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ABSTRACT
Weak lensing source galaxy catalogues used in estimating the masses of galaxy clusters can
be heavily contaminated by cluster members, prohibiting accurate mass calibration. In this
study, we test the performance of an estimator for the extent of cluster member contamination
based on decomposing the photometric redshift P(z) of source galaxies into contaminating
and background components. We perform a full scale mock analysis on a simulated sky survey
approximately mirroring the observational properties of the Dark Energy Survey Year One
observations (DES Y1), and find excellent agreement between the true number profile of
contaminating cluster member galaxies in the simulation and the estimated one. We further
apply the method to estimate the cluster member contamination for the DES Y1 redMaPPer
cluster mass calibration analysis, and compare the results to an alternative approach based
on the angular correlation of weak lensing source galaxies. We find indications that the
correlation based estimates are biased by the selection of the weak lensing sources in the
cluster vicinity, which does not strongly impact the P(z) decomposition method. Collectively,
these benchmarks demonstrate the strength of the P(z) decomposition method in alleviating
membership contamination and enabling highly accurate cluster weak lensing studies without
broad exclusion of source galaxies, thereby improving the total constraining power of cluster
mass calibration via weak lensing.

Key words: gravitational lensing: weak – galaxies: clusters: general – cosmology: observa-
tions.

� E-mail: t.varga@physik.lmu.de

C© 2019 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/489/2/2511/5545203 by Institute of C
hild H

ealth/U
niversity C

ollege London user on 25 O
ctober 2019

http://orcid.org/0000-0003-3270-7644
http://orcid.org/0000-0001-8764-5271
mailto:t.varga@physik.lmu.de


2512 DES Collaboration

1 IN T RO D U C T I O N

Galaxy clusters trace the highest peaks of the cosmic density field
and their abundance and distribution constitutes a powerful cosmo-
logical probe (Allen, Evrard & Mantz 2011; Dodelson et al. 2016).
This mode of inference poses two major tasks: detecting galaxy
clusters from observational data, and defining a mass–observable
relation (MOR) to compare the observed cluster abundances with
the predicted ones. The efficient pathways to identify galaxy clusters
differ between the available wavelengths and targeted redshifts
ranges: In optical wavelengths and low-redshifts (z < 1) clusters can
be detected as an overdensity of quenched, red, early-type galaxies
(Koester et al. 2007; Rykoff et al. 2014), giving rise to the cluster
mass proxy known as optical richness ( λ ). In other wavelengths,
clusters can be identified through the X-ray emission (Truemper
1993; Mantz et al. 2010) or through the Sunyaev–Zeldovich effect
(Sunyaev & Zeldovich 1970, 1972; Bleem et al. 2015) induced by
the presence of hot intracluster gas. While these methods are suitable
to detect clusters, they do not provide a direct measure of their
masses. The MOR must be calibrated using additional information.

The best method for calibrating cluster masses today is via weak
gravitational lensing, as it is directly sensitive to the gravitational
potential. For this reason weak lensing cluster mass calibration
studies (von der Linden et al. 2014a, b; Applegate et al. 2014;
Hoekstra et al. 2015; Mantz et al. 2015; Okabe & Smith 2016;
Battaglia et al. 2016; Melchior et al. 2017; Simet et al. 2017;
Murata et al. 2017; Dietrich et al. 2017; McClintock et al. 2018)
have become a necessary component of cluster cosmology analyses.
Weak lensing mass estimates carry their own set of uncertainties,
both systematic and statistical. It is expected that to fully utilize the
statistical power of ongoing sky surveys, the amplitude of the MOR
must be calibrated with at most a few per cent total uncertainty
(Weinberg et al. 2013). With the growing depth, area, and statistical
power of various sky surveys the proper characterization of system-
atic uncertainties is becoming the highest priority. Indeed, current
analyses are systematics dominated (e.g. table 6 of McClintock
et al. 2018), meaning that to improve on the overall cosmological
constraining power we have to improve our understanding of
systematic errors in the mass calibration.

One important systematic impacting weak lensing analyses is the
contamination of the source galaxy catalogue by galaxies associated
with the cluster. This contamination is a result of the uncertainty
in photometric redshift estimates, as few-band surveys do not
provide enough information to select a pure and close to complete
background sample of galaxies. Contaminating galaxies dilute the
measurement, requiring one to boost the raw signal to recover the
true signal. Hence the effect is traditionally referred to as the boost
factor (Sheldon et al. 2004; Applegate et al. 2014; Hoekstra et al.
2015; Gruen et al. 2014; Simet et al. 2017; Melchior et al. 2017;
Medezinski et al. 2018b; Leauthaud et al. 2017). Conversely, when
many-band photometric information is available, the contamination
can be strongly reduced, but with increased observational cost
(Applegate et al. 2014).

Previous studies made use of multiple approaches in charac-
terizing cluster member contamination: Sheldon et al. (2004) and
Simet et al. (2017) estimated the boost factor profiles from the
transverse correlation of source galaxies around cluster centres,
while Applegate et al. (2014) and Medezinski et al. (2018b, a)
utilized the colour information in a ‘colour-cut’ method. Gruen
et al. (2014) and Dietrich et al. (2017) estimated the correction
factor from decomposing the source population into a cluster and
background component. This latter method was expanded by Mel-

chior et al. (2017) who estimated the contamination rate based on a
decomposition of the photometric redshift probability distribution
function (p.d.f., P(z)) estimates of source galaxies, which was also
employed by Chang et al. (2018) and Stern et al. (2018).

In this study, we aim to validate the cluster member contamination
estimates obtained through P(z) decomposition, and provide a
detailed description for the case of the Dark Energy Survey Year One
observations (DES Y1) cluster weak lensing analysis of McClintock
et al. (2018). The structure of this paper is as follows: in Section 2,
we outline the framework and formalism of the P(z) decomposition
method, in Section 3, we perform tests on simulated DES-like
observations as well as actual DES data, and finally in Section 4,
we present the boost factor results used in the DES Y1 redMaPPer
weak lensing cluster mass calibration (McClintock et al. 2018).

For the DES Y1 data analysis, we assume a flat � cold dark
matter (�CDM) cosmology with �m = 0.3 and H0 = 70 km s−1

Mpc−1, with distances defined in physical coordinates, rather than
comoving. The DES-like mock observations assume a flat �CDM
cosmology with �m = 0.286, H0 = 70 km s−1 Mpc−1, �b = 0.047,
ns = 0.96, and σ 8 = 0.82.

2 P(Z) D ECOMPOSI TI ON FORMALI SM

Our aim is to estimate the cluster member contamination affecting
weak lensing measurements. With an estimate of the contamination
rate that has sufficiently low systematic and statistical uncertainty,
we can correct for the bias in the raw weak lensing signal.

The present approach infers the fraction of contaminating cluster
member galaxies fcl from the photometric redshift P(z) p.d.f. of the
appropriately selected and weighted source galaxies. By comparing
the P(z) of sources near clusters with the P(z) of galaxies in field
lines of sight we identify a feature indicative of the presence of clus-
ter galaxies. The schematic of this approach is illustrated on Fig. 1
for a selection of galaxy clusters. The three left-hand panels show
the average P(z) of galaxies at three different transverse separations
from the clusters, along with the reference P(z) of field galaxies. The
feature characteristic for the cluster member contamination is shown
as a red Gaussian curve. We note that the position of the Gaussian
is expected to be at a higher redshift than the redshift range of the
targeted clusters, as only those cluster member galaxies contribute to
the contamination whose redshift estimates are significantly biased
high. The relative strength of this feature at different radii is taken
as a tracer of the cluster member contamination rate profile fcl(R),
shown on the right-hand panel of Fig. 1.

2.1 Weak lensing formalism

Weak lensing analyses of galaxy clusters rely on a large sample
of background source galaxies. The images of these background
source galaxies are distorted due to the gravitational potential of the
lens (the galaxy cluster), and thus can be used to trace the underlying
matter distribution of the lens (Bartelmann & Schneider 2001).

In most scenarios, a catalogue of background source galaxies is
constructed from optical imaging data, and thus their exact distances
are not known. To remedy this, photometric redshift algorithms are
employed to provide an estimate of their redshifts. Such methods
involve large uncertainty for individual galaxies, and potential bias
for the ensemble, due to the limited information available (Hoyle
et al. 2017; Hildebrandt et al. 2017). The uncertainty of photometric
redshifts mean that the background source catalogue can only
be defined in approximate terms, such that it may also include
foreground galaxies, and galaxies which are at the lens redshift. In
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Validation of WL cluster contamination estimates 2513

Figure 1. Left-hand panels: P(z) decomposition at three different radial ranges for the cluster sample with richness λ ∈ [30; 45) and redshift z ∈ [0.2; 0.35)
in DES Y1 data. Black lines: average-weighted P (z | R) of source galaxies. Red lines: P(z) of the Gaussian contamination component scaled by the estimated
cluster member contamination rate fcl. Magenta lines: average P (z | field) scaled by 1 − fcl. Blue dashed: model P(z) calculated from the sum of the magenta and
red lines. The vertical dashed lines indicate the redshift range of galaxy clusters in the cluster selection. Right-hand panel: the cluster member contamination
rate fcl profile calculated from the decomposition presented on the left-hand panels: the red shaded range corresponds to the amplitudes of the Gaussian
components at each radial range. The width of the shaded area indicates the 1σ uncertainty region.

contrast, the redshifts of galaxy clusters are typically known with
very high precision either from spectroscopic follow-up, or from
the ensemble photometric redshift estimates of their red cluster
member population (Rykoff et al. 2016; McClintock et al. 2018). In
this analysis we neglect any uncertainty in the cluster redshift zlens,
and consider that the uncertainty in the redshift of source galaxies
zsrc is captured in their P(zsrc) p.d.f.

The photometric redshift P(z) assigned to a galaxy is determined
by its observed properties, most commonly its colours, and also by
our prior knowledge about its likely redshifts. To reach good photo-z
performance (e.g. low bias), the prior should be strongly dependent
on the selection function. Defining this in practice requires a
reference sample of galaxies for which the mapping between
redshift and observed properties is known, and is representative of
the target galaxy selection. Hence when redshift estimates calibrated
with one selection are used together with a significantly different
selection during the science analysis, they are no longer guaranteed
to retain their fiducial performance. (Bonnett et al. 2015; Hoyle
et al. 2017).

Background galaxies (zsrc >zlens) at different redshifts (distances)
contribute to the lensing signal with different amplitudes. This is
characterized by the inverse of the critical surface density:

�crit(zlens, zsrc) = c2

4πG

Ds(zsrc)

Dl(zlens) Dls(zlens, zsrc)
, (1)

where Ds, Dl, and Dls denote angular diameter distances to the
source galaxy, the lens, and between the lens and the source,
respectively.

In a cluster weak lensing scenario, the quantity of interest is the
average tangential component of the reduced gravitational shear
gT = γ T/(1 − κ) where γ is the weak lensing shear and κ is the
convergence. This is estimated from the shapes and alignments of
the source galaxies through the ellipticity measure e, where we
assume that 〈e〉 ≈ 〈g〉. The shear signal is related to the excess
surface mass density 
�, expressible from the physical mass
distribution of the lens system via:

γT(R) = �(< R) − �(R)

�crit
= 
�(R)

�crit
, (2)

and the convergence is defined as

κ(R) = �(R) /�crit , (3)

where R is the projected separation from the lens, �(< R) and
�(R) refer to the average surface mass density within radius R, and
at radius R, respectively.

Following Sheldon et al. (2004), we define the maximum-
likelihood estimator for the stacked excess surface mass density
of multiple clusters:


̃� =

src∑
i

lens∑
j

wi,j eT
i,j

/
〈�−1

crit〉i,j
src∑
i

lens∑
j

wi,j

=

src∑
i

lens∑
j

wi,j 
�i,j

src∑
i

lens∑
j

wi,j

, (4)

with weights

wi,j = 〈�−1
crit〉2

i,j

/
σ 2

e, i , (5)

Here, eT
i,j corresponds to the tangential component of the estimated

ellipticity e of the ith source galaxy relative to the jth lens, σ 2
e,i is the

variance of the estimated shape for galaxy i, and

〈�−1
crit〉i,j =

∫
dzsrc Pi(zsrc) �−1

crit, i,j(zlens, zsrc) (6)

is defined as the effective inverse critical surface density for source–
lens pair i, j.1 We note that 
� relates to γ , however the distortion of
source galaxies is determined by g, thus the effect of magnification
must be accounted for during the modelling of the measured lensing
signal.

The 
̃� estimator defined in equation (4) is unbiased if the
redshift p.d.f. P(zsrc) is estimated correctly. In general, intrinsic
bias in the photometric redshift estimates would also bias the weak
lensing measurement,2 while uncertainty alone can be propagated
self-consistently (Applegate et al. 2014). For this reason, weak
lensing surveys spend great effort calibrating photometric redshifts
for their weak lensing source galaxy catalogues (Kelly et al. 2014;
Hoyle et al. 2017; Hildebrandt et al. 2017; Tanaka et al. 2018).
In case the photometric redshifts are biased, it requires additional
work and loss of constraining power to ensure that the photo-z bias

1We estimate 〈�−1
crit〉i,j, as 〈�crit〉i, j is less numerically stable.

2Depending on the form of the lensing estimator, it is possible for the redshift
estimate to be biased in a way such that the lensing estimator is still unbiased.
This however does not hold for arbitrary photo-z bias.
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is appropriately propagated into the systematic error budget of the
final scientific results (DES Collaboration 2017).

2.2 Boost factor formalism

Galaxy clusters represent a large overdensity of physically associ-
ated galaxies, consisting both of actual cluster member galaxies,
and also the galaxies inhabiting correlated structures. Thus, cluster
lines of sight are different from the average line of sight: the
galaxy overdensity is concentrated at a tight peak in redshift, much
narrower than the resolution of photometric redshift estimates of
individual galaxies. In the transverse direction, the number density
of the cluster-related galaxy population decreases as one moves
away from the cluster centre, where different galaxy populations
(e.g. red and blue cluster galaxies) follow different radial profiles
(Navarro, Frenk & White 1996; Rykoff et al. 2014).

Observationally, the weak lensing source galaxy catalogue is built
from galaxies selected according to morphological, photometric
and spatial selection criteria (Zuntz et al. 2017; Hildebrandt et al.
2017; Mandelbaum et al. 2018), and galaxies associated with
the targeted clusters also enter the catalogue if they satisfy those
criteria. Ideally cluster galaxies would be excluded (e.g. as in
Schrabback et al. 2018) since they are at the lens redshift and carry
no lensing signal. However in a wide field survey, priors used to
estimate photometric redshifts do not account for the presence of
the targeted clusters. Consequently, the redshift estimates can be
greatly biased, and allow for cluster galaxies leaking into the source
catalogue with non-zero weights. Hence, in the above picture, the
cluster member contamination can be viewed as a form of selection
or representativeness bias impacting the redshift estimates. The
redshift bias may further depend on galaxy type, resulting in
different rates of contamination by different populations of cluster
galaxies. Thus, defining a high purity background sample of
sufficient volume may not be possible. We note that depending
on the radial separations, the contamination can originate from
both the targeted galaxy clusters and also from galaxies in the
correlated matter structures. For reasons of brevity, we refer to both
of these sources as cluster member contamination, as they can not
be disentangled based purely on available redshift information.

To quantify the required boost factor correction we need to con-
sider the impact of contamination on the 
̃� estimator defined in
equation (4). Following the method developed in Gruen et al. (2014)
and extended in Melchior et al. (2017), we assume a model for the
true line-of-sight distribution of source galaxies selected during
the measurement as a combination of two terms: a cluster galaxy
component which is effectively a Dirac-δ function located at zclust,
and a non-cluster or background component taken to be the lensing
weighted distribution of source galaxies in field lines of sight.

Via the above line-of-sight model, we can expand equation (4)
into the sum of contributions from the cluster (cl) and background
(bg) terms:


̃�est =

∑
j,i∈cl

wi,j
�i,j + ∑
j,i∈bg

wi,j
�i,j∑
wi,j

=

⎛
⎜⎝

∑
j,i∈cl

wi,j∑
wi,j

⎞
⎟⎠ 〈
�i,j〉cl︸ ︷︷ ︸

0

+

⎛
⎜⎝

∑
j,i∈bg

wi,j∑
wi,j

⎞
⎟⎠ 〈
�i,j〉bg︸ ︷︷ ︸

〈
�i,j〉true

(7)

of which 〈
�i, j〉cl carries no signal, while 〈
�i, j〉bg is the ‘true’
signal we would estimate if there was no contamination.

∑
j, i ∈ cl

and
∑

j, i ∈ bg denotes a sum over source–lens pairs with cluster
members and background galaxies respectively. We furthermore
define the effective contamination rate of cluster galaxies fcl via

fcl =
∑

j,i∈cl wi,j∑
j,i wi,j

, (8)

which we can use to express the boost correction needed to recover
the true signal


̃�corr(R) = 
̃�(R)

1 − fcl(R)
. (9)

Here, 
̃� denotes the raw measured lensing signal obtained from
equation (4), 
̃�corr(R) denotes the lensing signal corrected for
contamination, and B ≡ (1 − fcl)−1 is referred to as the boost
factor. Hence, in the above framework, the cluster member contam-
ination correction for a given measurement scenario is completely
characterized by the fcl(R) profile.

2.3 Estimating the contamination using P(z) decomposition

We estimate the contamination rate from the available colour–
magnitude information of source galaxies, where, due to the
overdensity of the cluster we expect that the contaminating cluster
galaxies will appear as a sub-population. We follow Melchior et al.
(2017), and make use of the observed lensing-weighted average
redshift probability distribution of the sources

P (z | R) =
∑

i,j wi,j Pi(z, R)∑
i,j wi,j

, (10)

which contain information compressed from colour–magnitude
space into a probability distribution function. We measure this at
different projected radii R around the cluster. The weights wi, j for
each source are identical to the ones introduced in equation (4).
In this framework, the estimated redshifts represent information
compression from the colour–magnitude space into a single P(z)
estimate per sample. Contaminating cluster members contribute to
the average photometric redshift P(z)s differently in different radial
ranges. Thus by tracking the changes in the P(z) as a function of
radius, we can recover an estimate of the underlying cluster member
contamination.

We model the observed redshift distribution P (z | R) as a
combination of two terms, reflecting the cluster and background
populations defined in Section 2.2:

P (z | R) = fcl(R) · Pmemb(z) + (1 − fcl(R)) · Pbg(z) , (11)

where Pmemb(z) is the redshift distribution of contaminating cluster
member galaxies and Pbg(z) is the distribution of background
galaxies (Gruen et al. 2014; Melchior et al. 2017). We approximate
the second term by the appropriately weighted redshift distribution
of the average survey field line of sight: Pbg(z) ≈ Pfield(z). As an
ansatz, we consider Pmemb(z) to be a Gaussian distribution. The
validity of this assumption is tested in Section 3.2.5. The free
parameters of the decomposition are the mean and width of the
Gaussian Pmemb(z), and the contamination rate fcl(R).

An example for this P(z) decomposition method is shown
on Fig. 1 for the case of DES Y1 data. There, a qualitatively
similar behaviour is visible for the different radial bins, and the
contamination increases with decreasing radius.

MNRAS 489, 2511–2524 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/489/2/2511/5545203 by Institute of C
hild H

ealth/U
niversity C

ollege London user on 25 O
ctober 2019



Validation of WL cluster contamination estimates 2515

3 ME T H O D VA L I DAT I O N

We perform a validation benchmark to test the robustness and
performance of the P(z) decomposition boost estimates. First, we
outline the primary assumptions of the decomposition method in
Section 3.1, validate the method in a mock analysis scenario in
Section 3.2, and perform consistency tests on DES Y1 data in
Section 3.3.

3.1 Model assumptions

The P(z) decomposition method relies on several assumptions about
both the contaminating and the background galaxies which impact
the efficacy of the method. Some of these we explore below, i.e.
the potential intrinsic alignment of cluster galaxies (Section 3.1.1),
the impact of weak lensing magnification (Section 3.1.2), and the
influence of blending and intracluster light on photometry used
in the decomposition estimates (Section 3.1.3). Other assumptions
are tested in later sections, i.e. the Gaussian ansatz for Pmemb(z)
(Section 3.2.5), and the influence of the chosen background model
(Section 3.3.3).

3.1.1 Intrinsic alignments

Contaminating galaxies physically connected to the lens system
possess an intrinsic alignment due to the tidal forces acting between
them. When cluster members are included in a lensing measure-
ment, intrinsic alignments could appear as negative tangential shear
around clusters due to the preferential radial orientation of galaxies.
This effect is difficult to decouple from the physical lensing signal.
Recent spectroscopic follow-up studies of Hao et al. (2011) and
Sifón et al. (2015) found no significant signal for preferential
alignments of cluster member galaxies with respect to the cluster
centres. Huang et al. (2018) found significant detection only when
considering a high luminosity subset of galaxies, but no detection
when considering their complete galaxy sample. For this reason we
assume that the dominant effect of contaminating cluster members
is the dilution of the lensing signal.

3.1.2 Magnification

Weak lensing magnification caused by the potential of the cluster
changes the observed number density and luminosity function
of background galaxies. This translates into biased photometric
redshift estimates for background galaxies, which would result in
the P(z) of background galaxies near clusters to be different from
the P(z) of the similarly weighted galaxies in field lines of sights.
Gruen & Brimioulle (2017, their appendix C), however, finds, that
under realistic survey assumptions biases in photometric redshift
estimates due to the increased flux of magnified sources, and due to
the different surface density of magnified galaxies are sub-per-cent
effects that partially cancel one another.

3.1.3 Impact of blending and intracluster light

The potential bias due to blending and source obscuration in
the estimated P(z)s is difficult to estimate, as it would require
detailed understanding of detection and shape measurement se-
lection probabilities, as well as the photometric transfer function
of representative source galaxy samples in cluster fields (see e.g.
Chang et al. 2015; Suchyta et al. 2016). To a first approximation,
we expect blending and source obscuration to uniformly impact

all source galaxies, leading to an amplitude shift in the P(z) of
the selected source galaxies. However given the excellent match
of the cluster background population P(z) and the field background
population P(z) at large z � zl (visible in Fig. 1), we assume that the
impact of these effects is strongly subdominant. In Section 3.3.3,
we nevertheless perform a simple consistency test for differences
in the background P(z).

The presence of intracluster light biases the photometric redshift
estimates, influencing the recovered P(z)s in a manner similar to
blending. However Gruen et al. (2019, their appendix A) estimated
the impact of this effect to be negligible for the radial scales
considered in this study.

3.2 Benchmark on the Buzzard mock observations

We test the P(z) decomposition method against the true cluster
member contamination in a simulated environment, mirroring
the measurement setup of McClintock et al. (2018). In Sec-
tions 3.2.1 and 3.2.2, we introduce the simulated observations and
the mock galaxy clusters. In Section 3.2.3, we perform the P(z)-
decomposition on the simulated Buzzard data. In Section 3.2.4, we
determine the true contamination of our photo-z selected source
sample. In Section 3.2.5, we test the validity of the Gaussian ansatz
for Pmemb(z). Finally, in Section 3.2.6, we discuss the agreement
between the true and estimated contamination rates.

3.2.1 Buzzard simulated light-cones

The Buzzard-suite of cosmological simulations (DeRose et al. 2019)
consists of mock DES Y1 catalogues generated by combining three
N-body light-cones created using L-GADGET2, a version of GAD-
GET2 (Springel 2005) optimized for memory efficiency. The initial
conditions were set-up via second-order Lagrangian perturbation
theory using 2LPTIC (Crocce, Pueblas & Scoccimarro 2006). The
light-cones were produced on the fly using simulation boxes with
volumes 10503, 26003, and 40003 (h−1Mpc)3; the corresponding
particle masses are 3.3 × 1010, 1.6 × 1011, and 5.9 × 1011 h−1M	.
The resulting light-cones were joined at redshifts 0.34 and 0.9,
arranged such that the highest resolution simulations are used
at lower redshifts. These simulation boxes assume a flat �CDM
cosmology with �m = 0.286, H0 = 70 km s−1 Mpc−1, �b = 0.047,
ns = 0.96, and σ 8 = 0.82. The galaxy catalogues were created
by assigning galaxies to dark matter particles via the ADDGALS

algorithm (Wechsler, DeRose & Busha, in preparation). ADDGALS

calibrates the relation between the large-scale density and the r-
band absolute magnitudes of galaxies as measured using subhalo
abundance matching (Conroy, Wechsler & Kravtsov 2006; Reddick
et al. 2013; Lehmann et al. 2017) in a high-resolution N-body
simulation. For each simulated galaxy, spectral energy distributions
(SEDs) are assigned from the SDSS DR7 VAGC (Cooper et al.
2011) by finding the galaxy in the data with the closest match
in Mr − �5 − z space, where Mr is the galaxy’s rest frame r-band
absolute magnitude and �5 is the distance to the fifth-nearest galaxy
in projection (see appendix E2 of DeRose et al. 2019). Photometric
noise is added in accordance with the DES Y1 depth map of Drlica-
Wagner et al. (2017), and g, r, i, z fluxes in the DES filters are
generated from the previously assigned SEDs.

In this study, we use version 1.3 of the Buzzard mock catalogues.
Only the main ‘SPT’ area of DES Y1 is simulated, and the footprint
is restricted to RA < 0 to exclude areas where the DES coverage
is more inhomogeneous. This yields a simulated sky survey with a
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Figure 2. Fraction of red galaxies as a function of radius around redMaPPer
clusters within the Buzzard mock observation across different redshift
ranges but fixed richness. Shaded areas indicate 1σ statistical uncertainties
estimated from JK resampling.

total area of 1120 deg2. The resulting galaxy fluxes include the effect
of weak lensing magnification based on ray tracing along their lines
of sight, with the highest redshift galaxy being located at z = 2.35
(DeRose et al. 2019). For the purposes of the current measurement,
we selected sources in a way that is meant to approximate the source
selection in the DES Y1 analysis (Zuntz et al. 2017) by applying
signal-to-noise cuts following MacCrann et al. (2018). This sample
is defined purely to mirror the properties of actual DES source
galaxies, and does not contain shear or photometry systematics.
We then run the BPZ template based photometric redshift algorithm
(Benı́tez 2000; Coe et al. 2006) on this mock catalogue to obtain
a P(z) estimate for each source galaxy with equivalent settings as
used by Hoyle et al. (2017) for the DES Y1 data. Given plausible
galaxy colours and identical measurement setup, we expect BPZ to
possess similar performance in Buzzard as in the DES Y1 data.

3.2.2 Simulated galaxy clusters

In order to obtain a simulated cluster sample similar to the one
presented by McClintock et al. (2018), we run the redMaPPer
algorithm (Rykoff et al. 2014) on the mock galaxy catalogues with
the same configuration as the real DES Y1 data.

RedMaPPer is a red-sequence-based optical matched filter cluster
finder which produces an estimate on the position, the optical
richness λ, and redshift of the detected clusters. This yields a
cluster catalogue with comparable distribution in angular position
and redshift to the catalogue in the DES Y1 data set. A cat-
alogue of reference random points is also generated, which are
defined as positions and redshifts where the survey conditions (e.g.
mask and observational depth) allow clusters of given richness to
be detected.

While the redMaPPer algorithm is sensitive only to the over-
density of red-sequence galaxies, we also test the blue galaxy
content of clusters as they are expected to significantly contribute
to the contamination. We calculate the fraction of red galaxies as
a function of radii using a rest-frame magnitude limit of mr >

−19. For this, we take a galaxy as red if it belongs to the red
sequence defined in the rest-frame colour–magnitude space, which
in practice corresponds to a cut of (g − r) > 0.2 · r − 0.028. Fig. 2
shows this red fraction across different redshift ranges, where we

find good qualitative agreement with previous observational studies
(e.g Butcher & Oemler 1978; Hansen et al. 2009, their fig. 12).
The red fractions are different across different redshift bins with
a larger blue cluster member population at higher redshifts, which
is expected from the time dependence of the galaxy quenching
process.

A difference between the real and mock cluster catalogues is
that clusters in the simulation appear to have a stronger redshift
evolution in richness at a given halo mass relative to expectations
from existing scaling relations. This fact along with the reduced
simulated footprint results in a lower number of clusters in richness
bins at low redshift compared to McClintock et al. (2018). In
addition, the DES Y1 data are deeper than the reference data set used
by the ADDGALS algorithm to populate SEDs, and for this reason,
the mock galaxy populations and their relative abundances at faint
magnitudes or high redshifts might differ from reality. Because of
this, as well as because of differences in source galaxy selection
and between our real and synthetic datasets, we do not expect the
cluster member contamination rates in the mock observations to
be equal to our DES Y1 measurements. Nevertheless, the mocks
include many qualitative aspects of the real observations, and for
this reason we make use of them as a controlled environment to
benchmark and validate the performance of the P(z) decomposition
under somewhat simplified circumstances.

3.2.3 Decomposition results in simulated catalogues

We estimate boost factors for the redMaPPer clusters in the mocks
using an identical measurement setup as McClintock et al. (2018).
Hence, the 
� estimator takes the form of:


̃� =
∑

ωi,jeT;i∑
ωi,j�

′−1
crit;i

(12)

with

ωi,j ≡ �−1
crit

(
zlj , 〈zsi 〉

)
if 〈zsi 〉 > zlj + 0.1 . (13)

Where �′−1
crit;i is calculated at a source redshift randomly drawn from

the corresponding P(z), while �−1
crit

(
zlj , 〈zsi 〉

)
represents the value at

the mean redshift of the source. The mock galaxy catalogue does not
include shear biases thus we set the shear and selection responses
to unity (see equation 12 of McClintock et al. 2018). Following
equations (7) and (8), the contamination fraction is given by:

fcl =
∑

cl ωi,j�
′−1
crit;i,j∑

ωi,j�
′−1
crit;i,j

. (14)

We divide the clusters into bins of redshift z ∈ [0.2; 0.4), [0.4;
0.5), and [0.5; 0.65), and richness: λ ∈ [5; 10), [10; 14), [14; 20),
[20; 30), [30; 45), [45; 60), and [60; ∞). 
̃� is calculated in 11
logarithmically spaced radial bins ranging from 0.2 to 30 Mpc. For
each cluster sample and radial range we save min(Npairs ; 2 × 104)
representative source–lens pairs selected in a uniform random way,
and calculate the mean P(z) of that source population weighted by
ω�′−1

crit . The estimate on fcl(R) is then found by the P(z) decom-
position method outlined in Section 2.3. For the field component,
we take the P(z) of sources in the outermost radial bin, which we
find to be identical to the weighted P(z) of sources selected around
random points in a series of Kolmogorov–Smirnov tests.

The decomposition is calculated by considering all radial scales
simultaneously where we require the redshift positions and widths
of the cluster components to be identical at different radial ranges.
The mixing amplitudes fcl(R) between the cluster and reference
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Validation of WL cluster contamination estimates 2517

Figure 3. Cluster member contamination measured in the Buzzard mock observations for the various bins of clusters in richness λ and redshift z defined in
Section 3.2.3. Red: contamination profiles calculated via P(z) decomposition using BPZ photometric redshift estimates with realistic photometric noise added
to the mock galaxies. Blue: true contamination profiles calculated from the truth catalogues of the simulations via equation (16).

P(z) are left free across radial bins. Hence, the inner radial scales
where the contamination is stronger provide constraints about the
cluster component for the outer radial ranges. The fcl profile model
for a cluster sample has Nrbin + 2 free parameters, and the decom-
position is performed via a least-squares Levenberg−Marquardt
algorithm, where the optimized quantity is the mean-squared
deviation between the measured P (z | R) and the model prediction
defined in equation (11). This boost factor calculation algorithm is
implemented in the XPIPE PYTHON package,3 which was also used
by Chang et al. (2018) and McClintock et al. (2018), and contains
an identical setup to Melchior et al. (2017).

To estimate the uncertainty on the recovered fcl(R), we use
jackknife (JK) resampling following Efron (1982):

CJK
˜fcl

= K − 1

K

K∑
k

(
f̃cl(k) − f̃cl(·)

)T

·
(
f̃cl(k) − f̃cl(·)

)
, (15)

where f̃cl(·) = 1
K

∑
k f̃cl(k) and f̃cl(k) denotes the contamination rate

estimated via equation (14). We make use of K = min{100 ; Nclust}
simply connected spatial regionsRk for each cluster sample, defined
via a spherical k-means algorithm,4 and f̃cl(k) is calculated from all
clusters except those in region Rk. With this method, we estimate
the covariance between all radial ranges within each richness and
redshift bin.

The recovered contamination profiles are shown in Fig. 3, and are
qualitatively similar to those observed in the real data. The overall
behaviour is consistent with theoretical expectations: For all cluster
bins, the contamination rate decreases with increasing redshift, and
a clear trend is apparent where richer clusters at a given redshift
range produce greater contamination rates.

3.2.4 True contamination in simulated catalogues

We calculate the true contamination as the excess rate for galaxies to
be located within the immediate Sj ≡ [zj − 
z; zj + 
z] vicinity

3https://github.com/vargatn/xpipe
4https://github.com/esheldon/kmeans radec

of the clusters, defined via

f true
cl ≡

Nc∑
j

∑
zs,i∈Sj

ωi,j�
′−1
crit;i,j

Nc∑
j

Ns∑
i

ωi,j�
′−1
crit;i,j

−

Nr∑
l

∑
zs,i∈Sl

ωi,j�
′−1
crit;i,l

Nr∑
l

Ns∑
i

ωi,j�
′−1
crit;i,l

, (16)

where Nc refers to the number of clusters, Nr to the number of
random points, and Ns to the number of source galaxies, while ωi, j

is the lensing weight associated with the source–lens pairs defined
in equation (13). Sj and Sl refer to the immediate true redshift
vicinities of clusters and random points, respectively. That is, f true

cl

is the probability of finding a galaxy within the redshift range S
around the clusters, minus the same probability for random lines of
sight, where the second term we obtain by saving source–lens pairs
around redMaPPer random points. This is equivalent to a cylindrical
selection of contaminating galaxies, which is motivated by the
fact that the contamination originates not only from physically
bound galaxies, but also from galaxies in the extended correlated
structures.

Fig. 4 illustrates the above approach. It is clear that a large fraction
of source–lens pairs near cluster centres (blue) actually lie at the
cluster redshift. Comparing this with the distribution of galaxies
around random points (black), the contamination rate is taken as the
excess area under the curve within the ±
z (dashed) region. Based
on Fig. 4, we adopt 
z = 0.05 as our fiducial redshift width for the
purposes of computing the true contamination rate. The resulting
f true

cl profiles are shown on Fig. 3 as the blue shaded regions, where
the 1σ uncertainties are estimated from JK resampling using the
same approach as in Section 3.2.3.

3.2.5 Validity of Gaussian cluster model

With the formalism introduced in Section 3.2.4, we can compute
the average, weighted, photometric redshift P(z) for likely cluster
galaxies which are located within the ±
zTRUE vicinities of clusters.
As shown on Fig. 5, these P(z)s have a prominent peak located
slightly above the cluster redshift range. Cluster galaxy P(z)s also
possess a long tail extending up to high redshifts. This is an intrinsic
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Figure 4. Schematic for estimating the true cluster member contamination
fraction in the Buzzard mock observations. The figure shows histograms
of the weighted, true redshift separation of source–lens pairs at different
radial distances from galaxy clusters with z ∈ [0.35; 0.5) and λ ∈ [30; 45).
Blue: source–lens pairs at low radial scales around clusters (R < 0.78 Mpc).
Black: source–lens pairs around redMaPPer selected random points in the
same radial range. Grey dashed: 
z = ±0.05 vicinity of the cluster redshift.

Figure 5. Comparison of the Gaussian P(z) component model with the
actual P(z)s of likely cluster galaxies in the Buzzard mock observations.
Coloured curves: P(z) of source galaxies within ±
zTRUE of the clusters,
in different cluster redshift bins, but at the same richness and radial bin.
Dashed curves: best-fitting curves of the Gaussian cluster component model
Pmemb(z). Note that the shown P(z)s are normalized for z ∈ [0; 3.5].

feature of photometric redshift estimation, as some cluster galaxies
have spectral types that exhibit these types of degeneracies.

Fig. 5 also shows the best-fitting Gaussian cluster component
models Pmemb(z). These are obtained from the decomposition
method in Section 3.2.3 and are not informed of the true cluster
member P(z)s. Due to the chosen analytic form of Pmemb(z), the
long high-redshift tail of the actual cluster galaxy P(z)s can not be
recovered, which results in the apparent offset of the (normalized)
p.d.fs on Fig. 5. For the shown samples, the best-fitting Gaussian
contains within 1σ 57 per cent, 47 per cent and 56 per cent of

probability of the actual P(z) of cluster members. Nevertheless,
the Gaussians recover the approximate position and width of the
peaks, and possesses fewer degrees of freedom than alternative
high-skewness models.

3.2.6 Discussion of simulation benchmarks

Fig. 3 compares the boost factor profiles estimated from P(z)
decomposition from simulations as described in Section 3.2.3,
with the actual cluster member contamination rate calculated in
Section 3.2.4. We find that our estimated boost factors are in
excellent agreement with the true member contamination rates in
the Buzzard mock simulations. The uncertainties shown in Fig. 3
are estimated via JK resampling, and do not incorporate systematic
uncertainties. Hence, we estimate this systematic uncertainty by
requiring consistency between the true and estimated fcl profiles
across all parameter bins with Nclust > 50. Via this approach we find
a global relative systematic uncertainty of δsys < 1 per cent across
different richness – redshift selections, where the total covariance
is given by Ci,j = CJK

i,j + δi,j · f 2
cl; i · δ2

sys.
We note that the simulated galaxy catalogues include the effects

of magnification with the typical angular resolution of 0.6 arcmin,
corresponding to approximately 0.15, 0.2 and 0.24 Mpc in the
different redshift bins. While this low resolution allows for only
weak constraints, the good agreement between the estimated and
true fcl profiles indicate that magnification does not play a significant
role in the resolved radial ranges.

The purpose of this simulation benchmark is to test how well the
P(z) decomposition predictions match the contamination within the
simulation, not to extrapolate for the real DES data. Thus, we do not
require full realism from the simulated environment. Nevertheless,
the simulated colour distribution of galaxies has been studied by
DeRose et al. (2019) in a setup nearly identical to version 1.3 of
Buzzard used in the present study. They found the simulated galaxy
properties to be broadly consistent with reality except for a slight
systematic shift on the colour of the blue cloud. We do not anticipate
that this manifests in a qualitative difference on the performance of
the boost factor estimator compared to real data. We however note
that the presented mock scenario is constructed to resemble the
DES analysis setup, including the choice of photometric redshift
estimation algorithm. For this reason, the observed performance is
not necessarily indicative for a significantly different survey and
analysis scenario. While the abundances, radial profiles, and colour
properties of cluster galaxies in the simulation may be slightly
different from reality, we expect Buzzard to be qualitatively similar
to the real DES Y1 data. Hence we take the excellent performance
of the P(z) decomposition in this setting as a strong motivation for
its applicability for real observations.

3.3 Analysis on DES Y1 data

In this section, we apply the P(z) decomposition method to DES
Y1 data, following the exact measurement setup presented in
McClintock et al. (2018). The structure of this section is the
following: in Section 3.3.1, we present the relevant parts of the
DES Y1 data set relating to the galaxy cluster catalogue and the
weak lensing source galaxies, in Section 3.3.2, we derive the form
of the necessary boost factor correction, while in Section 3.3.3
present a simple test on the robustness of our contamination model,
and finally in Section 3.3.4, we compare with the alternative method
of correlation-based boost factor estimate.
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Figure 6. Cluster member contamination measured in the DES Y1 data for the various bins of clusters in richness λ and redshift z defined in Section 3.3.2.
Red: contamination profiles calculated via P(z) decomposition using BPZ redshift estimates. Blue: boost factor model from Section 4.2. The curves correspond
to the best-fitting parameters found by McClintock et al. (2018) from a likelihood optimization performed jointly with the cluster mass reconstruction.

3.3.1 The DES Y1 data set

The DES Y1 observations cover approximately 1800 deg2 of the
southern sky in g,r,i,z bands. These observations are processed
via a variety of photometric data reduction steps into the Y1
GOLD catalogue (Drlica-Wagner et al. 2017) which is the main
science quality catalogue of DES. Using the fiducial multi-epoch,
multi-object fitting algorithm (MOF) DES finds the 10σ limiting
magnitudes of this data set for 2 arcsec apertures to be g ≈ 23.7,
r ≈ 23.5, i ≈ 22.9, and z ≈ 22.2. Based on these observations
McClintock et al. (2018) defined a locally volume-limited catalogue
of galaxy clusters identified via the redMaPPer algorithm. In the Y1
footprint the average MOF limiting magnitude is deep enough to
detect a 0.2 L∗ galaxy up to z ≈ 0.7, thereby setting the maximum
depth of the volume-limited cluster sample.

Approximately 1500 deg2 of this catalogue is further processed
by the METACALIBRATION algorithm (Huff & Mandelbaum 2017;
Sheldon & Huff 2017) to define a source galaxy sample (Zuntz
et al. 2017). This source galaxy catalogue consists of an ellipticity
estimate ei for each galaxy, along with ancillary quantities used
to perform the bias calibration via the response R = Rγ + Rsel of
the ellipticity estimates to shear and the source galaxy selection
function respectively.

Photometric redshift P(z)s are calculated via the BPZ template-
based algorithm (Hoyle et al. 2017). Two separate redshift estimates
are derived: one based on the MOF-based galaxy colours listed in
the GOLD catalogue, and a second based on the photometric model
obtained from METACALIBRATION. This second METACALIBRATION

based redshift estimate is required to properly account for the
selection response correction, however is found to have greater
scatter compared to the MOF-based redshift estimates. For this
reason, McClintock et al. (2018) opted to use the METACALIBRATION

estimates only in selecting and weighting source–lens pairs. Hoyle
et al. (2017) found these redshift estimates to be mildly biased in
the mean redshift. Since the P(z) decomposition method is only
sensitive to the relative shape of the P(z)s, we do not expect the
impact of this bias to be significant.

3.3.2 Contamination estimator for DES Y1-like data

In this section, we derive the required boost factor correction for
the 
� estimator employed for the DES Y1 analysis. For this,
equations (12) and (13) are replaced with:


̃� =
∑

ω̂i,jeT;i∑
ω̂i,jRT

γ ; i,j�
′−1
crit; i,j

. (17)

where

ω̂i,j ≡ �−1
crit

(
zlj , 〈zMCAL

si
〉) if 〈zMCAL

si
〉 > zlj + 0.1 , (18)

which is the general form of the estimator. Here, we neglected
the selection response term, which McClintock et al. (2018) found
to be subdominant compared to the shear response RT

γ , where the
superscript refers to the response matrix rotated into the tangential
frame. In the above estimator, the weighting and selection is
performed based on the mean METACALIBRATION based redshift
estimates 〈zMCAL

si
〉, while �′−1

crit; i,j is calculated using a random draw
from the MOF-based redshift P(z).

Following equations (7) and (8), we find the contamination rate
to be:

fcl =
∑

cl ω̂i,jRT
γ ; i,j�

′−1
crit; i,j∑

ω̂i,jRT
γ ; i,j�

′−1
crit; i,j

. (19)

We perform the P(z) decomposition in a setup identical to Sec-
tion 3.2.3, but using weights according to equation (19), and make
use of a randomly selected, representative subsample of the source–
lens pairs from McClintock et al. (2018). The detailed description
of our results is presented in Section 4, while the boost profiles
themselves are shown on Fig. 6.

3.3.3 Sensitivity to background component choice

The performance of the P(z) decomposition method is dependent
on how well the ansatz for the background component resemble
the p.d.f. of actual background galaxies. Furthermore, the average
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P(z) estimated for a galaxy sample may contain minor features
(e.g. wiggles and peaks) which depend on the internal setup of the
photometric redshift algorithm (e.g. distribution of templates within
the BPZ algorithm), and do not themselves relate to the physical
distribution of galaxies (Bonnett et al. 2015; Melchior et al. 2017).
Differences originating from these non-physical reasons may also
impact the robustness of the contamination estimates.

We test the self-consistency of the decomposition method and its
sensitivity to the minor features in the estimated P(z)s by extending
the fiducial P(z) decomposition analysis with a second step. In this
second step, the reference P(z) model is updated from the ‘field’
P(z) to the observed P(z) at R ≈ 1 Mpc minus the Gaussian cluster
model found in the previous step. The fcl fit is then repeated with
this new reference P(z) component, while keeping the position and
width of the Gaussian cluster model component unchanged. The
resulting boost factor profiles are shown on Fig. 7, overlaid with
the fiducial boost factor profiles. The two iterations agree very
well, and following the approach used in Section 3.2.6, we estimate
a relative systematic uncertainty of <1 per cent, motivating that
the choice for the background component propagates to only a
negligible difference in the final contamination profiles.

3.3.4 Comparison with correlation-based boost factors

An alternative way for estimating boost factors is via the angular
clustering of source galaxies around clusters, as only the contami-
nating galaxies are correlated with the cluster (Sheldon et al. 2004;
Applegate et al. 2014; Hoekstra et al. 2015; Simet et al. 2017;
Leauthaud et al. 2017). We calculate this correlation function via
the estimator:

Corr = NR

ND
· DD

RR
− 1 , (20)

where DD and RR are defined as
∑

ωRT
γ �′−1

crit around redMaPPer
clusters and random points respectively, while ND refers to the
number of clusters, and NR to the number of random points
(Landy & Szalay 1993). The results of this measurement are
shown on Fig. 7. The correlation function estimates are, for many
cluster samples, preferentially lower than the P(z) decomposition
estimates, especially at the two lower redshift selections.

This can be understood as clusters impacting the spatial dis-
tribution of source galaxies in ways other than contamination by
cluster galaxies: e.g. the density and blending of cluster members
may lead to a bias against selecting sources near clusters (Simet
et al. 2015; Leauthaud et al. 2017; Zuntz et al. 2017), which can
explain the preferential lower estimates. Such effects cannot be
captured by random points, as they relate to the presence of the
cluster in the line of sight, and are not well characterized for the
DES Y1 METACALIBRATION shear catalogues. By contrast, the P(z)
decomposition method is insensitive to colour–agnostic fluctuations
in the source selection, and to the number density profile of source
galaxies.

4 R E SULTS F OR D ES Y1 DATA

4.1 Boost factor estimates

We present the contamination rate estimates from applying our
method to the DES Y1 data in Fig. 6. In the present calculation,
we consider all cluster selections, but note that in McClintock
et al. (2018) only the λ > 20 clusters enter the determination
of the MOR. The qualitative behaviour of the contamination rate

profiles agrees well with the theoretical expectation of decreasing
contamination with increasing radius. As expected, the amplitude
of the contamination increases with cluster richness. Furthermore,
the contamination rates are higher for low-redshift clusters, as for
those fainter cluster member galaxies can also be detected, whose
photometric redshifts are less accurate.

We find that the ‘peak’ in the P(z) due to contaminating galaxies
is very prominent at low radii for all cluster bins, and the presence
of this feature is critical for the applicability of the decomposition
method. The best-fitting parameters of the Gaussian Pmemb(z) model
are presented in Fig. 8, along with the used prior ranges. The means
of these best-fitting Gaussian Pmemb(z) distributions differ from the
redshift ranges of the clusters. However, this is expected from the
way source galaxies are selected in the DES analysis: only those
cluster member galaxies enter the source selection whose estimated
mean redshift scatters towards higher redshifts.

The contamination rate profiles fcl(R) shown in Fig. 6 can be
directly translated into a multiplicative correction factor B ≡ (1 −
fcl)−1 necessary for recovering an unbiased estimate on 
� via
equation (9).

4.2 Analytic boost factor model

We model the boost factor profile using a Navarro–Frenk–White
(NFW) profile (Navarro et al. 1996):

Bmodel(R) = 1 + B0
1 − F (x)

x2 − 1
, (21)

where x = R/Rs, and

F (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tan−1
√

x2−1√
x2−1

: x > 1

1 : x = 1
tanh−1

√
1−x2√

1−x2
: x < 1

. (22)

This model has two free parameters per cluster bin: B0 and Rs which
characterize the amplitude and scale radius of the correction profile,
respectively.

The best-fitting boost model profiles are overlayed on Fig. 6 to
the raw contamination rate estimates. Following the approach used
in Section 3.2.6 we estimate a relative systematic uncertainty of
<1 per cent. In McClintock et al. (2018), these fits are performed in
a joint likelihood analysis together with the mass profile model
and systematic corrections. This way the estimated statistical
uncertainty of the boost factors is propagated self-consistently into
their final mass constraints. The model parameters are not tied to
the mass parameters of clusters to allow for freedom in describing
the boost factors. Due to the excellent performance of the P(z)
decomposition method in our tests, and as the systematic uncertainty
found in a simulated environment was subdominant compared to
the JK error estimate, McClintock et al. (2018) did not assume any
additional systematic uncertainty to this source of systematic error.

We note that in the Monte Carlo chains run by McClintock et al.
(2018), the Rs and B0 parameters were found to be degenerate, hence
the increase in actual contamination does not translate into an obvi-
ous increase in B0. However this was found to propagate into only a
mild change in the boost factor profile over the studied radial range.
The recovered cluster masses were robust against degeneracy in the
boost factor model parameters, and are not significantly impacted.
Nevertheless, we find that the scale radius of the contamination
component is typically at least twice as large as the scale radius of
the NFW halo. This is consistent with the expectation that the galaxy
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Figure 7. Comparison of the P(z) decomposition based contamination estimates (red) with the cross-correlation-based estimates (blue) across the different
richness and redshift bins. Black: results from the background sensitivity test. The black background sensitivity results are found to agree very well with the
fiducial red curves, while the blue correlation-based estimates appear to be globally biased low.

distribution of clusters can be described as an NFW distribution with
lower (approximately half) concentration than the underlying dark
matter halo (Budzynski et al. 2012).

5 SU M M A RY A N D C O N C L U S I O N S

In this study, we carried out a detailed method validation on the P(z)
decomposition cluster member contamination estimation algorithm
proposed by Gruen et al. (2014) and Melchior et al. (2017). This
approach relies on the decomposition of the average redshift P(z)s
of source galaxies around galaxy clusters into a cluster member
and background component, to obtain an estimate on the relative
number of contaminating galaxies which are mistakenly included in
the source galaxy catalogue. Since its inception this method has been
used by studies ranging from the DES Science Verification cluster
mass calibration (Melchior et al. 2017), to cluster weak lensing
studies focusing on the detection of the splashback-feature (Chang
et al. 2018), and to the mass calibration of SPT-selected clusters
(Stern et al. 2018). It also serves as an important constituent of
the weak lensing mass calibration on DES Y1 (McClintock et al.
2018), which will be used in deriving cosmological constraints
based on the number counts of optically identified galaxy clusters
(DES Collaboration).

In order to demonstrate the applicability of P(z) decomposition-
based boost factors, we performed a series of tests benchmarking
various aspects of the approach. We find the following:

(i) The method performed well in a mock survey simulation
(Section 3.2), yielding excellent agreement between the estimated
contamination rates and the actual true number of contaminants
extracted from the truth catalogues of the simulation.

(ii) Within the mock analysis, we investigated the validity of the
Gaussian ansatz for the cluster P(z) component (Section 3.2.4). We
found that it recovers the approximate redshift and width of the
peak within the P(z) of the contaminating galaxies. Furthermore,
the Gaussian ansatz did not appreciably bias the estimated contam-
ination.

(iii) We tested the sensitivity of the contamination estimates to
the choice of the background P(z) component on DES Y1 data
(Section 3.3.3), and found an excellent agreement between the
boost factors derived via the fiducial and alternative background
components.

(iv) We compared the method with an alternative, transverse
correlation-based contamination estimate in Section 3.3.4. We
found indications that the alternative method is preferentially
underestimating the contaminations, which is likely an imprint of
the radial source galaxy selection function. This is expected to
impact the decomposition predictions to a lesser extent as it does
not make use of the number profile of sources.

Excluding galaxies from the source catalogue can also reduce
the cluster member contamination, however it may also reduce the
statistical power of the measurement if the exclusion criteria are
too broad. Hence, it presents a trade-off in the total error budget
between the systematic uncertainty originating from boost factors
and statistical uncertainty such as shape noise. However based on the
consistency tests presented in this paper, and on the fact that boost
factors played a strongly subdominant role in the total error budget
of McClintock et al. (2018), it appears that the P(z) decomposition
method is sufficient to provide boost factor estimates for current
cluster weak lensing analyses. We note that this determination is
dependent on the characteristics of the sky survey e.g. depth, area,
and number of filters. Notably cluster weak lensing studies such
as Medezinski et al. (2018b, a) and Miyatake et al. (2018) in the
ongoing Hyper Suprime-Cam Survey (Aihara et al. 2018) favoured
the approach of trying to excluding cluster member galaxies via
colour–colour or P(z) cuts.

During the DES Y1 analysis we propagated uncertainties by
making use of a simple analytic model – an NFW profile – to
describe the boost factor correction. Previously Melchior et al.
(2017) also used an analytic model, while others such as Chang et al.
(2018) and Stern et al. (2018) chose to directly use the recovered
boost factor profiles in correcting their 
� measurements. While
the NFW model was found to be a sufficient description for the
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Figure 8. Best-fitting parameters for the Gaussian Pmemb component found
for the P(z) decomposition in the DES Y1 data. The colours indicate the
various cluster redshift bins: z ∈ [0.2, 0.35), z ∈ [0.35, 0.5), and z ∈ [0.5,
0.65) is denoted by magenta, orange, and green, respectively. Top panel:
mean redshift of the cluster member components. The dashed coloured
lines indicate the prior range for the mean of the cluster component. Bottom
panel: standard deviation of the cluster member components.

analysis of McClintock et al. (2018), it is likely that with the
increasing precision of future studies more complex boost factor
models might become necessary.

We quantified several possible sources of systematic uncertainty
impacting the P(z) decomposition method, finding <1 per cent
relative systematic uncertainty based on benchmarks on mock
observations, <1 per cent relative systematic uncertainty originating
from the choice of the background P(z) component, and <1 per cent
relative systematic uncertainty from requiring good global agree-
ment between the numerical boost factor estimates and the analytic
model. From these contributions we estimate that the decomposition
method under optimal circumstances can provide boost factor
estimates with approximately 2 per cent relative global systematic
uncertainty. However, we note that specific circumstances such as
the performance of the photometric redshift algorithm, or the source
galaxy selection function will impact the accuracy and precision of
the P(z) decomposition method.
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tales y Tecnológicas-Madrid, the University of Chicago, Univer-
sity College London, the DES-Brazil Consortium, the University
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42Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona,
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