
The Importance of Accounting for Real-World Labelling
When Predicting Software Vulnerabilities

Matthieu Jimenez
University of Luxembourg
matthieu.jimenez@uni.lu

Renaud Rwemalika
University of Luxembourg
renaud.rwemalika@uni.lu

Mike Papadakis
University of Luxembourg
michail.papadakis@uni.lu

Federica Sarro
University College London

f.sarro@ucl.ac.uk

Yves Le Traon
University of Luxembourg

yves.letraon@uni.lu

Mark Harman
University College London and Facebook

mark.harman@ucl.ac.uk

ABSTRACT
Previous work on vulnerability prediction assume that predictive
models are trained with respect to perfect labelling information
(includes labels from future, as yet undiscovered vulnerabilities). In
this paper we present results from a comprehensive empirical study
of 1,898 real-world vulnerabilities reported in 74 releases of three
security-critical open source systems (Linux Kernel, OpenSSL and
Wiresark). Our study investigates the effectiveness of three previ-
ously proposed vulnerability prediction approaches, in two settings:
with and without the unrealistic labelling assumption. The results
reveal that the unrealistic labelling assumption can profoundly mis-
lead the scientific conclusions drawn; suggesting highly effective
and deployable prediction results vanish when we fully account
for realistically available labelling in the experimental methodol-
ogy. More precisely, MCC mean values of predictive effectiveness
drop from 0.77, 0.65 and 0.43 to 0.08, 0.22, 0.10 for Linux Kernel,
OpenSSL and Wiresark, respectively. Similar results are also ob-
tained for precision, recall and other assessments of predictive
efficacy. The community therefore needs to upgrade experimental
and empirical methodology for vulnerability prediction evaluation
and development to ensure robust and actionable scientific findings.

CCS CONCEPTS
• Software and its engineering→ Software defect analysis.

KEYWORDS
Software Vulnerabilities, Machine Learning, Prediction Modelling
ACM Reference Format:
Matthieu Jimenez, Renaud Rwemalika, Mike Papadakis, Federica Sarro,
Yves Le Traon, and Mark Harman. 2019. The Importance of Accounting
for Real-World Labelling When Predicting Software Vulnerabilities. In Pro-
ceedings of the 27th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’19),
August 26–30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3338906.3338941

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08.
https://doi.org/10.1145/3338906.3338941

1 INTRODUCTION
Manually assessing large-scale software systems for potential vul-
nerabilities is increasingly impractical, given that such systems
may consist of many millions of lines of code, any of which might
potentially contain vulnerability-inducing faults. Automated vul-
nerability prediction addresses this scalability challenge by adapt-
ing and augmenting widely-studied defect prediction techniques
[28, 35, 37].

Vulnerability prediction systems use both software metrics (e.g.,
imports, function calls) and developer metrics (e.g., developers per
component) which have also been used for defect prediction. The
vulnerability prediction approaches previously proposed in the
software engineering literature are each modified from traditional
defect prediction to the more specific problem of vulnerability pre-
diction by training on datasets that contain known vulnerabilities
and using a variety of Machine Learning techniques to classify code
as either vulnerable or not vulnerable.

Hitherto, empirical studies of the effectiveness of these vulnera-
bility prediction approaches have implicitly assumed that labelling
information is available regardless of temporal constraints (Table
1 summarises the evaluation method used to assess vulnerability
prediction methods in previous work). That is, the methodology
does not account for the gradual revelation of vulnerabilities over
time; the vulnerability labels used for training the prediction mod-
els need to be more realistically available at training time and not
include those subsequently uncovered.

New techniques for converting apparently non-vulnerable soft-
ware faults into vulnerabilities are also discovered. Vulnerability
detection is an adversarial process, in which those who seek to
exploit faults continue to innovate.

The perfect labelling assumption that all vulnerabilities known
from time t onwards are available at all times, even before t , is
clearly unrealistic: a software engineer could only ever hope to
train a predictive model on a partial ground truth that will include
some degree of misclassification.

With the present state of the research literature on vulnerability
prediction, we do not know the impact of this unrealistic perfect
labelling assumption, because previous studies omit to discuss how
they account for realistically available labelling at model training
time. To address this issue we reformulate the methodology used
to empirically evaluate vulnerability prediction. Our reformulated
methodology takes full account of the vulnerability labelling in-
formation that could reasonably and realistically be assumed to be
available to train any predictive model.

https://doi.org/10.1145/3338906.3338941
https://doi.org/10.1145/3338906.3338941

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Jimenez et al.

To realistically take account of the vulnerability information,
we train the predictive models at time t , based on all (but only)
those vulnerabilities known (already discovered) at time t , and then
evaluate the so-trained model on its ability to predict vulnerabilities
in subsequent releases.

We conducted a comprehensive empirical study of the three
main previously proposed approaches, applied each one to guide
the learning phase of a set of five widely-used machine learners,
evaluated on a single large corpus of real vulnerabilities consisting
of 1,898 vulnerable components and 74 releases from three open
source systems. We study the effectiveness of these vulnerability
prediction techniques in two scenarios, Firstly we train on the ‘re-
alistic scenario’, by assuming that mislabelling noise is inevitable
at any given time t , due to vulnerabilities unknown at time t . Sec-
ondly, we re-evaluate the vulnerability predictors with the same
experimental settings, except that we make a more ideal ‘perfect
labelling’ assumption: we assume that the training phase at time
t has available to it, all labelling of vulnerabilities available at all
times (even those that are discovered after time t).

Our findings provide strong evidence that the perfect labelling
assumption is not only unrealistic, but that it can also mislead the
scientific conclusions of any studies that make such an assumption.
Therefore, future work on vulnerability prediction needs to use
the reformulated methodology in order to ensure the scientific
reliability of the conclusions drawn.

We have taken steps to ensure that this claim is based on firm
foundations through the selection of a broad set of approaches,
data sources, techniques considered and assumptions made. More
specifically, our conclusions are based on a study of 1,898 vulnera-
bilities; an empirical evidence base that is approximately four times
larger than any of the one previously used by the originally pro-
posed methods [28, 35, 37]. The vulnerabilities used in our study are
drawn from real-world systems, and concern previously reported
real-world vulnerabilities, thereby avoiding any potential effects
due to artificial or otherwise simulated systems or vulnerabilities.
Our study also includes all the model features introduced in each
and all of the previous studies.

Finally, in order to be as comprehensive as possible in our evalu-
ation with respect to the knowledge realistically available at model
training time, we also investigate a previously proposed, but as-
yet-unevaluated, approach to improve predictive power. That is,
we investigate the previous suggestion [38] to include all fault data
available to the model training phase, including faults previously
known to exist, yet not currently known to induce any vulnerability.
The intuition for doing so is to exploit the potential link between
bugs and vulnerabilities, i.e., bugs often provide indicators for vul-
nerabilities, even when these are currently not yet known, because
no exploit has yet been found.

In summary the contributions of our paper are:

(1) We present the largest comprehensive empirical study on
vulnerability prediction to date.

(2) We provide evidence that vulnerability prediction can be
effective (MCC mean values of 0.77, 0.65 and 0.43 over the re-
leases of Linux, OpenSSL and Wiresark, respectively) when
making the assumption that perfect labelling is available to
train the model.

(3) More importantly, we also show dramatically lower predic-
tive effectiveness (MCC mean values of 0.08, 0.22 and 0.10
are achieved for Linux, OpenSSL and Wiresark, respectively)
when we remove this unrealistic labelling assumption, in-
stead training the models only on vulnerability labellings
that could realistically be available to the learner at model
training time.

(4) We investigate whether imbuing the training data with ad-
ditional fault data from previously known faults that have
not been determined to be vulnerabilities might enhance
vulnerability prediction efficacy. These results show little
improvement (MCC values are still below 0.30), and indicate
that more work remains to be done to develop deployable
vulnerability prediction for real world systems.

2 BACKGROUND
2.1 Security Vulnerabilities
A security vulnerability is defined as “a mistake in software that can
be directly used by a hacker to gain access to a system or network”
by the Common Vulnerability Exposures terminology [2]. Such
mistakes are usually unexpected behaviours, backdoors, insuffi-
cient security measurements or code omissions (lack of defensive
programming). Vulnerabilities are considered as of critical impor-
tance and their resolution is usually prioritized over other bugs.
To this end, vendors usually make new releases in order to fix
vulnerabilities faster and reduce their impact.

To support secure software products and vulnerability fixing,
vulnerabilities are usually reported in publicly available databases.
One such database is the National Vulnerability Database (NVD),
which has been established by the National Institute of Standards
and Technology (NIST) and U.S. government in order to encourage
secure software development, public disclosure and management
of vulnerabilities.

NVD is built upon the CVE List, which is a list of entries con-
taining an identification number, a description and at least one
public reference of the vulnerability. Thus, every publicly disclosed
vulnerability is referenced with a unique identifier called Com-
mon Vulnerability Exposures (CVE) number or ID. NVD enriches
each CVE entry with information such as the severity (named as
CVSS) and the type (named as CWE) of a vulnerability. This data is
continuously updated by the NVD staff [4].

2.2 Predictive Modelling for Software Security
Vulnerabilities

Predictive modelling is a process of forecasting (future) outcomes
(a.k.a., target or dependent variable) by using historical data. Each
prediction model is composed by a number of predictors (a.k.a.,
independent variables) that are deemed likely to influence (predict)
the future outcomes. Once historical data has been collected for
relevant predictors, a prediction model can be generated using
various techniques, such as statistical analysis, machine learning,
or search-based algorithms.

Previous studies have shown that predictive modelling can be
used to aid software engineers in their activities, ranging from
project managment to software testing [12, 13, 16, 17, 30, 31, 33, 34].

Accounting for Real-World Labelling When Predicting Software Vulnerabilities ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

In the context of software security vulnerabilities, predictive
models have been used to classify part of the software as either
predicted vulnerable or predicted non-vulnerable with the ultimate
goal to support engineering in testing and code review activities.

For example, if one could identify with a high accuracy those
part of the software that might be vulnerable engineers could pri-
oritise their testing over testing other parts which are less likely to
be vulnerable. Depending on the target analysis, prediction mod-
els may focus on different granularity levels, i.e., one can predict
vulnerabilities at line, method, component or package level. In a
sense the granularity level is the entity on the code based on which
prioritization will be performed. Evidently, different granularity
levels offer different advantages [27]. For instance, the line level
granularity can be direct but can produce many false errors and
can be too fine grained for the developers to identify issues. In our
study we adopt the file-component granularity level following the
findings of Morrison et al. [27], who found that the file (compo-
nent) level was sufficient for Microsoft developers to work with.
This decision is also in accordance to what most of the previously
published work does [28, 35, 37].

Once established the granularity level, the dependent variable
should indicate whether a target component contains one or more
vulnerabilities, while the independent variables (i.e. predictors)
can be many and related to different aspects of the software and
its production. In the literature, three main methods have been
proposed to extract vulnerability predictors from historical data,
named as Imports and Function Calls [28], Code and Process Metrics
[37, 38], and Bag of Words [35]. These predictors can be used with
traditional machine learning classifiers in order to build prediction
models. In our studywe realise and investigate all the three methods
to extract different predictors set as to the best of our knowledge
there has been no study comparing these approaches on a level
playing field so far, and assess their effectiveness in combination
with five different machine learners (i.e., AdaBoost, J48, K-Nearest
Neighbourhood, Logistic Regression and Random Forest).

2.3 Methods to Extract Vulnerability
Prediction Features

Here we describe the three main methods proposed in literature to
extract from historical data the vulnerabilities predictors that can
be used as input to automated vulnerability prediction systems.

Imports and Function Calls
Neuhaus et al. [28] observed that vulnerable files tend to import and
call a particular small set of functions. Based on this observation
they suggested the first approach that implements vulnerability
prediction. This is a simple prediction model over the components’
imports and function calls. In other words, the imports and function
calls are the training features.

To apply this predictionmodelling technique one needs to extract
the imports and function calls of the components under analysis.
In our experiment, we retrieve this information by traversing the
Abstract Syntax Trees (ASTs) of the files. Following the recommen-
dation of Neuhaus et al. we use imports and function calls as a
separate set of features and, therefore, trained two models (one per
each set).

Code and Process Metrics
Shin et al. [37, 38] used code metrics related to code complexity,
code churn and developer activity to build vulnerability prediction.
According to these studies, the combined use of these metrics gives
the best results. In summary the features used by this approach are
the following:

- Complexity and Coupling:
LinesOfCode: lines of code;
PreprocessorLines: preprocessing lines of code;
CommentDensity ratio: lines of comments to lines of code;
CountDeclFunction: number of functions defined;
CountDeclVariable: number of variables defined;
CC(sum, avg, max): sum, average and max cyclomatic complexity;
SCC(sum, avg, max): strict cyclomatic complexity [37];
CCE(sum, avg, max): essential cyclomatic complexity [37];
MaxNesting(sum, avg, max): maximum nesting level of control

constructs;
fanIn(sum, avg, max): number of inputs, i.e., input parameters

and global variables to functions;
fanOut(sum, avg, max): number of outputs, i.e., assignments to

global variables and parameters of function calls.

- Code Churn: added lines, modified lines and deleted lines in the
history of a component.

- Developer Activity Metrics:
number of commits impacting a component;
number of developers modified a component;
current number of developers working on a component.

We computed the above metrics by analysing the program AST and
the Git history.

Bag of Words
This approach treats code as a set of words. It tokenizes the code
and puts every token into a reference bag along with its appear-
ance frequency. It is known as text mining and has been suggested
for vulnerability prediction [35]. The features are the appearance
frequency of the tokens, i.e., unigrams, in the code of the compo-
nents. As the features dimensionality explodes quickly reducing
it is mandatory [35, 40]. To this end, previous studies [35, 40] dis-
cretized the frequency of tokens (to make them binary) using the
method of Kononenko [24].

3 RELATEDWORK
Vulnerability prediction has been attempted in previous studies
differing from each other mainly from the predictors used, the sub-
ject and the validation carried out. In this paper, we investigate
all previously proposed predictors’ sets (creating a different pre-
diction model using each for each set as described in Section 2.3
and validate them as done in previous work and also in a more
realistic scenario. Table 1 summarises and compares the key aspects
of related work with respect to our work, including their validation
procedure and whether they consider mislabelling noise. We can
observe that all studies perform a cross-validation, which does not
consider the temporal aspect and therefore it is unrealistic.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Jimenez et al.

Table 1: Comparisonwith previouswork. All studies perform cross-validation to assess the effectiveness of the predictionmod-
els and only three of them also consider a release-based validation. Cross-validation does not consider temporal aspects and
therefore it is unrealistic. Among the three release-based studies, one uses synthetic data, one does not consider mislabelling
noise and the other does not specify.

Study Systems No. of Vul-
nerabilities

Granularity Method Evaluation Method Results Mislabelling Noise

Neuhaus et al. [28] Mozilla 134 Component Imports and Function calls Cross-validation Precision 70, Recall 45 Does not consider
Zimmermann et al.
[46]

Windows Vista 66 Binary Code Metrics &
Dependencies

Cross-validation Precision 66.7 & 60,
Recall 20 & 40

Not specified

Shin et al. [37] Mozilla Firefox,
Red Hat Enterprise,
Linux kernel

389 File Code Metrics Cross-validation &
Release-based

Precision 3 - 5 & 3,
Recall 87 - 90 & 79 - 85

Not specified

Shin et al. [38] Mozilla Firefox 363* File Code Metrics Cross-validation Precision 9, Recall 91 Does not consider
Scandariato et al. [35] 20 Android apps N/A File Bag Of Words Cross-validation &

Release-based
Precision 90** & 86**,
Recall 77** & 77**

Does not consider and
uses artificial data

Walden et al. [43] Drupal, Moodle,
PHPMyAdmin

223 File Bag Of Words Cross-validation Precision 2-57, Recall
74-81

Does not consider

Zhang et al. [45] Drupal, Moodle,
PHPMyAdmin

223 File Code Metrics & Text
Features

Cross-validation Precision 25-67, Recall
4-69

Does not consider

Jimenez et al. [22] Linux Kernel 743 File Imports and Function calls,
Code Metrics, Bag Of Words

Cross-validation &
Release-based

Precision 65-76 &
39-93 , Recall 22-64 &
16-48

Does not consider

This paper
(“Ideal” World)

Linux Kernel,

OpenSSL, Wireshark
1593 File

Imports and Function
calls, Code Metrics,
Bag Of Words

Release-based
Precision 44.7-83.3 ,
Recall 33.5-76.5

Evaluates the impact
of mislabelling noise(“Real” World) Precision 19.4-44.6,

Recall 1.6-26.2

*Number of vulnerable files. **Estimated from the graphs and reported data of the paper.

On the other end, three of these studies perform also a release-
based analysis but one uses synthetic data, one does not consider
mislabelling noise and the other does not specify. Therefore we can
conclude that all previous studies overlooked temporal labelling
assumptions, and our paper is the first to analyse the impact of
this assumption on the quality of the prediction. Indeed, our “Ideal”
world results are close to those reported by previous work ignoring
time when labelling, however when the same models are used in a
realistic scenario their predictive performance dramatically drop
revealing that previously reported results were optimistic. In the
following we describe each of the previous work in detail.

Neuhaus et al. [28] were the first to find a correlation between
import/function calls and vulnerabilities and to use the import and
function calls as features to train a classifier able to predict vulner-
able components. They empirically evaluated this proposal for the
Mozilla Firefox project achieving a recall of 45% and a precision of
70%.

Shin et al. [37] experimented with complexity metrics along
with code churn and developer metrics. The authors validated their
approach for Mozilla Firefox and Red Hat Linux and obtained a
recall of up to 86% for Mozilla Firefox and up to 90% for the Linux.
However, they reported a low precision. Subsequently, the same
authors analysed whether a traditional defect prediction models,
trained on complexity, code churn and past fault history is capable
of predicting software vulnerabilities [38]. They found that dis-
tinguish between bugs and vulnerabilities is a hard task, as they
obtained similar results for both cases.

Chowdhury and Zulkernine [9, 10] proposed a similar approach
but using a slightly different set of metrics: complexity, coupling
and cohesion. The evaluation performed for Mozilla Firefox showed
an average recall of 74.22%.

Zimmerman et al. [46] carried out an empirical study to evaluate
the efficacy of code churn, code complexity, dependencies and or-
ganizational measures to build a vulnerability prediction model for

Windows Vista. Their proposal obtained a good precision but low
recall. Nguyen et al. [29] used an approach based on dependency
graph, rather than traditional source code metrics, to train the vul-
nerabilities prediction model and evaluated it on Mozilla Javascript
Engine obtaining an average precision and recall of 60%.

Recently, Scandariato et al. [35] investigated the use of text min-
ing. The combination of natural language processing and prediction
models was introduced for defect prediction by Hata et al. [19] and
has been successfully used for other software engineering predic-
tion tasks [14][31]. Scandariato et al. [35] decompose the source
code into a bag of words which is then used to train a classifier.
This approach was validated for 20 android applications, yielding a
precision and recall of about 80%. However, the dataset used in this
study was built using a static analysis tool and since these tools are
quite imprecise they might produce a lot of type I and type II errors.
Such concerns were addressed by Walden et al. [43] who evaluated
the same approach on different settings. They used a dataset com-
posed by three web applications written in PHP, for a total of about
30 vulnerabilities per application and applied cross-validation as
there was not enough data to create two independent sets. This
undermine the validity of the results since the evaluation settings
used have been shown to lead to generalization and overfitting
problems [11]. Using the same dataset, Zhang et al. [45] propose
to combine code metrics and text mining techniques. Overall, the
authors manage to improve the results for precision while the recall
is only improved in one case.

Jimenez et al. [22] carried out an empirical study comparing the
vulnerability prediction approaches using a dataset of 743 vulnera-
bilities from the Linux Kernel (which was split into independent
training and evaluation data sets) and found that function calls
and text mining were the best performing approaches. Although
related, Jimenez et al. used a commit-based analysis for only one
system (while herein we use a release-based one for three systems)
and does not investigate the impact of data leakage.

Accounting for Real-World Labelling When Predicting Software Vulnerabilities ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

The approaches discussed so far are somehow generic and can
work with most of the existing software. However, they do not
specialise on specific types of vulnerabilities. Two examples of ap-
proaches requiring additional data and/or the help of a tool are
those of Smith et al. [39] and Theisen et al. [42]. Smith et al. [39]
approach for SQL Hotspot revealed a correlation between vulner-
abilities and the number of SQL statements. Theisen et al. [42]
suggested to use crash dumps to identify part of system that might
be vulnerable. In particular, they define the notion of attack surface
approximation that can be used to help vulnerability prediction.
The authors empirically compared a model based on this approach
against one based on code metrics using a Windows 8 vulnerability
dataset and found slightly better results based on attack surface
approximation. Since this approach is unsupervised it does not
require labelling the training data, which is an advantage, however
recall cannot be achieved as there is no information available for
all those source code files that do not have a crash history.

4 RESEARCH QUESTIONS
We start our empirical study by assessing the effectiveness of previ-
ously proposed vulnerability prediction techniques in the realistic
setting, in which only reasonably available vulnerability labelling
are assumed to be available at model training time.

RQ1: How well do prediction models identify vulnerable compo-
nents between software releases in the ‘real world’, using the
reformulated (and more robust) experimental methodology?

To establish realistic settings in answering RQ1 we train the
prediction models using the information available (reported vul-
nerabilities) at release time and evaluate against the ‘ground truth’
data (vulnerabilities reported over the whole period of time that
we consider).

After checking the performance of prediction models in this
realistic setting we repeat the entire process for the ‘ideal world’
setting, in which all vulnerability labels (known at any time) are
also assumed to be all available at model training times.

RQ2: How well do prediction models identify vulnerable compo-
nents between software releases in the “ideal” world?

Finally, we wish to be comprehensive, so we also evaluate the
suggestion, raised in previous work [38], that previously discov-
ered faults (not known to be vulnerabilities) should be included in
the training data available since this might improve vulnerability
prediction. Hence we ask:

RQ3: Can we improve the accuracy of vulnerability prediction
in the ‘real world’ setting by providing prediction models with
more general defect-based information?

To answer RQ3, we repeat the analysis carried out for RQ1 but we
use modified training sets, and compare their performance against
the models built using the original training sets. In particular, we
include in the training sets defect-related information. We thus,
augment the training sets with components which were defective
but considering them as vulnerable by assigning them a lower
weight (equal to one) with respect to the weight (equal to five)
of the actual vulnerable components. This practise is known as
training set augmentation and attempts to tackle the insufficient
learning signal and the class imbalance problem [38].

Table 2: Vulnerability data in our corpus.

Software System Vulnerabilities Vulnerable
Components

Linux Kernel 1,202 1,508
Wireshark 265 221
OpenSSL 126 164
Total 1,593 1,898

5 CORPUS
In our study we consider three large security intensive open-source
software systems: the Linux Kernel, the OpenSSL library and the
Wireshark tool. These systems are widely-used, mature and have a
long history of releases and vulnerability reports, which is needed
to perform realistic experiments with machine learning. Addition-
ally, these systems are publicly available on Git, which allows for
their releases analysis by simply linking them with the NVD, more-
over other researchers can access the same data for reproducibility
and extensions. In the following we describe these systems, the
procedure we followed to collect the data and the characteristics of
the vulnerabilities we collected. Additional details about the data
collection and analysis can be found in the dissertation of Matthieu
Jimenez [21].

5.1 Software Systems
The Linux Kernel is an operating system. To date it is integrated
in billions of systems and devices such as Android. Linux is one of
the largest open-source code-bases including approximately 19.5
million LOC and has a long history (since 1991), recorded in its
repository. It is relevant for our study as it hasmany security aspects
and is among the projects with the higher number of reported
vulnerabilities in NVD.

OpenSSL is a library implementing the SSL and TLS protocols,
commonly used in communications. In 2014 the project was used
by more than 65% of the web servers worldwide [1]. OpenSSL has
approximately 650 KLOC. It is relevant for our study because of its
critical importance, as highlighted by the heartbleed vulnerability,
which made half of a million web servers vulnerable to attacks [3].

Wireshark is a network packet analyser mainly used for trou-
bleshooting and debugging. It supports developers and network
managers by capturing traffic, analysis protocol and interface con-
troller behaviour. The project is open source and involves more 3.6
million LOC and is relevant for our study because it is integrated
on most operating systems.

5.2 Data Collection
We collected all vulnerabilities reported in NVD for the three sys-
tems under study using the VulData7 framework [23]. VulData7
automatically retrieves all declared bug reports and patches by
crawling NVD. Using this information the framework retrieves
all the related commits from Git, i.e., for each vulnerability that
has a link to a patch. To make sure that VulData7 retrieves all re-
ported vulnerabilities it also searches the projects version history
to identify commit messages with references to CVEs or bug IDs
mentioned by the NVD data.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Jimenez et al.

(a) OpenSSL (b) Wireshark (c) Linux Kernel

Figure 1: Ratio of vulnerable components per considered release in the three systems we study. We consider 64 versions of
Linux Kernel, (versions from 2.6.12 to 4.15), 9 versions of Wireshark (all major releases) and 10 versions of OpenSSL (all major
releases).

The above process provides our data. We believe that our data are
relatively precise in the sense that components tagged as vulnerable
are indeed vulnerable. This is because developers acknowledge the
existence of vulnerabilities and independent practitioners validated
the reports [27, 46]. We further discuss this issue in the Threats to
Validity Section 6.4.

We consider a component as vulnerable if it was modified in or-
der to fix the vulnerability. This is in line with previous work, which
considers the components that were blamed by security reports, e.g.,
Neuhaus et al. [28] and Shin et al. [37]. Table 2 reports a summary
of our collected data. Of course, while we can be relatively sure that
code labelled as ’vulnerable’ does, indeed, expose a vulnerability,
we cannot be so certain of the absence of vulnerabilities in code
marked as ’non-vulnerable’.

Since we investigate vulnerabilities per release, we use data from
previous release(s) to predict the vulnerable components of the next
release. To characterize such data, we mapped the vulnerabilities
with the releases they affected (using the NVD data). The NVD
dataset tells us which releases are affected by a vulnerability and
we further mine vulnerability fixes which means we know when
the vulnerabilities were removed. These two observations give us a
reasonably reliable assessment of the lifetime of a vulnerability.

Our goal is to perform vulnerability prediction between software
releases. This means that at a given release, we want to predict
the vulnerabilities in the next release. However, at the given re-
lease time, there might be vulnerable components that have not
yet been reported. As we already discussed, this fact introduces
a significant challenge to the approach since it provides wrong
learning signals, i.e., vulnerable components (unreported vulnera-
bilities) are considered as clean/non-vulnerable. To account for this
we form two datasets, one containing all vulnerabilities reported
at every examined release time (corresponding to a ‘realistic’ sce-
nario - investigated by RQ1), and one containing all vulnerabilities
irrespective to when they were reported (corresponding to an ‘ex-
perimental’ scenario similar to the one followed by previous work -
investigated by RQ2). Thus, we have the following two datasets:

Realistic Data - used in RQ1 & RQ3: The historical data (project
components) is labelled as vulnerable and clean (i.e. non-vulnerable)
according to the information available at release time (i.e. vulnerabil-
ities reported before the particular release).

Experimental Data - used in RQ2: The historical data (project
components) are labelled as vulnerable and clean according to our
“ground truth” data (vulnerabilities reported over the whole period of
time that we consider).

Using VulData7 and by following the above data collections
process we gathered a set of vulnerable and clean components
falling into 64 versions of Linux Kernel (from 2.6.12 to 4.15), 9
versions of Wireshark (all major releases, i.e., ending with 0) and
10 versions of OpenSSL (all major releases).

Figure 1 shows the ratio of vulnerable components per release
for the three systems we study. The data show that the proportion
of vulnerable components ranges from 1% to 7% for all the systems
we studied. Such a ratio indicates a largely unbalanced dataset,
which can be challenging for the prediction modelling methods
[27]. We also observe that the number of vulnerable components
rises up each major releases.

6 EXPERIMENTAL DESIGN AND ANALYSIS
6.1 Methodology
To evaluate vulnerability prediction and answer our RQs we per-
formed the following analysis. For every considered release, we
iteratively train on the previous release(s) and evaluate on the cur-
rent one. We consider two typical cases addressed in previous work:
training on the last release [18, 20] and training on the last three
releases [37, 38]. We start the evaluation from the fourth release
onwards (as we need at least three releases on which to train the pre-
dictive models) and we consider releases with at least 10 vulnerable
components. These constraints ensures that we have sufficient data
for analysis. As a result of this procedure we evaluate on 61, 6 and
7 releases of Linux Kernek, OpenSSL and Wireshark, respectively.

Accounting for Real-World Labelling When Predicting Software Vulnerabilities ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Since our data is imbalanced (less than 10% vulnerable compo-
nents per release compared to the non-vulnerable ones), we inves-
tigate the use of the Synthetic Minority Over-sampling TEchnique
(SMOTE) [8], which augments the minority class data with synthe-
sised instances that have similar feature values with the real ones
(of the minority class). We repeat all our experiments with and with-
out SMOTE. To avoid bias from a specific classifier1 we considered
five popular ones, i.e., AdaBoost, J48, K-Nearest Neighbourhood
(k=5), Logistic Regression and Random Forest. These classifiers
are typically used in prediction studies. To train and evaluate the
models we usedWEKA [5] version 3.9.2, which is publicly available,
thus allowing for the reproducibility of our study.

To train and test, a feature matrix needs to be constructed. In this
matrix, the columns correspond to the different features and the
rows to the components (values of the features for each component).
We used and evaluate three different features set produced by the
methods. In Code Metrics, the feature matrix has a fixed number of
columns, i.e., one per metric. However, the Imports, Function Call
and the Bag of Words have a non constant number of columns (these
are determined by the features extracted from the training set). This
is likely to introduce a scalability challenge due to the large number
of features. To reduce this burdern we used ’minimum support’
[28], i.e., a minimum amount of cases a potential feature needs to
appear in the training set, to be considered as a feature, and set it
to 5%.

6.2 Performance Measurement
Vulnerability prediction is treated as a binary classification (pre-
dicting components as being vulnerable and non-vulnerable). Thus,
predictions might characterize components as: vulnerable while
they are not (False Positives - FPs), non-vulnerable while they are
vulnerable (False Negatives - FNs), vulnerable while they are (True
Positives - TPs) and non-vulnerable while they are (True Negatives
- TNs). A typical way to evaluate such methods is by using Precision
and Recall measures. These are defined as:

Precision = TP / (TP + FP)

Recall = TP / (TP + FN)

Traditional information retrieval metrics such as recall, preci-
sion, F-measure, and ROC-AUC do not take into account the “true
negative" count and can be misleading, especially when using imbal-
anced data. Therefore, we complement their use with the Matthews
Correlation Coefficient (MCC) [26], a reliable metric of the quality
of prediction models [7, 36]. This metric takes into account true
and false positives and negatives and is generally regarded as a
balanced measure which can be used even when the classes are of
very different sizes, as in our case. TheMCC is defined as:

MCC = T P×T N−F P×FN√
(T P+F P)(T P+FN)(T N+F P)(T N+FN)

1It is unknown which classifier performs best for a given problem. Therefore, we need
to check this before performing any prediction modelling evaluation.

As such, MCC returns a coefficient between 1 and -1, where
MCC = 1 indicates a perfect prediction, MCC = −1 a perfect
inverse prediction (i.e., total disagreement between prediction and
observation) andMCC = 0 indicates that the classifier performance
is equivalent to random guessing.

Generally, classifiers are not directly returning a class in which
an element is supposedly belonging, but are instead returning a
probability of the said element to belong to a class. This probability
can then be used to classify the element into one of the classes,
depending on a threshold. This probability of a component to be
vulnerable according to a model, that we call Prediction probability
PredP , can be used as a ranking basis where component would be
ranked in ascending order. The position of a specific component in
this ranking gives us its Relevant Ranking (RR).

We also consider the effort put by the engineers to use the clas-
sification produced, i.e., the number of components that need in-
spection in order for someone to inspect all vulnerable components.
This metric is defined as:

Resolution effort ratio= Number of components needinд inspection
Number of components

As engineers may focus on the most likely cases, we also need
a metric focussing on the top ranked components. We consider
the top-n metric, which is defined as the number of vulnerable
components in the top n places of the RR. We use n value of 10.

6.3 Pre-analysis
Our experiment involves a large number of settings that require the
repetition of our analysis 16,760 times, as we need to investigate 4
approaches with 5 classifiers, 2 validation ways (using one release
or the the last three), 2 ways of handling imbalance (using/not
using SMOTE) for the 3 systems of interest (74 releases studied
in total) and for 3 different RQs. To deal with this issue we first
determined the best combination of the pair <classifier, prediction
method> for all the releases of our corpus and then we applied the
best-performing ones to answer our RQs.

In particular, we gather the results of RQ1 for all combination
and ranked the performance of the classifiers for a given approach.
Then, we computed the average rank of all pairs. Detailed results
are omitted due to lack of space. The best classifier is Random Forest
(it achieves the best results in all cases). Therefore, we used this
pair in our analysis.

We then evaluate whether we should use SMOTE or not and
whether we should train on the last three releases or just on the
last one. We thus, computed all the MCC values and compared
them using the Wilcoxon signed rank test [44]. We found that
SMOTE does have a positive effect, with statistically significantly
better performance metrics for all the approaches and classifiers’
combinations we examined (p −value < 0.005). We also found no
statistically significant differences between using the last release
and using the last three releases for training the prediction models.
Though, we decided to perform our analysis using the three last
releases as it provided slightly more stable results.

In conclusion, in the rest of our analysis we use the following
settings: training using SMOTE on the last three releases with the
Random Forest classifier.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Jimenez et al.

6.4 Threats to Validity
A potential threat to our study may arise from data collection.
We work with publicly reported vulnerabilities mined from code
repositories. This process ensures the retrieval of components that
developers mark as vulnerable and the affected releases (reported in
NVD) but tells nothing about the unmarked components (which we
consider as non-vulnerable). Yet, in practice this might not be the
case and may result in false negatives and false positives that reduce
performance, as we show in RQ1. To reduce this threat we selected
mature projects with a long history of releases and vulnerability
reports. We also assumed that training is performed on the publicly
reported vulnerabilities. Yet, in practice practitioners may have
additional information available (vulnerabilities they found and did
not report), which can boost the performance that we observe by
comparing the results of RQ1 with those of RQ2.

Potential defects in our framework may unintentionally influ-
ence our results. To reduce this threat, we carefully inspected our
code and tested it. To further reduce it and enable replication, we
make our data publicly available2. Threats may also arise due to
the classifiers’ configurations [6]. All classifiers were configured
with the hyper-parameters setting of WEKA: altough using a same
default setting allowed us to compare all the techniques on a level
playing field, performing hyper-parameter tuning could further
improve performance [15, 25, 32, 41].

Also, we did not use the SVM classifier as in the study of Neuhaus
et al. [28] due to technical problems with WEKA when using it on
the bag of words and metrics methods. Nevertheless, we achieved
better results with Random Forest than with the Support Vector
Machines for the particular case of Neuhaus et al. Additionally,
previous research on bag of words [35] and metrics [37] showed
that Random Forest and Linear Regression performed better than
Support Vector Machines.

Finally, we cannot claim that our results generalise beyond the
subjects studied. However, to reduce this threat, we studied three
large open-source systems with a large number (3-4 times larger
than in previous studies) of real (reported in NVD) vulnerabilities.
Moreover, we use a publicly available tool (VulData7 [23]) for data
collection and report the followed procedure in order to allow other
researcher to replicate and extend our work.

7 RESULTS
7.1 RQ1: Performance in the “Real” World

Setting
This RQ investigates the practical applicability of the prediction
models using a realistic labeling taking into account temporal con-
straints, i.e., we investigate the predictions that one can achieve by
using only those vulnerabilities that were reported at the software
release time .

Figure 2 shows the distribution of the predictions’ evaluation
measures (MCC, Precision and Recall) for all methods and subjects
under studies. We can observe little differences between the ap-
proaches, in terms of the MCC values, only Code Metrics performs
slightly better (measured by MCC) than the other three methods
for Linux Kernel.

2https://github.com/kabinja/fse2019

In terms of precision and recall Code Metrics performs better
than the other methods for OpenSSL, slightly worst for Wiresark
and has almost identical behaviour to the other methods for Linux
Kernel. These results show that the choice of the vulnerability
predictors does not noticeably impact the prediction performance.

Moreover, we can observe that all predictions are consistently
poor: all performance measures are on average lower than 0.5.
Literature suggests (e.g., [28, 38]) that precision and recall values
≥ 0.7 are reasonable. An industrial study at Microsoft [27] suggests
that “False positive rates around 0.5 would still not be good enough
to trigger real action”. Therefore, according to these thresholds,
the studied models achieve non-actionable results when used in a
realistic setting. This is an important finding and surprising given
previously reported results, which were based on an unrealistic
temporal labeling assumption [22, 28, 35, 37, 38, 43, 45, 46].

Figure 5(a) shows the results with respect to resolution effort ra-
tio and top-10 metrics. The effort ratio results represent the required
inspection effort to identify all vulnerable components. Unfortu-
nately, the results demonstrate that engineers will need to inspect
almost the whole codebase, indicating a rather poor performance.
The top-10 results are in line with the precision results found ear-
lier, i.e., they show that engineers can identify 2 to 5 vulnerable
components among the top 10 suggested.

Therefore, our answer to RQ1 is that in a realistic setting these
approaches have poor performance (lower than 0.4 precision and
0.2 recall on average).

7.2 RQ2: Performance in the “Ideal” World
Setting

Figure 3 shows the distribution of the predictions’ evaluation mea-
sures for all methods and subjects we consider. The results are
consistent for all the studied subjects, with the Bag of Words and
Function Calls methods achieving better results than other in terms
of MCC, while smaller differences are observed in terms of precision
and recall.

Interestingly, in this case we observe very good results for the
Linux Kernel subject with median values of MCC, Precision and
Recall above 0.8 for all approaches (except the recall of CodeMetrics).
The results for OpenSSL are lower than those of Linux Kernel,
but still good overall (above 0.50 for all measures). The results
for Wireshark are much variable with Recall and Precision values
ranging from 0.20 to 0.70 (mainly due to the low prevalence of
vulnerabilities in the project releases of Wireshark). The resolution
effort ratio and top-10 measures shown in 5(b) confirm the good
performance of these models: Engineers need to inspect a smaller
portion of the codebase to find all vulnerabilities and can identify
7 to 10 vulnerable components among the top 10 suggested in
OpenSSL and Linux, while 4 to 6 in Wireshark. Although these
results seem very good, they are optimistic as RQ1 showed that
using a more realistic labeling they dramatically decrease.

Therefore, even if the “ideal” world vulnerability prediction
achieves results that according to the literature can be character-
ized as actionable [27, 28, 38], the gap with “real” world is too large,
indicating that the vulnerability prediction techniques proposed so
far are not yet practically applicable.

https://github.com/kabinja/fse2019

Accounting for Real-World Labelling When Predicting Software Vulnerabilities ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Figure 2: Prediction performance in a “real” world setting - with data labelled only with information available at model-
building time(RQ1). We observe a relatively low performance for all methods. Also, all approaches show little performance
differences (all yield similar MCC values).

Figure 3: Prediction performance in an “ideal” world setting - with unrealistic vulnerability labelling information (RQ2). We
observe a relatively good performance for all methods. Bag of Words and Function Calls methods achieve the best results,
i.e., yield the highest MCC, but overall with negligible differences. There are notable performance differences from the “real”
world results presented in Figure 2.

Figure 4: Performances for training set augmentation in a “real” world setting (RQ3). We observe that training set augmenta-
tion does not noticeably help achieving a reasonable performance. There are no significant performance differences from the
non-augmented results that were presented in Figure 2.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Jimenez et al.

7.3 RQ3: Performance in the “Real” World
Setting with Augmented Training Data

Figure 4 shows the performance of vulnerability prediction when
augmenting training data to improve predictions, as suggested by
Shin et al. [38]. The figure presents the distributions of MCC, Preci-
sion and Recall values. We observe that training set augmentation
does not improve much the overall performance as the MCC values
are relatively low. In fact by comparing the results of Figures 2
and 4 we can see that training set augmentation does not improve
performance (in fact it has a negative effect) in terms of MCC. Inter-
estingly, we also observe that training set augmentation results in
trading recall over precision. By comparing the results of Figures 2
and 4 with respect to Recall and Precision values we see that Recall
is increased while Precision is decreased. This can be explained by
the fact that only in the ‘bug’ strategy we are altering the learning
phase by adding examples.

Figure 5(c) presents the results with respect to resolution effort
ratio and top-10 metrics. The effort ratio results indicate that, simi-
larly to the results found for RQ1, engineers will need to inspect
almost the whole codebase to find all vulnerabilities. The top-10
results show some little improvements with respect to RQ1: an
engineering can identify 3 to 5 vulnerable components among the
top 10 suggested in OpenSSL and Linux Kernel, while 1 to 2 in
Wireshark. However, these results are still far from those achieved
in the ideal setting (RQ2). If we compare the results of Figures 5(b)
and 5(c), it becomes evident that training set augmentation does
not a significant difference for the system under study.

Overall these results suggest that it is possible to trade recall
over precision by using training set augmentation, but overall the
prediction performance do not improve much (i.e. MCC, Precision
and Recall are still below 0.50 on average). A potential explanation
is that bugs have a weak link with vulnerabilities (so it adds enough
of noise to mislead the precision of the predictions).

8 CONCLUSION
We presented a study on vulnerability prediction and showed that
it has indeed good performance when trained on sufficient and
accurately labelled data. However, performance is poor when con-
sidering realistic partial and mislabeled data. In particular, we found
that the unrealistic use of unreported vulnerabilities at the training
time gives optimistic prediction performance (MCC of 0.77, 0.65
and 0.43 for Linux, OpenSSL and Wiresark), which significantly
degrades when using a more realistic training scenario (MCC of
0.08, 0.22, 0.10). We also showed that potential mitigation strategies,
such as augmenting training data with defect information, offer lit-
tle improvements. These results show that the community needs to
upgrade experimental and empirical methodology for vulnerability
prediction validation, evaluation and development to ensure robust
and actionable scientific findings.

ACKNOWLEDGEMENTS
Renaud Rwemalika and Mike Papadakis are supported by the Lux-
embourg National Research Fund (FNR), AFR PHD 11278802 and
C17/IS/11686509/CODEMATES. Mark Harman and Federica Sarro
are part supported by the ERC advanced fellowship grant 741278
(EPIC: Evolutionary Program Improvement Collaborators).

OpenSSL Wireshark Linux Kernel

0.0

0.2

0.4

0.6

0.8

1.0
Resolution Effort Ratio

Bag Of Words

Code Metrics

Function Calls

Imports

OpenSSL Wireshark Linux Kernel

0

2

4

6

8

10
Top 10

(a) ‘Real” world setting (RQ1). We observe a relatively low performance for all ap-
proaches and subjects. Also, all approaches show little performance differences.

OpenSSL Wireshark Linux Kernel

0.0

0.2

0.4

0.6

0.8

1.0
Resolution Effort Ratio

Bag Of Words

Code Metrics

Function Calls

Imports

OpenSSL Wireshark Linux Kernel

0

2

4

6

8

10
Top 10

(b) “Ideal” world setting (RQ2). We observe a relatively good performance for all
methods and a notable performance difference with respect to the “real” world results
shown in Figure 5(a).

OpenSSL Wireshark Linux Kernel

0.0

0.2

0.4

0.6

0.8

1.0
Resolution Effort Ratio

Bag Of Words

Code Metrics

Function Calls

Imports

OpenSSL Wireshark Linux Kernel

0

2

4

6

8

10
Top 10

(c) Training set augmentation in “real” world setting (RQ3). We observe that training
set augmentation does not improve much the predictive performance in real world
setting. It has a positive effect on OpenSSL (only to resolution effort ratio metric) but
no effect on Wireshark and Linux Kernel. Overall training set augmentation does
not lead to significant performance improvements with respect to the non-augmented
results shown in Figure 5(a).

Figure 5: Resolution effort ratio and top-10metrics for “real”
world setting (a), “ideal” world setting (b) and training set
augmentation in “real” world setting (c).

Accounting for Real-World Labelling When Predicting Software Vulnerabilities ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] [n. d.]. Bug in OpenSSL opens two-thirds of the Web to eavesdropping. ([n.

d.]). http://arstechnica.com/security/2014/04/critical-crypto-bug-in-openssl-
opens-two-thirds-of-the-web-to-eavesdropping/

[2] [n. d.]. Definition of vulnerability. ([n. d.]). https://cve.mitre.org/about/
terminology.html

[3] [n. d.]. Heartbleed Home Page. ([n. d.]). http://heartbleed.com
[4] [n. d.]. NATIONAL VULNERABILITY DATABASE. ([n. d.]). https://nvd.nist.gov/
[5] [n. d.]. Weka: Data Mining Software in Java. ([n. d.]). http://www.cs.waikato.ac.

nz/ml/weka/
[6] Amritanshu Agrawal and Tim Menzies. 2018. Is "better data" better than

"better data miners"?: on the benefits of tuning SMOTE for defect prediction.
In Proceedings of the 40th International Conference on Software Engineering,
ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018. 1050–1061. https:
//doi.org/10.1145/3180155.3180197

[7] David Bowes, Tracy Hall, Mark Harman, Yue Jia, Federica Sarro, and Fan Wu.
2016. Mutation-aware Fault Prediction. In Proceedings of the 25th International
Symposium on Software Testing and Analysis (ISSTA’16). ACM, 330–341. https:
//doi.org/10.1145/2931037.2931039

[8] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
2002. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res.
16 (2002), 321–357. https://doi.org/10.1613/jair.953

[9] Istehad Chowdhury and Mohammad Zulkernine. [n. d.]. Can complexity, cou-
pling, and cohesion metrics be used as early indicators of vulnerabilities?. In
SAC’10. 1963. https://doi.org/10.1145/1774088.1774504

[10] Istehad Chowdhury and Mohammad Zulkernine. 2011. Using complexity, cou-
pling, and cohesion metrics as early indicators of vulnerabilities. Journal of
Systems Architecture 57, 3 (2011), 294 – 313. https://doi.org/10.1016/j.sysarc.2010.
06.003

[11] Pedro M. Domingos. 2012. A few useful things to know about machine learning.
Commun. ACM 55, 10 (2012), 78–87. https://doi.org/10.1145/2347736.2347755

[12] Sarro Federica. 2019. Search-Based Predictive Modelling for Software Engineer-
ing: How Far Have We Gone?. In Proceedings of the 11th International Symposuim
on Search-Based Software Engineering, SSBSE 2019.

[13] F. Ferrucci, M. Harman, and F. Sarro. 2014. Search-Based Software Project Man-
agement. In Software Project Management in a ChangingWorld. Springer, 373–399.

[14] Anthony Finkelstein, Mark Harman, Yue Jia, Federica Sarro, and Yuanyuan
Zhang. 2013. Mining App Stores: Extracting technical, business and customer rating
information for analysis and prediction. RN 13. UCL, Research Notes.

[15] Wei Fu, Tim Menzies, and Xipeng Shen. 2016. Tuning for software analytics:
Is it really necessary? Information & Software Technology 76 (2016), 135–146.
https://doi.org/10.1016/j.infsof.2016.04.017

[16] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell. 2012.
A Systematic Literature Review on Fault Prediction Performance in Software
Engineering. IEEE Trans. Softw. Eng. 38, 6 (2012), 1276–1304. https://doi.org/10.
1109/TSE.2011.103

[17] Mark Harman. 2010. The Relationship Between Search Based Software Engi-
neering and Predictive Modeling. In Procs. of the 6th International Conference
on Predictive Models in Software Engineering (PROMISE’10). Article 1, 13 pages.
https://doi.org/10.1145/1868328.1868330

[18] M. Harman, S. Islam, Y. Jia, L. L. Minku, F. Sarro, and K. Srivisut. 2014. Less is
More: Temporal Fault Predictive Performance over Multiple Hadoop Releases. In
Proceedings of the International Symposium on Search-Based Software Engineering
(SSBSE’14). Springer, 240–246. https://doi.org/10.1007/978-3-319-09940-8_19

[19] Hideaki Hata, Osamu Mizuno, and Tohru Kikuno. 2010. Fault-prone Module
Detection Using Large-scale Text Features Based on Spam Filtering. Empirical
Softw. Engg. 15, 2 (April 2010), 147–165. https://doi.org/10.1007/s10664-009-
9117-9

[20] Aram Hovsepyan, Riccardo Scandariato, and Wouter Joosen. 2016. Is Newer
Always Better?: The Case of Vulnerability Prediction Models. In Proceedings of
the 10th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, ESEM 2016, Ciudad Real, Spain, September 8-9, 2016. 26:1–26:6.
https://doi.org/10.1145/2961111.2962612

[21] Matthieu Jimenez. 2018. Evaluating Vulnerability Prediction Models. Ph.D. Disser-
tation. University of Luxembourg. http://orbilu.uni.lu/handle/10993/36869

[22] Matthieu Jimenez, Mike Papadakis, and Yves Le Traon. 2016. Vulnerability Predic-
tionModels: A Case Study on the Linux Kernel. In 16th IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM 2016, Raleigh, NC,
USA, October 2-3, 2016. 1–10. https://doi.org/10.1109/SCAM.2016.15

[23] Matthieu Jimenez, Yves Le Traon, and Mike Papadakis. 2018. [Engineering
Paper] Enabling the Continuous Analysis of Security Vulnerabilities with Vul-
Data7. In 18th IEEE International Working Conference on Source Code Analy-
sis and Manipulation, SCAM 2018, Madrid, Spain, September 23-24, 2018. 56–61.
https://doi.org/10.1109/SCAM.2018.00014

[24] Igor Kononenko. 1995. On Biases in Estimating Multi-valued Attributes. In
Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI).
1034–1040.

[25] Sergio Di Martino, Filomena Ferrucci, Carmine Gravino, and Federica Sarro.
2011. A Genetic Algorithm to Configure Support Vector Machines for Predicting
Fault-Prone Components. In Product-Focused Software Process Improvement - 12th
International Conference, PROFES 201. Proceedings. 247–261. https://doi.org/10.
1007/978-3-642-21843-9_20

[26] B.W. Matthews. 1975. Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein
Structure 405, 2 (1975), 442 – 451. https://doi.org/10.1016/0005-2795(75)90109-9

[27] Patrick Morrison, Kim Herzig, Brendan Murphy, and Laurie Williams. 2015.
Challenges with applying vulnerability prediction models. In HotSoS’15. 4:1–4:9.
https://doi.org/10.1145/2746194.2746198

[28] Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas Zeller.
2007. Predicting vulnerable software components. In CCS’07. 529. https://doi.
org/10.1145/1315245.1315311

[29] Viet Hung Nguyen and Le Minh Sang Tran. 2010. Predicting vulnerable software
components with dependency graphs. In Proceedings of the 6th International
Workshop on Security Measurements and Metrics (MetriSec ’10). ACM, New York,
NY, USA, Article 3, 8 pages. https://doi.org/10.1145/1853919.1853923

[30] Federica Sarro. 2018. Predictive Analytics for Software Testing: Keynote Paper. In
Proceedings of the 11th International Workshop on Search-Based Software Testing
(SBST ’18). ACM, New York, NY, USA, 1–1. https://doi.org/10.1145/3194718.
3194730

[31] Federica Sarro, Mark Harman, Yue Jia, and Yuanuan Zhang. 2018. Customer
Rating Reactions Can Be Predicted Purely Using App Features. In Proceedings of
the 26th IEEE International Requirements Engineering Conference (RE’18).

[32] Federica Sarro, Sergio Di Martino, Filomena Ferrucci, and Carmine Gravino. 2012.
A further analysis on the use of Genetic Algorithm to configure Support Vector
Machines for inter-release fault prediction. In Proceedings of the ACM Symposium
on Applied Computing, SAC 2012. 1215–1220. https://doi.org/10.1145/2245276.
2231967

[33] Federica Sarro and Alessio Petrozziello. 2018. Linear Programming As a Baseline
for Software Effort Estimation. ACM Trans. Softw. Eng. Methodol. 27, 3, Article 12
(2018), 28 pages. https://doi.org/10.1145/3234940

[34] F. Sarro, A. Petrozziello, and M. Harman. 2016. Multi-objective Software Effort
Estimation. In Procs.of the 38th International Conference on Software Engineering
(ICSE’16). 619–630. https://doi.org/10.1145/2884781.2884830

[35] Riccardo Scandariato, James Walden, Aram Hovsepyan, and Wouter Joosen. 2014.
Predicting Vulnerable Software Components via Text Mining. IEEE TSE 40, 10
(Oct. 2014), 993–1006. https://doi.org/10.1109/TSE.2014.2340398

[36] Martin Shepperd, David Bowes, and Tracy Hall. 2014. Researcher bias: The use
of machine learning in software defect prediction. IEEE Transatctions on Software
Engineering 40, 6 (2014), 603–616.

[37] Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A. Osborne. 2011.
Evaluating Complexity, Code Churn, andDeveloper ActivityMetrics as Indicators
of Software Vulnerabilities. IEEE TSE 37, 6 (Nov. 2011), 772–787. https://doi.org/
10.1109/TSE.2010.81

[38] Yonghee Shin and Laurie Williams. 2013. Can traditional fault prediction models
be used for vulnerability prediction? Empirical Software Engineering 18, 1 (Feb.
2013), 25–59. https://doi.org/10.1007/s10664-011-9190-8

[39] Ben Smith and Laurie Williams. [n. d.]. Using SQL Hotspots in a Prioritization
Heuristic for Detecting All Types of Web Application Vulnerabilities. In ICST’11.
https://doi.org/10.1109/icst.2011.15

[40] Jeffrey Stuckman, James Walden, and Riccardo Scandariato. 2017. The Effect of
Dimensionality Reduction on Software Vulnerability Prediction Models. IEEE
Trans. Reliability 66, 1 (2017), 17–37.

[41] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi
Matsumoto. 2016. Automated parameter optimization of classification techniques
for defect prediction models. In Proceedings of the 38th International Conference
on Software Engineering, ICSE 2016. 321–332. https://doi.org/10.1145/2884781.
2884857

[42] Christopher Theisen, Kim Herzig, Patrick Morrison, Brendan Murphy, and Laurie
Williams. 2015. Approximating attack surfaces with stack traces. In Proceedings
of the 37th International Conference on Software Engineering-Volume 2. IEEE Press,
199–208.

[43] James Walden, Jeff Stuckman, and Riccardo Scandariato. 2014. Predicting Vul-
nerable Components: Software Metrics vs Text Mining. In ISSRE’14. 23–33.
https://doi.org/10.1109/ISSRE.2014.32

[44] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics
Bulletin 1, 6 (1945), 80–83. http://www.jstor.org/stable/3001968

[45] Yun Zhang, David Lo, Xin Xia, Bowen Xu, Jianling Sun, and Shanping Li. 2016.
Combining SoftwareMetrics and Text Features for Vulnerable File Prediction. Pro-
ceedings of the IEEE International Conference on Engineering of Complex Computer
Systems, ICECCS 2016-January (2016), 40–49. https://doi.org/10.1109/ICECCS.
2015.15

[46] Thomas Zimmermann, Nachiappan Nagappan, and LaurieWilliams. 2010. Search-
ing for a Needle in a Haystack: Predicting Security Vulnerabilities for Win-
dows Vista. In ICST’10 (ICST ’10). IEEE Computer Society, 421–428. https:
//doi.org/10.1109/ICST.2010.32

http://arstechnica.com/security/2014/04/critical-crypto-bug-in-openssl-opens-two-thirds-of-the-web-to-eavesdropping/
http://arstechnica.com/security/2014/04/critical-crypto-bug-in-openssl-opens-two-thirds-of-the-web-to-eavesdropping/
https://cve.mitre.org/about/terminology.html
https://cve.mitre.org/about/terminology.html
http://heartbleed.com
https://nvd.nist.gov/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
https://doi.org/10.1145/3180155.3180197
https://doi.org/10.1145/3180155.3180197
https://doi.org/10.1145/2931037.2931039
https://doi.org/10.1145/2931037.2931039
https://doi.org/10.1613/jair.953
https://doi.org/10.1145/1774088.1774504
https://doi.org/10.1016/j.sysarc.2010.06.003
https://doi.org/10.1016/j.sysarc.2010.06.003
https://doi.org/10.1145/2347736.2347755
https://doi.org/10.1016/j.infsof.2016.04.017
https://doi.org/10.1109/TSE.2011.103
https://doi.org/10.1109/TSE.2011.103
https://doi.org/10.1145/1868328.1868330
https://doi.org/10.1007/978-3-319-09940-8_19
https://doi.org/10.1007/s10664-009-9117-9
https://doi.org/10.1007/s10664-009-9117-9
https://doi.org/10.1145/2961111.2962612
http://orbilu.uni.lu/handle/10993/36869
https://doi.org/10.1109/SCAM.2016.15
https://doi.org/10.1109/SCAM.2018.00014
https://doi.org/10.1007/978-3-642-21843-9_20
https://doi.org/10.1007/978-3-642-21843-9_20
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1145/2746194.2746198
https://doi.org/10.1145/1315245.1315311
https://doi.org/10.1145/1315245.1315311
https://doi.org/10.1145/1853919.1853923
https://doi.org/10.1145/3194718.3194730
https://doi.org/10.1145/3194718.3194730
https://doi.org/10.1145/2245276.2231967
https://doi.org/10.1145/2245276.2231967
https://doi.org/10.1145/3234940
https://doi.org/10.1145/2884781.2884830
https://doi.org/10.1109/TSE.2014.2340398
https://doi.org/10.1109/TSE.2010.81
https://doi.org/10.1109/TSE.2010.81
https://doi.org/10.1007/s10664-011-9190-8
https://doi.org/10.1109/icst.2011.15
https://doi.org/10.1145/2884781.2884857
https://doi.org/10.1145/2884781.2884857
https://doi.org/10.1109/ISSRE.2014.32
http://www.jstor.org/stable/3001968
https://doi.org/10.1109/ICECCS.2015.15
https://doi.org/10.1109/ICECCS.2015.15
https://doi.org/10.1109/ICST.2010.32
https://doi.org/10.1109/ICST.2010.32

	Abstract
	1 Introduction
	2 Background
	2.1 Security Vulnerabilities
	2.2 Predictive Modelling for Software Security Vulnerabilities
	2.3 Methods to Extract Vulnerability Prediction Features

	3 Related Work
	4 Research Questions
	5 Corpus
	5.1 Software Systems
	5.2 Data Collection

	6 Experimental Design and Analysis
	6.1 Methodology
	6.2 Performance Measurement
	6.3 Pre-analysis
	6.4 Threats to Validity

	7 Results
	7.1 RQ1: Performance in the ``Real'' World Setting
	7.2 RQ2: Performance in the ``Ideal'' World Setting
	7.3 RQ3: Performance in the ``Real'' World Setting with Augmented Training Data

	8 Conclusion
	References

