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Abstract 13 

Tree height is an important structural trait, critical in forest ecology and for above ground biomass estimate, 14 
and difficult to accurately measure in the field especially in dense forests, such as the tropical ones. The 15 
accuracy of height measurements depend on several factors including forest status, the experience of the 16 
observer, and the equipment used, with large subjectivity, heterogeneity and uncertainty in results, that can 17 
propagate when tree height is used in models. A comparison of Terrestrial Laser Scanning, Airborne Lidar 18 
Scanning, and stereo-photogrammetry (with imagery acquired by a RGB camera mounted on Unmanned 19 
Aerial Vehicle) approaches for estimating tree height was here performed, also with reference to ground 20 
methods. In fact, all those technique may increase the possibility of precise tree height measures, while 21 
reducing manual effort in comparison to more traditional ground techniques. The research was carried out in 22 
a dense tropical forest in Ghana; differences in measured heights as well as their impact on above ground 23 
biomass estimation were analyzed. All the different methods were characterized by pros and cons: the 24 
obtained results indicate that in dense forests, where sight occlusion problems occur, ground traditional 25 
techniques can lead to overestimation, while with the other mentioned techniques underestimation can occur, 26 
but in variable amount according to the considered instrument. The different height measures caused a 27 
remarkable variation in the estimated biomass of this tropical forest: more accurate height measurements are 28 
needed to reduce the uncertainty in biomass mapping efforts at any scale. Possibly, the simultaneous use of 29 
different methods can help in correctly estimate height uncertainty and reach a convergent and accurate 30 
result.  31 
 32 
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1. Introduction 48 

Tree height is an important ecological trait, and part of many natural resource data collections, being the 49 
most widely used indicator of a site’s fertility and suitability for a variety of stand management uses, ranging 50 
from wildlife habitat to timber production. Tree height can also provide indications on forest health 51 
conditions, as climate-induced events can alter growth processes, and disturbance can impact the height of 52 
selected individuals and stands. Tree heights are often measured in ecological and biodiversity studies or 53 
modeled to characterize life histories of species and populations (Banin et al. 2012, Kruger et al. 1997). In 54 
computing above ground biomass (AGB) this information is crucial, with previous work demonstrating that 55 
the incorporation of height into allometric models in addition to the diameter variable significantly improves 56 
AGB estimates, especially in tropical forests (Feldpaush et al. 2012). At present, most of the widely adopted 57 
models include the height variable.  58 
Tree heights can be however difficult to accurately measure in the field, especially in tropical forests where 59 
tall, closed canopies, and dense understory occur, limiting the sight of tree tops (Rennie 1979). The accuracy 60 
of height measurements thus depend on forest conditions, but also on the experience of the observer, and the 61 
equipment used, leading to a large subjectivity and heterogeneity. In the ground, the various methods 62 
adopted to measure individual tree height can produce different results, as illustrated by Larjavaara and 63 
Muller-Landau (2013) who compared the sine and the tangent methods. Hunter et al. (2013) identified five 64 
sources of uncertainty that contribute to the precision of tropical field height measurements, including the 65 
offset between measured distance and crown-top position, tree-top occlusion, ground slope, obstacles for 66 
distance measurements, and clinometer operator error. 67 
Even when using the same technique, differences in the way the instrument is set or the data are acquired can 68 
impact the results. Yu et al. (2004) in a lidar-based study showed that differences in airplane flight altitude 69 
produced variations in the tree heights estimated from the lidar point clouds. When height is used as input to 70 
calculate AGB, inaccuracy in measures can lead to large errors in biomass estimates (Molto et al. 2013). 71 
Also large scale AGB maps derived using remote sensing or models are calibrated and validated using on 72 
site level biomass data, computed through allometric models based on diameters and heights (Avitabile et al. 73 
2016, Saatchi et al.  2001). 74 
Among the different techniques that can be used to measure tree heights, here the focus is on Terrestrial 75 
Laser Scanning (TLS), Airborne Lidar Scanning (ALS), and stereo-photogrammetry with imagery acquired 76 
by a RGB camera mounted on Unmanned Aerial Vehicle (UAV). All these approaches increase the 77 
possibility of precise tree height measures while reducing manual effort in comparison to more traditional 78 
techniques, such as manual laser distance meter or clinometer.  79 
TLS is a laser-based instrument used in the field to acquire precise range and angular measurements by 80 
means of the optical beam deflection mechanism. From TLS, a 3D point cloud of the scanned volume is 81 
obtained, and information on forest structure, including trees diameter and height, can be derived (Liang et 82 
al. 2016). The highest point over the ground close to the tree stem is collected, and then the value of the 83 
corresponding highest cloud point is considered as the tree height. TLS allows to scan a forest stand faster 84 
than traditional methods, and its use in forest resource surveys has recently increased (Srinivasan et al. 85 
2015). However, similarly to other field-based techniques, due to occlusion problems the heights extracted 86 
from TLS point cloud can result lower than the actual values (Brede et al. 2017, Liu et al. 2016). 87 
With ALS the distance from the sensor on an airplane to a target can be measured through pulsed laser light: 88 
the differences in laser returns time can then be used to make a digital 3-D representation of the target thanks 89 
to the laser penetration capability (Rosca et al., 2018). In ALS surveys covering forests, the point cloud is 90 
classified and interpolated to obtain a Digital Surface Model and a Digital Elevation Model, and by 91 
subtraction a Canopy Height Model (CHM) which contains the real height from the ground. The CHM is 92 
then filtered, usually with local maxima algorithms, to identify single trees metrics. With airborne surveys, 93 
the detection of top canopy is not affected by occlusion issues, but the capability to precisely hit the tree tops 94 
and map the ground level is influenced by various factors, including forest structure, lidar pulse density, scan 95 
angle, platform altitude, and beam size, among others. Different studies reported underestimation of tree 96 
heights with ALS, especially in old growth forests (Andersen et al. 2006, Clark et al. 2004, Goodwin et al. 97 
2006). While many countries already conducted large lidar surveys covering forested areas, ALS data are 98 
unfortunately still not always open access, and surveys are in general expensive.  99 
Low cost UAVs systems equipped with a consumer-grade RGB camera can acquire stereo imagery, from 100 
which a high resolution point cloud can be generated and processed to obtain a DSM. Using a local maxima 101 
algorithm the identification of tree tops is possible, and then by means of ground level subtraction, tree 102 

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.12071#mee312071-bib-0002
https://en.wikipedia.org/wiki/Pulsed_laser
https://en.wikipedia.org/wiki/3D_modeling
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heights can be estimated. However, interpolating the terrain with only the few points obtained by stereo 103 
optical imagery, which differently from lidar does not penetrate the canopy, can be a problem (Wallace et al. 104 
2014, Rosca et al., 2018). A high resolution Digital Elevation Model (DEM) obtained from other sources is 105 
therefore necessary to estimate individual tree level metrics. When ground information is available or the 106 
forest terrain is flat, UAVs can represent a cost-effective approach.  107 
Only limited information is available on the accuracy of tree heights as measured by different techniques or 108 
sensors over the same forest (Fowler and Kadatskiy 2011, Rosca et al., 2018), in particular in tropical forests. 109 
Considering the high economic costs of forest surveys, independently by the adopted instrument or 110 
technique, a comparative analysis over a single site can be useful, as it provides valuable information to help 111 
decision making in forest resources management and planning. The objective of this research is to 112 
comparatively analyze tree numbers and tree heights as derived by: i) a ground-based traditional technique, 113 
ii) a TLS system, iii) a set of stereo-photogrammetry with imagery from a UAV, and iv) an ALS acquisition. 114 
Specifically, for tree number estimation the ground data were considered as the reference. For tree height, we 115 
present a comparison of different techniques, evaluating their agreement, due to the uncertainty reported 116 
when using ground –based techniques (Hunter et al. 2013; Larjavaara and  Muller-Landau 2013; Ronnie, 117 
1979). The impact of different height estimates on the computation of above ground biomass estimation 118 
using allometric equation was also analyzed. The research was realized in a dense tropical forest in Ghana, in 119 
the Ankasa Conservation Area, where occlusion problems are highly relevant.  120 
 121 
 122 
2. Materials and methods 123 

 124 
2.1 Study area 125 

The study site (Fig.1) is the Ankasa Conservation Area located in southwestern Ghana and composed by the 126 
Ankasa Game Reserve and the Nin-Suhien National Park. Ankasa extends over approximately 509 km2: 127 
protected since 1976, it includes a National Park and a Resource Reserve, and represents a remnant spot of 128 
the Upper Guinean forest belt, that once covered all the west African coasts. The area has gentle topography, 129 
with low hills (90 m average elevation) and presence of small swamps, a mean temperature ranging from 130 
24°C to 28°C, high humidity all year round, and average annual rainfall in the 2000-2200 mm range. The 131 
vegetation is wet and moist evergreen forest, with very high floristic and structural diversity, that provides 132 
protection to rare wildlife, including forest elephants, chimpanzees, and leopards. Species typical of this 133 
forest area include: Cynometra ananta Hutch. & Dalz., Lophira alata Banks ex C.F.Gaertn., Heritiera utilis 134 
Sprague , and Protomegabaria stapfiana  Beille (Hall & Swaine 1981; Vaglio Laurin et al. 2016a, 2016b). 135 
Prior to 1976, in Ankasa borders some logging activities were carried out, and illegal forest disturbance can 136 
still occur (Damnyag et al. 2013). The data collection was realized in the core of the conservation area, in a 137 
0.7 ha research plot of lowland mature moist forest far from past or present disturbance.  138 
 139 

 140 
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Figure 1. The Ankasa Conservation Area (in red) located at the Ghana – Ivory Coast border. 141 
 142 
 143 
2.2 Datasets 144 

Terrestrial Laser Scanning (TLS) data were collected in March 2016 (dry season) using two Riegl VZ-400 145 
instruments, operating at a wavelength of 1550 nm. Horizontally, the instrument can scan 360° in azimuth 146 
direction and vertically it has a field of view of 100°: 70° above, and 30° below the horizontal plane. 88 scan 147 
positions were set up, in correspondence of the grid nodes resulting from the division of the 0.7 ha plot in 70 148 
10x10 m subplots; 6 reflectors were placed for co-registration purposes in each scan position. 176 TLS point 149 
clouds were collected, and then merged and co-registered using Riegl RiscanPro (Riegl). The accuracy of the 150 
final point cloud was < 1 cm; the dataset was divided into 20 tiles to facilitate data handle; the plot 151 
boundaries as scanned by TLS were used to subset airborne lidar and photogrammetric data. 152 
Photogrammetric data were also collected in March 2016 using a Phantom 3 Professional  UAV equipped 153 
with a 4K camera. The Pix4Dcapture software (Pix4D) guided the flight plan: 215 RGB images were 154 
collected at 5 cm spatial resolution. Using Agisoft Photoscan Professional software (Agisoft LLC) a point 155 
cloud and orthophotos were produced.  156 
Airborne lidar (ALS) data were collected in March 2012 with a Optech GEMINI sensor, having a 1064 nm 157 
wavelength laser, emitting at 167 kHz max pulse repetition frequency and with 0.25-mrad (1/e) beam 158 
divergence, collecting up to 4 range measurements. Mean laser point density ranged between 12 and 20 159 
points per square meter; maximum scan angle of the laser beam was < 11°; positional errors in horizontal 160 
and vertical dimensions were < 0.27 m. The point cloud was classified using Terrascan software (Terrasolid) 161 
into ground and vegetation returns.  162 
A botanical survey was realized in March 2016 collecting species, diameter at breast height (DBH), and 163 
height information for trees having DBH above or equal to 10 cm. The height of the trees was measured with 164 
a transponder and vertex meter. Wood density values at species level were extracted from the Global Wood 165 
Density Database (Dryad; Chave et al. 2009); for species not present in the database the genus or family 166 
value was adopted. Above ground biomass (AGB) was computed according to Chave et al. (2014) equation.  167 
 168 
2.3 Data analysis 169 

The data analysis workflow included different steps. First, the three point clouds derived by ALS, TLS, and 170 
photogrammetric surveys were co-registered. Three canopy height models (CHM) were then derived from 171 
each of the co-registered point clouds, using the lidar-derived DEM for ALS and the photogrammetry 172 
dataset, and TLS-derived DEM for the TLS datasets. The visible crowns were delineated in the CHMs, 173 
extracting tree-level information using an inverted watershed procedure, and thus deriving heights.  174 
A stem map was produced using the fine scale TLS point cloud, manually detecting DBHs of larger trees and 175 
corresponding heights. A univocal match between ground data and selected trees in the stem map was then 176 
established, according to correspondence in positional, DBH and height values. For these selected trees, 177 
height values as measured with different instruments were compared. Above ground biomass was also 178 
calculated using as input into the allometric equation the DBHs from ground database and the heights as 179 
measured by different instruments, to evaluate the impact in carbon stocks estimates at tree and plot level. 180 
All the steps were realized using CloudCompare and ArcGIS software. 181 
 182 
2.3.1 Point clouds co-registration 183 
A manual exclusion of few outliers found in each dataset was initially performed (Fig. 2). The ALS point 184 
cloud (LPC) was set as the reference dataset for co-registration purposes. The photogrammetric point cloud 185 
(PPC) was firstly co-registered to the ALS one, and then the process was repeated for the TLS point cloud 186 
(TPC).  187 
 188 
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 189 
Figure 2. Detection and exclusion of outliers (red circles) from the PPC dataset over the plot.  190 
 191 
To co-register LPC and PPC, a mesh model was used to covert the points from PPC, having lower density 192 
with respect to LPC, into a surface made by triangular (or quadrilateral) contiguous and non-overlapping 193 
faces joined along their edges. The vertical displacement observed between the LPC and PPC was manually 194 
reduced, using the matching bounding box centers procedure. These initial two steps helped in the 195 
identification of control points. An horizontal and vertical coarse alignment was conducted using four crown 196 
tops pairs as ground control points, clearly detected in LPC and PPC for being very tall trees with 197 
characteristic crown shapes, and evident tree tops that facilitate the vertical alignment. Fine alignment 198 
followed, based on the iterative closest point (ICP) algorithm, which iteratively minimizes the mean square 199 
error between points in a point set and the closest points in the other one (Chen and Medioni 1992; Besl and 200 
McKay 1992); iterations number was set to 20.  201 
The co-registration of the LPC and TPC started with a data resampling: the TPC reached 20.6 gigabytes in 202 
size, organized in 20 tiles. To handle such a large dataset the procedure suggested by Theiler (2014) was 203 
followed, subsampling each TPC tile to obtain points spaced by a distance equal to 0.1 m, thus reducing the 204 
data to a sparser set before seeking for correspondent features in LPC. The 20 tiles were merged in one 205 
dataset and four crown tops were identified in TPC and LPC, again selecting tall trees with characteristic 206 
shape. The point clouds for these crowns were extracted from both TPC and LPC, also repeating the co-207 
registration procedure at finer crown scale. The transformation matrices were recorded and then applied to 208 
the full TPC.  209 
To evaluate the alignment result, the cloud to cloud distance was calculated: for each point in the source 210 
cloud, a 'nearest neighbor’ is searched in the reference one computing the Euclidean distance.  211 
 212 
2.3.2 Canopy Height Model generation 213 
Three DSMs were generated from LPC, TPC and PPC. For the classified LPC (ground and vegetation 214 
points), only first returns were converted into a raster using a ‘local maxima’ interpolation procedure, thus 215 
using the points of maximum height as raster pixel values. For TPC, and PPC the whole point clouds were 216 
used to generate the DSMs.  217 
Two DTMs were also generated. For LPC, the interpolation procedure was based on ground returns only and 218 
the selection of ‘local minimum’; for TPC, given the high density of points at ground level, no interpolation  219 
procedure was applied, and the minimum value of point height in each pixel was selected as pixel value in 220 
the raster.  221 
CHMs, representing the difference between the top canopy surface and the underlying ground topography, 222 
were obtained subtracting the digital terrain model (DTM) from the digital surface model (DSM), both 223 
available from LPC and TPC. From PPC, given the lack of penetration capability, only the DSM was 224 
computed and for CHM generation the DTM derived from LPC was used.  225 
To test impact of spatial resolution on tree detection capabilities in tree top detection and for crown 226 
delineation, all the layers were generated at 1m and 0.5m spatial resolution.  227 
 228 
2.3.3 Tree crown segmentation crown delineation 229 
The variable window filter algorithm (Popescu & Wynne, 2004), as implemented in the ForestTools R 230 
package (Plowright, 2018), was used to detect tree tops from the canopy height models. For the 1m CHM’s 231 
the variable window size was determined using a linear function with a=0.05 and b=0.6, while for the 0.5m 232 
CHM’s a=0.05 and b=0.5 were used. Those values were empirically determined for the specific datasets, by 233 
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systematically increasing both the a and b values with steps of 0.01 and 0.01 respectively. First the b 234 
parameter was optimized, where the plot of detected number of trees for each b-value shows a clear jump at 235 
the ideal b value. Using this b-value the optimal value for a was determined. Again, the value was selected 236 
where number of detected trees plotted against the a-values showed consistent outputs. This was cross-237 
checked against the number of emergent trees as described in the field-survey.  238 
Next the watershed function (Meyer & Beucher,1990) was applied to segment crowns from the canopy 239 
height model, where the segmentation is guided by the point locations of the individual tree tops. For the 240 
individually detected trees summary statistics of the crown dimensions and tree height were calculated.  241 
 242 
2.3.4 Stem map and DBH from TLS data 243 
To create a stem map, the TPC was segmented at 1.3 m above the ground. Next, a height ramp color was 244 
applied, which made it possible to distinguish the stems from surrounding lower vegetation. The stem map 245 
thus obtained showed several circular or semi-circular shapes corresponding to the tree stems: each stem was 246 
manually segmented. To calculate DBH longest and shortest axis were averaged. For large trees with buttress 247 
structure, the cross section was gradually moved upward until it was regular in shape and the DBH could be 248 
determined. For tilted trees or those growing on slopes, the DBH was measured along the stem direction. To 249 
find the height of trees for which DBH was measured, the stem map was converted into a raster and 250 
superimposed on the CHM. The maximum pixel value around the stem was manually identified also 251 
considering slope direction, and considered as the tree top with correspondent height.  252 
 253 
2.3.5  Matching trees from remote and ground databases 254 
TLS and botanical ground survey were conducted collecting tree information at subplot level. The stem map 255 
was firstly overlapped to the georeferenced ground data grid. A mismatch between datasets (due to the 256 
imprecise geolocation often occurring under dense forest coverage) was observed, as corresponding subplots 257 
in TLS and ground survey did not include same DBHs and height values. Therefore, a manual search of  258 
corresponding trees in the two dataset was performed: for trees having DBH > 30 cm in the ground database, 259 
the correspondence with a tree in the same subplot or in the surrounding ones was searched in the stem map 260 
and in PPC, allowing a maximum difference of 10% in DBH. Only unequivocally identified pairs were 261 
considered as matched trees. The previous co-registration of all point clouds allowed to establish a match for 262 
those selected trees among the different datasets. Analysis of Variance (ANOVA) was used to determine if 263 
the height of the selected trees, estimated using the different acquisition methods, was significantly different.  264 
 265 
2.3.6 Above ground biomass estimate 266 
For the selected trees, above ground biomass (AGB) was estimated using the equation from Chave et al. 267 
(2005, 2014); the equation has DBH, wood density, and height as inputs. For DBH, ground collected values 268 
were always used as input in the equation; for height, measures from the different datasets were used.  269 
 270 
 271 
3. Results 272 

A total of 331 trees belonging to 82 different species with DBH > 10 cm were recorded in the botanical 273 
survey; Fig. 3 shows the histogram of height obtained from ground survey, with a recorded maximum height 274 
of 55.5 m and a mean height equal to 20.6 m. The TLS survey recorded 188 trees with DBH> 20 cm. 275 
 276 
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  277 
Figure 3. Distribution of tree heights from ground survey in the 0.7 ha field plot. 278 
 279 
In the horizontal dimension, the co-registration between LPC and PPC was characterized by a mean point 280 
distance of 0.44 m, a standard deviation equal to 0.52 m, and root mean squared error (RMSE) of 0.62 m. 281 
The co-registration between LPC and TPC showed a mean distance of 0.45 m, a standard deviation of 0.62 282 
m, and an RMSE equal to 0.33 m. In the vertical dimension the cloud to cloud comparison values resulted in 283 
mean differences of only several centimeters (Table 1).   284 
The TLS and photogrammetry surveys were both realized in 2016,: the derived DSMs show similar features. 285 
Instead, ALS survey was done in 2012, and the four-year difference in time with respect to other datasets has 286 
to be taken into account. In  fact, the ALS-derived DSM shows differences, like the one evidenced in red 287 
rectangle area in Fig. 4, due to changes occurred in the canopy along time.  288 
 289 

 290 
Figure 4. DSMs retrieved from TLS, ALS and Stereo Photogrammetry datasets at 1m spatial resolution 291 
 292 
Table 1:  statistics of cloud to cloud distances in the z direction 293 
 294 

 295 
 296 
 297 
 298 
 299 

Cloud to cloud Mean(m) Std. dev(m) Min(m) Max(m) 
TLS to ALS 0.09 0.66 -4.03 3.82 
PPC to ALS -0.02 0.49 -3.48 3.67 
PPC toTLS 0.00 0.34 -3.74 2.91 
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The two DTM derived from TLS and ALS showed similar features (Fig. 5), with a flat ground and a 300 
downward slope toward the southeastern corner. The DTM generated with TPC without interpolating ground 301 
points resulted less smooth with respect to the LPC one. 302 
 303 

 304 
Figure 5. DTMs retrieved from ALS (left) and TLS (right) datasets at 1m spatial resolution 305 
 306 
The histograms of the three CHMs illustrate the distribution of canopy height model values (Fig. 6). Two 307 
peaks are visible; the first peak at approximately 33 m for ALS CHM, and at 32 m for TLS and 308 
photogrammetry CHMs; the second peak is approximately at 28 m, 26 m and 25 m for ALS, TLS and 309 
photogrammetry data, respectively.  310 
 311 

  312 
Figure 6. Histograms for CHMs from TLS, ALS, and photogrammetry, at 1m spatial resolution. 313 
 314 
Table 2. Statistics for CHM derived tree segmentations at 1m and 0.5m spatial resolution derived from TLS, 315 
ALS, and photogrammetry. 316 

  
ALS  
1m 

ALS  
0.5m 

TLS  
1m 

TLS  
0.5m 

PPC  
1m 

PPC 
0.5m 

a 0.05 0.05 0.05 0.05 0.05 0.05 
b 0.6 0.5 0.6 0.5 0.6 0.5 
Trees 162 160 160 159 105 106 
Mean crown area (m2) 51.01 51.39 52.01 51.50 78.25 77.31 
Median crown area (m2) 39 33.5 37 33.5 63 53.38 
SD crown area (m2) 54.90 54.19 46.31 55.94 59.49 68.53 
Min crown area (m2) 5 1.5 8 4.5 10 2.25 
Max crown area (m2) 469 427 288 423.25 328 342 
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Mean height (m) 33.84 32.25 33.56 32.50 33.39 32.47 
Median height (m) 34.57 33.88 34.13 33.63 34.27 33.81 
SD height (sd) 4.33 6.65 4.98 6.02 5.82 6.60 
Min height (m) 21.02 4.05 13.22 2.76 3.27 2.46 
Max height (m) 49.22 49.10 49.27 49.46 48.74 48.22 
 317 
As a result from tree crown segmentation 105 crowns were detected from the photogrammetry CHM, 162 318 
from ALS CHM, and 160 from TLS CHM at 1m spatial resolution, with mean heights equal to 32.47, 33.56 319 
and 33.84 m, respectively. Photogrammetry provided a smoother point cloud for the canopy top and 320 
consequently a smoother CHM, thus resulting in a lower number of detected trees. The number of detected 321 
trees with ALS and TLS is close to the number of >20cm DBH trees in the inventory. It has to be noted that 322 
the number of segmented tree crowns is highly dependent on the a and b parameters in the function fitting. 323 
Those values were optimized visually on the TLS datasets and then applied to the other datasets. For the 324 
0.5m CHMs the b parameter had to be diminished, otherwise the number of estimated crowns would have 325 
been much higher. It is worth to stress that the optimal a and b values depend on the used datasets and 326 
resolution, and the values empirically found may not be directly transferable to other conditions. Table 2 327 
reports the statistics for CHMs derived height and crown size values (0.5m and 1m spatial resolution). The 328 
histograms of heights for the tree groups derived from segmentation show considerable differences in height 329 
classes distribution (Fig. 7). Furthermore, large differences are found with respect to ground data (Fig. 3); in 330 
the ground survey the small trees are included, while with TLS or remote techniques only larger trees are 331 
sampled. 332 
 333 
 334 

 335 
Figure 7. Histograms of height detected from ALS, TLS and photogrammetry tree segmentation based on 336 
CHMs at 1m spatial resolution. 337 
 338 
The detection of crowns resulted in a lower number of tree crowns from the photogrammetry CHM, which 339 
obviously influences the statistics about the crown dimensions.   340 
 341 
Fig. 8 shows the individual crowns delineation at the two spatial resolutions for the different acquisition 342 
techniques. Although differences are clearly visible, the mean crown size for ALS and TLS are comparable, 343 
even for the different CHM resolution when the segmentation parameters are adapted. With photogrammetry 344 
the lower number of detected tree tops also results in larger crown segments. The spatial distribution of areas 345 
with larger or smaller tree crowns is the same for all three acquisition techniques, but both LiDAR 346 
techniques distinguish much more smaller trees than photogrammetry does.   347 
 348 
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 349 

 350 
Figure 8. Tree detected using tree crown segmentation at 1 m (top and 0.5m (bottom) spatial resolution for 351 
the ALS, TLS, and photogrammetry datasets. 352 
 353 
From the stem map derived from TLS data, 38 trees with DBH > 30 cm were clearly detected. However, 354 
only 21 tree pairs were univocally identified in ground and TLS databases. The average height of these trees 355 
as from TLS data resulted equal to 35.3 m, while from ground data to 37.2 m, almost 2 m higher than the 356 
previous. The ANOVA results show that there is no statistically significant difference between the mean 357 
heights derived with the different techniques (F-value = 0.367). The RMSE for DBH values resulted equal to 358 
2.38 cm, while RMSE for height to 6.44 cm, with ground measures having higher values with respect to TLS 359 
ones. Fig. 9 shows the scatterplots for DBH and height of the 21 trees, as measured by field data collection 360 
and TLS.  361 
 362 
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 363 
 364 
Figure 9. Scatterplots of DBHs (left) and heights (right) for 21 pairs of trees identified in ground and TLS 365 
datasets, plotted against the 1:1 line. 366 
 367 
Thanks to co-registration of point clouds, the height values for the 21 trees were extracted also from ALS 368 
and photogrammetry datasets at 1m spatial resolution; Fig. 10 shows the comparison of heights values from 369 
different remotely sensed datasets and the related coefficients of determination (R2).  370 
 371 

 372 
Figure 10. Comparison of heights for 21 trees according to ALS, TLS and photogrammetry measures, with 373 
regression line (in red), the 1:1 line (black dashed) and coefficients of determination (R2). 374 
 375 
The total above ground biomass (AGB) for the 21 large trees was computed for each dataset using Chave et 376 
al. (2005; 2014) allometric equation, using in input the DBHs collected in ground survey, the species-level 377 
wood density values, and heights according to the various datasets (Table 3). As from the botanical ground 378 
survey, the AGB for the whole 0.7 ha research plot resulted equal to 264.6 Mg, corresponding to 378 Mg ha-379 
1. The ratio between the AGB of the 21 trees and that of the whole plot from ground data resulted equal to 380 
0.36. Applying this ratio to other datasets, under the assumption that the differences in height as measured 381 
for the pairs by different techniques hold for all the trees in the plot, and thus the error in height measure is 382 
similar in tree age classes and species, the amount of AGB per hectare was finally computed per each 383 
dataset, as well the differences in tons with respect to ground measured AGB (Table 3). 384 
 385 
Table 3. Comparison of AGB values obtained using heights measures from different techniques. 386 

 Ground TLS ALS Photogrammetry 
Total AGB for 21 trees (Mg) 95.9 88.6 89.9 91.6 
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Ratio to ground AGB for 21 trees (%) 100 92.3 93.7 95.5 
AGB per hectare 378.0 349.1 354.2 360.8 
Difference to ground AGB (264.6 tons) 0 28.9 23.8 17.2 
 387 

4. Discussion and conclusions 388 

The data collected in the botanical ground survey illustrate that this mature Ghana forest is very diverse in 389 
species composition and highly dense, and the height distribution evidences a multi-layered canopy.  390 
A good agreement between the lidar-derived point cloud and terrestrial lidar and photogrammetric point 391 
clouds was obtained in the co-registration procedure, with mean point distance below 0.5 m in all cases for 392 
the horizontal plane, and below 0.1 m for the vertical plane. The co-registration step is important when 393 
evaluating height as measured from different instruments, as large errors can affect the evaluation.  394 
The DSMs derived from lidar, terrestrial lidar and photogrammetric point clouds evidenced the changes 395 
occurred in the forest in the 4-year period, as in the more recent 2016 datasets (TLS and photogrammetry) a 396 
gap in the canopy was visible, while it was not evident in 2012 ALS data.  397 
The DTMs derived from ALS and TLS appeared very similar, with negligible differences, partly possibly 398 
caused by the difference of four year in datasets acquisition and partly due to the interpolation procedure 399 
applied to ALS data. With photogrammetry data it was not possible to produce a quality DTM due to the 400 
dense canopy cover and thus the poor ground information included in this dataset (Rosca et al., 2018). A 401 
limit to the use of this technique for deriving tree individual metrics is thus represented by the availability of 402 
a high resolution DTM, that should be available or collected from other sources. Birdal et al. (2017) obtained 403 
individual tree heights from a coniferous urban open forest using UAV-based imager, generating the CHM 404 
entirely from photogrammetry data with a 94% correlation and a root-mean-square error of 28 cm with 405 
respect to ground data. However, the authors remarked that this approach is suitable only in open forest. 406 
Further, the co-registration of the PPC with the other datasets relied on feature matching. This means that 407 
either a CHM should be available for (at least part of) the study area, or the absolute positioning of the PPC 408 
should be improved when no reference CHM is available. The UAV used in this study carried a simple GPS 409 
system, resulting in a possible offset of 2-5 m. This can be improved using an RTK-GPS system for the 410 
positioning of the UAV. So when a detailed DTM is present, UAV-based photogrammetry represents a cost-411 
effective method to frequently detect changes in canopy horizontal structure, but it cannot be operated stand 412 
alone in a tropical forest setting.  413 
On the other hand, with TLS technique accurate DBH information can be obtained in addition to height data: 414 
this represents an advantage when exploring structural changes below the top canopy level, as the DBH 415 
information cannot be captured by ALS or photogrammetric techniques.  416 
The comparison of CHMs at 1 m spatial resolution showed lower maximum and mean height values for 417 
photogrammetry data with respect to the other two datasets. More important, the crown detection with 418 
watershed crown segmentation produced very different results in number of identified trees, with much 419 
lower amount of individuals detected when using photogrammetric data, with respect to ALS and TLS, with 420 
the latter recording the higher number of individuals. Overall the number of detected trees is much less than 421 
what is reported by ground survey, but the difference is reduced when only trees with DBH > 20 cm are 422 
counted. This indicates that ALS and Photogrammetry techniques are not suited for the detection of small 423 
trees, such as the newly recruited ones, a fact also noted using airborne lidar by Dalponte and Coomes 424 
(2016). With TLS those smaller trees can be detected, but this requires a very different approach than 425 
presented here. The mean heights of trees resulted similar among the different datasets, but the histogram of 426 
tree heights from photogrammetric data showed not only less individuals but also a different distribution in 427 
heights compared to the other histograms. At 1 m resolution, the mean trees height resulted slightly higher 428 
with ALS data, followed by TLS and then photogrammetry; at 0.5m the mean heights were generally a bit 429 
lower but comparable for all three techniques. In the result evaluation, the four-year time difference of the 430 
ALS dataset should be considered. In this period, mortality and recruitment of new trees as well as growth 431 
can occur. However, the first two events usually are counterbalanced in old-growth forest leading to minor 432 
changes in tree population, while for large old trees the hydraulic limit reduces the growth in height (Ryan 433 
and Yoder 1997). 434 
These results first indicate that the number of trees that can be detected with the watershed procedure is 435 
much lower than the trees recorded by ground surveys, as expected. However, the number of trees detected 436 
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from the CHM acquired with ALS and TLS is close to the number of  >20 cm DBH trees as recorded in the 437 
ground survey. Ground surveys, either with traditional techniques or TLS remains fundamental for full 438 
inventory purposes. Results from the watershed analysis also indicate that when possible the higher spatial 439 
resolution is not essential, but tree detection parameter settings have to be adapted to suit the right resolution.   440 
For the tree pairs having DBH > 30 cm, a large difference was found between TLS and ground survey 441 
measured heights, almost reaching 2 m. Instead, the agreement between the ALS, TLS and photogrammetric 442 
height for these pairs was very good, with a coefficient of determination around 0.95; this agreement 443 
suggests that overestimation of tree height occurred when collecting data with traditional technique. 444 
Differences in height measurements from field and airborne lidar data were relevant in four Brazilian 445 
Amazon sites, especially for larger trees: ground based measurements of height exceeded airborne lidar 446 
measurements of height by an average of 1.4 m, possibly due to a combination of overestimation by field 447 
measures and underestimation by lidar (Hunter et al. 2013). Instead, a comparison of field vs. lidar measured 448 
height for two commercially significant species in western North America, the Douglas-fir (Pseudotsuga 449 
menziesii) and the ponderosa pine (Pinus ponderosa) evidenced that the field conventional measured were 450 
more accurate than the lidar ones, with the latter also depending on laser beam size (Andersen et al. 2006).  451 
In a United Stated Pacific Northwest forest, ground survey height data were compared to lidar height data 452 
from leaf-on and leaf-off airborne acquisitions, for > 1000 trees from 45 plots. Overall, lidar error resulted 453 
higher than what estimated by other studies, exceeding 10% of tree height for 60% of the trees and 43% of 454 
the plots at leaf-on and 55% of the trees and 38% of the plots at leaf-off, possibly due to suboptimal 455 
performance of standard preprocessing lidar algorithms (Gatziolis et al. 2010). The contrasting findings of 456 
these studies evidence that the accuracy of height estimated in the ground or by ALS largely depends on 457 
specific site conditions, instruments settings, and the ability of the operators; however measuring tree heights 458 
of cone-shaped species can be easier from the ground, as the tree top can be more evident. 459 
Height data derived from photogrammetry, through a stereomodel combined with a digital terrain model 460 
(DTM) obtained by airborne lidar, were compared to field measured height for 202 Thuja occidentalis 461 
individuals, reveling a mean negative bias of 0.88m from photogrammetry (St-Onge et al. 2004). 462 
Underestimation of tree height was also reported by a research comparing Canopy Height Models (CHM) 463 
derived from terrestrial laser scanning (TLS) with the one from UAV-borne laser scanning data, collected 464 
over Netherland forested plots, which showed that TLS could not always detect the top of the canopy (Brede 465 
et al. 2017).  466 
When the AGB for the 21 unequivocally matched pairs was computed, using as input same DBHs (from 467 
ground data) but heights from different techniques, differences emerged as the higher height values recorded 468 
in the ground survey lead to higher AGB. The AGB estimated using ground height values was 7.6 %, 6.3 %, 469 
and 4.5 % higher than that estimated using TLS, ALS photogrammetric heights, respectively. If the ratio 470 
between AGB from 21 trees to that of the entire plot was assumed as constant, the biomass computed using 471 
ground heights resulted 10 %, 9 %, and 6.5 % higher than that estimated using TLS, ALS, and 472 
photogrammetric heights, respectively. These values are similar to those found in other studies: Hunter et al. 473 
(2013) evaluated that the impact of height error on AGB estimation in four Brazilian forest sites caused a 5-474 
6% uncertainty in the overall plot biomass. 475 
Previous research suggests that in dense forests, where sight occlusion problems occur, ground traditional 476 
techniques can lead to overestimation of tree heights, unless the tree tops are clearly visible and 477 
distinguishable, such as in the case of cone-shaped trees or open forests. On the other hand, with ALS, TLS 478 
and photogrammetry techniques underestimation can occur, in variable amount according to local and 479 
instruments conditions (Wang et al. 2019). We found that same effects in our study area. In comparison, 480 
although limited to smaller areas of maximum few hectares, TLS estimates are most promising since they 481 
provide more robust estimations for DBH, height and volume variables compared to ground instruments 482 
(Gonzales et al., 2018), and provide the full reconstruction of forest in 3D, allowing for additional research 483 
and analysis. Furthermore, advantages were obtained integrating ALS and TLS in assessing single tree 484 
attributes (Giannetti et al. 2018).   485 
Forest density and tree tops visibility represent important characteristics to be initially evaluated. When 486 
enough resources are available, the ALS technique may represent an advantage, as it can cover relatively 487 
large areas in a reduced time, and allows the generation of a DEM. Increasing as much as possible the 488 
number of laser pulses per meter can minimize the chance that the tree tops are missed. TLS is more time-489 
consuming and data acquisition can be almost as expensive as with ALS over larger areas, with the 490 
disadvantage that from the ground the visibility of tree tops can be reduced, but at the advantage of precise 491 
ground information and DBHs collection. In this study the TLS-derived heights were similar to those 492 
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obtained by ALS; possibly, this technique is preferable when accurate data on growth or stem density are 493 
needed. From photogrammetric data lower heights were obtained in this research, however the economic 494 
convenience of this techniques supports its use when a DEM is available and for repeated canopy 495 
monitoring. A promising new opportunity is provided by low flying drone-based lidar systems with wide 496 
viewing angles that also record point clouds looking side-ways into forests allowing estimations stem 497 
characteristics such as DBH (Brede et al., 2017).  498 
In conclusion, different methods to estimate tree height can be adopted, each with pros and cons, with the 499 
selection of the most appropriate method depending on resources and opportunities. As in other studies, the 500 
different measures caused a remarkable variation in the estimated AGB of this tropical forest. Height is 501 
certainly responsible for a part of the uncertainty associated to AGB estimates: more accurate height 502 
measurements can help to reduce the uncertainty in AGB mapping efforts at any scale. Possibly, the 503 
simultaneous use of different methods can help in correctly estimate height uncertainty and reach a 504 
convergent and accurate result.  505 
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