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Abstract

When performing a repeated measures experiment, such as a clinical trial, there is a risk of subject

drop-out during the experiment. If one or more subjects leave the study prematurely a situation could

arise where the eventual design is disconnected, implying that very few treatment contrasts for both

direct effects and carryover effects are estimable. This paper aims to identify experimental conditions

where this problem with the eventual design can be avoided. It is shown that in the class of Uniformly

Balanced Repeated Measurement Designs (UBRMDs) consisting of two or more Latin squares, there

are planned designs with the following useful property. Provided that all subjects have completed the

first two periods of study, such a design will not be replaced by a disconnected eventual design

due to drop-out, irrespective of the type of drop-out behaviour that may occur. Designs with this

property are referred to as perpetually connected. These experimental conditions are identified and

examined in the paper and an example of at least one perpetually connected UBRMD design is

given in each case. The results improve upon previous contributions in the literature that have been

confined largely to cases in which drop-out occurs only in the final periods of study.
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1 Introduction

The crossover design is regularly implemented in scientific experiments and has a rich history, stretching
back to the 19th century (Jones and Kenward1, p5). In medical research, the most common design is
that with two periods and two treatments, with these frequently used in trials of neurology, psychiatry
and pain treatment2. However, there is often a need for greater comparison and crossover trials with t
treatments, where t could be much greater than two, are not uncommon. This is especially the case in
the early phases of drug development3. Pharmacokinetic studies frequently utilise crossover designs for
clinical trials where the number of treatments is three or more, for example see Grattan et al.4.

Missing data is a problem that occurs in many clinical trials and can have substantial consequences on
study quality. Strategies to limit the impact of missing data on the analysis and interpretation of clinical
trials are supported by the National Academy of Science Report5. The report recommends that ‘a more
principled approach to design and analysis in the presence of missing data is both needed and possible’
and that ‘careful design and conduct limit the amount and impact of missing data’5. Crossover trials
with a large number of treatments under test can become lengthy and as such, missing data is commonly
seen through subject drop-out. First introduced by Rubin6 and also defined on page 32 of Molenberghs
and Kenward7, data are said to be missing at random (MAR) if, conditional on the observed data, the
probability of missing observations is conditionally independent of the unobserved data. If the MAR
assumption holds then conventional likelihood-based methods on the observed data, which ignores the
missingness mechanism, will provide valid estimates (Molenberghs and Kenward7, chapter 12). It is
assumed in this paper that all subject drop-out is MAR. For a discussion of crossover trials where this
assumption does not hold, consult Rosenkranz8 or Matthews and Henderson9.

In crossover trials, subjects may drop out after receiving one or more treatments, which could be due
to a positive or negative reaction to a trial intervention (Higgins and Green10, §16.4.3) or unrelated to
treatment7. Furthermore, there is increased risk of drop-out in crossover trials because they are usually
longer in length when compared to the equivalent parallel group study (Higgins and Green10, §16.4.2).
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Low et al.11 have suggested that the expected drop-out rate in a crossover trial would be between 5-10%,
and in some cases could be as high as 25%. Missing data in crossover trials and some implications are
discussed in the literature (Jones and Kenward1, p202-204). Whilst subject drop-out in parallel group
trials may lead to complications with analysis and greater risk of bias12, there can be a substantial loss
of information for crossover studies. With this loss of information, it is possible that the eventual design
which remains after drop-out is disconnected13, which is an unwelcome situation since not all treatment
contrasts are estimable. In such circumstances the experiment may be severely compromised.

Due to subjects in a crossover trial receiving more than one treatment, a washout period is often
implemented14, where subjects take no study intervention. The aim of washout is to reduce the effects
of a treatment in one study period from carrying over into the next and unduly influence the perceived
treatment effect in the following period. Even with the inclusion of washout periods, it is advisable
to ensure any crossover design is balanced, implying that the impact of carryover effects that may
still be present is distributed evenly over the direct treatment effects. Furthermore, the importance of
balance for the efficiency of the design is well documented (Jones and Kenward1, p154-p177). Balance
is achieved by ensuring that each treatment is preceded by every other treatment the same number of
times, and is never preceded by itself. A design is referred to as uniform if each treatment occurs equally
often in a period, and for each subject, each treatment occurs in the same number of periods. Many
uniform designs require that the number of periods is equal to the number of treatments; furthermore
the number of subjects is often taken to be a multiple of the number of treatments. Uniformly Balanced

Repeated Measurement Designs (UBRMDs) satisfy these constraints and have been a popular choice for
researchers and practitioners, dating back for very many years15. The UBRMDs have attractive optimality
properties, see, for example Hedayat and Afsarinejad16, Cheng and Wu17 and Hedayat and Yang18.

The design that is chosen, without the presence of subject drop-out, is referred to as the planned design

and the design which occurs in practice after any drop-out is the eventual design. It is expected that the
final analysis is based on the eventual design. In this paper, the planned design is considered to belong
to the family of UBRMDs and will consist of m Latin squares where m ≥ 2. Single square designs are
not considered. They are unlikely to be popular for crossover trials or many other crossover studies,
except for specialized experiments; for a comprehensive survey of crossover studies where the number
of subjects is less than or equal to the number of treatments, see Bate et al.19.

Much of the work in this area has been confined to eventual designs where subject drop-out has
occurred towards the end of the study. Majumdar et al.20 showed that if t ≥ 5 the eventual design for
any planned UBRMD is connected if drop-out behaviour is restricted to the last period only. They further
showed that if t ≥ 8 the eventual design for any planned UBRMD is connected if drop-out behaviour
is restricted to the last two periods only. Zhou and Majumdar21 consider a subclass of the UBRMDs
and show that such designs are relatively efficient if subject drop-out occurs at random and is limited to
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the final period. However, even when drop-out occurs at random it seems likely that some subjects may
leave the study prematurely, after just the first few periods. A crossover design is said to be perpetually

connected if all subjects complete period one and period two, and the eventual design is treatment
connected for direct effects and carryover effects, irrespective of drop-out behaviour thereafter. Clearly
a perpetually connected design carries a much lower risk for a compromised experiment since it relies
formally upon the participation of the subjects only during the first two periods of study.

The purpose of this paper is to show that a UBRMD exists which is perpetually connected for many
experimental situations which are likely to arise in practice. Two particular cases which show how designs
are at differing risks of becoming disconnected are illustrated in §2. The next section considers a number
of commonly chosen UBRMDs for medical and other experiments, with three, four, five, six and seven
treatments. It is shown that a design can be chosen for most of these cases that is perpetually connected,
thus reducing the risk of inestimable treatment contrasts, even if there is severe and unpredictable
information loss. The basis for this is an established theorem which shows the important role of the
most extreme eventual design, herein defined as the minimal design. A discussion of the implication of
these findings is given in §4 and the theoretical basis for these results is contained in the Appendix.

2 Two Illustrations

2.1 Designs to compare four treatments using eight subjects

To illustrate the ideas in the paper consider an experiment to compare four treatments labelled 1, 2, 3 and
4 by using eight subjects over four periods. Here and throughout the paper the columns of the design
refer to subjects and the rows refer to periods in sequential order. Two UBRMDs for this study have been
suggested by Low et al.11 and Godolphin13, which are specified here as Design 2A and Design 2B.

1 2 3 4 1 2 3 4

2 3 4 1 2 3 4 1

4 1 2 3 4 1 2 3

3 4 1 2 3 4 1 2

Design 2A.Design 2A.Design 2A. Two Williams replicates

1 2 3 4 1 2 3 4

2 3 4 1 4 1 2 3

4 1 2 3 2 3 4 1

3 4 1 2 3 4 1 2

Design 2B.Design 2B.Design 2B. Two distinct squares

In general, there are two distinct balanced Latin squares, both squares proposed by Williams22 as shown
for example by Bate et al.19. Designs 2A and 2B are two essentially different UBRMDs to compare
four treatments over four periods using eight subjects. Each design is universally optimal, but the general
conclusion from both Low et al.11 and Godolphin13 is that Design 2B is preferable to Design 2A if there
is the likelihood of drop-out in the fourth period.
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1 2 3 4 1 2 3 4

2 3 4 1 2 3 4 1

4 1 2 3 4 1 2 3

∗ 4 ∗ 2 ∗ 4 ∗ 2

Design 2C.Design 2C.Design 2C. Design 2A after drop-out

1 2 3 4 1 2 3 4

2 3 4 1 4 1 2 3

∗ 1 ∗ 3 ∗ 3 ∗ 1

∗ 4 ∗ 2 ∗ 4 ∗ 2

Design 2D.Design 2D.Design 2D. Design 2B after drop-out

However, both designs are at risk in the presence of subject drop-out. Design 2C is the eventual design
when four subjects are lost from Design 2A in period four and Design 2D is the eventual design when
four subjects are lost from Design 2B in period three. Design 2C and Design 2D are disconnected. It
is shown in the Appendix that in neither case is it possible to formulate the usual treatment sums of
squares for direct effects nor for carryover effects, and that several elementary treatment direct contrasts
and elementary treatment carryover contrasts are not estimable. An experiment based on either design
which suffers the drop-out described would be compromised since little could be achieved from the
results which are obtained. Furthermore, the design obtained by taking two copies of the alternative
Williams Latin square has properties similar to those of Design 2A. Therefore we are unable to suggest
a perpetually connected UBRMD to compare four treatments over four periods using eight subjects.

2.2 Designs to compare four treatments using twelve subjects

It is interesting to consider an extension of the experiment discussed in §2.1 by using twelve subjects
to compare four treatments over four periods. There are several balanced designs to select for this
experiment. One UBRMD is Design 2E which extends Design 2A and consists of three replicates of
a Williams balanced square. Another UBRMD for the experiment is Design 2F which consists of three
mutually orthogonal Latin squares (MOLS). Unlike Design 2E, none of the individual Latin squares in
Design 2F is balanced, however the combination of these three squares does yield a UBRMD.

1 2 3 4 1 2 3 4 1 2 3 4

2 3 4 1 2 3 4 1 2 3 4 1

4 1 2 3 4 1 2 3 4 1 2 3

3 4 1 2 3 4 1 2 3 4 1 2

Design 2E.Design 2E.Design 2E. Three Williams Squares

1 2 3 4 1 2 3 4 1 2 3 4

2 1 4 3 3 4 1 2 4 3 2 1

3 4 1 2 4 3 2 1 2 1 4 3

4 3 2 1 2 1 4 3 3 4 1 2

Design 2F .Design 2F .Design 2F . Three MOLS

Each of the two designs is universally optimal. However if some subjects leave the experiment early then
Design 2E is at risk. Design 2G represents the eventual design after the termination of the experiment
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based on Design 2E in which six subjects completed treatments from the first three periods only and then
dropped out.

1 2 3 4 1 2 3 4 1 2 3 4

2 3 4 1 2 3 4 1 2 3 4 1

4 1 2 3 4 1 2 3 4 1 2 3

∗ 4 ∗ 2 ∗ 4 ∗ 2 ∗ 4 ∗ 2

Design 2G.Design 2G.Design 2G. Design 2E with six missing observations in period four

Design 2G is disconnected and is seriously compromised. Although 42 of the 48 possible
measurements are available, only one of the six elementary treatment direct effects is estimable and
only two of the six elementary treatment carryover effects are estimable

On the other hand, this situation does not arise with Design 2F . It is an assumption of the paper
that all subjects persevere with the experiments for periods one and two. If drop-out occurs in periods
three and/or four the experiment will be less efficient, however both sets of treatment sums of squares
can be formed and all elementary contrasts between each set of treatment contrasts can be estimated,
regardless of eventual drop-out behaviour. Design 2F has the perpetually connected property which is
clearly a useful property of the design. It is evident that Design 2F is the more sensible choice of planned
UBRMD since it does not have the risk associated with Design 2E.

3 Perpetually Connected UBRMDs

3.1 Criterion for identifying perpetually connected designs

The crossover experiment is designed to utilize mt subjects to compare t treatments over t different
periods, where m ≥ 2, and the planned design is a UBRMD that consists of m Latin Squares of order
t× t. Such a design is universally optimal among a wide class of competing designs (c.f. Jones and
Kenward1, §4.3 and references therein). Any two planned designs with the same values of m and t will
be equally efficient. However the two eventual designs which remain after a given pattern of subject
drop-out may have markedly different properties, particularly with regard to connectivity, as illustrated
for particular values t = 4 and m = 3 by the planned designs 2E and 2F in §2.2.

For definiteness the concept of connectivity employed throughout the paper is given formally.

Definition 1. A design is said to be connected if the corresponding design matrix has maximal rank.

When a crossover design is connected then all elementary contrasts in the treatment direct effects are
estimable and, furthermore, all elementary contrasts in the treatment carryover effects are estimable; see
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Appendix, (p14-15). If subject drop-out occurs during the course of the experiment it is clearly desirable
to ensure that the ensuing eventual design is connected. Since the number of eventual designs that could
result from possible subject drop-out is considerable, even for modest values of t and m, it is obviously
useful if a procedure can be found which bypasses the need to check each eventual design individually.

It is assumed that no subject drop-out occurs in the first two periods. For any given planned design the
assessment of risk due to drop-out should take account of the number of possible eventual designs, and
the structure of these designs, which are connected according to Definition 1. Evidently, the preferred
position is that where none of the potential eventual designs are disconnected, which is the motivation
behind the formal definition of a perpetually connected design given here.

Definition 2. A planned design is said to be perpetually connected if all subjects complete period one
and period two, and the eventual design is connected irrespective of drop-out behavior thereafter.

Perpetually connected designs do exist for some values of t and m; an example for t = 4 and m = 3 is
given by the three MOLS of Design 2F . In general, to assist in identifying perpetually connected designs
it is useful to note the eventual design that is realized after the most extreme form of drop-out that can
arise, subject to the assumption of no drop-out in period 1 or period 2.

Definition 3. An eventual design is said to be a minimal design if it consists solely of the first two rows
of the planned design, i.e. all mt subjects complete the first two periods and then drop out.

For a given planned UBRMD, the significant role played by the minimal design in checking for
perpetual connectivity follows from the assertion that the planned design is perpetually connected if
and only if the corresponding minimal design is connected. This assertion is stated as a formal theorem
which is proved in the Appendix. It suggests the following procedure which can be used for checking the
given planned design.

Criterion To check for perpetual connectivity of a planned design it is required to ascertain the rank
of the design matrix for the corresponding minimal design. If the design matrix for the minimal design
has maximal rank then the planned design is perpetually connected; otherwise the planned design is not
perpetually connected.

In the remainder of this section, several examples of perpetually connected crossover designs are given
for various values of t and m such that mt2 ≤ 100, by using this Criterion.

3.2 Designs for three treatments

A common situation with clinical trials is to compare three treatments, labelled 1, 2, and 3, using 3m

subjects over three periods. No balanced 3× 3 Latin square exists, indeed Newcombe23 has pointed out
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that no UBRMD exists for this experiment when m, the number of Latin squares in the design, is an odd
integer. Attention is confined to designs where m is even: such a design is perpetually connected if no
type of drop-out behaviour in the final period causes a disconnected design, provided that all subjects
complete the first two periods of the study.

Design 3A is a set of two mutually orthogonal Latin squares which gives a UBRMD when m = 2.

1 2 3 1 2 3

2 3 1 3 1 2

3 1 2 2 3 1

Design 3A.Design 3A.Design 3A. Two MOLs of order 3× 3

Design 3A is also obtained by the construction method of Williams22. Although it would usually be
considered too small for practical use it is interesting to note that Design 3A is perpetually connected.
Furthermore, it is straightforward to show that when m is any one of the even integers m = 2, 4, 6, 8, 10

or 12, a perpetually connected design exists for three treatments using 3m subjects over three periods
simply by taking 1

2m replicates of Design 3A.

3.3 Designs for four treatments

The discussion of §2 shows some difficulties in selecting a UBRMD for an experiment in which four
treatments 1, 2, 3 and 4 are compared using 4m subjects over four periods. When m = 2 there appears
to be no perpetually connected UBRMD. When m = 3 a perpetually connected UBRMD does exist and
is given by Design 2F ; this design has the interesting property that it is balanced for second-order and
third-order carryover effects as well as first order carryover effects.

When m = 4, a perpetually connected UBRMD for comparing four treatments using sixteen subjects
over four periods is obtained by combining Design 2F with the Williams Latin square common to
Design 2A and Design 2B. Another perpetually connected UBRMD with the same dimensions is
obtained by combining Design 2F with the other Williams Latin square that forms part of Design 2B.

When m = 5, a perpetually connected UBRMD for comparing four treatments using twenty subjects
over four periods is obtained by combining Design 2F with Design 2B.

When m = 6, a perpetually connected UBRMD for comparing four treatments using twenty four
subjects over four periods is obtained by combining Design 2F with itself, i.e. taking two replicates
of the specified set of mutually orthogonal Latin squares.
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3.4 Designs for five treatments

This section considers designs to cover experiments in which five treatments labelled 1, 2, 3, 4 and 5

are compared using 5m subjects over five periods. Attention is confined to the cases m = 2, 3 and 4. A
design is perpetually connected if all subjects complete the first two periods of the study and no type of
drop-out behaviour in the final three periods can cause the eventual design to be treatment disconnected,
with regard to direct effects or carryover effects or both.

The following three UBRMDs, designated Designs 3B, 3C and 3D, are perpetually connected. Design
3B is the familiar balanced design in two squares due to Williams22. Design 3C is the combination of
three Latin squares due to Newcombe23. Design 3D consists of four Latin squares; this design is obtained
from the construction argument of Bate et al.19 such that half of it is Design 3B and the other half is
isomorphic to Design 3B.

1 2 3 4 5 1 2 3 4 5

2 3 4 5 1 5 1 2 3 4

5 1 2 3 4 2 3 4 5 1

3 4 5 1 2 4 5 1 2 3

4 5 1 2 3 3 4 5 1 2

Design 3B.Design 3B.Design 3B. Two 5× 5 Latin squares

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

2 3 4 5 1 3 4 5 1 2 5 1 2 3 4

4 5 1 2 3 4 5 1 2 3 4 5 1 2 3

3 4 5 1 2 2 3 4 5 1 2 3 4 5 1

5 1 2 3 4 5 1 2 3 4 3 4 5 1 2

Design 3C.Design 3C.Design 3C. Three 5× 5 Latin squares

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

2 3 4 5 1 5 1 2 3 4 3 4 5 1 2 4 5 1 2 3

5 1 2 3 4 2 3 4 5 1 4 5 1 2 3 3 4 5 1 2

3 4 5 1 2 4 5 1 2 3 5 1 2 3 4 2 3 4 5 1

4 5 1 2 3 3 4 5 1 2 2 3 4 5 1 5 1 2 3 4

Design 3D.Design 3D.Design 3D. Four 5× 5 Latin squares

3.5 Designs for six and seven treatments

Suppose that six treatments labelled 1, 2, 3, 4, 5 and 6 are to be compared using 6m subjects over six
periods, where m = 2 or m = 3. When twelve subjects are available the Design 3E displayed here is
perpetually connected.

Design 3E consists of two distinct Williams Latin squares which are obtained, for example, by the
Balanced Cyclic Square algorithm of Bate et al.19. A design that consists of two replicates of just one of

Prepared using sagej.cls



10 Journal Title XX(X)

these balanced Latin squares is not perpetually connected, i.e. the two squares need to be distinct, as is
the case with Design 3E.

1 2 3 4 5 6 1 2 3 4 5 6

2 3 4 5 6 1 3 4 5 6 1 2

6 1 2 3 4 5 2 3 4 5 6 1

3 4 5 6 1 2 5 6 1 2 3 4

5 6 1 2 3 4 6 1 2 3 4 5

4 5 6 1 2 3 4 5 6 1 2 3

Design 3E.Design 3E.Design 3E. Two 6× 6 Williams Latin squares

Furthermore, by adding either one of these balanced Latin squares to Design 3E a design consisting
of three Latin Squares is obtained, two of which are the same. This is a combined design for eighteen
subjects to compare six treatments over six periods and is a UBRMD which is perpetually connected.

A perpetually connected UBRMD for comparing seven treatments labelled 1, 2, 3, 4, 5, 6 and 7 using
fourteen subjects over seven periods is the familiar Williams design displayed as Design 3F .

1 2 3 4 5 6 7 1 2 3 4 5 6 7

2 3 4 5 6 7 1 7 1 2 3 4 5 6

7 1 2 3 4 5 6 2 3 4 5 6 7 1

3 4 5 6 7 1 2 6 7 1 2 3 4 5

6 7 1 2 3 4 5 3 4 5 6 7 1 2

4 5 6 7 1 2 3 5 6 7 1 2 3 4

5 6 7 1 2 3 4 4 5 6 7 1 2 3

Design 3F .Design 3F .Design 3F . Williams design for two 7× 7 Latin squares

4 Discussion

It is shown in this paper that perpetually connected UBRMDs exist for many of the experimental
situations that may be encountered which require up to one hundred measurements. In each of these
cases, at least one perpetually connected UBRMD is specified. The examples which are given involve
treatment ranges from t = 3 to t = 7, where the number of periods is t and the number of subjects is mt,
where m ≥ 2. These results imply that practitioners who wish to use any of the suggested UBRMDs can
be confident that they will be able to process their results as usual, provided that all subjects complete
the first two periods of study and regardless of drop-out in subsequent periods. The concept of forming
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conditions on designs which permit any pattern of missing values mimics the situation with incomplete
block designs as described, for example, by Godolphin and Godolphin24 25.

The requirements that there should be at least 2t subjects in the planned design and that all subjects
should complete the first two periods of study appear to be essential conditions, on theoretical grounds.
For any value of t, there is only one degree of freedom available for the worst possible drop-out case,
which is that the eventual design is the minimal design with only 2t observations recorded. In general,
when mt subjects are employed then 1 + (m− 2)t degrees of freedom are available for estimating the
residual error variance in the minimal design. Attempting to modify these requirements, for example
by including the possibility of drop-out in period two, may require a restriction condition on subject
drop-out behaviour in the third and possibly higher periods. This appears to be less desirable than the
basic requirement specified above. In practice, it seems highly likely that every subject will complete the
first period, but for some trials there is a doubt that all subjects will complete the second. Despite these
misgivings, the perpetually connected property of a crossover design appears to be a useful concept when
considering robustness of UBRMDs.

The assumption that data are MAR is not realistic for all cases, as subject drop-out could be closely
related to treatment success or failure in trials utilising a crossover design. However, without exploring
the missingness mechanism directly, it is a plausible and general assumption which permits a likelihood
based analysis, thus allowing the issues of connectedness to be investigated. Whilst this assumption is
not suitable for all possibilities, highlighting this as a limitation of our approach, this paper presents the
building blocks of a topic area which is yet to be extensively investigated.

The examples of perpetually connected designs in the paper are limited to small trials with less than
100 observations. Experiments that utilise crossover designs with multiple treatments are often early
phase trials, animal experiments or pharmacokinetic studies, which historically recruit few subjects.
The majority of the designs presented consider cases for 12 or more subjects, which follows guidelines
from the Committee for Medicinal Products for Human Use26 and guidance from the Food and Drug
Administration27. It is hoped that these results assist researchers to plan experiments under conditions
which are robust to the consequences of subject drop-out.
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Appendix

The notation of Bate et al.19 is largely adopted here. The design selected for the experiment, the planned
design, is a uniform balanced repeated measures design which is used throughout the experiment if no
drop-out occurs. In this case, the n× 1 observation vector Y , where n = mt2, is assumed to follow the
additive fixed-effects model, described in matrix form as

E[Y ] = µ1n +X1τ +X2ρ+X3α+X4β, (1)

where µ is a parameter, τ, ρ, α, β are vectors of treatment direct, treatment carryover, row (period) and
column (subject) effects of sizes t× 1, t× 1, t× 1 and mt× 1 respectively. Here X1, X2, X3 and X4

are components of the design matrix for the planned design and 1n is the n× 1 vector, all of whose
elements are unity. The design matrix X = [1n X1 X2 X3 X4] has dimension n× {(m+ 3)t+ 1}.

In practice some observations may be lost from the planned experiment through subject drop-out. In
this case there are fewer than mt2 observations, i.e. the observation vector Y has size n where n < mt2.
Under the assumptions of the paper E[Y ] has the same form as (1), i.e. in this eventual design all
components on the right side of (1) are retained in the model although the size of the period parameter
vector α may be reduced to t− q, where q denotes the number of the final periods, if any, where no
measurements are made. Of course q > 0 only if all subjects drop out from the study after t− q periods
rather than the planned quota of t periods. Since no subject drops out in the second period, by assumption,
then the most extreme case of subject drop-out occurs when q = t− 2, i.e. all subjects receive two
treatments only, then leave the study. This extreme case, termed the minimal design, is specified by
Definition 3 in §3.1. It is noted that this same term is used by Majumdar et al20 to describe a milder
form of the definition, where all subjects are assumed to complete t− q periods and then drop out, but
these authors assume that q is typically one or two. However for perpetual connectivity it is necessary
to consider the extreme form given here. Clearly every planned design has a minimal design associated
with it.

Connectivity Criterion

It is a basic requirement that all elementary contrasts between direct treatment effects are estimable and
this is sometimes the criterion of connectivity that is considered by researchers. For example, Majumdar
et al20 consider conditions for t− 1 eigenvalues of the information matrix for direct effects to be strictly
positive; to avoid ambiguity we say that direct effects are singly connected when these conditions are
satisfied. The general specification given in Definition 1 is that the planned design is connected if the
rank of the design matrix is maximal, e.g. rank(X) = (m+ 3)t− 3. This definition corresponds to the
criterion of complete connectivity due to Srivastava and Anderson28 which is considered in some detail
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by Godolphin29. Although these authors confine their results to the multi-way classification design, the
approach extends easily to the change-over planned design. Indeed for this planned design the kernel of
the design matrix is the column space of the {(m+ 3)t+ 1} × 4 matrix Πplan, given by

Πplan =


−1 −1 −1 −1

1t 0t 0t 0t

0t 1t 0t 0t

0t φt 1t 0t

0mt 0mt 0mt 1mt

 (2)

where φt is the t× 1 vector with unity in the first position and zero in the other t− 1 positions, and 0t

is the t× 1 null vector. Any vector x orthogonal to Πplan, i.e. any x such that x′Πplan = 0, is contained
in the estimable space, i.e. the parametric combination [µ τ ′ ρ′ α′ β′]x is estimable. In particular, if
x = [0 λ′ 0′(m+2)t]

′ then x′Πplan = 0 if and only if λ′1t = 0, i.e. any linear contrast λ′τ in treatment
direct effects is estimable; similarly, a linear contrast, λ′ρ, in treatment carryover effects is estimable
when the the rank of the design matrix is maximal; confer Theorems 1,3 and Corollary 1 of Godolphin29.

Effect of Subject Drop-out

Let Rplan = C(X ′) be the column space of X ′, i.e. the row space for the planned design which is the
space spanned by the mt2 vectors consisting of the rows of the design matrix. Thus Rplan is orthogonal
to C(Πplan). Each row of X corresponds to an observation from the planned design, hence the effect of
a single subject dropping out from the final q periods of the experiment is, effectively, to generate an
alternative space spanned by vectors which are the rows of X excepting those q rows that correspond to
the missing observations. This alternative space is a subspace of Rplan. In order to investigate the effect
of an arbitrary number of subjects dropping out of the experiment in the third period or later, letR denote
a subspace of Rplan spanned by vectors which are rows of X and include all 2mt rows that correspond
to the first two periods of the experiment. Also let R∗ denote the subspace which is formed after the
removal of all rows of X except the 2mt vectors corresponding to the first two periods; and let X∗ be the
2mt× {(m+ 3)t+ 1} matrix with these rows. ThenR∗ = C(X ′∗) andR∗ ⊆ R ⊆ Rplan.

Suppose further that the minimal design is connected. Let Xmin be the design matrix for the minimal
design which has maximal rank (m+ 2)t− 1 by assumption. This is smaller than the rank of the planned
design matrix since the minimal design has t− 2 fewer parameters, i.e. the row parameters α3, . . . , αt

are absent as they represent missing periods that are not defined for the minimal design. It follows that
the kernel of Xmin is the column space of the {(m+ 2)t+ 3} × 4 matrix Πmin, given by
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Πmin =


−1 −1 −1 −1

1t 0t 0t 0t

0t 1t 0t 0t

02 φ2 12 02

0mt 0mt 0mt 1mt

 (3)

where φ2 is the 2× 1 matrix with unity in the first position and zero in the other position. However,
α3, . . . , αt are necessarily defined for matrixX∗ so the columns ofX∗ corresponding to these parameters
will be null vectors 02mt, i.e. X∗ = [Xmin 0∗2mt], where 0∗2mt denotes the 2mt× (t− 2) null matrix.
Hence the kernel of X∗ is the column space of a matrix with (m+ 3)t+ 1 rows, Π∗∗ = [Π∗, ξ] say,
which contains a component matrix Π∗, where Π∗ is given by:

Π∗ =



−1 −1 −1 −1 0′t−2

1t 0t 0t 0t 0∗t

0t 1t 0t 0t 0∗t

02 φ2 12 02 0∗2

0t−2 0t−2 0t−2 0t−2 It−2

0mt 0mt 0mt 1mt 0∗mt


, (4)

such that 0∗t , 0
∗
2, 0
∗
mt denote t× (t− 2), 2× (t− 2), mt× (t− 2) null matrices. Here ξ is a matrix

component of Π∗∗ such that Π∗∗ has rank {(m+ 3)t+ 1} − {(m+ 2)t− 1} = t+ 2. But the final
t− 2 columns of Π∗ is a matrix component which is orthogonal to the remaining matrix component
consisting of the first four columns, i.e. these two components are essentially disjoint so that rank(Π∗) =

4 + (t− 2) = t+ 2 (Harville30, Theorem 17.2.4). The columns of Π∗∗ are linearly independent so the ξ
vector is absent and Π∗∗ = Π∗. Therefore the kernel of X∗ is C(Π∗).

The following theorem relates to the perpetual connectivity property of a design.

Theorem A planned design is perpetually connected if and only if the corresponding minimal design is

connected.

To prove the theorem, let q be an integer satisfying 0 ≤ q < t− 2. The design matrix for the planned
design can be expressed as X = [X ′†1 X

′
†2]′ where X†1 contains n rows, including all rows for the first

two periods (2mt < n ≤ mt2), whilst the corresponding rows for all replicates of q of the remaining
periods are assumed to be contained in X†2. We put R = C(X ′†1). Possibly after some redistribution of
the columns of X†1 we can write
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X†1 =

[
Xmin 0∗2t

X†11 X†12

]
, (5)

where 0∗2t is a 2t× (t− 2− q) null matrix.

Assume that the minimal design is connected so thatXmin has maximal rank (m+ 2)t− 1. The matrix
component X†12 is that part of the period component X3 in model (1) which relates to the t− 2− q
periods for the eventual design. The matrix X†12 has the dimensions (n− 2t)× (t− 2− q), with value
unity occurring once in each row and zeros occurring elsewhere, and all t− 2− q columns have at least
one non-zero entry. Hence rank(X†12) = t− 2− q, i.e. X†12 has full row rank. Using Theorem 8.5.3 of
Harville30 it follows from equation (5) that X†1 has rank equal to

rank(Xmin)+ rank(X†12) =
(
(m+ 2)t− 1

)
+ (t− 2− q) = (m+ 3)t− 3− q.

This is the maximal rank of X†1. Therefore the eventual design with design matrix X†1 is connected.
The partitioning of X into components X†1 and X†2 is arbitrary, subject to the inclusion of Xmin in
X†1, which shows that no eventual design can be disconnected due to subject drop-out if the associated
minimal design is connected. It follows that the planned design is perpetually connected.

Conversely, suppose the minimal design is disconnected so thatXmin has rank less than (m+ 2)t− 1.
We assert that there are eventual designs which occur as a result of subject drop-out which are not the
minimal design but they are also disconnected. Indeed each of themt eventual designs, which occur after
mt− 1 subjects drop out after two periods and the other subject drops out after three periods, cannot
have maximal rank if Xmin does not have maximal rank. This is because each of the corresponding row
spaces is spanned by one more vector than the row space for the minimal design, but each eventual design
also has an additional parameter which would account for any increase in rank.

As a consequence of this theorem it is possible to choose from among the UBRMD designs and select
a perpetually connected design, when one exists, by exploring the connectivity of the associated minimal
design. This strategy has been applied throughout §3 in the main body of the paper.

Designs 2A and 2B

To illustrate the remarks in §2.1, Design 2C and Design 2D are examined further. The two planned
UBRMDs Design 2A and Design 2B are connected but the associated minimal designs are found to be
disconnected, The rank of the minimal design associated with Design 2A is rank(Xmin) = 12, rather
than the full rank of (m+ 2)t− 1 = 15, and the rank of the minimal design associated with Design 2B

is rank(Xmin) = 14. Consequently for each planned design there will be some eventual designs that are
also disconnected. It turns out that disconnected eventual designs occur even when several subjects do
not drop out but complete their full sequence of treatments. Design 2A and Design 2B incurred drop-out
through the loss of just four subjects, resulting in Design 2C and Design 2D respectively. The kernel of
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the row space of the design matrix can be represented in each case by

Π =


−1 −1 −1 −1 0

14 04 04 04 ξτ

04 14 04 04 ξρ

04 φ4 14 04 ξα

08 08 08 18 ξβ

 , (6)

where ξτ , ξρ, ξα are vectors with four elements and ξβ is a vector with eight elements, which have
different formulations for Design 2C and Design 2D.

Consider the estimation of the treatment direct effects for Design 2C. The vector ξτ is given by
ξτ = [2 1 − 1 0]′, therefore it is evident that there is no 4× 1 vector xτ such that both x′τξτ = 0 and
x′τ14 = 0. Hence no pairwise contrasts in the direct effects are estimable. A similar conclusion is reached
for the estimation of the treatment carryover effects for Design 2C. The estimation of the treatment direct
effects for Design 2D is similar. The vector ξτ is given by ξτ = [−1 0 − 1 0]′, therefore there are two
pairwise contrasts in the direct effects which are estimable, namely τ1 − τ3 and τ2 − τ4, but the other
four pairwise contrasts in the direct effects are not estimable. There are two pairwise contrasts in the
carryover effects which are estimable, given by ρ1 − ρ3 and ρ2 − ρ4. For Design 2C and Design 2D the
null hypotheses H(τ)

0 : τ1 = τ2 = τ3 = τ4 and H(ρ)
0 : ρ = ρ2 = ρ3 = ρ4 are not testable.

Design 2G

Design 2G is disconnected as the design matrix has rank 20, rather than the maximal (m+ 3)t− 3 =

21, and the kernel of the row space of the eventual design matrix is C(Π), where Π has the form

Π =


−1 −1 −1 −1 0

14 04 04 04 ξτ

04 14 04 04 ξρ

04 φ4 14 04 ξα

012 012 012 112 ξβ

 , (7)

where ξτ , ξρ, ξα are vectors with four elements and ξβ is a vector with twelve elements. The vector ξτ
is given by ξτ = [2 1 − 1 0]′, therefore there is just one estimable pairwise contrast in the treatment
direct effects, namely τ2 − τ3. Also ξρ = [1 2 − 1 − 2]′ so ρ1 − ρ3 and ρ2 − ρ4 are the only estimable
pairwise contrasts in the treatment carryover effects. The hypotheses H(τ)

0 : τ1 = τ2 = τ3 = τ4 and
H

(ρ)
0 : ρ1 = ρ2 = ρ3 = ρ4 are not testable.
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