
available statistical data to estimate the grouped data for all the provinces with missing
data. Urban and rural cases are treated separately. In total, we have 26 scenarios for
urban household and 13 scenarios for rural household, as 25 and 12 provinces report
income data by group for urban and rural households, respectively. We use the
estimated income group data to calculate direct and indirect emissions related to each
income group. The coefficient of variation (CV) of the estimated direct and indirect
emissions in each income group are shown in Supplementary Table 4. In general, the
CV values are within ±10%, which means the uncertainties introduced by the
assumptions in our study are limited and our method is robust.

Estimating PM2.5-related premature deaths. In this study, we use satellite-based
ground-level PM2.5 mass concentrations and the IER model from GBD 2010 to
estimate PM2.5-related premature deaths.

Satellite-derived PM2.5 concentrations provide relatively accurate scale and
spatial distribution for PM2.5 exposure53. The satellite-based PM2.5 concentration
data used in this study are obtained from our previous study50, which are estimated
using the aerosol optical depth (AOD) derived from satellite instruments (MODIS
and MISR onboard the Terra satellite) and conversion factors between AOD and
PM2.5 simulated by the GEOS-Chem chemical transport model54.

The IER model is developed by Burnett et al.30, and has been used to estimate the
PM2.5-related premature deaths in previous studies4,5,31. In Cohen et al.55, an updated
version of the function are provided, yielding about 35% higher mortality estimates
compared with previous works. Therefore, the results in our study present the lower
limits of the estimates. The IER model describes the concentration–response
relationship for the entire range of PM2.5 concentration observed in the world, by
incorporating data from cohort studies of ambient air pollution, first- and second-
hand tobacco smoking, and household indoor air pollution30. Here we focus on the
four leading causes of the PM2.5-related premature mortality: ischemic heart disease
(IHD), stroke, chronic obstructive pulmonary disease (COPD), and lung cancer (LC).
For each disease, the relative risk (RR) is calculated as:

RR Cð Þ ¼ 1þ α 1� e�γ C�C0ð Þδ
� �

; if C >C0

1; else

(
ð16Þ

where C is the satellite-based annual mean PM2.5 concentrations in 2012 at a 0.5° ×
0.667° resolution; C0 is the counterfactual concentration and bellow which there is
assumed to be no additional risk; α, γ, and δ are parameters describing the overall
shape of the concentration response. In this study, we use the parameters adopted
from Lee et al.31, and the values are listed in Supplementary Table 5. The mortality
attributed to PM2.5 pollution are estimated as:

Mtot ¼ RR� 1
RR

´B ´P ð17Þ

where Mtot is the total mortality related to PM2.5; RR� 1
RR is the attributable fraction to

PM2.5 pollution; B is the baseline incidence of a given health endpoint for all age group
derived from the national average data in GBD 201356; P is the size of the exposed
population aggregated from the LandScan global population database for 2012 at a
1 km resolution57. Value for B used here can be found in Supplementary Table 5.

To determine the premature death attributable to anthropogenic sources, we
use GEOS-Chem model to simulate the fraction of PM2.5 pollutions contributed by
anthropogenic emissions by conducting two scenarios: one with all emissions as
inputs and the other turning off the anthropogenic emissions. Here, we use the
direct proportion approach, which assumes a linear relationship between the
proportions of total PM2.5 concentration to the proportion of total mortality, to
estimate the source-specific premature deaths. The scientific basis of this
assumption has been validated by a GBD research, GBD MAPS14. Other studies
also choose the direct proportion approach to solve the nonlinear problem6,58,59.
Thus, the anthropogenic PM2.5-related premature death can be calculated as:

Manth ¼ Mtot ´
Call � Cno�anth

Call
ð18Þ

where Manth is the premature mortality related to PM2.5 attributable to
anthropogenic sources; Call is the annual mean PM2.5 concentrations from the
scenario with all emissions; Cno_anth is the annual mean PM2.5 concentrations from
the scenario with anthropogenic emissions turned off.

Linking premature deaths to different income groups. We then use the GEOS-
Chem adjoint model to link air pollutant emissions in different income groups to
premature deaths attributed to PM2.5. The adjoint of GEOS-Chem is able to
determine the response of PM2.5-related mortality to changes in emissions of
inorganic precursor gases (i.e., SO2, NOx, and NH3), carbonaceous particles (i.e.,
BC and OC) and primary anthropogenic PM2.5 dust60,61. It allows for efficient
computation of the partial derivatives of a scalar model response with respect to
input conditions (e.g., emission rates). Previous studies have used the adjoint of
GEOS-Chem to quantify the response of PM2.5 concentrations and air pollution
mortality to emissions sources31,62,63.

In this work, we use the nested version of GEOS-Chem adjoint over East Asia
(11°S–55°N, 70°E–150°E) at a 0.5° × 0.667° resolution, with boundary conditions
from a global simulation at a 2° × 2.5° resolution. Following Lee et al.31, we define
the cost function in the adjoint model as the anthropogenic PM2.5-related
premature deaths resulting from long-term exposure to PM2.5

31, as calculated in
Eq. (18). The outputs provided by the adjoint model are the partial derivatives of
this cost function with respect to anthropogenic emissions in the simulation
domain, which we refer to as the sensitivities of receptor region’s PM2.5-related
premature deaths to emissions at all species, locations and times31,62,64. The species
considered in our study are NH3, SO2, NOx, BC, OC, and anthropogenic PM2.5

dust, and the input anthropogenic emissions are adopted from the MEIC model.
Due to computational constraints of the GEOS-Chem adjoint simulations, we

classify 30 provinces in China mainland into seven receptor regions (see
Supplementary Table 2 and Supplementary Fig. 1) based on their economic
development and climate zones, and a total of seven groups of simulations are
conducted, one group for each receptor region. To further reduce the computation
cost, the model is conducted for four months (January, April, July, and October,
1 month for each season) for each group, and the averaged results of the 4 months
are used to represent the annual level in 2012.

Combined the sensitivity simulated by the GEOS-Chem adjoint model and the
gridded emissions, we could obtain the semi-normalized sensitivity32,33,36,37:

SSm;n;k ¼
∂M

∂Em;n;k
´Em;n;k ð19Þ

where m, n, and k are indices for longitude, latitude and species; SSm;n;k means the
contribution of emissions for species k at location (m, n) to the total premature
deaths of the receptor region62,64; ∂M

∂Em;n;k
is the sensitivity outputs from the adjoint

model; Em;n;k is the emissions for species k at location (m, n).
We then normalize SS to calculate the percentage contribution of source-

specific emissions to premature deaths:

Pm;n;k ¼
SSm;n;kP

m

P
n

P
k SSm;n;k

´ 100% ð20Þ
The normalization process isolates the contribution of gridded emission to

receptor regions’ PM2.5-related premature deaths, which neglects the nonlinear
response of PM2.5 to emissions changes. This normalized marginal method has
been used in previous studies to attribute global or national radiative forcing to
sub-regions or species38,39.

Results from the previous sections can be integrated to attribute regional- and
source-specific PM2.5 deaths to household consumption of income group i in region s:

Ms
t;i ¼

X
r

Mr
X
p

X
k

Pr
ðm;nÞ2p;k ´ β

p;s
ðm;nÞ2p;t;i;k

� �
ð21Þ

where Mr is the total premature deaths occurred in region r; βp;sðm;nÞ2p;t;i;k is sector

average ratios of emission occurred in grid ðm; nÞ 2 p within the simulation domain
and were attributed to rural (when t= 1) or urban (when t= 2) household
consumption of income group i in region s.

Lorenz curve and Gini coefficient for inequality measurement of health
impact. Lorenz curve was developed by Lorenz in 1905 to represent the inequality of
wealth distribution among population65. It is presented as cumulative share of income
earned (%) on the vertical axis versus cumulative share of people from lowest to
highest incomes (%) on the horizontal axis. In recent years, it has been widely used to
measure inequality in areas of energy and climate change66,67. Here we utilize Lorenz
curve to represent the inequality of household consumption related premature deaths,
see Fig. 3 and Supplementary Fig. 7. In the context of health impact here, we ranked
the rural and urban household groups of different income level in 30 provinces from
lowest to highest per capita income groups, and then presented the cumulative share
of people (%) on the horizontal axis versus their cumulative share of consumption
relative heath impacts (%) on the vertical axis.

The Gini coefficient proposed by Gini is a numerically presentation of the
inequality of income or wealth65. It is usually defined mathematically based on the
Lorenz curve. The Gini coefficient G is calculated as:

G ¼ 1�
XN
h¼1

ðHhþ1 � HhÞðIh þ Ihþ1Þ
�����

����� ð22Þ

where H is the cumulative share of population and I is cumulative share of
consumption related premature deaths. Hh indicates the cumulated number of
population in household groups from 1 to h based on ranking list from lowest to
highest per capita income and divided by the total population; Ih indicates the
corresponding cumulated consumption related premature deaths by household
groups from 1 to h and divided by the total premature deaths which were caused by
national total household consumption.

Data availability
The Multi-resolution Emission Inventory of China are available from http://www.
meicmodel.org/; the Multi-Regional Input–Output model are available at https://doi.org/
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10.6084/m9.figshare.c.4064285. The source data underlying Figs. 1–4 and Supplementary
Figs. 2, 5–7 are provided as a Source Data file. The datasets generated during this study
are available in the figshare repository with the identifier https://doi.org/10.6084/m9.
figshare.9745337.

Code availability
The code of GEOS-Chem adjoint model is available at http://adjoint.colorado.edu:8080/.
The codes used for analyzing data are available from the corresponding author on
reasonable request.
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