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The interpretation of Large Hadron Collider (LHC) data in the framework of Beyond the Standard
Model (BSM) theories is hampered by the need to run computationally expensive event generators
and detector simulators. Performing statistically convergent scans of high-dimensional BSM theories
is consequently challenging, and in practice unfeasible for very high-dimensional BSM theories. We
present here a new machine learning method that accelerates the interpretation of LHC data, by
learning the relationship between BSM theory parameters and data. As a proof-of-concept, we
demonstrate that this technique accurately predicts natural SUSY signal events in two signal regions
at the High Luminosity LHC, up to four orders of magnitude faster than standard techniques. The
new approach makes it possible to rapidly and accurately reconstruct the theory parameters of
complex BSM theories, should an excess in the data be discovered at the LHC.

Introduction: A vast effort is currently in progress
to discover physics Beyond the Standard Model (BSM)
at the Large Hadron Collider (LHC), motivated in part
by the possible connection between new particles at the
weak scale and the dark matter problem in astrophysics
and cosmology [1–3]. The absence of clear evidence for
BSM physics in current LHC data has been interpreted
in the context of simplified models [4, 5] as well as of
full models, such as various incarnations of the minimal
Supersymmetric Standard Model (MSSM) [6–10].

Such studies, and even more the interpretation of a
hypothetical excess in future data, are hampered by
the computationally intensive task of sampling the high-
dimensional parameter space of theoretical models, and
comparing, for each sample, the predicted signal with
actual data. For each set of input parameters one needs
in fact to: (i) generate a Monte Carlo (MC) sample of
collision events; (ii) run the sample through a detector
simulation; and (iii) compare the predicted signal with
data, often within signal regions (SRs) defined by exper-
imental cuts on observable quantities, such as missing
transverse energy, number of jets, momenta, and angles
[7]. This procedure is computationally very expensive,
and it constitutes the bottleneck for global analyses of
BSM theories, especially for those with high-dimensional
theory parameter spaces: in Ref. [6], for instance, it was
estimated that ≈ 400 CPU-years would be needed to
obtain a statistically convergent scan of a 15-dimensional
supersymmetric model.

We demonstrate here that this bottleneck can be by-
passed by introducing machine learning (ML) tools that
can learn the mapping between theory and data, and then

rapidly and accurately predict signal region efficiencies.
Gaussian processes: The number of events Ni in SR

i can be written as Ni = Lσεi, where L is the integrated
luminosity, σ the production cross-section of the relevant
process(es), and εi ∈ [0, 1] is the SR efficiency (which
is in turn the product of the detector efficiency times
the acceptance, i.e. the fraction of events that passes
analysis cuts). A classification ML method was introduced
in Ref. [11] to predict whether or not a given point
in the BSM theory parameter space is compatible with
LHC data. Here, we are interested in the more general
regression problem of estimating the continuous quantities
εi given the input BSM parameters θ, i.e. in modeling
the relationship εi = fi(θ).

We specifically implement here the Gaussian process
(GP) regression model [12]. Instead of predicting a sin-
gle value, a GP has the virtue of equipping predictions
with consistent uncertainty estimates by means of a full
posterior distribution. The crucial ingredient of GPs is
the covariance function, which specifies the correlation
structure between the function value at different points in
the input parameter space. We use here for the covariance
function an anisotropic squared exponential kernel [12]

k(θ,θ′) = σ2
f exp

∑
j

(θj − θ′j)2

2l2j

 (1)

where the sum is over the BSM theory parameters. σf
and lj are hyperparameters: σ2

f encodes the intrinsic
variance of the function we are modeling, and the lj are
characteristic length-scales which determine how quickly
the function changes from point to point. Choosing the
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optimal values of these hyperparameters to model our
function is the learning task of GPs, and is done by the
standard procedure of evidence maximization [12].

The major limitation of standard GPs is that train-
ing scales cubically with the size n of the training data
set as it involves computing the inverse of n × n matri-
ces. Therefore, in practice, there is a limitation on the
amount of training data that can be used. To eliminate
this limitation we make use of distributed GPs (DGPs),
specifically the robust Bayesian Committee Machine [13]
algorithm, which avoids large matrices by partitioning
the training data into smaller data sets and distributing
the computation across independent computing nodes.

Natural supersymmetry: As a proof-of-concept, we
apply this new technique to the natural supersymmetry
(SUSY) scenario, in which fine-tuning is low, and the
electroweak scale is stabilized by a small subset of light
SUSY states (e.g., [14–18]). We focus in particular on
the minimal natural SUSY scenario of Refs. [19, 20], a
realistic, yet low-dimensional theory, in which the gluinos,
both stops, the left handed sbottom, and the higgsinos all
have masses at TeV scale while the remaining states are
decoupled. The six parameters of minimal natural SUSY
are: the supersymmetric Higgs mixing parameter µ, the
gluino mass parameter M3, the ratio of the two Higgs
vacuum expectation values tanβ, the third generation
SU(2)-doublet squark soft-breaking parameter mQ3

, the
third generation SU(2)-singlet soft-breaking parameter
mtR , and the top trilinear soft-breaking term At.
Data: The experimental scenario we consider is

the planned high luminosity upgrade of the LHC (HL-
LHC) [21] with 3000 fb−1 worth of data collected at 14
TeV center-of-mass energy. We focus on two mutually
exclusive SRs defined in Ref. [22], for which the ATLAS
collaboration provides background estimates.1 These SRs
are optimized for direct production of stops, the most rel-
evant production channel for natural SUSY. The typical
decay channels for the stop are: top or bottom quarks,
W/Z/Higgs bosons, and the lightest neutralino. The de-
tector signature is the presence of several jets (including
b-jets), large missing transverse energy, and possibly lep-
tons. We refer to the ATLAS note for the full definitions
of the SRs, and we focus here on the 0-lepton and a
1-lepton SR.

Training and testing: For training and test data we
analyzed 18 647 samples generated in Ref. [20], for which
SR efficiencies were calculated using SPheno 3.2.4 [23],
Pythia 8.210 [24, 25] with default parton distribution
function set [26], NLLFAST 3.1 [27–32], and Check-
MATE 1.2.1 [33–36] with Delphes 3.10 [37] and Fast-
jet 3.0.6 [38–40].

1 In Ref. [22] they vary the cuts as a function of the stop mass. We
use the cuts optimized for 1.1 TeV.
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FIG. 1. The DGP prediction, εdgp1` , versus the MC prediction,
εmc
1` , for the 1-lepton signal region. The black circles are 2000

test points in the parameter space of natural SUSY. The errors
on εdgp1` are those predicted by the DGP itself. The orange line

shows the desired behavior εdgp1` = εmc
1` . The insert shows how

the distribution of (εdgp1` − ε
mc
1` )/σdgp

1` (gray) compares with the
standard normal distribution N(0, 1) (orange).

We used 16 647 of these samples to train DGPs for
the two SRs, with one single level architecture with an
ensemble of 256 GP. Training was fast due to the use of
the DGP algorithm and took approximately 15 minutes on
a desktop computer with a 4.0 GHz Intel 4790K processor.
We then tested the predictions of the trained DGPs on the
remaining 2000 points. In Fig. 1 we show the efficiency
predicted by the DGP model in the 1-lepton SR, εdgp1` ,
versus the values calculated with the full MC calculation,
εmc
1` , for these 2000 test points. The DGP model accurately

predicts the efficiencies, which cluster around the orange
line defined by εdgp1` = εmc

1` , with a spread consistent with

the DGP error estimate, σdgp
1` . We can quantify the

agreement by calculating the χ2; for both the 0-lepton and
1-lepton SRs we get χ2 ≈ 1300, while naively expecting
χ2 = 2000± 64 given the 2000 degrees of freedom. The
reason for these low values of χ2 is that the DGP model
slightly overestimates its error. We visualize this in the
insert of Fig. 1 where we see that the distribution of
(εdgp1` −εmc

1` )/σdgp
1` is more peaked than the standard normal

distribution N(0, 1).

Reconstruction: The DGP model, thus, effectively
acts as a surrogate model for the full simulation chain,
opening up new opportunities in the interpretation of
LHC data. For example, the DGP model can rapidly
reconstruct the theory parameters of a BSM model in the
case where an excess is observed on top of the Standard
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FIG. 2. Reconstruction of the natural SUSY parameters µ, mQ3 , and mtR using a mock excess generated from the benchmark
point. The DGPs was used to calculate the SR efficiencies; no event generation was performed. Gray histograms are the
marginal priors where we only apply bounds on the Higgs boson mass ∈ [121, 129] GeV and the chargino mass > 103.5 GeV.
The orange histograms show the marginal posteriors when we also fit to the mock excess. We scan over both positive and
negative µ but show only results for |µ| as they are symmetric.

Model background. To demonstrate the feasibility of a full
reconstruction procedure, we perform it on an mock data
set generated assuming a future excess will be detected.
Our benchmark is the following point in the natural SUSY
parameter space: µ = 254.6 GeV, tanβ = 20, M3 = 2000
GeV, mQ3

= 1280.5 GeV, mtR = 1333.6 GeV, At =
−2000 GeV. The physical masses are 1145 and 1413 GeV
for the stops, 1259 GeV for the sbottom, and 254 GeV
for the neutralino mass. This benchmark point is not
excluded by current searches [41–44], but should lead
to a detectable signal in our signal regions: 33.2 (∼ 3σ
excess over the background) and 68.9 (∼ 4σ) events in
the 0-lepton and 1-lepton regions respectively.

As a proof-of-concept, we scan over µ, mQ3
, and

mtR – which are the parameters that govern the masses
of the squarks and neutralino involved (the gluino is
heavy) – and fix the other parameters to their bench-
mark values. Our priors are uniform over µ ∈ [−0.5, 0.5]
TeV, mQ3

∈ [0.1, 1.6] TeV, and mtR ∈ [0.1, 1.6] TeV.
We further restrict the Higgs boson mass to the range
121 < mh < 129 GeV range2, and the chargino mass to
be above 103.5 GeV as per the LEP-2 limit [47]. Finally
for the ATLAS mock data likelihood construction, we
follow the prescription in Appendix A.2 of [6]. Notice
that the 0-lepton and 1-lepton signal regions considered
in this work are exclusive, thus the joint likelihood is the
multiplication of the likelihoods for the two signal regions.
The uncertainty on the mock signal includes a contribu-
tion arising from the uncertainty on the calculation of

2 This range is the 2σ interval around the central value mh =
125.09± 0.24 GeV [45], with a theoretical error of 2 GeV added
in quadrature[46].

the cross sections, as well as one arising from the uncer-
tainty on the efficiencies calculated with the DGP model.
We neglect correlated systematic uncertainties. We scan
the theory parameter space with a modified version of
SuperBayeS3 [53–55].

We show in Fig. 2 the marginal prior (gray) and the
marginal posteriors (orange), i.e. the probability distri-
butions after taking the excess in the mock data into
consideration. As one can see, the mock data in the two
signal regions have a very limited impact on the determi-
nation of µ, but they lead to a measurement on mQ3 , and
to a more stringent lower limit on mtR . The posterior
slightly disfavors larger values of |µ| because it determines
the neutralino mass, and the missing energy cut requires
that the mass difference between the neutralino and the
produced squark is large. The parameters mQ3 and mtR ,
together with the off-diagonal entries of the stop mass ma-
trix, determine the mass of the three light squarks; b̃1, t̃1,
and t̃2. The analysis is sensitive to these masses through
the production cross-sections, as the total cross-section
must be large enough to produce the measured number of
events. The total production cross-section is dominated
by two contributions: one that depends on both mQ3

and mtR (via the mass of t̃1) and one that depends on
mQ3

only (via the mass of b̃1). The constraint on the
total production cross-section therefore translates more
directly into a constraint on mQ3

, explaining why we are
able to reconstruct mQ3 better than mtR .

3 The core of SuperBayeS is the MultiNest scanning algorithm
[48, 49] which is interfaced with SPheno 3.2.4 [23] and NLL-
FAST 3.1 [27–32] to calculate observables. The likelihood is
implemented in the ROOT framework [50] with the RooFit [51]
and RooStats [52] packages.
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In reconstructing the benchmark parameters from mock
data we used 4 000 live points in MultiNest, which
required 105 likelihood evaluations before converging. The
estimate of the two SR efficiencies with the DGP model
took 0.06 seconds per evaluation on a single 4 GHz Intel
4790K core, a factor ∼ 104 faster than the O(10) minutes
per evaluation required to generate the training set. The
whole scan took 66 hours on six CPUs.

Discussion and Conclusions: In this letter, we have
introduced the use of Gaussian processes to accelerate the
interpretation of LHC data in the framework of BSM theo-
ries. Their ability to estimate an error on their predictions
makes them ideal for fast and robust approximate calcu-
lations. We have specifically demonstrated that the esti-
mate of SR efficiencies can be accelerated by a factor 104,
making it possible to rapidly and accurately reconstruct
the natural SUSY theory parameters, should an excess
in the data be discovered at the HL-LHC. The method
can be generalized to any BSM theory, and it can be in
principle extended to accelerate other time-consuming
tasks, such as the calculation of the cross-sections, or of
the likelihood itself.

Gaussian processes are currently a very active area of
research and it is likely that the method will be further
improved and refined. One particularly interesting ex-
tension to our implementation is multi-output prediction:
instead of training one (D)GP for each SR separately,
one can train a single (D)GP that predicts all the SR
efficiencies simultaneously. The correlation between the
SR efficiencies could then be used to make more precise
predictions. Another direction is to move away from
Gaussianity and use Student-t processes [56] which might
model the underlying noise for the Monte Carlo genera-
tors better. Another intriguing development is Bayesian
optimization [57], a form of active learning [58, 59], which
aims to minimize the amount of training data needed, by
letting the Gaussian process itself specify where to sample
the theory parameter space next in an iterative fashion.

In the traditional approach to global analyses, new
samples have to be generated in the parameter space of a
BSM theory, and new simulations performed every time
new data become available, as the sampling is driven by
the likelihood. An important aspect of our new method is
that detector simulations need to be performed only once
for each BSM theory, to generate the training sample.
Once this is done, the surrogate model can be reused by
anyone, and applied to any data set.
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