PALASEK, LAVIE, PALMER: ATTENTIONAL DEMAND ESTIMATION 1

Attentional demand estimation with attentive
driving models

Petar Palasek’ "MindVisionLabs
petar.palasek@mindvisionlabs.com London, UK

Nilli Lavie'? 2 Institute of Cognitive Neuroscience
n.lavie@ucl.ac.uk University College London, London, UK

Luke Palmer!
luke.palmer@mindvisionlabs.com

Abstract

The task of driving can sometimes require the processing of large amounts of vi-
sual information; such situations can overload the perceptual systems of human drivers
leading to ‘inattentional blindness’, where potentially critical visual information is over-
looked. This phenomenon of ‘looking but failing to see’ is the third largest contributor
to traffic accidents in the UK. In this work we develop a method to identify these partic-
ularly demanding driving scenes using an end-to-end driving architecture, imbued with
a spatial attention mechanism and trained to mimic ground-truth driving controls from
video input. At test time, the network’s attention distribution is segmented to identify
relevant items in the driving scene which are used to estimate the attentional demand on
the driver according to an established model in cognitive neuroscience. Without collect-
ing any ground-truth attentional demand data - instead using readily available odometry
data in a novel way - our approach is shown to outperform several baselines on a new
dataset of 1200 driving scenes labelled for attentional demand in driving.

1 Introduction

Perception in humans has a limited capacity [19], and when a certain task requires high lev-
els of perceptual processing, perceptual systems can become overloaded, resulting in salient
objects being completely undetected. Clearly this is problematic when it is safety-critical
to notice and perceive certain salient events. For example, when driving, failing to notice a
pedestrian crossing the road or an important road-sign could have potentially serious conse-
quences. Therefore, in this work we aim to identify situations in which attentional demand
during driving is high, and the chance of missing critical visual information is increased.

In driving research there is much work on the related and multi-faceted attribute of ‘men-
tal workload’ [6, 34]. This measure combines contributions of the visual demands of the
primary task (i.e. driving), other secondary tasks, and the capacity of the driver into a single
value of workload that a driver experiences. Some studies have looked specifically at the
components of workload which are determined by perception of the driving scene, for exam-
ple [13] found that traffic density was associated with higher reports of workload by drivers,
and similarly [37] found that higher reports of mental workload were associated with urban
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environments compared to rural and highway driving. However, [9] note that the relationship
between driving environment and workload has produced inconsistent results (e.g. [7]); they
posit that this is due to the large variation in complexity of driving situation encompassed by
such large classifications as ‘urban’ and ‘rural’. In this work we instead analyse the specific
content of the scene rather than coarse scene-level categories to estimate attentional demand.

Recent computer vision work [25] approached the topic of estimating the workload in-
volved in perception of the driving scene by labelling a collection of urban driving clips with
a ‘demand’ value and treating the problem as a regression from video input to this attentional
demand value using C3D features [30]. While [25] found a good level of prediction using
a support vector regression model, the method required a large scale labelling operation and
the model did not implicitly produce explanations for its predictions. The method developed
by [33] again treats driver workload estimation as a supervised learning task, where instead
of using the scene features they classify driver gaze patterns using HyperLSTM (an applica-
tion tailored LSTM variant). [31] approached a related question of estimating the difficulty
of visual search for a given image (i.e. how difficult it is to find a specific object within
an image). They also treated it as an image regression problem where an SVR model was
trained to predict human search times (collected in a large-scale labelling experiment) with
VGG19 features as well as human interpretable ones (e.g. ‘objectness’).

We instead develop a novel approach using principles from cognitive science to estimate
the attentional demand of a driving situation on a driver. The attentional demand of a visual
perception task can be seen as analogous to the concept of perceptual load [17, 18, 19],
which is operationally defined as the number of items in a visual task necessary to attend
to in order to complete the task, such that increasing the number or relevancy of items or
units in the task increases the perceptual load. An open question in the field is how does one
define a relevant item in the task? Laboratory tasks investigating the effects of perceptual
load on perception have typically manipulated load in simple displays using fairly austere
stimuli where the units of the task are easily defined [20]. In real-world tasks however, it
is more difficult to define task-relevant items. For example when driving, a couple holding
hands and walking together may be attended to as a single item even though we may think
of them as two ‘objects’; while a part of the scene (e.g. the space between two parked cars)
may be attended to but would not correspond to an ‘object’ as we know it.

In this paper we therefore allow the concept of the task-relevant ‘object’ to be learned,
unrestricted by standard object definitions (as used in semantic/instance segmentation, for
example) and develop a novel method to estimate the attentional demand of a driving scene
based on these cognitive principles. First we design a novel end-to-end driving architecture
that includes a spatial attention mechanism allowing the prioritisation of visual informa-
tion. After training this network to predict driving commands, we are able to then identify
task-relevant items (TRIs) using the network’s internal attentional state and calculate the at-
tentional demand of the driving scene according to an operational cognitive model [17]; this
algorithm allows the real-time estimation of scene difficulty during driving using only front-
facing video input, and trained only with readily-available vehicle odometry data. Finally
we collect a new dataset to validate our method and show that it far better aligns with human
judgments of driving demand than other baseline methods.
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2 Related work

The first attempt at training a model to drive a car dates back 30 years ago when a simple
3-layer neural network [26] was trained to directly map from a camera to the steering an-
gle. More recently, end-to-end driving models have been developed using powerful CNNs to
predict driving controls (e.g. [4, 5, 14]), trained using large amounts of ground-truth human
driving data. These types of driving models allow us to introduce novel processes into the
driving pipeline; in our case we adopt and develop this approach by introducing an inter-
pretable attention mechanism.

Attention mechanisms in neural networks imbue the models with the ability to amplify
or attenuate certain features or regions of the input, allowing the network to better focus its
resources while also implicitly providing explanations for the decision or behaviour of the
network [12]. Attention mechanisms have been employed successfully in natural language
processing tasks (e.g. [2, 3, 32]), and more recently have gained traction in the visual domain.
For example, squeeze-excitation-networks [15] employ a channel-based attention mecha-
nism allowing the network to amplify and attenuate feature channels conditional on the input
content, resulting in state-of-the art result on the ImageNet dataset. Spatial attention mech-
anisms differ in that they allow the network to prioritise certain locations or regions of the
input, and have found success in visual question answering [1], image captioning [22, 36],
and action recognition [11]. The attentional pooling network [11] parameterises a weight
for each location in the feature map as a 1x1 convolution of the previous feature map - this
simple addition leads to state-of-the art RGB-only action recognition, while also producing
sensible and interpretable explanations for network decisions. We therefore implement and
develop attentional pooling as the attention mechanism for our end-to-end driving model.

Attention has recently been investigated in the context of driving. For example, [24] pro-
duced a predictive model of driver gaze by collecting a large dataset of ground-truth driver
eye-fixations and training a pixel-to-pixel model to estimate gaze distributions from input
video. Although the model does indeed predict eye position, it is currently unclear what re-
lationship this has to attention itself which is a related but distinct process (e.g. [27]). [16] so
designed and trained an end-to-end driving network with an attention mechanism, however
they used the output of their attention mechanism to inform an occlusion-based visualisation
method (following e.g. [38]) to determine explanatory scene regions for model behaviour,
rather than to estimate cognitive states of the driver. The work presented here is therefore
the first to estimate human attentional state by simulating an attention mechanism in a neural
network trained only to complete the task at hand, without any supervision regarding the
attentional state itself.

3 Attentive driving model

3.1 Temporal attentional pooling (TAP)

Given a sequence of images Z = {Ij, ..., Iy } and a ground truth label y assigned to the whole
sequence, we would like to develop a model which predicts the label § for the given sequence,
while also providing a way of interpreting which parts of the input were important in making
that prediction. To this end we propose extending the attentional pooling method of [11]
to the temporal domain using a convolutional LSTM, and so define an architecture we call
temporal attentional pooling (TAP). The TAP architecture consists of three components: a
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perceptual module for extracting frame-based visual representations (VGG19 [28]), followed
by temporal integration - we use a convolutional LSTM to maintain the spatial structure of
the data (ConvLSTM [35]), and finally an attention mechanism to prioritise certain regions
of the input (attentional pooling [11]).

The ConvLSTM [35] is an extension of the LSTM model which can be used to extract a
representation of a sequence including a spatial structure. The main parts of the ConvLSTM
are its two internal states: the hidden state H and the cell state C; and the gates which control
how the internal states are modified: the input gate i, the forget gate f, and the output gate o.
We denote the value of a gate or a state variable at a certain time step by including a subscript
t, i.e. the cell state C at time ¢ is denoted as C; and the hidden state at the previous time step
is H;_1. Given a 3D tensor X; as the input at time step ¢, all of the internal gates and states
are updated according to the following equations:

i = 0 (Wi x X; + Wi x Hy 1 + b;) (D
fi =0 (W %X, + Wiy *Hi— +by) )
01 =0 (Weo Xy + Whox Hi—1 + b,) 3)
C = fi©0C_ +i; Otanh (Wye x X, + Wy x Hy_ 1 + b.) 4)
H, = 0, ®tanh () Q)

where o denotes the sigmoid function, * is the convolution operator, ® denotes the Hadamard
product, W, are the filter weights used in the convolutions, and b, are the biases. Note that
the equations presented above are slightly different than the ones described in [35]; we do
not include the cell state C when calculating the gate activations, i.e. we do not use peephole
connections [10] as we did not notice an effect on the performance when they were used.

The hidden state H and the cell state C, as well as the input X are 3D tensors with equal
trailing two dimensions. The number of channels in H and C is equal and is set arbitrarily
as a hyperparameter of the model, while the number of channels of X depends on the choice
of the feature extraction model used for processing the input images, i.e. X, = FE(1;), where
we used FE to denote a convolutional network, such as VGG19 [28] with its fully connected
layers removed. The output of the ConvLSTM model is the value of its hidden state Hr, i.e.
the hidden state at the last time step, after the whole sequence Z has been processed. We can
interpret Hr as a representation of the whole sequence, and we feed it into the final part of
the proposed TAP, which is the classification module with an attention mechanism.

The output of the ConvLSTM is a spatial feature map to which we apply an attentional
pooling [11] decision layer to predict the target label. Scores for each class are calculated
as inner products of two attentional heatmaps; 1) a class-dependent heatmap representing
which parts of the input are indicative of a particular class, and 2) the class-independent
heatmap representing which parts are important for classifying the given sample in general.
More formally, the score of a sample M belonging to class k can be written as:

score (M, k) = (May)" (ReLu(Mb)), (6)

where we use M to denote a 3D tensor (in our case the tensor Hr) viewed as a matrix of
shape (n x ch), with n being the number of spatial locations in the tensor and ch the number
of its channels. The vectors a; and b denote the class-specific and class-agnostic weights,
respectively. Reshaping the product Mb into a matrix of the same size as the spatial size of
the tensor Hr results in a heatmap which can be interpreted as a distribution of importance
map across space. Note that we pass the class-agnostic heatmap through a ReLu activation
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Figure 1: Illustration of the proposed TAP model. The input sequence is first passed through
a feature extraction network and the resulting features are then processed by a ConvLSTM
which outputs a time-aggregated representation of the whole sequence. This representation
then undergoes attentional pooling, which predicts the label for the shown sequence. The
class-agnostic attention map is what we later use for estimating the attentional demand of
the driving scene, as it represents which parts of the scene are important to perceive for
making the overall driving decision (in contrast to the class-specific maps which encode
local evidence for specific driving controls).

function otherwise a negative value in the class-agnostic heatmap would not necessarily
mean that the feature at that location is unimportant (since the class-dependent attention
values can take on negative values). An illustration of the final TAP model can be seen in
Figure 1.

3.2 Estimating attentional demand

In the cognitive science literature (e.g. [19]), the perceptual load of a task is operationally
defined in terms of the number and relevance of the visual ‘items’ it is necessary to perceive
in order to complete the task. Here we name these task-relevant items (TRIs), and such items
may or may not be ‘objects’ in the normal sense. To identify such TRIs at test time using
a trained TAP driving model, we interpret the class-agnostic attention map as identifying
regions important for completing the task (i.e. for producing the correct driving control). To
identify TRIs from the produced pixel-level attention map, the map is threshold-segmented
to isolate contiguous regions of highly relevant pixels. The threshold is set at 1, which is
indicative of the attentive driving model amplifying the features describing this pixel region.
Contiguous positive regions of this binary map are identified as TRIs where each TRI is
represented as a set of pixel coordinates. The attentional demand contribution of each TRI is
calculated as the maximum attention value within the TRI. The overall attentional demand
of a scene is then the sum of the contributions of each TRI. The algorithm for calculating the
attentional demand is shown explicitly in Algorithm 1.

3.3 Baseline estimators

We compare our estimation approach with several baseline methods. Many works in the
human-machine interaction literature have reported correlations between driver behaviour
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Algorithm 1 Algorithm for calculating demand from attention map.
1: function CALCULATE_DEMAND(att)

2: bin_att < zeros_like(att) > initialise a zero array of same shape as att
3: bin_att[att > 1] + 1 > create binary attention mask
4; TRIs < connected_components(bin_att) > find the set of TRIs
5: total_demand < 0 > initialise output
6: for each TRI € TRIs do > each TRI is a set of pixels
7: att_value < 0

8: for each p € TRI do

9: att_value < max (att_value, att [p]) > find max value in att map
10: total_demand < total_demand + att_value > increment total demand value
11: return total_demand

measures and mental workload measures (e.g [21, 23, 29]). Therefore we calculate a suite
of sensor-based load estimators in the following ways: Yaw rate variance (YRV): yaw
rates (serving as a proxy measure of steering commands) recorded during the preceding 12
frames (i.e 1.2 seconds) are aggregated and the variance computed across time; Yaw rate
mean (YRM): same as previous but mean yaw rate computed across time; Acceleration
variance (AccV): variance computed across forward acceleration in the preceding 1.2 sec-
onds; Acceleration mean (AccM): mean of acceleration across the preceding 1.2 seconds;
Sensor regression: train a kernel regression model on the 600 instances from the training
set, features are constructed as a concatenation of the preceding 12 frames for the yaw rate
and forward acceleration values (we implemented both linear (LIN) and RBF kernel variants
(RBF)); File size (FS): a common and simple baseline for image complexity (e.g. [31]), we
use the file size of the query frame compressed as a JPEG.

4 Datasets

4.1 End-to-end driving dataset

We trained our end-to-end attentive driving model using a subset of approximately 100 hours
of driving video footage collected from a car driven in the city of Leuven, Belgium. The
car was equipped with a global positioning system (GPS) and an inertial measurement unit
(IMU) collecting the following sensor data: latitude, longitude, altitude, speed, roll, pitch,
yaw, roll rate, pitch rate, yaw rate, forward acceleration, lateral acceleration, and vertical
acceleration. Each sensor data stream was linearly interpolated to provide ground-truth val-
ues associated with each video frame. In this work we use the video data recorded from a
central front-facing RGB camera as input to our model, collected at 10 frames per second
at a resolution of 640 x 1280 pixels with a field of view spanning 60° of horizontal visual
angle.

Within the dataset safety-critical traffic events were identified by the driver in real-time
during data collection and noted by the passenger using a button-box which marked the time
of each event; therefore the dataset provides excellent examples of difficult driving scenes
to feed our model, which are generally hard to find in the open source dataset alternatives.
To construct our training dataset from the full 100 hours 3300 13-second (i.e. 130 frame at
10 FPS) sequences of driving were randomly selected, such half contained a safety-critical
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Figure 2: Examples of scenes in the validation dataset ordered according to labeled demand.

event (defined to always be at frame 80 in the 130 frame sequence), and the other half did
not, to provide variation in driving scene demands. We then randomly selected 2500 of these
sequences as the training set, and kept the remaining 800 as a held-out test-set.

4.2 Attentional demand validation set

We collected attentional demand labels for a subset of our dataset. Three-hundred sequences
were randomly chosen from the training and test sets, and two frames were extracted from
each sequence, the 20th frame and the 80th frame (i.e. the critical event frame). This resulted
in a total of 1200 driving scenes, 600 from the train and 600 from the test set.

In the labelling phase, the 1200 frames were randomly ordered and presented to four
labellers sequentially, such that each labeller labelled every frame. The labellers were ex-
perienced drivers and were instructed to estimate the attentional demand they would feel if
they were driving in the scene. The concept of attentional demand was also explained in intu-
itive terms such that high demand would correspond to wanting passengers in the car to stop
talking to allow you to concentrate on the road. Demand was indicated on an ordinal scale
of 1-8 inclusive, one being the least demanding driving situation, and 8 being the highest
possible. To account for labeller preference, each labeller’s ratings were normalised inde-
pendently, and then averaged across raters; example driving scenes with their corresponding
demand labels can be seen in Figure 2. Inter-labeller agreement was highly significant, with
the average correlation between pairs of labellers being 0.61, with a standard deviation of
0.08.

S Experiments and results

5.1 Training details

In this subsection we describe how we trained the proposed TAP model. We begin by defin-
ing a simple car control task; given a sequence of T frames Z = {I},...,Ir} from a driving
video (i.e. video taken from a front-facing camera mounted on a car), predict whether the
driver should accelerate, decelerate or continue driving at constant speed at time step 7 + n.
As we know the acceleration values a; for each video frame, we can generate the ground
truth label y for a selected sequence by simply binning the acceleration value a at time step
T + n into one of three predefined value ranges. In our experiments we label the driving
decision for a sequence as ‘decelerate’ if ar, < —0.3m/ s2, ‘accelerate’ if aryyn >0.3m/ 2,
and ‘constant’ for other values. We set 7 = 12 and n = 24, meaning that the input sequence
consists of 12 frames and its corresponding label comes from 24 frames in the future. Taking
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the video sampling rate into account (10 FPS), the length of the input sequence is 1.2 seconds
long, and the driving control we are trying to predict is from 2.4 seconds in the future.

We process each of the frames I, (resized to 224 x 448 pixels) in the input sequence by
passing them through a feature extraction network; in our experiments we used the convo-
lutional layers of VGG19 [28] with the last pooling layer removed as the feature extraction
network. The network was pretrained on the ImageNet dataset [8]. The extracted feature
maps X; (having 512 channels and a spatial size of 14 x 28 pixels) were then fed into the
convLSTM sequence feature extraction module described in Section 3.1, and the resulting
representation was used as the input to the attentional pooling module which gave the label
prediction at its output. The number of hidden channels in the convLSTM used was set to
128. Each of the convolutional filters W, in the convLSTM were of size 1x1 px. The entire
TAP network was trained end-to-end for a total of 200 epochs by minimising cross-entropy
loss with stochastic gradient descent with momentum (m = 0.9) with a learning rate of 0.01
and training batch size 24 on 8 GeForce GTX 1080 Ti GPUs. The learning rate was divided
by 2 halfway throughout the training. The total number of parameters in the network is
20.3M. One epoch consisted of showing 2496 uniformly random samples from the training
set. The training took around 145 seconds per epoch, meaning the 200 epochs took around
8 hours. The classification accuracy on the testing set after the 200 epochs was 53.1%.

6 Results

After training the TAP model for 200 epochs, we then extracted attention maps for each of
the 1200 frames in the validation demand dataset. The map was calculated by feeding the
preceding 12 frames sequentially into the TAP model and taking the attention of the current
frame. Then overall attentional demand values for each frame/attention map were calculated
using Algorithm 1. Our dependent variable for benchmarking our method was Pearson’s r
correlation between the estimator’s prediction and the ground truth demand values. Results
of our method and those baselines described in Section 3.3 are presented in Table 1.

Att (TRIs) AttV. YRM YRV AccM  AccV  Lin RBF FS

Full 0.38% 0.28* 0.04 -0.09 -0.21* -0.02 NA NA 0.00

Test 0.38% 0.27* 0.04 -0.08 -0.18* -0.01 0.16* 0.23* 0.00
Table 1: Results. Pearson’s r between predicted demand values estimated by several methods
(columns) and ground-truth demand, on the full 1200 example validation set (row 1) and the
600 examples sampled from the test set (row 2). (*) represents a significant correlation. Att
(TRIs) is our proposed method based on task items, AttV is a simple variance across the
attention map, YRM, YRV, AccM, AccV correspond to yaw rate and acceleration mean and
variance respectively, Lin is a linear regression model, RBF is a kernel regression, and FS is
file size.

As can be seen in Table 1, our method of aggregating relevance scores across task-
relevant items far outperforms the other measures of demand, with its correlation being
significant at the p < e~!7 level. Indeed even the more approximate attentional method,
whereby the variance of the attention across space is calculated, results in a closer match
to the ground truth. Somewhat surprisingly, both yaw rate measures conveyed essentially
no information about the attentional demand of the situation, even though steering is the
variable most associated and studied in the context of driver workload. The significant neg-
ative correlation between acceleration and demand indicates that people tend to be slowing
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Correct Incorrect

Top quintile

Bottom quintile

Figure 3: Examples of correctly and incorrectly estimated attentional demands. The first
three rows show example scenes from the top quintile (the top 20% of scenes after sorting by
ground-truth attentional demand), while the bottom three rows show example scenes from
the bottom quintile (the bottom 20% least demanding scenes). Faces and registration plates
have been blurred to conceal personally identifiable information. The heat map represents
the class-agnostic attention field produced by the TAP model, and overlaid red dots represent
identified TRIs by segmentation.
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down when a difficult driving situation is ahead, a very reasonable result, while combining
accelerometer and yaw rate sensor readings and learning an RBF kernel regression model
only marginally outperformed the acceleration mean on the held out test set.

Some examples of correctly and incorrectly estimated attentional demands are presented
in Figure 3. For instance, the example in the third row of the first column represents one of
our motivating thoughts for developing this method - two people walking in unison holding
hands are identified as a single task-relevant item and therefore only contribute to the demand
of the situation as a single object.

7 Conclusion

In this paper we proposed an end-to-end driving architecture with an attention mechanism
trained to predict the future driving command given a sequence of frames taken from a front-
facing camera mounted on a car. We showed how the resulting attention maps learned on
such a simple task can be interpreted and used for estimating the driver’s attentional demand.
We collected a validation dataset and showed how our proposed approach outperforms sev-
eral baselines at the problem of attentional demand estimation.
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