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Title: Education and cognitive decline: An integrative analysis of global longitudinal 

studies of cognitive aging 

Background: The objective of this study was to examine the association between 

education and incidence of accelerated cognitive decline.  

Methods: Secondary analyses of data from the Health and Retirement Study (HRS), a 

nationally representative prospective cohort study of U.S. residents were conducted 

(N=28,417). Cox proportional hazards survival models were layered on longitudinal 

mixed-effects modeling to jointly examine healthy cognitive aging and incidence of 

accelerated cognitive decline consistent with patterns seen in preclinical Alzheimer’s 

disease and related dementias (ADRD). Replication analyses were completed on a 

database including 62,485 additional respondents from HRS sister-studies. Life-

expectancy ratios (LER) and 95% confidence intervals were reported.  

Results: This study replicated research showing that education was positively associated 

with cognition at baseline. Model fit improved using the survival method compared to 

random-slopes models alone. Analyses of HRS data revealed that higher education was 

associated with delayed onset of accelerated cognitive decline (LER=1.031 95% C.I. = 

[1.013-1.015], P<1E-06). Replication analyses using data from 14 countries identified 

similar results.  

Conclusions: These results are consistent with cognitive reserve theory, suggesting that 

education reduces risk of ADRD-pattern cognitive decline. Follow-up work should seek 

to differentiate specific dementia types involved and consider potential mechanisms.  

Text Word Count: 3,884, Reference Word Count: 1,726 
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Alzheimer’s disease and related dementias (ADRD) affect 5.4 million people in 

the United States and burden millions of caretakers (Alzheimer's Association, 2016). 

ADRD were recorded as the underlying cause of >110,000 deaths in 2017, making it the 

fifth most common cause of death (Alzheimer's Association, 2016). ADRD are age-

related conditions detected by rapid declines in cognition resulting in impairments to 

multiple domains of fluid cognition including episodic memory (Richards & Deary, 

2005). ADRD are costly and frightening, making them susceptible to substantial under-

diagnosis at the population level (Connolly, Gaehl, Martin, Morris, & Purandare, 2011; 

Douzenis et al., 2010), with some estimates suggesting that 50-80% of all cases are never 

diagnosed (Prince, Bryce, & Ferri, 2011). Concurrently, due to the extended prodromal 

period of ADRD, which has been estimated to exceed 10 years (Hall, Lipton, Sliwinski, 

& Stewart, 2000) during which time there are influences on behaviors and emotions 

(Feldman et al., 2004), and because interventions in ADRD are increasingly being fielded 

at a time before wide-scale neurodegeneration has occurred (DeKosky & Marek, 2003), 

researchers have increasingly focused on preclinical forms of the disease when trying to 

understand risk factors for progression and development.   

Preclinical ADRD can be differentiated from normal cognitive aging by the 

underlying force and pattern of decline. Cognitive aging is generally characterized by a 

slow but steady decay in fluid cognition (Salthouse, 2004) resulting from a seemingly 

unavoidable biological process (Richards & Deary, 2014). However, during the 

prodromal period, ADRD usually transition to more severe forms of cognitive 

impairment (Bruscoli & Lovestone, 2004; Jack et al., 2010), specifically showing an 

acceleration in the rate of decline (Figure 1) (Ichise et al., 2014; Insel et al., 2016). These 
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accelerated declines are often followed by ADRD-related diagnoses and death 

(Thorvaldsson et al., 2008; Wilson et al., 2012). It is, therefore, important that risk factors 

for accelerated decline are interrogated as one marker of ADRD-related disease. 

[Figure 1] 

Educational attainment has long been linked with increased cognitive function 

over the lifespan (Ceci, 1996) and with lowered risk of ADRD (Stern et al., 2018). One 

theory argues that education provides a form of lifelong benefit commonly termed 

“preserved differentiation” (Bielak, Cherbuin, Bunce, & Anstey, 2014). Specifically, 

education works to help improve childhood cognition (Deary, Strand, Smith, & 

Fernandes, 2007; Deary, Whiteman, Starr, Whalley, & Fox, 2004; Richards & Deary, 

2014) and, through that, lifetime cognitive ability (De Graaf, De Graaf, & Kraaykamp, 

2000; Deary & Johnson, 2010; Deary et al., 2007; Feinstein, 2003; Hatch, Feinstein, 

Link, Wadsworth, & Richards, 2007; Richards & Sacker, 2011; Tucker-Drob, Rhemtulla, 

Harden, Turkheimer, & Fask, 2011). Yet, while cognitive performance in childhood is a 

critical predictor of late-life cognitive health, somewhat paradoxically, education is not 

generally believed to be associated with the rate of normal cognitive aging (Foverskov et 

al., 2018; Glymour, Tzourio, & Dufouil, 2012; Gottesman et al., 2014; Muñiz-Terrera, 

Minett, Brayne, & Matthews, 2014; Piccinin et al., 2013; Zahodne, Stern, & Manly, 

2015). Trying to make sense of the lack of finding, recent work suggests that a number of 

factors including education may play a role in delaying incidence of neuropathology and 

rates of decline among those with neuropathology (Stern et al., 2018). According to this 

hypothesis, education delays the onset of symptoms of neuropathology, allowing 

individuals to compensate with neurodegeneration, until the neuropathology progresses to 
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a level where cognitive decline can no longer be masked, and cognitive decline is, 

thereafter, more rapid than would be predicted by a normal aging trajectory. Thus, 

education does not affect normal aging, but instead changes the point at which 

accelerated declines due to ADRD occur. Crucial to our ability to test this hypothesis, 

recent analyses have noted that accelerated declines in cognitive function are fairly 

common and that they are predictive of incident reports of dementia diagnoses (Clouston, 

Glymour, & Terrera, 2015). Using the US Health and Retirement Study and a series of 

replication cohorts, this study extended developmental work by Clouston et al. (2015) 

with the objective being to examine whether education might be independently associated 

with onset of accelerated cognitive decline in a longitudinal layered survival model that 

examined, in a generalizable way, population predictors of the onset of ADRD-pattern 

accelerated declines. 

Hypotheses 

The study hypotheses were that higher education would be associated with 1) 

increased cognition at baseline, 2) delayed onset of accelerated cognitive declines, and 3) 

more rapid accelerated cognitive declines. 

Methods 

Sample 

For this study, data from the Health and Retirement Study (HRS) were analyzed 

(Sonnega et al., 2014). The HRS has been collecting cognitive information on a 

nationally representative sample of older U.S. community-dwelling respondents since 

1992 (response rate in 1992 = 81.6%) (Ofstedal, Fisher, & Herzog, 2005). Because the 

outcome measure was modified for most respondents after the wave in 1994, 
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observations from the first two waves were excluded from further analyses. Additionally, 

participants were excluded if they had never completed cognitive assessments or were 

missing educational data. Since longitudinal evidence for cognitive aging has been 

observed in midlife, individuals younger than 50 years old at baseline were also excluded 

(Singh-Manoux et al., 2012). Since the original data collection efforts, the HRS has 

begun refreshing the sample regularly with new cohorts at regular intervals. Altogether, 

the dataset contained 207,814 observations made among 37,317 respondents. Applying 

inclusion/exclusion criteria resulted in reductions to the overall sample size due mostly to 

age and health exclusion criteria. The final sample included data from 28,417 individuals 

observed 152,523 times for an average of 5.37 times over 9.08 (SD=6.08) years for a 

total of 257,926.3 person-years of information.  

Outcome 

Episodic memory is a key measure of cognitive functioning that is sensitive to 

both cognitive aging and ADRD (Baddeley, 1992). Notably, prior work has consistently 

described accelerated rates of cognitive decline occurring approximately 10 years prior to 

diagnosis (Hall et al., 2000). To measure episodic memory, respondents were first 

provided with a list of ten words and asked to correctly recall as many as possible, with 

each correct word scoring one point. After intermediate distraction questions, lasting 10-

15 minutes, respondents were again asked to correctly recall all ten words (un-cued 

delayed recall). The episodic memory index summed both immediate and delayed verbal 

recall (/20 points).  

Proxy Information 
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The loss of cognitively impaired respondents in longitudinal studies is a common 

issue, though there is no clear level of cognitive impairment at which dropout is likely to 

occur (Weir, Faul, & Langa, 2011). When participants or their spouses were re-contacted 

for follow-up waves, but respondents were unable to complete the surveys because of a 

functional impairment, family members or caregivers were asked a series of proxy 

questions about the respondent’s wellbeing and cognitive capacity (Jorm, 1994). Prior 

diagnostic work in the HRS has noted that 93.96% of respondents with proxy responses 

were cognitively impaired (Crimmins, Kim, Langa, & Weir, 2011). For exclusion 

purposes, therefore, those who had only proxy responses were excluded from analyses. 

Sensitivity analyses, completed to examine the influence of proxy responses on analyses, 

sought to incorporate these data by imputing unobserved data under the assumption that 

unobserved cognitive data would follow a monotonically decreasing trend.  

Time Scale 

Unfamiliarity with testing circumstances is believed to improve scores between an 

individual’s first and second cognitive assessment (Goldberg, Harvey, Wesnes, Snyder, 

& Schneider, 2015), and thus a dichotomous flag was introduced for each individual’s 

first cognitive test. While surveys were planned to occur ever 2-3 years, there can be 

substantial variability around the date of survey. Years since the first cognitive 

assessment was used in random slopes analyses to model change over time. Linear trends 

over time were assumed to occur in pre-accelerated declines. Consistent with research 

finding cohort-related improvements in cognitive function over time (Lee, Gorsuch, 

Saklofske, & Patterson, 2008), year of birth was incorporated as a covariate. Age in 

years, centered at age 50, was included to model the rate of aging. Statistical modeling 
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further incorporated an accelerated slope measure that enumerated the number of years 

since an inferentially determined node, as noted below in the statistical methods section.  

Social and demographic variables 

Educational attainment was measured at baseline assessment as years of formal 

schooling. Sex and year of birth were self-reported. Self-reported stroke, which Okura, 

Urban, Mahoney, Jacobsen, and Rodeheffer (2004) reported agreed with medical records 

97.8% of the time, was included as a time-varying indicator of VaD.  

Replication Data 

The HRS has been globally replicated in “sister” studies catalogued by the 

Integrative Analysis of Longitudinal Studies on Aging and Dementia project 

(www.ialsa.org), and harmonized by the Gateway to Global Aging project 

(www.g2aging.org). For the purposes of this study, all HRS sister studies were examined 

for inclusion; studies were excluded if they did not have a third cognitive assessment 

(TILDA, SAGE, JSTAR, CHARLS, KLOSA, & LASI), or did not contain the ten-word 

episodic memory task (MHAS, CRELES). Thus, in addition to HRS data, data from 

ELSA (Steptoe, Breeze, Banks, & Nazroo, 2012), SHARE (Borsch-Supan et al., 2013) 

databases were analyzed. Harmonized data were accessed, but some differences between 

studies remained: education was measured categorically in ELSA, necessitating a 

transition whereby the length of schooling was attributed to individuals based on the 

average age that students earned educational qualifications. Applying inclusion/exclusion 

criteria to the replication databases resulted in a final replication study that included 

62,485 respondents who were followed prospectively a total of 126,932 times with 

http://www.ialsa.org/
http://www.g2aging.org/
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measurements occurring between 2-3 years apart on average, in addition to the HRS 

sample. 

Ethics 

Secondary data analyses of publicly available deidentified data were deemed to be 

not human subjects research (CORIHS #498619). 

Method 

Longitudinal multilevel modeling (Rabe-Hesketh & Skrondal, 2008) was used to 

fit a layered change-point model (van den Hout, Muñiz-Terrera, & Matthews, 2011) here 

defined as a piece-wise linear pattern with each segment of the line bent at an individual-

specific node (discussed below).  

This study modeled latent incidence using a Cox proportional hazards model (Cox 

& Oakes, 1984) when estimating latent risk of “pathological” ADRD-related accelerated 

declines. Specifically, we proposed that a random continuous variable (τ) with probability 

density function could be written f(t) with cumulative density function F(t) and survival 

function S(t), where 𝐹(𝑡) ≔ Pr(𝜏 < 𝑡). To accomplish this, a second regression was 

defined that overlapped the base longitudinal model. The second-layer regression relied 

upon a Cox proportional hazards model to define healthy life expectancy free of 

cognitive pathology (τi = ex) as a function of the incidence rate (r), specified as a function 

of participant’s age at entry into the study. The number of years after age 50 was used as 

the time scale so as to account for selective survival common in studies of older 

individuals (Lamarca, Alonso, Gomez, & Muñoz, 1998). The cumulative density function 

was then inferred using maximum likelihood estimation under the assumption that the 
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outcome, ADRD-pattern accelerated declines, was observed in the data. The layered 

random-slopes model was specified as noted in equation 1: 

𝑀𝑖𝑡 = 𝛽0 + 𝛽1𝐶 + 𝛽2𝐴𝑡 + 𝛽3𝑉𝑡 + 𝛽4𝑈 + 𝛽5𝐸 + 𝛽6𝐹 + 𝛽7𝐸 ∗ 𝐴𝑡 + 𝛾0𝑖 + 𝛾1𝑖𝑡 +

𝑚𝑎𝑥 (𝑡𝑖𝑡 −
𝑒−𝑟𝐴0

𝑟
𝑒𝜹𝑬, 0) (𝜙0 + 𝜙1𝐸) + 𝜀𝑖𝑡      (1) 

In this model, M refers to episodic memory, which differs between individuals (i) 

and changes over time (t). All models incorporated year of birth (C), age at assessment 

(At), incident stroke (Vt), unfamiliarity (U), education (E), and female sex (F) and random 

intercepts (𝛾0𝑖) to model individual differences in baseline capability. Nested models 

additionally added in random slopes (𝛾1𝑖𝑡) (Model 2) to account for heteroskedasticity 

common in growth models (Rabe-Hesketh & Skrondal, 2008) and an unstructured 

covariance matrix (Model 3) was used to adjust for correlations between 𝛾0𝑖 and 𝛾1𝑖. The 

layered models additionally incorporated an acceleration term (𝜙1) (Model 4) defined 

using health life expectancy estimates determined using a function of the incidence rate 

(r) and age at study entry (A0) that is defined when positive and zero otherwise and 

(Model 5) an interaction term linking education to the rate of decline after onset. 

Education (E) was, therefore, allowed to predict intercepts (ß5), incidence of accelerated 

decline (∂), and rate of accelerated decline (𝜙1). Maximum likelihood estimation was 

used to fit the second-layer model; the incidence rate was reported. Since healthy life 

expectancy was the estimand in the second-layer models, results were interpreted as life 

expectancy ratios (LERs) with 95% confidence intervals and p-values. To examine 

impact of modeling decisions on fit statistics, each type of adjustment was entered into 

the model in a nested way. The cumulative incidence function was derived to show the 

number of respondents estimated to be experiencing onset of accelerated decline. 
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Replication data were interrogated within countries, and results were pooled 

across replication samples using the best fitting model (Model 5 above). Random-effects 

meta-analytic averages were reported, with both I2 and τ2 used to measure heterogeneity 

(IntHout, Ioannidis, & Borm, 2014). Analyses were completed in Stata 15/SE 

[StataCorp].  

Results 

Characteristics at baseline (Table 1), revealed a sample of majority-female 

respondents in their mid-sixties. Educational attainment was 12 years of education, 

equivalent to a high school degree.  

 [Table 1] 

Nested models were examined (Table 2) beginning with the random intercepts 

model with covariates (Model 1). This model revealed significant associations, on 

average, between education and cognitive intercepts, and also identified associations 

between lower cognitive performance and age, incident major stroke, unfamiliarity on the 

first wave, and male sex. Models 2-3 showed improved fit statistics with the additional 

modeling components outlined above. Adjusting for survival parameters (Model 4) 

predicted that incidence of ADRD-pattern accelerated declines was relatively common 

(IR=51.03/1,000 person-years, 95% C.I. = [50.19-51.87]). Results further identified an 

association between education and delayed onset of accelerated decline. Finally, 

examining education as a predictor of post-onset rate of decline suggested that 

individuals with higher education had more rapid onset of accelerated decline (Model 5). 

[Table 2] 
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Sensitivity analyses examining associations stratified by sex revealed similar 

associations among men and women. Furthermore, analyses using imputed scores when 

proxy responses were available provided substantively similar results.  

The resulting cumulative incidence curve (Figure 2) was estimated comparing 

respondents with a high school degree to those with a university degree. The gap between 

curves is substantial, suggesting that the average respondent with 16 years of education 

(equivalent to a university degree) at age 60 could expect to have 2.30 years of extra life 

expectancy free of cognitive pathology compared to respondents with 12 years of 

education (equivalent to a high school credential).  

[Figure 2] 

Replication Data 

Examining the relative impact of education on incidence across multiple countries 

(Figure 3; full results in Table S1) revealed a consistent positive association between 

increased education and healthy life expectancy across multiple countries. On average, 

education was significantly associated with delayed onset of ADRD-related accelerated 

declines, within all but one study and in meta-analyses combining results across studies. 

Indeed, meta-analytic results revealed a significant association but also revealed a high 

degree of between-study variability: for example, education appears to have a higher 

return on investment in the U.S., the Netherlands, Austria, or Sweden than in England.  

[Figure 3] 

Discussion 
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The present study posited that Alzheimer’s disease or a related dementia (ADRD) 

might be usefully identified at a point earlier than typically diagnosed by the force and 

pattern of decline in cognition, and further posited that education may play a role in 

predicting delayed onset of accelerated cognitive declines. Layered survival modeling 

was used that relies on predicting the placement of a latent acceleration node determined 

by an unobserved survival process. The addition of layered change-point survival 

modeling resulted in improved fit statistics over other common models, including random 

slopes methods. Supporting a cognitive reserve theoretical framework (Stern, 2012), 

findings suggested that higher education was associated with both higher baseline 

functioning and with later onset of accelerated cognitive declines. Analyses identified a 

latent incidence rate of IR=51.03/1,000 person-years (95% C.I. = [50.19-51.88]) in the 

HRS that matched closely with replication analyses (IR = 58.16/1,000, 95% C.I. = 

[51.82-64.49] person-years). Additionally, we found that each year of increased 

education was attributable with a 3.2% increase in healthy life expectancy free of 

cognitive pathology. Finally, the rate of the accelerated decline was more rapid for more 

highly educated individuals, an expected result from an increased capacity to adapt to 

latent neuropathology. Effect size calculations suggest that an additional four-years of 

education, consistent with the time commonly spent earning a university degree, may be 

attributable with increases of 2.30 years in healthy life expectancy at age 60. This 

represents a first effort to carefully estimate the incidence of preclinical ADRD using 

accelerated cognitive declines, and therefore represents an important step in better 

understanding its association with other risk factors for disease.  

Interpretation  
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Richards and Deary (2014) noted that there is, to date, no accepted definition of 

healthy cognitive aging. This study provided a novel examination of both ADRD-patterns 

of decline and healthy ones. First, this study uniquely defined healthy aging as occurring 

before onset of ADRD-related accelerated declines in cognition. Additionally, the current 

study was the first to implement an acceleration model defining possible ADRD as the 

observed clinical acceleration in the underlying force of cognitive decline occurring later 

in life. In creating these definitions of cognitive decline, this study provided a novel 

method with which to interrogate the risk of accelerated declines indicative of possible 

ADRD. Follow-up work should validate these data by determining whether individuals 

with different longitudinal patterns of cognitive decline are exhibiting signs of 

neuropathology.   

Previous analyses have suggested that education provides individuals with 

improved cognitive reserve and access to more socioeconomic resources. While this 

study sought to establish these relationships, it remains unclear how brain reserve or 

another exogenous process might independently mediate relationships shown here. 

Indeed, while more efficient brain functioning allows individuals to function well despite 

significant pathology, a large body of work has linked diseases such as hypertension and 

diabetes to cognitive decline. Education may be influential either way, facilitating brain 

functioning as theorized in cognitive reserve research (Clouston et al., 2012) or 

improving brain-impacting behaviors such as physical inactivity and smoking (Richards 

& Deary, 2010). More work is warranted to identify the mechanisms through which 

education might relieve the risk of cognitive pathology.  
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This study tested three components of cognitive reserve theory (Stern et al., 

2018). First, education was associated with improved cognitive functioning. Second, 

supporting the view that education might be a preventive factor for ADRD 

neuropathology despite playing a small role in healthy aging, education was also 

associated with delayed incidence of accelerated declines. Finally, the rate of the 

accelerated decline was more rapid for more highly educated individuals in U.S. data, an 

expected result from an increased capacity to adapt to latent neuropathology, but this 

result did not replicate in international data. Results therefore successfully and usefully 

merged three theories of the nature of cognitive aging and may have helped to explain 

why results diverge across literatures.  

Results from this study replicated and extended a prior pilot analysis. Specifically, 

in their prior analyses (Clouston et al., 2015) used pattern-recognition protocols to lay the 

foundation for this work. Notably, they determined that acceleration of the sort being 

investigated here was a good “biomarker” for self-reported incident ADRD diagnoses 

among individuals with at least five waves of completed cognitive assessments. There 

were numerous limitations to the prior analysis, however. First, they could not reliably 

determine incidence rates since sample selection excluded more than three-quarters of the 

HRS sample. This study extends the prior study by proposing a novel theoretical 

framework and matching method that interprets these theories in a single, reliable, 

statistical model. As such, the current model represents an enormous gain over prior 

efforts to model acceleration – it provides an unbiased method with which to examine the 

onset of accelerated declines.  

Limitations and Strengths 



 19 

While intriguing, results should be interpreted in light of several key limitations. 

First, use of data from the refresher samples within the HRS may result in sample 

selection biases, though this has not been previously reported. Additionally, while data 

were meant to be harmonized, the structure, expectations, and measurement of 

educational systems differs substantially across countries analyzed. While we believe that 

years of education may be the most inclusive and comparable metric available, work 

seeking to instead compare clean categories such as those earning a University degree to 

those who have a secondary education may prove more comparable. Mild to severe 

cognitive impairment commonly causes respondents to leave longitudinal surveys such as 

those evaluated here. Yet, missing data are not always problematic: data that are missing 

at random (MAR) do not bias results when predictors are included in the model (Rubin, 

1976). Base models used EM maximization algorithms, which concurrently model 

missing data under the MAR assumption (Graham, 2009). Attrition breaks the MAR 

assumption when linear “random slopes” do not accurately capture post-attrition rates of 

decline; however, since this study actively modeled acceleration we anticipate results will 

be more robust in cases where attrition is associated with accelerated rates of decline, 

explaining why estimates were robust to inclusion of imputed proxy information. 

However, while sensitivity analyses made a first step in understanding the implications of 

data that are missing due to accelerated declines in this study, further work is needed to 

determine the circumstances under which these models fail so that improved methods can 

be derived to help deal with these data. In this study, we were not able to differentiate 

subtypes of cognitive pathology. Prior work suggests that accelerated decline is common 

in patients with ADRD (Ichise et al., 2014; Insel et al., 2016), and has also shown that 
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accelerated declines are often followed by incident reports of ADRD diagnosis (Clouston 

et al., 2015). To account for cerebrovascular disease, self-reported incident stroke was 

used. Self-reported strokes are reliable indicators of diagnosed major-strokes (Okura et 

al., 2004). However, self-reports are ineffectual when detecting smaller strokes (e.g., 

transient ischemic attacks, small lacunar infarctions or ministrokes, and small vessel 

disease) or asymptomatic major strokes. These results suggest that more research is 

warranted to detect and differentiate unreported strokes. Finally, Cox proportional 

hazards analyses can be biased when people experience the outcome at the same time. 

We could not account for ties in the present analysis, and are not able yet to readily detect 

them, but note that because the outcome is identified inferentially with a high degree of 

specificity, ties are unlikely. While Cox models are biased by ties, other models including 

discrete-time survival analyses are not. One area of future research may be to determine 

strengths and weaknesses of alternative survival model specifications. To facilitate these 

improvements in layered survival regression, the Stata code utilized to generate these 

models is provided (Appendix A). 

Most work in this field currently examines the extent of cognitive impairment and 

related functional limitations as key clinical outcomes. The current models were not used 

to distinguish levels of severity of cognitive impairments. While common in ADRD 

studies, these methods usually rely on cutoffs to determine cognitive impairment and 

additional measures to identify functional limitations. Cutoffs are sensitive to overall 

performance on cognitive exams and, thus, may be biased in cases where risk factors 

independently influence cognition. For example, poor memory may arise due to low 

intelligence, unobserved brain injury or cancers, or a number of other factors.  If so, then 
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the results in this study may be more generalizable than those focusing on cutoff-related 

gradations in severity of underlying cognitive impairment.  

Conclusions 

Diagnosing dementia in a consistent and reliable way is expensive and difficult. 

The result is under-diagnosis at the population level (Connolly et al., 2011; Douzenis et 

al., 2010), with estimates of missed diagnoses exceeding 50-80% of cases (Prince et al., 

2011). Noting that research is primarily interested in incidence of ADRD, this study 

sought to inferentially identify the incidence of ADRD-related pathology by utilizing the 

onset of accelerated cognitive declines. This analysis was, therefore, more closely aligned 

with the clinical phenotype of cognitive declines preceding ADRD diagnoses, and also 

provided results that are consistent with existing research. Together, these results suggest 

that more work is warranted utilizing this model to replicate known predictors of ADRD, 

and to expand these predictors to novel indicators. Given the potential importance of 

understanding timing of accelerated declines, future research is warranted to understand 

both healthy and pathological forms of cognitive aging.  
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Figure 1. Differentiating cognitive decline relating to Alzheimer’s disease and related 

dementia (ADRD) from healthy cognitive aging.  

Legend: The solid line indicates clinically diagnostic levels of deficit deemed to be 

associated with cognitive impairment and dementia. The dotted line represents the 

expectations for individuals lacking ADRD pathology. 

 

Figure 2. Cumulative incidence of ADRD-related accelerated cognitive declines 

estimated using posterior model predictions 

Legend: Expected results were provided comparing those with 16 years of education 

(dashed lines - equivalent to a university degree) to those with 12 years of education 

(solid lines - equivalent to a high school diploma).  

  

 

Figure 3. Meta-analysis examining association between education and onset of cognitive 

pathology in international studies of cognitive aging 

Legend: Forest plot derived from random-effects meta-analysis showing a fairly 

consistent pattern in the associations between education and onset of accelerated declines. 

The diamond shows the estimated meta-analytic average.  
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Table 1. Sample characteristics, Health & Retirement Study 1992-2012 

 
 Characteristics of analytic 

sample at first eligible 

observation  

  Mean SD % 

Age in years 62.63 9.45 
 

Episodic Memory 10.06 3.58 
 

Year of birth 1937.72 13.27 
 

Education in years 12.24 3.36 
 

Female Sex 
  

54.45 

Any Incident Stroke     8.67 

Note: Participants with a history of stroke were excluded from the study. Episodic memory 

scores range from 0-20. SD: Standard Deviation; %: Percent.
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Table 2. Beta coefficients and standard errors jointly estimating cognitive capability, rate of cognitive decline, and onset of 

accelerated cognitive pathology, Health and Retirement Study 1992-2012 

  
Model 1 

 
Model 2 

 
Model 3 

 
Model 4 

 
Model 5 

Fixed effects 
 

B SE 
 

B SE 
 

B SE 
 

B SE 
 

B SE 

Year of birth   -0.042 0.001   -0.049 0.001   -0.044 0.002   -0.031 0.002   -0.031 0.002 

Age in years 
 

-0.165 0.001 
 

-0.172 0.002 
 

-0.169 0.002 
 

-0.143 0.002 
 

-0.142 0.002 

Incident stroke 
 

-0.593 0.025 
 

-0.582 0.025 
 

-0.561 0.025 
 

-0.478 0.026 
 

-0.476 0.026 

Unfamiliarity 
 

-0.870 0.041 
 

-0.855 0.044 
 

-0.858 0.044 
 

-0.791 0.043  -0.784 0.043 

Education 
 

0.352 0.004 
 

0.353 0.004 
 

0.352 0.004 
 

0.349 0.004 
 

0.357 0.004 

Female sex 
 

0.994 0.028 
 

1.005 0.028 
 

0.997 0.028 
 

1.012 0.028 
 

1.013 0.028 

Accelerated Decline 
          

-0.133 0.005 
 

-0.147 0.006 

Education x Accelerated 

Decline 

             
-0.012 0.001 

Intercept 
 

9.285 0.024 
 

9.297 0.024 
 

9.297 0.024 
 

9.268 0.024 
 

9.268 0.024 

                                

Second Layer                               

Education in Years 
          

1.032 0.000 
 

1.032 0.000 

Incidence rate intercept 
          

0.051 0.000 
 

0.051 0.001 

                                

Random Effects                               

Individual Capability (I) 
 

2.003 0.012 
 

1.956 0.012 
 

2.185 0.015 
 

2.177 0.015 
 

2.176 0.015 

Individual Slopes (S) 
    

0.080 0.002 
 

0.126 0.002 
 

0.120 0.002 
 

0.119 0.002 

Correlation (I, S) 
       

-0.416 0.012 
 

-0.386 0.013 
 

-0.388 0.013 

                                

Model Fit                               

AIC 
 

741987 
  

741238 
  

740269 
  

739667 
  

739545 
 

ΔAIC 
 

  
 

-749.0 
  

-968.9 
  

-601.7 
  

-121.7 
 

BIC 
 

741996 
  

741246 
  

740275 
  

739669 
  

739569 
 

ΔBIC 
 

  
 

-751.0 
  

-970.9 
  

-605.7 
  

-99.7 
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Note: Model 1 includes covariates and random intercepts; Model 2 added random slopes; while Model 3 accounted for correlation 

between the two. Model 4 incorporated the survival layer while Model 5 included an interaction variable linking education with 

accelerated declines. *All estimates were significant at the P<1E-06 level. 

Table S1. Replication of work by sample-country including meta-analytic average result and key meta-analytic characteristic 

 England  Austria  Germany  Sweden  Netherlands  Spain  Italy  France 

Fixed Effects B SE  B SE  B SE  B SE  B SE  B SE  B SE  B SE 

Year of birth 0.271 0.018  0.177 0.012  0.177 0.012  0.066 0.018  0.086 0.009  0.209 0.022  0.150 0.017  0.347 0.018 

Age in years 0.128 0.018  0.054 0.013  0.055 0.013  -0.068 0.018  -0.032 0.010  0.091 0.023  0.033 0.017  0.229 0.018 

Incident stroke -0.986 0.122  -   -   -0.523 0.094  -   -0.441 0.378  -0.678 0.332  0.078 0.364 

Unfamiliarity 0.081 0.060  -0.915 0.070  -0.896 0.068  -0.717 0.349  -0.486 0.059  -0.052 0.116  -0.406 0.095  0.120 0.088 

Education in years 0.380 0.014  0.099 0.009  0.100 0.009  0.183 0.013  0.217 0.010  0.184 0.011  0.267 0.011  0.258 0.013 

Female Sex 0.629 0.051  0.616 0.078  0.616 0.078  0.931 0.092  0.974 0.072  0.017 0.095  0.399 0.088  0.936 0.096 

Accelerated Decline -0.239 0.021  -0.170 0.020  -0.173 0.020  -0.221 0.048  -0.147 0.031  -0.181 0.048  -0.293 0.069  -0.407 0.045 

Education x 

Accelerated Decline 0.006 0.003  0.006 0.003  0.006 0.003  -0.003 0.010  0.005 0.008  0.010 0.008  0.001 0.014  0.009 0.009 

Intercept 11.739 0.161  9.273 0.220  9.239 0.221  9.439 0.107  9.262 0.063  7.460 0.124  7.872 0.083  9.025 0.096 

                        
Second Layer                        
Education 1.011 0.000  1.046 0.007  1.016 0.003  1.029 0.002  1.033 0.006  1.016 0.003  1.013 0.001  1.016 0.002 

Incidence Rate 0.034 0.000  0.110 0.013  0.059 0.006  0.064 0.003  0.061 0.004  0.059 0.005  0.054 0.003  0.059 0.003 

                        
Random Effects SD SE  SD SE  SD SE  SD SE  SD SE  SD SE  SD SE  SD SE 

Random Intercepts 1.465 0.165  2.627 0.480  2.627 0.480  1.920 0.496  2.138 0.449  1.763 0.009  1.814 0.488  2.153 0.509 

Random Slopes 0.378 0.085  0.336 0.115  0.335 0.115  0.113 0.089  0.026 0.007  0.116 0.095  0.197 0.088  0.176 0.093 

Corr(I, S) 0.018 0.077  -0.483 0.061  -0.483 0.061  -0.100 0.169  -0.321 0.092  -0.394 0.198  -0.279 0.096  -0.225 0.104 

                        
Fit                                               

Pseudo-R2 0.101     0.054     -1.319     0.071     -0.948     0.074     0.082     0.087   
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Table S1 Cont’d. Replication of work by sample-country including meta-analytic average result and key meta-analytic characteristic 

 Denmark  Greece  Switzerland  Belgium  

Czech 
Republic  

United 
States*  

Random-Effects Meta-
Regression 

Fixed Effects B SE  B SE  B SE  B SE  B SE  B SE   B SE P I2 2 

Year of birth 0.085 0.020  0.776 0.133  0.267 0.029  0.229 0.016  0.172 0.013  -0.031 0.002  0.191 0.041 0.000 99.4% 0.017 

Age in years -0.029 0.021  0.664 0.133  0.118 0.030  0.094 0.016  0.050 0.013  -0.142 0.002  0.066 0.041 0.127 99.3% 0.016 

Incident stroke -1.213 0.338  0.033 0.579  -0.684 0.662  -0.812 0.295  -   -0.476 0.026  -0.622 0.109 0.000 65.5% 0.052 

Unfamiliarity -0.533 0.116  1.943 0.347  0.291 0.166  -0.211 0.073  -0.228 0.059  -0.784 0.043  -0.229 0.181 0.228 96.5% 0.384 

Education in years 0.262 0.019  0.182 0.013  0.065 0.018  0.235 0.013  0.309 0.010  0.357 0.004  0.221 0.025 0.000 99.1% 0.009 

Female Sex 1.305 0.117  0.055 0.098  0.865 0.159  0.693 0.088  -0.031 0.021  1.013 0.028  0.641 0.109 0.000 98.9% 0.159 

Accelerated Decline -0.193 0.042  0.090 0.283  -0.272 0.070  -0.362 0.045  -0.426 0.065  -0.147 0.006  -0.236 0.026 0.000 86.2% 0.007 
Education x Accelerated 

Decline 0.000 0.008  0.069 0.050  0.012 0.014  -0.019 0.010  0.675 0.059  -0.012 0.001  0.049 0.046 0.300 94.0% 0.026 

Intercept 9.659 0.095  10.124 0.364  9.914 0.148  9.076 0.080  8.622 0.061  9.268 0.024  9.274 0.269 0.000 98.5% 0.988 

                        
Second Layer                        
Education 1.016 0.002  1.016 0.002  1.016 0.001  1.016 0.001  1.016 0.001  1.032 0.000  1.019 0.002 0.000 99.7% 0.000 

Incidence Rate 0.059 0.004  0.060 0.003  0.059 0.002  0.059 0.001  0.059 0.002  0.051 0.001  0.058 0.003 0.000 98.9% 0.000 

                        
Random Effects SD SE  SD SE  SD SE  SD SE  SD SE  SD SE   SD SE P I2 2 

Random Intercepts 2.286 0.593  2.253 0.476  2.185 0.702  2.109 0.464  1.834 0.420  2.176 0.015  1.987 0.112 0.000 97.8% 0.062 

Random Slopes 0.142 0.092  0.154 0.083  0.209 0.119  0.220 0.089  0.243 0.124  0.119 0.002  0.077 0.004 0.000 100.0% 0.000 

Corr(I, S) -0.206 0.138  -1.000 0.159  -0.306 0.152  -0.219 0.072  -0.184 0.108  -0.388 0.013  -0.326 0.064 0.000 100.0% 0.057 

                        
Fit                                               

Pseudo-R2 0.075     0.103     0.065     0.079     0.059     0.101               

 Note: *Replicates results from HRS data shown above.  
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