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Abstract—In this paper, we propose a series of novel coordi-
nation schemes for multi-cell downlink communication. Starting
from full base station (BS) coordination, we first propose a
fully-coordinated scheme to exploit beneficial effects of both
inter-cell and intra-cell interference, based on sharing both
channel state information (CSI) and data among the BSs. To
reduce the coordination overhead, we then propose a partially-
coordinated scheme where only intra-cell interference is designed
to be constructive while inter-cell is jointly suppressed by the
coordinated BSs. Accordingly, the coordination only involves
CSI exchange and the need for sharing data is eliminated.
To further reduce the coordination overhead, a third scheme
is proposed, which only requires the knowledge of statistical
inter-cell channels, at the cost of a slight increase on the
transmission power. For all the proposed schemes, imperfect
CSI is considered. We minimize the total transmission power in
terms of probabilistic and deterministic optimizations. Explicitly,
the former statistically satisfies the users’ signal-to-interference-
plus-noise ratio (SINR) while the latter guarantees the SINR
requirements in the worst case CSI uncertainties. Simulation
verifies that our schemes consume much lower power compared
to the existing benchmarks, i.e., coordinated multi-point (CoMP)
and coordinated-beamforming (CBF) systems, opening a new
dimension on multi-cell coordination.

Index Terms—Multi-Cell Coordination, Constructive Interfer-
ence, Robust Optimization, Power Efficiency

I. INTRODUCTION

With the exponential growth of the throughput demand
in cellular networks, aggressive radio spectrum reuse has
emerged as an attractive strategy to enhance the utilization
of spectrum resource [1]. However, frequency reuse, if treated
inappropriately, may result in severe interference, especially
for cell-edge users. By the conventional single-cell based
signal processing, the critically increased level of inter-cell in-
terference leads to significant losses in throughput and fairness
degradation among the users. To this end, multi-cell coopera-
tion is regarded as a key technique for inter-cell interference
management in cellular systems, where multiple base stations
(BSs) collaborate with others for joint signal processing, based
on the shared channel state information (CSI) and/or intended
transmitted data [2] [3]. Depending on the coordination level
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among the BSs, multi-cell coordination system can be classi-
fied into two categories: coordinated-beamforming (CBF) and
coordinated multi-point system (CoMP), and each of them is
suited for different scenarios and system configurations.

In the CBF scheme, a user is supported by a single BS
and each BS only needs to encode or decode the signal
to/from the users within its cell. Hence, the impairment caused
by the inter-cell interference is suppressed by cooperative
beamforming, and the beamforming at each BS is computed as
a function of globally shared CSI, obtained from the users via
feedback channels [4]. Since the BSs jointly optimize their
beams to suppress the inter-cell gains, the CBF scheme is
also named as interference coordination. In this spirit, several
designs have been conducted to optimize system performance,
e.g., throughput maximization [4]-[10] and power minimiza-
tion [11] [12]. Downlink throughput [4] [5] [7] [8] [10]
or uplink throughput maximization [6] [9] was investigated,
where BSs only transmit or decode the signal to/from the
users within its cell, and inter-cell interference was mitigated
as noise. Most relevant to the approaches considered in this
paper, power minimization problem was investigated in [11]
and [12]. The authors in [11] minimized power beamformer
for a CBF system, where the minimum beamformers can
be obtained locally at each BS relying on limited backhaul
information exchange among the BSs. The authors in [12]
proposed a power efficient transceiver design for multi-cell
coordination in cognitive radio networks, where secondary
BSs are coordinated to serve secondary users while imposing
limited interference for the primary users. In summary, the
beamforming design by the CBF scheme typically strikes the
trade-off between eliminating the inter-cell interference and
maximizing the signal-to-interference-plus-noise ratio (SINR)
to/from the user within the cell of interest, which requires a
modest amount of coordination overhead.

With a higher level of coordination, the performance of
multi-cell systems can be improved by CoMP scheme if BSs
are linked by high-capacity delay-free links. Explicitly, the
coordinated BSs can share not only CSI, but also the data
to be transmitted. This is typically facilitated through a high
bandwidth backhaul network implemented by optical fiber
or millimeter wave links [2]. Since the intended transmitted
data can be available at all the coordinated BSs, CoMP
system transforms the multi-cell system into a virtual multi-
user multiple-input and multiple-output (MIMO) for which
all links (including interfering ones) are exploited to carry
useful data [13]. Hence, CoMP is also referred to network-
level virtual MIMO, which coordinates the simultaneous in-
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formation transmissions from multiple BSs to the users, at the
expense of increased coordination overhead for sharing the
intended transmitted data. Based on the principle, the authors
in [14] considered the joint optimization of user association,
subchannel allocation, and power allocation in a heterogeneous
CoMP system, where each user is associated with one macro
BS in the center and multiple separated micro BSs. The
authors in [15] applied the CoMP into non-orthogonal multiple
access systems, where CoMP transmission is to serve users
experiencing severe multi-user interference. The authors in
[16] investigated beamforming design for CoMP systems with
imperfect CSI, where the fully-coordinated BSs jointly serve
users through a virtual multi-user multiple-input single-output
(MISO) channel. From an information theoretic point of view,
CBF scheme can be interpreted as a interference channel while
CoMP scheme can be interpreted as a broadcast channel,
and the latter generally achieves better performance over the
former scheme by exploiting inter-cell channel, at the cost of
high overhead.

It is worth noting that, regardless of CBF or CoMP schemes,
intra-cell interference (multi-user interference) still needs to
be strictly mitigated. Traditional methods cancel multi-user
interference by providing users with exclusive access to a
fraction of wireless resources, such as time division multiple
access (TDMA), frequency division multiple access (FDMA)
or frequency reuse. Since each user can only utilize a part
of wireless resources, the throughput performance of the
orthogonality based approaches is significantly limited. To
this end, interference alignment (IA), a degree of freedom
optimal approach, was proposed to further improve the sys-
tem throughput [17] [18]. A well-known example of IA is
the MIMO technique, which is also referred to as spatial
diversity based multiple access. Nevertheless, there is scope
to exploit interference as a source of useful signal based on
the concept of constructive interference (CI), which can be
utilized as a green source and effectively improves the received
SINR [1]. CI was firstly introduced by [19] in code division
multiple access systems. Then [20] further proposed that all
the interference can be constructive by designing precoding
in symbol level [21] [22]. Recently, the concept of CI was
applied into beamforming optimization [23] [24], cognitive
radio [25], large-scale MIMO [26], multi-user MISO [27],
wireless power transfer systems [28], full-duplex [29] and
physical layer security-aware systems [30]. However, it should
be pointed that all the aforementioned research only focused
on single-cell systems, which cannot be directly applied to
multi-cell coordination systems. The main challenges come
from: (a) In multi-cell systems, both the multi-user and inter-
cell interference need to be managed, and the design principle
is directly determined by the level of multi-cell coordination.
For example, the single cell methods do not apply to the
case where only CSI is shared among the cooperative BSs.
Indeed, how to manage the rich interference with different
levels of coordination, and strike a good trade-off between
utilizing CI and overhead is challenging. Importantly, no such
overhead issues need to be considered in classical single-cell
CI approaches, while the relation between the interference
management strategy and the incurred overhead needs to be

addressed in our work. (b) By a low-level coordination, only
CSI or statistical inter-cell CSI is shared among the coordi-
nated BSs while the transmitted data is only known by the
local BSs. Hence, the incompleteness of the transmitted data
or CSI information makes exploiting inter-cell interference as a
constructive element impossible. Unfortunately, how to exploit
CI for handling multi-user interference while suppressing
inter-cell interference, especially in a stochastic manner, is
unknown. (c) Considering imperfect CSI in practice, how to
guarantee multiple users’ SINR requirements under infinite
possibilities of CSI error imposes new challenges for CI design
in multi-cell systems.

Motivated by the aforementioned open challenges, in this
paper, we investigate different multi-cell coordination schemes
to fully/partially utilize inter-cell and multi-user interference,
in the presence of imperfect or statistical CSI. Our contribu-
tions are summarized as follows:

1) We propose a series of schemes to fully/partially uti-
lize inter-cell and multi-user interference for multi-cell
coordination systems, which require different levels of
overhead for coordination. Firstly, a fully-coordinated
CI (Full-CI) scheme is proposed to utilize both inter-
cell and multi-user interference as beneficial elements,
on the basis of CSI and data being shared among the
coordinated BSs.

2) Then, a partially-coordinated CI (Partial-CI) scheme is
proposed to utilize multi-user interference while sup-
pressing inter-cell interference by joint precoding de-
sign. Since only CSI needs to be shared among BSs, the
coordination overhead is significantly reduced compared
to the Full-CI scheme.

3) At last, a statistical inter-channel based CI (Stat-CI)
scheme is proposed to further reduce the coordination
overhead, where BSs only need to know statistical
CSI from the adjacent BSs for inter-cell interference
suppressing while keeping multi-user interference con-
structive.

4) In all the above designs, we exploit robust precoding
design to accommodate scenarios with imperfect CSI.
In the presence of CSI errors, we investigate the to-
tal power minimization problems in probabilistic and
deterministic manners, respectively. Explicitly, multi-
ple users’ SINR requirements are issued by outage-
probability constrained formulations from the perspec-
tive of probabilistic robust optimization, while the users’
SINR requirements are guaranteed with all the CSI
uncertainties from the perspective of deterministic robust
optimization.

5) To strike a trade-off between system performance
and coordination overhead, five corresponding low-
complexity algorithms are proposed to minimize trans-
mit power consumption for the three schemes in terms
of probabilistic and deterministic manners. The Full-CI
scheme based algorithms consume the least power con-
sumption by utilizing both inter-cell and multi-user inter-
ference; the Stat-CI based algorithm requires the small-
est coordination overhead; and the Partial-CI scheme
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based algorithms make a proper trade-off between the
power consumption and coordination overhead. The per-
formance of the proposed algorithms are benchmarked
by the existing CBF and CoMP. The complexities and
coordination overhead of the algorithms are analytically
demonstrated.

Notations: Matrices and vectors are represented by boldface
capital and lower case letters, respectively. | · | denotes the
absolute value of a complex scalar. || · || denotes the Euclidean
vector norm. AH AT and Tr(A) denote the Hermitian trans-
pose, transpose and trace of matrix A. Rank(A) denotes the
rank of matrix A. diag (A) returns a diagonal matrix with
diagonal elements from matrix A and diag (a) stacks the
elements of vector a into a diagonal matrix. A � 0 means A
is a positive semi-definite matrix. Superscript < and = denote
the real and imaginary parts, respectively. ‖ · ‖p means the
p-norm of a vector or a matrix. In means an n-by-n identity
matrix. Operator vec(A) stacks the element of matrix A into a
vector. CN×M and HN×M denote sets of all N ×M matrices
and Hermitian matrices with complex entries.

II. SYSTEM MODEL AND CONSTRUCTIVE INTERFERENCE

In this section, system model is first introduced in II-A and
then the concept of CI is briefly discussed in II-B.

A. System Model

We consider a multi-cell system at downlink transmission,
where the coordinated BSs exchange CSI and/or data based on
different schemes. Assume that each cell has one BS located
in the center, and each BS is equipped with M antennas for
transmission. Without loss of generality, we assume there are
NBS coordinated BSs and K users in each cell. Each user
is equipped with one antenna for simplicity. CSI is obtained
by channel estimation in the training phase, based on channel
reciprocity as in [4] [31] [35]. By classic channel estimation
methods, such as minimum mean square error (MMSE), the
channel estimation error can be modeled by the uncertainty-
unbounded [32]-[35] or uncertainty-bounded models [36]-[39],
and the two models correspond to probabilistic and deter-
ministic manners robust optimization, respectively. Hence, to
fully investigate the impact of channel estimation error on the
robust optimization design, both uncertainty-unbounded and
uncertainty-bounded models are exploited in the paper, and the
inherited relation of the two models are also been introduced
by Lemmas 2 and 3.

Define Uik as the k-th user located in the i-th cell. Then
its received signal is expressed as

yik = hTiik

K∑
n=1

winsin +

NBS∑
j 6=i

K∑
m=1

hTjikwjmsjm + nik, (1)

where hjik ∈ CM×1 represents the channel from the j-th BS
to the user Uik. win ∈ CM×1 and sin denote the precoding
and transmitted data at the i-th BS to the user Uin. nik ∈ C
denotes the additive white Gaussian noise (AWGN) at the user
Uik, following nik ∼ CN(0, σ2

n),∀i ∈ NBS and ∀k ∈ K.
Define I and J as the sets of users belonging to the i-th and
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Fig. 1. Optimization region for constructive interference exploitation, QPSK
for example. a) Conventional precoding, where classical SINR constraints
result in a proximity region around the constellation point. b) By CI design,
the received signal yik falls into a constructive region (dark blue area). The
design pushes the resultant symbol away from the original decision threshold
of the constellation, where γ = σn

√
Γik . c) After being rotated by ∠s∗ik , the

rotated signal (noise excluded) is projected on real axis αR = <{yiks∗ik} and
imaginary axis αI = ={yiks∗ik}. According to the geometric interpretation,
the received signal falls into constructive region (in Fig. 1 (b)) as long as the
inequality |αI | ≤ (αR − γ)tanθ holds (in Fig. 1 (c)) , where θ =

π

M
and

M denotes constellation size.

j-th BSs, respectively. Conventionally by CBF, the SINR of
the user Uik is calculated as

ΓCBF
ik =

|hiikwik|2∑
k′ 6=k,k′∈I |hiikwik′ |2 +

∑NBS
j 6=i

∑K
m=1 |hjikwjm|2 + σ2

n

,
(2)

where the first and second terms in the denominator represent
the intra-cell (multi-user) and inter-cell interference, respec-
tively. For the case of CoMP, the system essentially reduces
to a network-level coordinated multi-user MISO downlink, in
which case the SINR is calculated as

ΓCoMP
ik =

∑NBS
j=1 |hjikwik|2∑NBS

j=1

∑
k′ 6=k,k′∈J |hjik′wik′ |2 + σ2

n

, (3)

where the first term in the denominator represents the virtual
intra-cell (multi-user) interference and needs to be mitigated.
Evidently, CoMP serves multiple users through a broadcast
channel.

B. Constructive Interference

In CI, the interference is exploited to push the received
signals away from the detection thresholds of the signal con-
stellation. The increased distance to the detection threshold can
effectively improve the receiving performance. The CI concept
has been thoroughly discussed in the recent literature, and to
avoid extensive repetition we refer the readers to [20]. Since
the transmitted symbol can be written as sik = dike

j(φik),
for the purpose of the CI analysis it is convenient to express
the symbol by another symbol such that sin = sike

j(φin−φik).
Hence, the received signal in (1) can be re-written as

yik = hTiik

K∑
n=1

wine
(φin−φik)sik+

Nbs∑
j 6=i

K∑
m=1

hTjikwjme
(φjm−φik )sik + nik.

(4)



4

Define h̃jik = hjike
j(φ11−φik), and wj =∑K

m=1 wjme
j(φjm−φ11), ∀j ∈ NBS . Note that the phase

φ11 of the reference symbol s11 can be arbitrary. Now, the
received signal at the user Uik can be equivalently expressed
as

yik =

NBS∑
j=1

h̃Tjikwjsik + nik. (5)

The reformulation in (5) indicates that the original broadcast
channel reduces to a virtual multicast channel with common
messages to all users [28]. Hence, by using the geometrical
interpretation in Fig. 1, the requirement of generating CI can
be given as

|=
(NBS∑
j=1

h̃Tjikwj

)
| ≤

(
<(

NBS∑
j=1

h̃Tjikwj)− σn
√

Γik
)
tanθ,∀ Uik,

(6)

where the user’s SINR requirement is also embedded. It
indicates that generating CI and satisfying the user Uik’s SINR
requirement are both guaranteed.

III. FULLY-COORDINATED CI PRECODING WITH
IMPERFECT CSI

In Section III, we investigate the power efficient multi-cell
CI design for the fully-coordinated systems, where the channel
from the j-th BS to the user Uik is given as h̃jik = ĥjik+eik,
∀k ∈ K, j ∈ NBS . ĥjik ∈ CM×1 denotes the estimated
channel with estimation error eik ∈ CM×1. In subsection
III-A, we first adopt the uncertainty-unbounded model for
the channel estimation error, where the element of channel
estimation error vector follows Gaussian distribution such
that [eik]m ∼ CN{0, σ2

ik}, ∀m ∈ M [32]-[35]. While in
subsection III-B, the uncertainty-bounded model is adopted
for the channel estimation error, where the error is assumed
to be bounded by an ellipsoidal uncertainty region.

A. Probabilistic Robust Optimization
The optimization problem is first formulated in a probabilis-

tic manner by P1. After a series of mathematical manipulations
for handling the probabilistic SINR constraints, the problem
is finally given by P2.

1) Problem Formulation: Define precoding vector wj ∈
CM×1, ∀j ∈ NBS , as the precoding vector at the j-th BS
and NBS as the set of the coordinated BSs. The optimization
problem can be given as

P1 (Full− CI− Prob) : argmin
wj ,∀j∈NBS

NBS∑
j=1

‖wj‖2 ,

s.t (C1) : ‖wj‖2 ≤ pmax,∀j ∈ NBS ,
(C2) : Pr{ Γik ≥ Γik|eik} ≥ ηik,∀ Uik,

(7)

where Γik denotes the SINR requirement for the user Uik. ηik
denotes the probabilistic threshold for the user Uik. Evidently,
(C1) imposes individual transmission power constraint at each
BS. (C2) guarantees that the SINR constraints at the user with
probabilities ηik greater than the SINR requirement Γik.

2) Solution to the Problem: To solve the problem, at first
we need to handle the probabilistic constraint (C2). Under the
provision of CI, the constraint (C2) equals to

(C2) : Pr{ Γik ≥ Γik|eik} ≥ ηik
(6)⇒

Pr{|
NBS∑
j=1

(h̃<jik)Tw=j + (h̃=jik)Tw<j | ≤

(NBS∑
j=1

(
(h̃<jik)Tw<j − (h̃=jik)Tw=j

)
− σn

√
Γik
)
tanθ|eik} ≥ ηik,

(8)

Removing the absolute operator in (8), (C2) is equivalent
to the two following inequalities in (9). We now focus our
attention on the first inequality, which can be expanded into

Pr{
NBS∑
j=1

(
[ĥ=jik + e=ik − ĥ<jiktanθ − e<iktanθ; ĥ<jik + e<ik+

ĥ=jiktanθ + e=iktanθ]T [w<j ;w=j ]
)
≤ −σn

√
Γiktanθ} ≥ ηik.

(10)

For simplicity, we rewrite (10) as
Pr{
∑NBS
j=1

(
aTjik[w<j ;w=j ]

)
≤ −σn

√
Γiktanθ|eik} ≥ ηik,

where ajik = [ĥ=jik + e=ik − ĥ<jiktanθ − e<iktanθ; ĥ<jik +

e<ik + ĥ=jiktanθ + e=iktanθ]. It is easy to obtain that the 2M -
dimensional Gaussian distributed vector ajik’s expectation is
ajik = [ĥ=jik − ĥ<jiktanθ; ĥ<jik + ĥ=jiktanθ] with covariance
matrix Θjik = diag((1 + tan2θ)σ2

ik, ..., (1 + tanθ)2σ2
ik︸ ︷︷ ︸

2M

).

We now stack the vectors wj and ajik,∀j ∈ NBS ,
into two long vectors w and aik, such that
w = vec(w<1 ;w=1 ;w<2 ;w=2 ; ...;w<NBS ;w=NBS ) and
aik = vec(a1ik;a1ik; ...;aNBSik). It is observed that
the long vector aik’s expectation is calculated as
aik = vec(a1ik;a1ik; ...;aNBSik) with covariance matrix
Θik = diag((1 + tan2θ)σ2

ik, ..., (1 + tan2θ)σ2
ik︸ ︷︷ ︸

2M×NBS

). Now (10)

can be derived as

Pr{ aTik[w<1 ;w=1 ; ...;w<NBS ;w=NBS ] ≤ −σn
√

Γiktanθ|eik} ≥ ηik

⇒ Pr{
(aTik − aTik)[w<1 ;w=1 ; ...;w<NBS ;w=NBS ]

||Θ
1
2
ik[w<1 ;w=1 ; ...;w<NBS ;w=NBS ]||2

≤
−σn

√
Γiktanθ − aTik[w<1 ;w=1 ; ...;w<NBS ;w=NBS ]

||Θ
1
2
ik[w<1 ;w=1 ; ...;w<NBS ;w=NBS ]||2

|eik} ≥ ηik

⇒ Φ(
−σn

√
Γiktanθ − aTik[w<1 ;w=1 ; ...;w<NBS ;w=NBS ]

||Θ
1
2
ik[w<1 ;w=1 ; ...;w<NBS ;w=NBS ]||2

) ≥ ηik,

(11)

where Φ(x) = 1√
2π

∫ x
−∞ e

−t2
2 dt denotes the cumulative

probability function (cdf) of a standard Gaussian distributed
variable. Defining Φ−1(.) as the inverse function of Φ(.), (11)
can be finally derived into a quadratic constraint such that

aTik[w<1 ;w=1 ; ...;w<NBS ;w=NBS ]+

Φ−1(ηik)||Θ
1
2
ik,1[w<1 ;w=1 ; ...;w<NBS ;w=NBS ]||2 ≤ −σn

√
Γiktanθ.

(12)
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{
Pr{
∑NBS
j=1

(
(h̃<jik)Tw=j + (h̃=jik)Tw<j

)
≤
(∑NBS

j=1

(
(h̃<jik)Tw<j − (h̃=jik)Tw=j

)
− σn

√
Γik
)
tanθ|eik} ≥ ηik,

Pr{−
∑NBS
j=1

(
(h̃<jik)Tw=j + (h̃=jik)Tw<j

)
≤
(∑NBS

j=1

(
(h̃<jik)Tw<j − (h̃=jik)Tw=j

)
− σn

√
Γik
)
tanθ|eik} ≥ ηik.

(9)




(
−aTik[w<1 ;w=1 ;...;w<NBS

;w=NBS
]−σn

√
Γiktanθ

)
I

Φ−1(ηik)
Θ

1
2
ik[w

<
1 ;w=1 ;...;w<NBS

;w=NBS
]

(Θ
1
2
ik[w

<
1 ;w=1 ;...;w<NBS

;w=NBS
])T

−aTik[w<1 ;w=1 ;...;w<NBS
;w=NBS

]−σn
√

Γiktanθ

Φ−1(ηik)

 � 0,


(
−bTik[w<1 ;w=1 ;...;w<NBS

;w=NBS
]−σn

√
Γiktanθ

)
I

Φ−1(ηik)
Θ

1
2
ik[w

<
1 ;w=1 ;...;w<NBS

;w=NBS
]

(Θ
1
2
ik[w

<
1 ;w=1 ;...;w<NBS

;w=NBS
])T

−bTik[w<1 ;w=1 ;...;w<NBS
;w=NBS

]−σn
√

Γiktanθ

Φ−1(ηik)

 � 0

(14)

Similarly, the second inequality in (9) can be given as

b
T
ik[w<1 ;w=1 ; ...;w<NBS ;w=NBS ]+

Φ−1(ηik)||Θ
1
2
ik[w<1 ;w=1 ; ...;w<NBS ;w=NBS ]||2 ≤ −σn

√
Γiktanθ,

(13)

where bik = vec(b1ik; b2ik; ...; bNBSik) and bjik = [−ĥ=jik −
ĥ<jiktanθ;−ĥ<jik + ĥ=jiktanθ] with covariance matrix cal-
culated as Θik = diag((1 + tanθ)2σ2

ik, ..., (1 + tanθ)2σ2
ik︸ ︷︷ ︸

2M×NBS

).

Now, constraint (C2) has been transformed into the two
inequalities in (12) and (13). According to Schur Comple-
ments that ||Ax + b||2 ≤ eTx + d being equivalent to[
(eTx+d)I Ax+b

(Ax+b)T eTx+d

]
� 0 [40], the above two inequalities in

(12) and (13) can be further transformed into two linear
matrix inequalities (LMI) as shown in (14). Now we define
Wj = wjw

H
j ,∀j ∈ NBS . P1 can be finally written as

P2 (Full− CI− Prob) : argmin
Wj ,j∈NBS

NBS∑
j=1

Tr(Wj),

s.t (C1) : Tr(Wj) ≤ pmax, ∀j ∈ NBS ,

(C2) : (14), ∀ Uik, (C3) :

[
Wj wj

wT
j 1

]
� 0, ∀j ∈ NBS ,

(15)

which is a convex semi-definite programming (SDP) and can
be readily solved by CVX solver.

B. Deterministic Robust Optimization

In the previous subsection, we have solved the problem in
a probabilistic manner, where the users’ QoS requirements
are issued by the chance constrained formulations. In this
subsection, we handle the CSI uncertainties in a deterministic
manner, where the users’ QoS requirements are satisfied all
the time with the infinite CSI uncertainties. The optimization
problem is first formulated in a deterministic manner by P3.
Then aided by Lemmas 1 and 2, the problem is finally given
by P4.

Define ∆ as the CSI uncertainties set, which contains all
the possible CSI uncertainties and specifies an ellipsoidal
uncertainty region for the estimated CSI [36]-[39].

1) Problem Formulation: To process the power minimiza-
tion problem in terms of deterministic robust optimization, the
formulation is given as

P3 (Full− CI−Det) : argmin
wj ,j∈NBS

NBS∑
j=1

‖wj‖2 ,

s.t (C4) : ‖wj‖2 ≤ pmax, ∀j ∈ NBS ,
(C5) : min

eik∈∆
Γik ≥ Γik, ∀ Uik,

(16)

where (C5) indicates the deterministic SINR requirements for
the users, such that the users’ worst-case SINR as per the CSI
error distribution obey the respective thresholds Γik.

2) Optimization Solution: In line with the analysis in pre-
vious section, constraint (C5) is equivalent to the following
two inequalities in (17). We focus our attention on the first
inequality of (17), which can be further written as

min
eik∈∆

NBS∑
j=1

(
[e=ik − e<iktanθ; e<ik + e=iktanθ]T [w<j ,w

=
j ] + ρik

)
≤ 0,

(18)

where ρik =
∑NBS
j=1

(
(ĥ=jik)Tw<j − (ĥ<jik)Tw<j tanθ +

(ĥ<jik)Tw=j +(ĥ=jik)Tw=j tanθ
)
+σn

√
Γiktanθ. For simplicity,

define vector cik = vec(c1ik; c2ik; ...; cNBSik), where cjik =
[e=ik − e<iktanθ; e<ik + e=iktanθ]. Then Eq. (18) becomes

min
eik∈∆

cTik[w<1 ;w=1 ; ...;w<NBS ;w=NBS ] + ρik ≤ 0. (19)

To handle the infinite CSI uncertainties in (19), we trans-
form it into a LMI using the following Lemma 1 (S-
procedure):

Lemma 1 (S-Procedure [40]): Let a function fm(x), m ∈
{1, 2}, be defined as

fm(x) = xHAmx + 2<{bHmx}+ cm (20)

where Am ∈ HN×N , bm ∈ CN×1 and cm ∈ R. The
implication f1(x) ≤ 0 ⇒ f2(x) ≤ 0 holds if and only if
there exists a λ ≥ 0 such that

λ

[
A1, b1

bH1 , c1

]
−
[
A2, b2

bH2 , c2

]
� 0. (21)
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 min
eik∈∆

∑NBS
j=1

(
(h̃<jik)Tw=j + (h̃=jik)Tw<j

)
≤
(∑NBS

j=1

(
(h̃<jik)Tw<j − (h̃=ijk)Tw=j

)
− σn

√
Γik
)
tanθ,

min
eik∈∆

−
∑NBS
j=1

(
(h̃<jik)Tw=j + (h̃=jik)Tw<j

)
≤
(∑NBS

j=1

(
(h̃<jik)Tw<j − (h̃=jik)Tw=j

)
− σn

√
Γik
)
tanθ.

(17)

To utilize S-procedure, we need to construct a premise
that guarantees (19) hold. By examining the structure
of (19), the premise can be evidently constructed as
(
√
cik)T I2M×NBS

√
cik ≤ ξ2, and the value of ξ2 will

be given by Lemma 2. By S-procedure, to guarantee the
implication (

√
cik)T I2M×NBS

√
cik − ξ2 ≤ 0 ⇒ (19) holds,

the following LMI constraint in (22) should hold with λik ≥ 0

λik

[
I2M×NBS , 0

0, −ξ2

]
−[

diag([w<1 ;w=1 ; ...;w<NBS ;w=NBS ]), 0

0, ρik

]
� 0,

(22)

by which the first inequality of (17) containing infi-
nite possibilities is transformed into a deterministic LMI.
However, variable ξ2 is introduced to bound the term
(
√
cik)T I2N×NBS

√
cik, which needs to be connected with the

known channel estimation error variance σ2
ik. Hence, we now

introduce Lemma 2 as follows.
Lemma 2 (links ξ2 to channel estimation error variance

σ2
ik): Provided that the element of CSI error follows Gaus-

sian distribution such that [eik]m ∼ CN (0, σ2
ik), ξ2 =

Φ−1(δ)
√
MNBS(1 + tan2θ)σik is obtained. δ physically rep-

resents the outage probability of (
√
cik)T I2N×NBS

√
cik vio-

lating its upper bound ξ2, which can be set close to 1, i.e.,
δ = 0.99 [35]. Φ−1(·) denotes the inverse function of the cdf
of a standard Gaussian distributed variable.

Proof: Please see Appendix A. �
Now with the known value of ξ2, the deterministic LMI

constraint in (22) is solvable. Similarly, the second inequality
in (17) can be transformed as

ωik

[
I2N×NBS , 0

0, −ξ2

]
−[

diag([w<1 ;w=1 ; ...;w<NBS ;w=NBS ]), 0

0, gik

]
� 0, ∀i ∈ NBS ,

(23)

where gik =
∑NBS
j=1

(
− (ĥ=jik)Tw<j − (ĥ<jik)Tw<j tanθ −

(ĥ<jik)Tw=j + (ĥ=jik)Tw=j tanθ
)

+ σn
√

Γiktanθ. Now the
constraint (C5) containing infinite possibilities is transformed
into two deterministic LMI inequalities in (22) and (23),
respectively. Defining Wj = wjw

H
j , P3 is finally written as

P4 (Full− CI−Det) : argmin
Wj ,∀j∈NBS

NBS∑
j=1

Tr(Wj),

s.t (C7) : Tr(Wj) ≤ pmax,∀j ∈ NBS ,
(C8) : (22) and (23), (C9) : λik ≥ 0,

(C10) : ωik ≥ 0, ∀ Uik,

(C11) :

[
Wj wj

wT
j 1

]
� 0, ∀j ∈ NBS ,

(24)

which is ready to solve as a standard SDP problem.

IV. PARTIALLY-COORDINATED CI PRECODING WITH
IMPERFECT CSI

In the previous section, both the intended data and CSI
need to be shared among the coordinated BSs to exploit
the constructive inter-cell and multi-user interference, which
generally requires that the coordinated BSs are connected
with high-capacity and delay-free links. In this section, to
reduce the coordination overhead, we propose a scheme that
the coordinated BSs only need to share CSI with others
yet utilizing multi-user interference as CI, which is referred
as Partial-CI scheme. Since only multi-user interference is
utilized while inter-cell interference is considered as a harmful
element, the received signal at user Uik is written as

yik = hTiik

K∑
n=1

winsin +

NBS∑
j 6=i

hTjik

K∑
m=1

wjmsjm + nik. (25)

Since we have sin = ej(φin−φik)sik and sjm =
ej(φjm−φjk)sjk, (25) can be expressed as

yik = hiike
j(φi1−φik)

K∑
n=1

wine
j(φin−φi1)sik+

NBS∑
j 6=i

hjike
j(φj1−φjk)

K∑
m=1

wjme
j(φjm−φj1)sjk + nik.

(26)

Define h̃iik = hiike
j(φi1−φik), h̃jik =

hjike
j(φj1−φjk), wi =

∑K
n=1 wine

j(φin−φi1), and
wj =

∑K
m=1 wjme

j(φjm−φj1). Eq. (26) can be written
as

yik = h̃Tiikwisik +

NBS∑
j 6=i

h̃Tjikwjsjk + nik. (27)

Hence, the SINR of the Partial-CI scheme can be written as

ΓPartial−CI
ik =

∣∣∣h̃Tiikwi

∣∣∣2∑NBS
j 6=i

∣∣∣h̃Tjikwj

∣∣∣2 + σ2
n

. (28)

To minimize power consumption in the scenario, we for-
mulate and solve the problems in terms of probabilistic and
deterministic manners, respectively.

A. Probabilistic Robust Optimization

In this subsection, we investigate the probabilistic man-
ner optimization for the partially-coordinated CI precoding
scheme. The problem formulation is first given by P5. Aided
by Lemma 3, the problem is finally given by P6.
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 Pr{(h̃<iik)Tw=i + (h̃=iik)Tw<i ≤
(
(h̃<iik)Tw<i − (h̃=iik)Tw=i −

√
(σ2
n +

∑NBS
j 6=i ||h̃Tjikwj ||2)Γik

)
tanθ|eik} ≥ ηik,

Pr{−(h̃<iik)Tw=i − (h̃=iik)Tw<i ≤
(
(h̃<iik)Tw<i − (h̃=iik)Tw=i −

√
(σ2
n +

∑NBS
j 6=i ||h̃Tjikwj ||2)Γik

)
tanθ|eik} ≥ ηik.

(30)


(C12a) : Pr{[ĥ=iik + e=ik − ĥ<iiktanθ − e<iktanθ; ĥ<iik + e<ik + ĥ=iiktanθ + e=iktanθ]T [w<i ;w=i ] ≤ −

√
Γik(σn + ϕik)tanθ} ≥ ηik,

(C12b) : Pr{[−ĥ=iik − e=ik − ĥ<iiktanθ − e<iktanθ;−ĥ<iik − e<ik + ĥ=iiktanθ + e=iktanθ]T [w<i ;w=i ] ≤ −
√

Γik(σn + ϕik)tanθ} ≥ ηik,
(C12c) : ϕ2

ik ≥ uik, (C12d) : uik ≥
∑NBS
j 6=i ||h̃

T
jikwj ||2.

(31)

(C12a) :


(
−f

T
ik[w<i ;w=i ]−(σn+ϕik)

√
Γiktanθ

)
I

Φ−1(ηik)
Λ

1
2
ik[w<i ;w=i ]

(Λ
1
2
ik[w<i ;w=i ])T

−f
T
ik[w<i ;w=i ]−(σn+ϕik)

√
Γiktanθ

Φ−1(ηik)

 � 0. (33)

(C12b) :


(
−dTik[w<i ;w=i ]−(σn+ϕik)

√
Γiktanθ

)
I

Φ−1(ηik)
Λ

1
2
ik

[w<i ;w=i ]

(Λ
1
2
ik

[w<i ;w=i ])T
−dTik[w<i ;w=i ]−(σn+ϕik)

√
Γiktanθ

Φ−1(ηik)

 � 0, (34)

1) Problem Formulation: The problem is formulated as

P5 (Partial− CI− Prob) : argmin
wj ,∀j∈NBS

NBS∑
j=1

||wj ||2,

s.t (C11) : ||wj ||2 ≤ Pmax, ∀j ∈ NBS ,
(C12) : Pr{ Γik ≥ Γik|eik} ≥ ηik,∀ Uik.

(29)

2) Optimization Solution: Since inter-cell interference is
treated as undesired element, the probabilistic constraint (C12)
equals to the following two inequalities in (30). To decouple
the inter-cell interference at each BS, we introduce two aux-
iliary variables ϕik and uik. Then, (30) is transformed into
(31). Now we handle the constraints in (31) one by one. For
constraint (C12a), it can be equivalently written in the form
as

(C12a) : f
T

ik[w<i ;w=j ] + Φ−1(ηik)||Λ
1
2
1 [w<i ;w=i ]||2 ≤

− (ϕik + σn)

√
Γiktanθ,

(32)

where f ik = [ĥ=iik − ĥ<iiktanθ; ĥ<iik + ĥ=iiktanθ] and Λik =
diag((1 + tanθ)2σ2

ik, ..., (1 + tanθ)2σ2
ik︸ ︷︷ ︸

2M

). According to Schur

complement, constraint (C12a) can be given in (33). Similarly,
constraint (C12b) can be directly given in (34), where dik =
[−ĥ=iik− ĥ<iiktanθ;−ĥ<iik+ ĥ=iiktanθ]. Now we turn to handle
the constraint (C12c). By stacking the variables ϕik and uik
into a long vector that tik = [ϕik, uik]T and defining Sik =
tikt

H
ik, (C12c) can be relaxed in the form as

(C12c) : Tr(ΠSik) + ltik ≥ 0; and

[
Sik, tik

(tik)T , 1

]
� 0, (35)

where Π =

[
1, 0

0, 0

]
and vector l = [0,−1]. Next we can

handle constraint (C12d), which can be further written as

(C12d) :

NBS∑
j 6=i

(
eTikWje

∗
ik) +

NBS∑
j 6=i

(
eTikWjĥ

∗
jik

)
+

NBS∑
j 6=i

(
ĥTjikWje

∗
ik

)
+

NBS∑
j 6=i

(
ĥTjikWjĥ

∗
jik

)
− uik ≤ 0.

(36)

To handle the inequality with S-procedure, we need to
construct another premise eTikIMe∗ik ≤ ν2 to guarantee (36)
always hold. We now calculate the value of ν2 according to
Lemma 3.

Lemma 3 (links ν2 to CSI error variance σ2
ik): Provided

the element of CSI error follows Gaussian distribution such
that [eik]m ∼ CN (0, σ2

ik), the term eTikIMe∗ik is bounded by
ν2 = Υ−1(δ)σ2

ik. Explicitly, δ physically represents the outage
probability of eTikIMe∗ik violating its upper bound, and can be
set to approach 1, i.e. δ = 0.99 [35]. Υ−1(·) is the inverse
function of the cdf of a chi-square distributed variable with
M degree of freedom.

Proof: Please see Appendix B. �
Now with the known value of ν2, the implication(

eTikIMe∗ik
)
− ν2 ≤ 0⇒ (36) holds if and only if the LMI in

(37) holds. Now, the original constraint (C12) is transformed
into equivalent constraints (C12a)-(C12d), as shown by Eqs.
(33), (34), (35) and (37). The optimization problem becomes

P6 (Partial− CI− Prob) : argmin
wj ,∀j∈NBS

NBS∑
j=1

Tr(Wj),

s.t (C11) : Tr(Wj) ≤ Pmax, ∀j ∈ NBS , (C12a) : (33),
(C12b) : (34), (C12c) : (35), (C12d) : (37), ∀ Uik,

(C13) :

[
Wj wj

wT
j 1

]
� 0, ∀j ∈ NBS ,

(38)

which is readily solved by CVX.
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(C12d) :

[
φikIM −

∑NBS
j 6=i Wj , −

∑NBS
j 6=i ĥTjikWj

−(
∑NBS
j 6=i ĥTjikWj)

H , −φikν2 −
∑NBS
j 6=i (ĥTjikWjĥ

∗
jik) + uik

]
� 0, and φik ≥ 0. (37)

B. Deterministic Optimization

In this subsection, we now investigate the deterministic
manner optimization for the partially-coordinated CI precod-
ing scheme. The problem formulation is first given by P7.
After a series of transformations, the optimization problem is
finally given by P8. Accordingly, the problem formulation is
given as

P7 (Partial− CI−Det) : argmin
wj ,∀j∈NBS

NBS∑
j=1

‖wj‖2 ,

s.t (C14) : ‖wj‖2 ≤ pmax, ∀j ∈ NBS ,
(C15) : min

eik∈∆
Γik ≥ Γik,∀ Uik.

(39)

To make the optimization problem solvable, we need to
process constraint (C15) that contains infinite possibilities.
Similarly, we introduce two uik and ϕik to decouple the inter-
cell interference. Hence, (C15) equals to



(C15a) : min
eik∈∆

[ĥ=iik + e=ik − ĥ<iiktanθ − e<iktanθ; ĥ<iik + e<ik

+ĥ=iiktanθ + e=iktanθ]T [w<i ;w=i ] ≤ −
√

Γik(σn + ϕik)tanθ,

(C15b) : min
eik∈∆

[−ĥ=iik − e=ik − ĥ<iiktanθ − e<iktanθ;−ĥ<iik − e<ik

+ĥ=iiktanθ + e=iktanθ]T [w<i ;w=i ] ≤ −
√

Γik(σn + ϕik)tanθ,

(C15c) : ϕ2
ik ≥ uik, (C15d) : uik ≥

∑NBS
j 6=i ||hjikwj ||2,

(40)

Firstly, constraint (C15a) can be written as

(C15a) : min
eik∈∆

[e=ik − e<iktanθ; e<ik + e=iktanθ]T [w<i ,w
=
i ]

+ %ik ≤ 0,
(41)

where %ik = (ĥ=jik)Tw<j − (ĥ<jik)Tw<j tanθ + (ĥ<jik)Tw=j +

(ĥ=jik)Tw=j tanθ + (ϕik + σn)
√

Γiktanθ. By applying S-
procedure, (41) is equivalent to the following LMI

(C15a) :

[
ςikI2N − diag(w<i ;w=i ), 0

0, −ςikρ2 − %ik

]
� 0,

and ςik ≥ 0,

(42)

where ρ2 = Φ−1(δ)
√
M(1 + tan2θ)σik similarly calculated

by Lemma 2. Also, constraint (C15b) can be written as

(C15b) :

[
θikI2N − diag(w<i ;w=i ), 0

0, −θikρ2 − βik

]
� 0,

and θik ≥ 0,

(43)

where βik = [−ĥ=ijkw<j − ĥ<ijktanθw<j − ĥ<ijkw
=
j +

ĥ=ijkw
=
j tanθ+(σn+ϕik)

√
Γiktanθ. On the other hand, since

(C15c) and (C15d) have similar structures with (C12c) and
(C12d), (C15c) can be written in the forms as

(C15c) : Tr(ΠSik) + ltik ≥ 0; and

[
Sik, tik

(tik)T , 1

]
� 0, (44)

while (C15d) can be given in (45). Now, the problem is
transformed into

P8 (Partial− CI−Det) : argmin
wj ,∀j∈NBS

NBS∑
j=1

‖wj‖2 ,

s.t (C14) : Tr(Wj) ≤ pmax, ∀j ∈ NBS , (C15a) : (42),
(C15b) : (43), (C15c) : (44), (C15d) : (45), ∀ Uik,

(C16) :

[
Wj wj

wT
j 1

]
� 0,∀j ∈ NBS ,

(46)

which is readily solved by CVX.

V. STATISTICALLY-COORDINATED CI PRECODING

In section IV, instantaneous CSI needs to be shared among
the BSs to facilitate the optimization. In this section, to further
reduce the coordination overhead, we propose a CI precod-
ing scheme that BSs need to know its local estimated CSI
while only sharing statistical inter-cell channel with others.
Hence, the coordination overhead can be significantly reduced
compare to the above instantaneous CSI based schemes. The
problem formulation is first given by P9, and the transformed
problem is finally presented by P10.

Let us define Rjik as the correlation matrix of the j-
th BS to the user Uik. Assuming white channel covariance
[41], the true channel correlation matrix can be written as
Rjik = uHjikujik + σ2IM ,∀j 6= i, j ∈ NBS , where ujik
denotes the mean of channel hjik. Since only multi-user inter-
ference can be exploited as constructive elements while inter-
cell interference is suppressed as noise, the SINR expression is
same to that of the partially-coordinated precoding scheme, as
presented by Eq. (28). Accordingly, the problem is formulated
as

P9 (Stat− CI) : argmin
wj ,∀j∈NBS

NBS∑
j=1

‖wj‖2 ,

s.t (C20) : ‖wj‖2 ≤ pmax, ∀j ∈ NBS ,
(C21) : min

eik∈∆
Γik ≥ Γik, ∀ Uik.

(47)

We now need to handle constraint (C21), which can be
equivalently written as

(C21c) : min
eik∈∆

[ĥ=iik + e=ik − ĥ<iiktanθ − e<iktanθ; ĥ<iik + e<ik

+ĥ=iiktanθ + e=iktanθ]T [w<i ;w=i ] ≤ −
√

Γik(σn + ϕik)tanθ,

(C21d) : min
eik∈∆

[−ĥ=iik − e=ik − ĥ<iiktanθ − e<iktanθ;−ĥ<iik − e<ik

+ĥ=iiktanθ + e=iktanθ]T [w<i ;w=i ] ≤ −
√

Γik(σn + ϕik)tanθ,

(C21c) : ϕ2
ik ≥ uik, (C21d) :

∑NBS
j 6=i Tr(wjw

H
j Rjik) ≤ uik.

(48)

As can be seen, constraint (C21d) itself is a LMI while (C21a),
(C21b) and (C21c) can similarly be solved as presented in
Section IV. Hence, the problem can be re-formulated as
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(C15d) :

[
−φikIM −

∑NBS
j 6=i Wj , −

∑NBS
j 6=i Wjĥ

∗
jik

−(
∑NBS
j 6=i Wjĥ

∗
jik)H , −φikν2 −

∑NBS
j 6=i (ĥjikWjĥ

H
jik) + uik

]
� 0, and φik ≥ 0. (45)

P10 (Stat− CI) : argmin
Wj ,∀j∈NBS

NBS∑
j=1

Tr(Wj),

s.t (C20) : Tr(Wj) ≤ Pmax, ∀j ∈ NBS ,
(C21a) : (42), (C22b) : (43), (C22c) : (44),

(C21d) :

NBS∑
j 6=i

Tr(wjw
H
j Rjik) ≤ uik,∀ Uik,

(C22) :

[
Wj wj

wT
j 1

]
� 0, ∀j ∈ NBS ,

(49)

which can be readily solved by CVX.
In the following Remarks 1 and 2, some insights are

revealed for the system design.
Remark 1: As aforementioned, the fully-coordinated CI

precoding scheme requires the highest level of overhead,
where the transmitted data and explicit CSI need to be
shared among the coordinated BSs. Benefiting from this, both
the inter-cell interference and multi-user interference can be
properly designed as constructive elements. For the partially-
coordinated CI precoding scheme, only CSI is shared among
the BSs while the transmitted data is only known by the
local BSs. Hence, only multi-user interference within each
local BS can be utilized while inter-cell interference has to
be jointly mitigated. As a result, to achieve a same SINR
requirement, the incurred power consumption is higher than
the fully-coordinated scheme, as will be demonstrated by Fig.
3. At last, the statistically-coordinated CI precoding scheme
only shares the statistical inter-cell CSI among the BSs for
jointly suppressing inter-cell interference. Hence, the overhead
is the smallest at the cost of high transmission power.

Remark 2: In this remark, we briefly discuss the system
design when the users are equipped with multiple antennas.
There will be different schemes based on the various possible
receiver configurations. (a) If the users are equipped with
multiple antennas while no receive combining is applied, this
results in a transmit only precoding, and our proposed ap-
proach optimizing the transmit precoding applies unchanged.
(b) If the receive combining applied at the users is known
and fixed, lets denote this as V ∈ CMr×1, where Mr denotes
the number of receiver applied at the user. We can simply
absorb the effect of combing vector into MIMO channel
H ∈ CM×Mr and obtain an equivalent channel from the BSs
to the user He = HV . Then, the proposed optimizations can
be applied unchanged by employing the equivalent channel
model He. (c) To further improve the system performance,
joint precoding and combining design may be conducted.
Inspired by the joint precoding/combining design in hybrid
beamforming systems, one possible solution is to employ our
proposed optimizations to jointly optimize transmit and receive
beamforming, by iteratively optimizing the precoding or com-
bining assuming the other being fixed, until convergence is

reached. To be specific, one can first optimize precoding with
a fixed receive combining scheme, and then turn to optimize
receive beamforming with the obtained precoding scheme.
Such an iterative optimization is performed until an optimal
point is achieved.

VI. COMPLEXITY AND OVERHEAD ANALYSIS

We present the coordination overhead and complexities for
the different algorithms in subsections VI-A and VI-B, respec-
tively. The associated analytical expressions are summarized
in Table I.

A. Coordination Overhead

By the Full-CI-Prob/Det algorithms, each BS shares CSI
and the transmitted symbols to other coordinated BSs. With
K users in each BS and NBS coordinated BSs, the total
overhead of sharing CSI and data is given O

(
NBS(NBS −

1)K(NBSχC + χS)
)
, where χC denotes the required bits

for describing one user’s CSI while χS denotes the required
bits for exchanging symbols. Evidently, the Full-CI-Prob/Det
algorithms show the same overhead with conventional CoMP
systems, which are suited for the scenario where the coor-
dinated BSs are connected with high-capacity and delay-free
links. By the Partial-CI-Prob/Det algorithms, only CSI needs
to be shared among the BSs. Hence, the overhead is signif-
icantly reduced to O(N2

BS(NBS − 1)KχC). By the Stat-CI
algorithm, BSs only share statistical CSI of inter-cell channel
with others, and the required bits can be ignored compared to
other instantaneous CSI acquisition-based schemes.

B. Computational Complexity

Now we analyze the complexities of each algorithm, and
the details of analyzing complexity by an interior-point based
solver are presented in the footnote 1.

1) : For the full-CI precoding scheme, P2 handles the
optimization in a probabilistic manner. It involves NBS LMI
(trace) in (C1) of size 1, 2NBSK LMI inequalities in (C2)
of size 2NBS + 1, and NBSK LMI inequalities in (C3)
of size M + 1. Hence, barrier parameter is given as β1 =√
NBS(MK + 3K + 1 + 4KNBS). On the other hand, P4

handles the problem in a deterministic manner. It involves
NBS LMI (trace) in (C7) of size 1, 2NBSK LMI inequalities

1For the interior-point methods based solver, the overall complexity can be
given as ln( 1

ε
)
√
cb(cf + cg) [42]. Specifically, ln( 1

ε
) relates to the accuracy

setup.
√
cb represents the barrier parameter measuring the geometric complex-

ity of the conic constraints. cf and cg represent the complexities cost on form-
ing and factorization of n× n matrix of the optimization problem. A search
direction is found by solving a system of linear equations in n unknowns.
cf is calculated as cf = n

∑P
j=1 k

3
j + n2

∑P
j=1 k

2
j + n

∑m
j=P+1 k

2
j ,

where kj presents the size of the j-th constraint. Specifically, the terms
n
∑P
j=1 k

3
j + n2

∑P
j=1 k

2
j come from P LMI constraints while the term

n
∑m
j=P+1 k

2
j comes from m − P second order cone constraints in the

problem formulation. cg is calculated as cg = n3 (eq. (18) [42]).
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TABLE I. Overhead and complexity analysis, with accuracy factor ε
Algorithms Overhead Complexity

Full-CI-Prob O(N2
BS(N − 1)KχC ln( 1

ε
)β1

(
n(NBS + 2NBSK(2NBS + 1)3 +NBSK(M + 1)3)

+NBS(NBS − 1)KχS) +n2(NBS + 2NBSK(2NBS + 1)2 +NBSK(M + 1)2) + n3
)

Full-CI-Det O(N2
BS(NBS − 1)KχC ln( 1

ε
)β2

(
n(NBS + 2NBSK(2NBS + 1)3 + 2NBSK +NBSK(M + 1)3)

+NBS(NBS − 1)KχS) +n2(NBS + 2NBSK(2NBS + 1)2 + 2NBSK +NBSK(M + 1)2) + n3
)

Partial-CI-Prob O(N2
BS(NBS − 1)KχC) ln( 1

ε
)β3

(
n(NBS + 10NBSK +NBSK((NBS − 1)M2 + 1)3

+2NBSK(2M + 1)3 +NBSK(M + 1)3) + n2(NBS + 10NBSK+
NBSK((NBS − 1)M2 + 1)2 + 2NBSK(2M + 1)2 +NBSK(M + 1)2) + n3

)
Partial-CI-Det O(N2

BS(NBS − 1)KχC) ln( 1
ε
)β4

(
n(NBS + 31NBSK + 2NBSK(M + 1)3 + 2NBSK(2M + 1)3)

+n2(NBS + 13NBSK + 2NBSK(M + 1)2 + 2NBSK(2M + 1)2) + n3
)

Stat-CI Negligible ln( 1
ε
)β5

(
n(NBS + 31NBSK + 2NBSK(2M + 1)3 +NBSK(M + 1)3)+

N2
BS(NBS + 13NBSK + 2NBSK(2M + 1)2 +NBSK(M + 1)2) + n3

)

in (C8) of size 2NBS + 1, NBSK linear inequality in (C9),
NBSK linear inequality in (C10), and NBSK LMI inequali-
ties in (C10) of size M + 1. Hence, its barrier parameter is
given as β2 =

√
NBS(5 + 4NBS +KM +K).

2) : In the partial-CI precoding scheme, P6 first handles
the problem in a probabilistic manner. It involves NBS LMI
(trace) in (C11) of size 1, NBSK LMI inequalities of size
2M + 1 in (C12a), NBSK LMI inequalities of size 2M + 1
in (C12b), NBSK LMI (trace) of size 1 and NBSK LMI
inequalities of size 3 in (C12c), NBSK LMI inequalities
of size (NBS − 1)M2 + 1 and NBSK linear constraints
in (C12d), and NBSK LMI inequalities of size M + 1
in (C13). Hence, its barrier parameter is given as β3 =√
NBS(1 + 5K + 2K(3M + 2) +K((NBS − 1)M2 + 1)).

On the other hand, P8 handles the problem in a deterministic
manner. It involves NBS LMI (trace) in (C14) of size 1,
NBSK LMI inequalities of size 2M + 1 and NBSK linear
constraints in (C15a), NBSK LMI inequalities of size 2M+1
and NBSK linear constraints in (C15b), NBSK LMI (trace)
in (C15c) of size 1 and NBSK LMI inequalities in (C15c)
of size 3, NBSK LMI inequalities of size M + 1 and NBSK
linear constraints in (C15d), and NBSK LMI inequalities in
(C16) of size M + 1. Hence, its barrier parameter is given as
β4 =

√
NBS(2 +M +K(8 + 5M + 2)).

3) : Now we check the complexity of the Stat-CI algorithm.
(P10) involves NBS LMI (trace) of size 1 in (C20), NBSK
inequalities of size 2M + 1 and NBSK linear constraints in
(C21a), NBSK inequalities of size 2M +1 and NBSK linear
constraints in (C21b), NBSK LMI (trace) of size 1 and NBSK
LMI inequalities of size 3 in (C21c), NBSK LMI (trace) of
size 1 in (C21d), and NBS LMI inequalities of size M +
1 in (C22). Hence, its barrier parameter is given as β5 =√
NBS(2 + 9K + 4KM +M).

VII. SIMULATION RESULTS

Our results employ Monte Carlo simulations of the consid-
ered scenarios. The central frequency is set to 2 GHz with 1
MHz bandwidth. The AWGN power spectral density is -174
dBm/Hz. In line with the closely relevant works [35] [36], a
3-cell coordination scenario is considered, and in each cell a
BS is located in the center to serve multiple users, as shown in
Fig. 2. The number of antennas at each BS is set to M = 4.
It is assumed there are K = 3 users in each cell and are
distributed across the map with the exception of the simulation
results in Fig. 7, where all the users are placed in the edge

Fig. 2. Illustration of system model, where 3 BSs exchange data or/and CSI
for different level of multi-cell coordination.

area to highlight the working modes of the coordinated BSs
by the different schemes. QPSK is adopted as constellation
scheme and the transmitted data for the multiple users are
randomly generated. The maximum transmission power is set
to pmax = 40 dBm. Without loss of generality, the outage
probability factor (for the probabilistic manner optimization)
and SINR requirement are set to ηik = 80 % and Γik = 20 dB,
respectively. The standard deviation of the CSI uncertainty is
set to σik = 10−2 for all the users, and hence the channel
estimation uncertainty bound for the deterministic manner
optimization can be readily calculated by Lemmas 2 and 3.
PL model in [35] and Rayleigh fading [39] are adopted for
modelling channels. The following schemes are selected as
benchmarks. a) CoMP with perfect CSI [2], which serves as
a transmit power lower bound of the existing schemes. b)
CBF with probabilistic optimization (CBF-Prob) [35], where
probabilistic optimization is applied. c) CBF with deterministic
optimization (CBF-Det) [36], where deterministic optimization
is applied.

Fig. 3 shows the impact of users’ SINR requirements Γik on
the total power consumption. It can be seen that the Full-CI-
Prob and Full-CI-Det algorithms consume the lowest power.
It is because the Full-CI-Prob/Det utilize both inter-cell and
multi-user interference as constructive elements, which help
reduce the transmission power to achieve a target SINR.
As comparison, although CoMP-Perfect-CSI scheme works
as a network-level MISO to obtain a broadcast channel, the
multi-user interference still needs to be canceled. As a result,
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Fig. 3. Impact of the users’ SINR requirements Γik on the total power
consumption.

even with perfect CSI, CoMP-Perfect-CSI is inferior to the
proposed Full-CI-Prob/Det algorithms. For the Partial-CI-Prob
and Partial-CI-Det algorithms, since the intended transmitted
data is not shared among the BSs to reduce the coordination
overhead, only multiuser interference is utilized while inter-
cell interference is carefully suppressed by joint precoding de-
sign. As a result, the Partial-CI-Prob/Det algorithms consume
higher power than the Full-CI-Prob/Det algorithms. However,
compared to the most relevant CBF benchmarks in [35] and
[36], the Partial-CI-Prob/Det algorithms consume much lower
power, benefiting from utilizing multi-user interference as
beneficial element. At last, the Stat-CI algorithm only needs
to share statistical inter-cell channel CSI with its adjacent
cells. As a result, the inter-cell interference suppressing is not
accurate as that in the instantaneous CSI based Partial-CI-
Prob/Det algorithms. Hence, with the lightest complexity, the
Stat-CI algorithm demonstrates a slight power consumption
increment over the Partial-CI-Prob/Det algorithms. However,
it is observed that the Stat-CI algorithm consumes significantly
less power compared to the CBF benchmarks in [35] and [36],
benefiting from utilizing multi-user interference. Secondly, it
is observed that the deterministic robust optimization generally
requires more transmission power than the corresponding
probabilistic robust optimization. It is because the determinis-
tic robust optimization needs to satisfy the SINR requirements
all the time. Differently, the probabilistic robust optimization
satisfies the SINR requirement in a statistical way, where SINR
outage is allowed to occur in a proper way. Thirdly, the power
consumption of all the algorithms increases with a higher value
of the users’ SINR requirements.

Fig. 4 shows how the channel estimation error affects the
transmission power. For the probabilistic manner optimiza-
tion, a tough channel estimation error increases the norm
of covariance matrices, i.e., Θik and Λik, of the estimated
channels. According to Eqs. (12) and (13), the amplitude of
the precoder (also the transmission power) has to be improved
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Fig. 4. Impact of channel estimation error on the total power consumption.
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Fig. 5. Feasibility probability (%) versus different SINR requirements Γik ,
where the maximum transmission power at each BS pmax = 40 dBm is
imposed for all the algorithms.

to make the optimization feasible, leading to a increased
transmission power. The same trend is also applicable for the
Partial-CI-Prob algorithm. On the other hand, the deterministic
manner robust optimization needs to keep the positive semi-
definite characteristic for the matrices in Eqs. (22) and (23),
which mathematically requires that all the leading principal
minors in the matrices to be nonnegative. As a result, the
transmission power of all the deterministic robust optimization
increases with a tough CSI estimation. At last, since the
CoMP-imperfect scheme is designed based on the ideal CSI
acquisition, its power consumption is independent with the
CSI error.

Fig. 5 shows the feasibility probability with different SINR
requirements, where infeasibility occurs when the consumed
power violates the maximum power pmax. As can be seen,
the Full-CI-prob and Full-CI-det achieve the highest feasibility
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Fig. 6. Impact of the total number of users on the total power consumption.

probabilities, up to 95% even with SINR requirement Γik = 50
dB. As a comparison, the feasibility of the CoMP-perfect
CSI degrades to 90% with Γik = 50 dB SINR requirement.
Besides, the Partial-CI-Prob/Det algorithms achieve lower
feasibility probabilities compared to the CoMP-like schemes,
as inter-channel gain is considered as harmful element and
is suppressed. As a result, they have higher probabilities of
violating maximum power budget to achieve a target SINR,
e.g., around 85% feasibility probability with Γik = 50 dB
requirement. At last, neither inter-cell or multi-user interfer-
ence is exploited by the conventional CBF-Prob and CBF-Det
benchmarks, and hence their feasibility probabilities sharply
degrade to 70%, lower than the 77% achieved by the Stat-CI
algorithm.

Fig. 6 demonstrates the power consumption versus different
number of users. As can be seen, the proposed algorithms
consume less power compared to their corresponding bench-
marks with different number of multiple users. Besides, higher
power consumption is required with more users. It is because
according to the problem formulations, all the users’ SINR
requirements need to be probabilistically or deterministically
satisfied by the constraints. As a result, higher transmission
power is led due to the increased number of constraints.

Fig. 7 shows the transmission power for the different levels
of coordination algorithms. For illustration, we place 6 users
in the BS1 and BS2’s edge area while no user in the BS3’s
coverage. By the Full-CI-Prob/Det, although there is no user
in the coverage area of the BS3, the BS3 still coordinates
with the BS1 and BS2 as a network-level MISO to serve the
edge users. Hence, as presented by Figs. 7 (a) and (b), the
BS3 contributes almost identical power compared to the BS1
and BS2. In contrast, by the Partial-CI-Prob/Det algorithms,
the BS3 keeps silent when there is no user within its cell, as
shown by Figs. 7 (c) and (d). It is because by the Partial-
CI-Prob/Det algorithms, BSs only transmits data to the users
within its cell, while the inter-cell gain in strictly suppressed
by joint beamforming. The same trend is observed by the Stat-
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Fig. 7. Transmission power of the BSs under different algorithms.

CI scheme, which suppresses inter-cell interference with the
knowledge of statistical inter-cell channels.

Fig. 8 shows the distribution of SINRs obtained by the
different algorithms. Firstly, it can be seen from Figs. 8
(b) and (d) that, all the worst-case based optimizations, i.e.,
Full-CI-Det and Partial-CI-Det, can always guarantee that the
achieved SINR higher than the preset SINR requirements. In
contrast, the chance-constrained based optimizations, i.e., Full-
CI-Prob and Partial-CI-Prob in Figs. 8 (a) and (c), allow proper
outage occurs obeying the preset threshold ηik. Secondly, by
comparing Full-CI and Partial-CI schemes, it is observed that
the achieved SINR by the Partial-CI scheme is long-tailed, e.g.,
from 25 dB to 30 dB in Figs. 8 (c) and (d). It is because a BS
may radiate high transmit power to compensate the edge users’
SINR by the Partial-CI scheme, and hence the users close to
the BS may occasionally obtain extreme high SINR, leading
to a high pdf value at high SINR regime. Different, the Full-
CI scheme efficiently corporates adjacent BSs to serve edge
users without radiating high transmission power, and hence
all the users’ SINR is less expanded and centers on the SINR
target. Thirdly, it is observed that the SINR performance of
the Stat-CI is impaired due to only knowing the statistical
inter-cell channel. However, the Stat-CI still outperforms the
conventional CoMP with imperfect CSI.

Fig. 9 shows the average running time of different algo-
rithms versus the number of users. It can be seen proposed
algorithms require a lower running time. Among them, the
Partial-CI-Prob/Det algorithms require the highest time for
obtaining the optimal results. It corresponds to our analy-
sis that the Partial-CI-Prob/Det algorithms are confined by
more constraints, and more slack variables are introduced to
make the problem solvable. Hence, the Partial-CI-Prob/Det
algorithms require longer time to get the optimal results. Be-
sides, all the three benchmarks, CoMP-Perfect-CSI and CBF-
Prob/Det, need longer time to get convergence, although they
subject to fewer constraints. It is because by the conventional
methods, the number of variables (precoders) exactly equals
to the number of users. In contrast, the proposed schemes
transform the transmission channel into a multi-cast channel
by utilizing CI, and hence the number of variables only equals
to the number of the coordinated BSs. As a result, even though
the proposed algorithms subject to more constraints, a shorter
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Fig. 9. Impact of the total number of users on the execution time.

running time is provisioned over the conventional schemes.
With in-total 12 users served by NBS = 3 BSs, there are 12
variables in the conventional algorithms while the number of
variables is reduced to 3 by the proposed CI-based algorithms.
As a result, the algorithms require 2-5 seconds less than the
conventional algorithms.

Fig. 10 demonstrates the total coordination overhead re-
quired by the different schemes. As analyzed in Section VI,
the total coordination overhead consists of sharing CSI and
symbols. For CSI exchange, codebook-based CSI overhead is
accounted since it requires less bits to describing CSI over the
analog-feedback method. Explicitly, by the codebook-based
CSI acquisition, BSs only need to share the indexes of the
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Fig. 10. The total coordination overhead in each sub-frame versus the number
of the coordinated BSs.

selected codeword with other BSs, and then each BS locally
interprets the codewords which are closest to the projection of
the CSI. Generally, around 2-10 bits are needed to describe a
MISO channel for each user [43]. For the overhead on sharing
symbols, LTE Type 2 downlink frame structure is considered,
where 5 out of 10 sub-frames are designed for downlink
transmission and each sub-frame contains 14 symbols. It can
be seen, all the CoMP-like schemes, i.e, Full-CI-Prob/Det
and CoMP-Perfect-CSI, need high overhead, since both the
intended transmitted symbols and CSI have to be shared
among BSs, and especially sharing the data introduces high co-
ordination overhead. In the lower-level of coordination, Partial-
CI-Prob/Det and CBF-Prob/Det require relatively moderate
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overhead, where only CSI needs to be shared among BSs.
As a result, coordination overhead is reduced to 0.5 Kb when
5 BSs are coordinated. At last, it should be noted that the
Stat-CI requires no backhaul overhead for coordination, since
only statistical inter-cell CSI needs to be exchanged among
the coordinated BSs, which can be ignored compared to other
instantaneous CSI acquisition based algorithms.

VIII. CONCLUSIONS
In this paper, we have investigated robust power-efficient

precoding design for multi-cell coordination systems, based
on exploiting inter-cell and multi-user interference. Three
schemes have been proposed to fully/partially utilize inter-cell
and multi-user interference, with different levels of coordina-
tion overhead. At the presence of CSI estimation error, we
have processed the power minimization problems in terms of
probabilistic and deterministic robust optimizations. Explicitly,
probabilistic optimization satisfies the SINR requirements in
a statistical manner while deterministic optimization satisfies
the SINR requirement all the time. The simulation results
verify that, by sharing the intended symbols and CSI, the
Full-CI-Prob/Det algorithms consume the lowest power, and
even outperform the conventional CoMP with perfect CSI
acquisition. Differently, by only sharing CSI but not the
intended symbols, the Partial-CI-Prob/Det algorithms require
moderate coordination overhead whereas outperforming the
conventional CBF-based schemes in terms of power efficient
transmission. To further reduce coordination overhead, the fi-
nally proposed Stat-CI algorithm obtains reasonable transmis-
sion power consumption with the lightest overhead. Last but
not least, the proposed algorithms require low running time,
benefiting from the multi-cast transmission characteristics of
CI precoding.

APPENDIX A
PROOF OF LEMMA 2

Since the element of CSI error vector eik follows
Gaussian distribution such that CN(0, σ2

ik), the real part
e<ik and imaginary part e=ik follow CN(0,

σ2
ik

2 ). Hence,
(
√
cik)T I2M×NBS

√
cik − ξ2 ≤ 0 can be equivalently written

as
∑NBS
j=1

(
(1 + tanθ)e=ik + (1 − tanθ)e<ik

)
≤ ξ2, which

can be approximately seen as the probability distribution
function (pdf) of a Gaussian distributed variable such that
Pr{
∑NBS
j=1

(
(1 + tanθ)e=ik + (1 − tanθ)e<ik

)
≤ ξ2} = δ,

where δ physically represents the probability of the inequality
being satisfied. The value of δ can be set to close to 1,
i.e. δ = 0.99, meaning the inequality is satisfied with a
high probability. By normalizing it into a standard Gaussian
distributed variable, we get a cumulative distribution function
(cdf) as Φ{ ξ2

σik
√
MNBS(1+tan2θ)

} = δ, where Φ(·) is the

cdf of a standard Gaussian distributed variable. Defining
Φ−1(·) as the inverse function of Φ(·), finally we get ξ2 =
Φ−1(δ)σik

√
MNBS(1 + tan2θ).

APPENDIX B
PROOF OF LEMMA 3

The term eHikIeik ≤ ν2 can be equivalently written as
( [eik]1
σik

)2 + ... + ( [eik]M
σik

)2 ≤ ( ν
σik

)2. The left hand follows

chi-square distribution with M degrees of freedom. Hence,
eHikIeik ≤ ν2 can be approximately interpreted as the pdf of
a chi-square variable with M degrees of freedom such that
Pr{( [eik]1

σik
)2 + ...+ ( [eik]M

σik
)2 ≤ ν2

σ2
ik
} = δ, where δ physically

represents the probability of the inequality being satisfied. The
value of δ can be set to close to 1, i.e. δ = 0.99. Evidently,
it can be written as a cdf as Υ{ ν

2

σ2
ik
} = δ, where Υ(·) is the

cdf of a chi-square variable. Defining Υ−1(·) as the inverse
function of Φ(·), finally we get ξ2 = Υ−1(δ)σ2

ik.
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