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Abstract 71 

Genome-wide association study identified prostate cancer risk variants explain only a relatively 72 

small fraction of its familial relative risk, and the genes responsible for many of these identified 73 

associations remain unknown. To discover novel prostate cancer genetic loci and possible causal 74 

genes at previously identified risk loci, we performed a transcriptome-wide association study in 75 

79,194 cases and 61,112 controls of European ancestry. Using data from the Genotype-Tissue 76 

Expression Project, we established genetic models to predict gene expression across the 77 

transcriptome for both prostate models and cross-tissue models and evaluated model 78 

performance using two independent datasets. We identified significant associations for 137 genes 79 

at P < 2.61×10
-6

, a Bonferroni-corrected threshold, including nine genes that remained 80 

significant at P < 2.61×10
-6 

after adjusting for all known prostate cancer risk variants in nearby 81 

regions. Of the 128 remaining associated genes, 94 have not yet been reported as potential target 82 

genes at known loci. We silenced 14 genes and many showed a consistent effect on viability and 83 

colony-forming efficiency in three cell lines. Our study provides substantial new information to 84 

advance our understanding of prostate cancer genetics and biology. 85 

 86 

Significance 87 

This study identifies novel prostate cancer genetic loci and possible causal genes, advancing our 88 

understanding of the molecular mechanisms that drive prostate cancer. 89 

 90 

 91 

92 
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Introduction 93 

Prostate cancer is the most frequently diagnosed malignancy and the second leading cause of 94 

cancer mortality among males in the United States(1). Epidemiological studies provide strong 95 

evidence for a genetic predisposition to prostate cancer(2,3). Since 2006, genome-wide 96 

association studies (GWAS) have identified nearly 150 genetic loci harboring common, low-97 

penetrance risk variants for prostate cancer(4-6). However, together these variants explain less 98 

than 30% of the familial relative risk of prostate cancer(4)
,6
, leaving a substantial proportion of 99 

familial risk uncharacterized.  100 

 101 

Many of the GWAS-identified disease risk variants are enriched in functional elements including 102 

promoters, enhancers, DNase I hypersensitive sites, and transcription factor binding sites, which 103 

may regulate the expression of genes causing diseases(7). It has been hypothesized that many of 104 

the genetic associations identified by GWAS may be mediated through the regulatory effects of 105 

risk variants on genes that are involved in the etiology of diseases(8-15). Specifically for prostate 106 

cancer, several recent studies using expression quantitative trait loci (eQTLs) analyses have 107 

shown that GWAS-identified risk variants may regulate the expression of certain genes that 108 

potentially play a role in prostate carcinogenesis(8,13,16). However, the causal genes for the 109 

large majority of the GWAS-identified prostate cancer risk loci remain unknown.  110 

 111 

With a few exceptions, most common risk variants identified to date are only associated with 112 

diseases with modest effect sizes. It is possible that there are many risk variants in the genome 113 

that have not yet been identified. Because of their small effect size, these variants are difficult to 114 

identify in a typical GWAS, even with a very large sample size. Transcriptome-wide association 115 

studies (TWAS) can be used to systematically assess the association of genetically predicted 116 
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gene expression levels with disease risk throughout the transcriptome, providing a powerful 117 

approach to identify novel disease risk genes and uncover possible causal genes at loci identified 118 

previously by GWAS(17-23). Instead of evaluating each specific genetic variant as conducted in 119 

GWAS, TWAS uses gene-based approaches that aggregate the effects of multiple SNPs into one 120 

testing unit and thus may increase power for identifying novel disease risk loci. Because it is 121 

expensive and often infeasible to profile the transcriptome of the target tissue in a large number 122 

of cases and controls, reference datasets containing both genotyping and gene expression data are 123 

used to establish genetic predictors for gene expression, which are then used to impute gene 124 

expression levels for subjects with genotype information available in a typical GWAS for 125 

association analyses of predicted gene expression with disease risk(18). By focusing on the 126 

genetically regulated component of gene expression, this approach can effectively overcome the 127 

potential influence of biases due to reverse causation and confounding effects on study results. 128 

Very recently, there has been a TWAS identifying new prostate cancer risk regions(24). This 129 

study, however, relies only on statistical inference and does not characterize potential function of 130 

the identified genes in prostate tumorigenesis using functional assays. Herein, we report results 131 

from another comprehensive TWAS of prostate cancer in which we used different strategies for 132 

modelling prostate gene expression and functionally characterized selected identified genes using 133 

in-vitro assays.  134 

 135 

Methods 136 

Building gene expression prediction models  137 

We used transcriptome and high-density genotyping data from the Genotype-Tissue Expression 138 

(GTEx) study to establish gene expression prediction models using SNPs(25). In brief, genomic 139 
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DNA samples obtained from study participants were genotyped using Illumina OMNI 2.5M or 140 

5M SNP Array, and RNA samples from 51 tissue sites were sequenced to generate transcriptome 141 

profiling data. We used genotyping and prostate tissue transcriptome data from 73 European 142 

descendants to build prostate tissue gene expression prediction models. The genetic ancestry of 143 

GTEx subjects was determined based on the first two principal components, with reference to 144 

populations in the 1000 Genomes Project. Considering that the regulatory mechanisms for a 145 

large proportion of genes are similar across most human tissues(25-27), to increase the statistical 146 

power of building models that aim to capture genetic effects on gene expression of normal 147 

prostate tissue, we also generated cross-tissue models using gene expression data generated in all 148 

tissues from 369 GTEx participants of European descent(28). Genotyping data were processed 149 

according to the GTEx protocol (http://www.gtexportal.org/home/documentationPage). Briefly, 150 

SNPs having a call rate < 98%, with differential missingness between the 5M and 2.5M Array 151 

experiments, with Hardy-Weinberg equilibrium P-value < 10
-6

 (among subjects of European 152 

ancestry), or showing batch effects were excluded; also one participant diagnosed with 153 

Klinefelter disease, one participant with trisomy 17 mosaicism, and three related individuals 154 

were excluded. The genotype data were imputed in our study to the Haplotype Reference 155 

Consortium reference panel(29) using Minimac3 for imputation and SHAPEIT for 156 

prephasing(30,31). SNPs with high imputation quality (RSQR ≥ 0.8), minor allele frequency 157 

(MAF) ≥ 0.05, those that were included in HapMap Phase 2 for CEU population, and those on 158 

autosomal chromosomes were retained for the construction of gene expression prediction 159 

models. HapMap SNPs were used because it is expected that additional variants may increase 160 

noise without performance improvement, and such a strategy could generate stronger instruments 161 

because of fewer predicting SNPs being included in the models.  162 
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 163 

Detailed information of RNA-seq experiments and quality-control of the mRNA data performed 164 

as part of  the GTEx project have been described in detail elsewhere(25,27). In brief, the same 165 

lab protocol was used to minimize batch effects on study results. Low quality samples and outlier 166 

samples were identified and removed. Gene-level read counts were produced using the following 167 

read-level filters: 1) reads were uniquely mapped; 2) reads were aligned in proper pairs; 3) the 168 

read alignment distance was ≤ 6; 4) reads were fully contained within exon boundaries. These 169 

data are available in dbGaP and were downloaded for model building in our study. For model 170 

building, the gene expression levels in reads per kilobase of transcript per million mapped reads 171 

(RPKM) units from RNA-SeQC was used(32). For prostate tissue models, genes with a median 172 

expression level of less than 0.1 RPKM across samples were removed. For the analysis of cross-173 

tissue transcriptomic data, genes were retained when the mean expression levels were > 0.1 174 

RPKM and expression levels were > 0 RPKM in at least 3 individuals. In both situations, for 175 

retained genes, the RPKM values were log2 transformed. Quantile normalization, to bring the 176 

expression profile of each sample to the same scale, and inverse quantile normalization, to map 177 

each set of expression values to a standard normal, were then performed. Further, adjustments 178 

were made for the top three principal components (PCs) derived from genotype data and the top 179 

15 probabilistic estimation of expression residuals (PEER) factors(33) for prostate models, and 180 

the top three PCs, the top 35 PEER factors(33), and sex for cross-tissue models. The PEER 181 

analyses were used to further control for unmeasured determinant of gene expression variation, 182 

including batch effects(33).  183 

184 
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In GTEx data, there are expression measurements in different tissues for each individual. A 185 

mixed effect model was used to decompose the expression level of a gene at a given tissue for 186 

individual i into a subject-specific cross-tissue component and a subject-by-tissue-specific 187 

component(28), as 188 

Yi,t = Yi
CT

 + Zʹi β + ϵi,t 189 

Here Yi
CT

 represents the cross-tissue component, Zʹi represents a vector of covariates (e.g., PEER 190 

factors, genetic ancestry, and sex) that have effects of β on the expression levels of the gene, and 191 

the subject-by-tissue-specific component was estimated as the difference between the expression 192 

levels and cross-tissue components (Yi
CT

) given the lack of replicated measurement for a specific 193 

tissue/subject pair. The mixed effect model parameters were estimated using the lme4 package in 194 

R. Posterior models of the subject level random intercepts were used as estimates of the cross-195 

tissue components. The whole tissue gene expression data of 6,124 GTEx tissue samples from 196 

369 unique European ancestry individuals with genotyping data available were used. 197 

 198 

Using both genotyping and gene expression data, an expression prediction model for each gene 199 

was built by applying the elastic net method as implemented in the glmnet R package, with 200 

α=0.5(18). The genetically regulated expression for each gene was estimated by including SNPs 201 

within the 2 MB flanking region of each gene, aligned 202 

. 203 

204 

205 

 Expression 206 

prediction models were built for protein coding genes, lncRNAs, microRNAs (miRNAs), 207 
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processed transcripts, immunoglobulin genes, and T cell receptor genes, according to the 208 

Gencode V19 annotation file (http://www.gencodegenes.org/releases/19.html). Pseudogenes 209 

were not included due to concern for potentially inaccurate calling.(37) Ten-fold cross-validation 210 

was used to 211 

212 

. The prediction R
2
 values (the square of the correlation between 213 

predicted and observed expression) were used to estimate the prediction performance of each of 214 

the finally established prediction models.  215 

 216 

Evaluating performance of gene expression prediction models using Mayo Clinic and 217 

TCGA data 218 

To further assess the external validity of the models we built using GTEx data, we performed 219 

external validation experiment using Mayo Clinic dataset comprising genetic data and gene 220 

expression data of fresh frozen normal prostate tissue obtained from patients with either radical 221 

prostatectomy or cystoprostatectomy (N=471)(8), and TCGA dataset comprising genetic data 222 

and gene expression data of tumour-adjacent normal prostate tissue from European-ancestry 223 

prostate cancer patients (N=45). Genotype data were imputed using the 1000 genomes phase 3 224 

data as reference. Gene expression data were processed and normalized using a similar approach 225 

as described above. The predicted expression level for each gene was calculated using the 226 

models established using GTEx data and then compared with the observed level of that gene 227 

using the Spearman’s correlation.  228 

 229 

Association analyses of predicted gene expression with prostate cancer risk 230 
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We used the following criteria to select prediction models with at least two predicting variants 231 

for the association analysis: 1) with a model prediction R
2
 of ≥ 0.01 in GTEx and a Spearman’s 232 

correlation coefficient of ≥ 0.1 between the predicted and measure gene expression in the 233 

external validation (Mayo Clinic or TCGA dataset), 2) with a prediction R
2
 of ≥ 0.04 in GTEx 234 

regardless of the performance in Mayo Clinic or TCGA dataset, 3) with a prediction R
2
 of ≥ 0.01 235 

in GTEx but unable to be evaluated in Mayo Clinic or TCGA dataset. The second group of genes 236 

was selected because that the gene expression data of the Mayo Clinic dataset were derived from 237 

fresh frozen tissue obtained from patients with either radical prostatectomy or 238 

cystoprostatectomy, and it is expected that the expression patterns of some genes in these 239 

patients may be different from those in the healthy subjects included in GTEx; for TCGA, some 240 

gene expression levels might have changed in TCGA tumor-adjacent normal tissues, and thus it 241 

is anticipated that some genes may show low prediction performance in TCGA data due to the 242 

influence of tumor growth(38,39). Overall, 6,390 prostate tissue models and 12,779 cross-tissue 243 

models met the criteria and were used to evaluate for expression-trait associations.  244 

 245 

To identify prostate cancer risk associated genes, the MetaXcan method (version 0.2.5), which 246 

has been described elsewhere, was used for the association analyses(17). Briefly, the formula:  247 

 248 

was used to estimate the Z-score of the association between predicted gene expression and 249 

prostate cancer risk. Here  is the weight of SNP  for predicting the expression of gene , 250 

and  are the association regression coefficient and its standard error for SNP  in 251 

GWAS, and  and  are the estimated variances of SNP  and the predicted expression of gene 252 
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. The input variables for the MetaXcan analyses include the weights for gene expression 253 

predicting SNPs, GWAS summary statistics results, and correlations between predicting SNPs. 254 

For this study we estimated correlations between SNPs included in the prediction models using 255 

the phase 3, 1000 Genomes Project data focusing on European population.  256 

 257 

We used the summary statistics data for the association of genetic variants with prostate cancer 258 

risk generated from 79,194 prostate cancer cases and 61,112 controls of European ancestry in the 259 

PRACTICAL consortium. Briefly, 46,939 prostate cancer cases and 27,910 controls were 260 

genotyped using OncoArray including 570,000 SNPs (http://epi.grants.cancer.gov/oncoarray/). 261 

Genotypes were phased and imputed to the cosmopolitan panel of the 1000 Genomes Project 262 

(1KGP; 2014 June release). Also included in the analysis were data from seven previous prostate 263 

cancer GWAS or high-density SNP panels of European ancestry imputed to 1KGP: UK stage 1 264 

(1,854 cases/1,894 controls) and stage 2 (3,650 cases/3,940 controls); CaPS 1 (474 cases/482 265 

controls) and CaPS 2 (1,458 cases/512 controls); BPC3 (2,068 cases/2,993 controls); NCI 266 

PEGASUS (4,600 cases/2,941 controls); and iCOGS (20,219 cases/20,440 controls). Logistic 267 

regression summary statistics were meta-analyzed using an inverse variance fixed effect 268 

approach using METAL. All participating studies were approved by their appropriate ethics 269 

review boards. The studies were conducted in accordance with Declaration of Helsinki. In each 270 

participating study, written informed consent was collected from the participants. This study was 271 

approved by the PRACTICAL/ELLIPSE Data Access Committee. 272 

 273 

For our primary analyses, a Bonferroni corrected p threshold of 2.61 × 10
-6

 (0.05/19,169) was 274 

used to determine a statistically significant association. To determine whether the identified 275 
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associations between genetically predicted gene expression and prostate cancer risk were 276 

influenced by association signals identified in GWAS, we conducted conditional analyses 277 

adjusting for all risk SNPs in the corresponding genomic region identified in GWAS or fine-278 

mapping studies. Briefly, we performed GCTA-COJO analyses developed by Yang et al(40) 279 

(version 1.26.0) to calculate association betas and standard errors of SNPs with prostate cancer 280 

risk after adjusting for the index SNPs of interest. We then re-ran the MetaXcan analyses using 281 

the association statistics after conditioning on the index SNPs. 282 

 283 

Prostate cancer cell lines 284 

We performed cell viability and colony formation efficiency (CFE) assays to assess the functions 285 

of a selected set of candidate genes identified in our study. We used the human prostate cancer 286 

cell lines PC-3, DU-145, and LNCaP. These cell lines from American Type Culture Collection 287 

(ATCC, Manassas, VA) were cultured in RPMI 1640 medium (Gibco, cat#11875093) (DU145 288 

and LNCaP cells) or Hams F-12K  medium (Gibco, cat#21127022) (PC3 cells) supplemented 289 

with 2 mm l-glutamine (Gibco, cat# 25030081), 100 IU/ml penicillin-streptomycin (Gibco, 290 

cat#15140122), 1 mm sodium pyruvate (Sigma-Aldrich, cat#s8636), 10 mm Hepes (Gibco, 291 

cat#15630080), 1x nonessential amino acids (Gibco, cat# 11140076),, and 10% fetal bovine 292 

serum (Gibco, cat# 16000044) at 37°C in a humidified atmosphere with 5% CO2. All cell lines 293 

were authenticated by American Type Culture Collection (ATCC), and were checked for 294 

mycoplasma by MycoFluor™ Mycoplasma Detection Kit (Thermofisher). 295 

 296 

Gene expression in prostate cancer cell lines 297 

Total RNA was isolated from the three prostate cancer cell lines using the miRNeasy Mini Kit 298 
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(Qiagen, cat# 217004). cDNA was synthesized using the High-Capacity cDNA Reverse 299 

Transcription Kit (Thermo Fisher Scientific Inc, cat# 4368814). Real-time monitoring of PCR 300 

amplification of cDNA was performed using DNA primers and CFX384 Touch™ Real-Time 301 

PCR Detection System (Bio-Rad) with RT² SYBR Green qPCR Mastermix (Qiagen, cat# 302 

330500). Target gene expression was normalized to glyceraldehyde-3-phosphate dehydrogenase 303 

(GAPDH) levels in the respective samples as an internal standard, and the comparative cycle 304 

threshold (Ct) method was used to calculate relative amount of target mRNAs. The primer 305 

sequences are listed in Supplementary Table 1.  306 

 307 

Short interfering RNA (siRNA) silencing 308 

After performing transfection optimization, PC-3 and LNCaP cells were plated at 3,000 309 

cells/well and DU145 cells at 4,000 cells/well in 96-well plates and reverse-transfected with 310 

siRNAs targeting genes of interest (GOI) purchased from Thermo Fisher Scientific and 311 

Integrated DNA Technologies, Inc. (IDT), a positive control siRNA (All Stars Hs Cell Death 312 

Control siRNA, Qiagen cat# 1027299) or a non-targeting (NT) control siRNA (All Stars 313 

Negative Control siRNA, Qiagen cat# 1027281) (Supplementary Tables 2 and 3) with 314 

RNAiMAX (Life Technologies, cat# 13778150) or lipofectamine2000 (Life Technologies, cat# 315 

11668019) according to the manufacturer’s protocol. Verification of siRNA knockdown of gene 316 

expression of each GOI was done by qPCR 36 hours after transfection and compared to NT 317 

control. AllStars Negative Control siRNA has no homology to any known mammalian gene and 318 

has a minimal nonspecific effects, as validated using Affymetrix GeneChip arrays and a variety 319 

of cell-based assays (Qiagen). 320 

 321 

Research. 
on October 26, 2019. © 2019 American Association for Cancercancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on May 17, 2019; DOI: 10.1158/0008-5472.CAN-18-3536 

http://cancerres.aacrjournals.org/


Wu et al. – Page 14 

 

14 

 

Cell viability assays 322 

Cell viability was determined using the Alamar blue (Thermo Fisher, cat# DAL1025) assay as 323 

previously performed for siRNA knockdowns(41). On day 5 following reverse-transfection of 324 

siRNAs Alamar blue was added to cell plates with fresh media (1:10 dilution), incubated for 2 325 

hours, and fluorescence (ex570nm/em585nm) was measured using a plate reader (BioTek NEO) 326 

in the Vanderbilt High-Throughput Screening Facility. Percent relative viability was calculated 327 

as: (siGOI value / mean NT siRNA control value) × 100. For each cell line, each GOI siRNA 328 

experiment was conducted in quadruplicate each time and repeated for 3 times. 329 

 330 

Colony formation assays 331 

For colony formation assays, siRNA transfected cells (DU-145 and PC-3) were seeded in 6-well 332 

plates with a density of 1000 cells/well at 16 hours after transfection, and were cultured for two 333 

weeks. Colonies, as defined to consist of ≥50 cells, were fixed with methanol, stained with 334 

crystal violet (0.1% w/v) (Sigma-Aldrich, cat# C0775), scanned and counted using ImageJ as 335 

batch analysis by a self-defined plug-in Macro. Relative CFE % was calculated as: 100 +/- 336 

(relative CFE in indicated siRNA - CFE in NTC siRNA) / transfection efficiency (“+” if the GOI 337 

promotes colony formation (CF) and “-” if it inhibits CF). Two independent experiments were 338 

carried out for all siRNAs of each GOI siRNA in DU-145 and PC-3 cell lines. Due to a weak 339 

adherence ability of the LNCaP cells, we did not perform the colony formation experiments on 340 

the LNCaP cells.  341 

 342 

Results 343 

Gene expression prediction models 344 
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Of the prostate tissue models built for 11,172 genes, 7,893 demonstrated a prediction 345 

performance (R
2
) of at least 0.01 (≥ 10% correlation) (Supplementary Table 4). The cross-346 

tissue models were built for 18,961 genes, of which 14,153 showed a prediction performance 347 

(R
2
) of at least 0.01 (Supplementary Table 4). We externally validated our models using  Mayo 348 

Clinic and TCGA datasets. The correlations of two sets of R
2
s (external prediction performance 349 

and internal prediction performance) are shown in Supplementary Figures 1 and 2. Overall, 350 

models that predict gene expression well in GTEx data performed well in predicting gene 351 

expression in both Mayo Clinic and TCGA data sets, while models that predict gene expression 352 

poorly in GTEx showed lower external validity. The correlation coefficients between internal 353 

performance R
2
 of GTEx models and external performance R

2
 derived from the Mayo Clinic 354 

dataset were 0.60 for prostate tissue models (0.43 after removing outliers) and 0.68 for cross-355 

tissue models (0.68 after removing outliers), which were higher than the corresponding 356 

correlation coefficients of 0.48 (0.28 after removing outliers) and 0.54 (0.43 after removing 357 

outliers) obtained using TCGA data for external validation. We prioritized 6,390 prostate-358 

specific models and 12,779 cross-tissue models for association analyses based on their 359 

performance in GTEx, Mayo Clinic and TCGA datasets. 360 

 361 

Association analyses of predicted gene expression with prostate cancer risk 362 

Of the 19,169 models evaluated for the association analyses between predicted gene expression 363 

and prostate cancer risk, models for 137 genes showed a significant association at the 364 

Bonferroni-corrected threshold of p ≤ 2.61×10
-6

 (Tables 1-3, Supplementary Tables 5-6, 365 

Figure 1). Of them, 68 showed a positive association and 69 showed an inverse association. We 366 

conducted conditional analyses adjusting for all reported risk variants in the same genomic 367 
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region identified in previous GWAS or fine-mapping studies to evaluate independency of the 368 

identified associations of the genes(40) (Tables 1-3; Supplementary Table 7). The associations 369 

for nine previously unreported genes in nine chromosome regions (six protein-coding genes and 370 

three long non-coding RNAs (lncRNAs)) remained statistically significant at p ≤ 2.61×10
-6

 even 371 

after conditioning on the known risk variants (Table 1), thus representing potential independent 372 

association signals. An association between higher predicted expression and increased prostate 373 

cancer risk was identified for KIAA0907 (1q22), HCG21 (6p21.33), RP11-103H7.5 (8q24.21), 374 

AGAP10 (10q11.22), and UQCC1 (20q11.22) (Table 1). Conversely, an association between 375 

lower predicted expression and increased prostate cancer risk was detected for LRRN2 (1q32.1), 376 

RP11-429J17.8 (8q24.3), USP28 (11q23.2) and EIF3K (19q13.2) (Table 1). Of the remaining 377 

128 genes, 94 have not yet been previously implicated as genes responsible for association 378 

signals with prostate cancer risk through expression quantitative trait loci (eQTL) and/or 379 

functional studies, and they became insignificant at p ≤ 2.61×10
-6

 after conditioning on the 380 

known risk variants, indicating that these associations may be at least partially influenced by 381 

reported prostate cancer risk variants (Tables 2-3, Supplementary Table 5). Interestingly, 34 382 

genes reported as potential causal genes at prostate cancer susceptibility loci identified through 383 

eQTL and/or functional studies were also found to be associated with prostate cancer risk in our 384 

agnostic search (Supplementary Table 6), substantially exceeding the number of genes (n = 1) 385 

expected by chance alone (p<0.0001). 386 

 387 

It is worth noting that, for some genes in Tables 2-3 and Supplementary Table 6, their 388 

associations were not too far from 2.61×10
-6

 after conditioning on reported prostate cancer risk 389 

variants. For these genes, it is possible that they may represent independent association signals, 390 
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although the power of detecting them may be constrained by the available sample size in the 391 

current study.  392 

 393 

For 56 of the 137 associated genes identified in this study, we were able to build both prostate 394 

tissue and cross-tissue prediction models that fulfill the inclusion criteria described in the method 395 

section. Thus, we could evaluate each of these genes for its predicted expression using both 396 

models with prostate cancer risk (Supplementary Table 8). Of these genes, 46 showed an 397 

association in the same direction using both models, including 14 with a p ≤ 2.61×10
-6

 in both 398 

models and an additional 21 with a p < 0.05 in both models (Supplementary Table 8). There 399 

were only two genes that showed a different direction of association at p < 0.05 (Supplementary 400 

Table 8).  401 

 402 

In vitro functional assays using prostate cancer cells 403 

We selected, for functional assays, 14 genes whose high predicted expression was associated 404 

with increased risk of prostate cancer using knockdown experiments in prostate cancer cells. 405 

These genes included 11 protein coding genes (KIAA0907, EFCAB12, UQCC1, DDX52, 406 

MYO9B, WDPCP, NPNT, VARS2, NUCKS1, HLA-DRB5, and TMEM180) and three lncRNAs 407 

(RP11-103H7.5, RP11-38L15.3, and AC092155.4). We searched The Human Protein Atlas 408 

website (http://www.proteinatlas.org) and noted that all 11 selected protein-coding genes were 409 

expressed in the prostate cancer cell line PC-3. We performed quantitative PCR (qPCR) on the 410 

three prostate cancer cell lines (LNCaP, PC-3 and DU-145) to analyze the expression levels of 411 

these genes (Supplementary Table 1). All 11 protein-coding genes and two lncRNAs (RP11-412 

103H7.5 and RP11-38L15.3) were expressed in the three cell lines. The expression of 413 
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AC092155.4 was undetectable in any of the three cell lines using the standard RT-PCR protocol. 414 

We used cell lines PC-3, DU-145, and LNCaP for the viability assay, and PC-3 and DU-145 for 415 

the colony formation assay. These genes were silenced using small short interfering RNA 416 

(siRNA) and the knockdown efficiency was calculated in each cell line for each siRNA. Through 417 

qPCR validation, robust knockdown of the gene of interests (GOI) was achieved with all the 418 

siRNAs for the 11 protein-coding genes and lncRNAs RP11-103H7.5 and RP11-38L15.3 419 

(Supplementary Figure 3). 420 

 421 

To assess the proliferation of cells following gene silencing, we quantified the relative viability 422 

of cells after knocking down genes of interest in comparison with that of cells treated with non-423 

target control (NTC) siRNA (Figure 2). Except for MYO9B, VARS2, and NPNT, knocking down 424 

any of the other genes resulted in a significantly decreased cell viability in at least one of the 425 

three prostate cancer cell lines (LNCaP, PC-3 and DU-145) used in our experiments. These 426 

results were consistent with our hypothesis that silencing genes whose predicted high expression 427 

was associated with an increased prostate cancer risk should reduce cell viability. Interestingly, 428 

down-regulation of any of the three lncRNAs (RP11-103H7.5, RP11-38L15.3, and AC092155.4) 429 

resulted in significantly decreased cell viability in all three tested cell lines compared with 430 

control group. We further assessed the influence of silencing these genes on colony forming 431 

ability in PC-3 and DU-145 cells (Figure 3). With the exception of WDPCP, knockdown for any 432 

of the other 13 genes resulted in significant reduction in colony forming efficiency in DU-145 433 

cells compared with the control. Experiments using PC-3 cells also showed, in general, 434 

reductions in colony forming efficiency, although the differences with controls were not 435 

statistically significant. These results were consistent with our a priori hypothesis as well. 436 

Research. 
on October 26, 2019. © 2019 American Association for Cancercancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on May 17, 2019; DOI: 10.1158/0008-5472.CAN-18-3536 

http://cancerres.aacrjournals.org/


Wu et al. – Page 19 

 

19 

 

 437 

Discussion 438 

This is the most comprehensive TWAS study to evaluate the associations of genetically 439 

predicted gene expression with prostate cancer risk throughout the human genome. We identified 440 

137 genes demonstrating a statistically significant association after Bonferroni correction, 441 

including nine novel associations independent of any reported prostate cancer risk variants. Of 442 

the 128 remaining associated genes, 94 have not been reported previously as potential causal 443 

genes at GWAS-identified loci for prostate cancer risk. Based on The Human Protein Atlas, 444 

many of our identified genes show an enriched expression pattern in prostate or other cancers, 445 

and some even demonstrate potential prognostic significance in prostate or other cancers 446 

(Supplementary Table 9). For virtually all of the identified genes, at least one gene expression 447 

predicting SNPs showed a highly significant association with prostate cancer risk, and for many 448 

genes, multiple expression-predicting SNPs were associated with the risk of prostate cancer 449 

(Supplementary Tables 10 and 11). This study provides substantial novel information to 450 

improve the understanding of genetics and etiology for prostate cancer, the most common 451 

malignancy among men in most countries around the world. 452 

 453 

Although TWAS-identified associations could be mediated by the expression level of the 454 

identified genes, it is also possible that such associations may be confounded via a linkage 455 

disequilibrium between expression predicting SNPs and a disease causal SNP acting through 456 

other mechanisms. To understand the functional importance of TWAS-identified associated 457 

genes, we silenced 14 genes whose predicted high levels of expression were associated with an 458 

increased prostate cancer risk in three prostate cancer cell lines, and assessed their influence on 459 
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cell viability and colony forming efficiency. We observed that, interruption for many of these 460 

genes demonstrated an effect in the tested cell lines, especially on colony forming efficiency in 461 

DU-145 cells and on viability in LNCaP cells. Based on previous research, downregulation of 462 

one of the tested genes, KIAA0907, had no influence on cell proliferation or cell viability 463 

distribution in non-small cell lung cancer cells(42). This supports that KIAA0907 may not be an 464 

essential gene. Our observation that knocking down expression of KIAA0907 resulted in 465 

significantly decreased cell viability in LNCaP cells and significantly decreased colony forming 466 

efficiency in DU-145 cells thus support a potential role of KIAA0907 in prostate tumorigenesis. 467 

It is expected that some real biological effects may not be detected in all related cell lines, as 468 

each cell line has different characteristics and may not always accurately replicate the primary 469 

cells(43). We observed consistent and strong effects for the three lncRNAs evaluated in the 470 

experiments, RP11-103H7.5, RP11-38L15.3, and AC092155.4, although the expression and 471 

knockdown efficiency of AC092155.4 could not be detected in the three cell lines examined 472 

using the typical RT-PCR method. These results provide evidence for a potential causal role of 473 

these genes in the development of prostate cancer.  474 

 475 

Some of the identified genes showing functional significance from our experiments have been 476 

previously reported to play important roles in the development of cancer. For example, MYO9B 477 

was found to be upregulated in prostate cancer cells with high metastatic potentials(44). 478 

Knockdown of MYO9B was found to increase stress fiber formation and directional persistence, 479 

and decrease 2D migration speed in prostate cancer cells(44). Another gene, NUCKS1, was 480 

identified as a putative oncogene and immunodiagnostic marker of hepatocellular carcinoma(45). 481 

Its overexpression was also identified as a prognostic marker for both colorectal cancer and 482 
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cervical squamous cell carcinoma(46,47). Furthermore, NUCKS1 was found to be potentially 483 

involved in the etiology of lung cancer(48). Our study provided additional evidence that these 484 

two genes might play an oncogenic role in prostate cancer etiology. 485 

 486 

In this large TWAS study we identified 103 associated genes which have not yet been implicated 487 

as potential causal genes at GWAS-identified loci for prostate cancer risk. Although we are not 488 

able to functionally characterize all of them in one single study, in vitro/in vivo studies or human 489 

studies have shown that some of these genes may play important roles in prostate tumorigenesis. 490 

For example, knockdown of CLIC1 exerts inhibitory effects on prostate cancer cell proliferation 491 

and migration(49). The USP39 gene has been suggested to play an oncogenic role in prostate 492 

tumorigenesis, and overexpression of this gene was associated with a poor prognosis for prostate 493 

cancer patients(50). Expressed only in normal prostate and prostate tumor tissues, ANO7 has 494 

been shown to play a role in promoting cell contact-dependent interactions of prostate cancer 495 

cells, and was a potential target for T cell-mediated immunotherapy of prostate cancer(51-53). 496 

PDLIM5 was identified to be overexpressed in prostate cancer cells compared with benign 497 

prostate tissue and noncancer prostate cells(54). These previous studies provide support of our 498 

findings regarding a potential role of these genes in prostate carcinogenesis. 499 

 500 

Previous studies have shown that the gene expression prediction models are generally stable and 501 

can capture well the cis-regulatory effects of genetic variants on gene expression(18,19,55). 502 

Based on our external validation using both Mayo Clinic and TCGA data, the prostate tissue 503 

models and cross-tissue models built in this study demonstrated reasonable prediction 504 

performance, overall. The sample size for association analyses in this study was large, which 505 
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provides high statistical power to detect a large number of prostate cancer susceptibility gene 506 

candidates. On the other hand, the sample size for building prostate tissue specific expression 507 

prediction models was relatively small (n=73), which may affect the precision of estimated 508 

model parameters. Given that the regulatory mechanisms for most genes are similar across most 509 

human tissues(25,26), we also built cross-tissue models using gene expression data generated in 510 

all tissues from 369 European descendants to increase the statistical power. The cross-tissue 511 

models are expected to have improved power for genes whose regulatory mechanisms are similar 512 

across most tissues. In comparison, prostate tissue models are likely to be more appropriate for 513 

genes whose regulatory mechanisms are specific to prostate tissue. With that being said, for 514 

genes that we could build both prostate tissue model and cross-tissue model, their associations 515 

with prostate cancer risk were, in general, consistent with each other (Supplementary Table 8). 516 

Not all genes could be evaluated in our study due to their various hereditary components in 517 

expression regulation. For example, previous studies suggested an important role of genes 518 

ASCL2(8), C10orf32(8,9), COL2A1(8), DBIL5P(8), EBF2(11), and GJB1(8) in the etiology of 519 

prostate cancer. However, expression of these genes cannot be predicted well using data 520 

currently available in the GTEx project which has precluded us from including them in the 521 

association analyses. With a large sample size and improved model building strategies, we 522 

expect that additional genes could be identified in relation to prostate cancer risk in future 523 

studies. As with most other in vitro experiments, we used cancer cell lines to evaluate the 524 

functional significance of associated genes identified in our study. Future studies could be 525 

conducted using normal prostate cell lines. In the current work we did not include negative 526 

controls in the in vitro experiments. However, it is difficult to identify negative control genes for 527 

which there is sufficient evidence supporting their irrelevance with prostate cancer. In addition, 528 
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we did not build prediction models using data from other tissues, some of which could be 529 

relevant to prostate cancer etiology. Future studies using data from relevant tissues could be 530 

helpful in identifying additional candidate genes contributing to prostate cancer etiology.  531 

 532 

In conclusion, in this large-scale TWAS study of prostate cancer, we identified a large number of 533 

novel genes in association with prostate cancer risk. The silencing experiments we performed 534 

suggest that many of the genes identified by TWAS are likely to mediate risk of prostate cancer 535 

by affecting viability or colony forming efficiency, two of the hallmarks of cancer. Further 536 

investigation of these genes will provide additional insight into the biology and genetic of 537 

prostate cancer. 538 

 539 

Data availability  540 

The GTEx data are publically available via dbGaP (www.ncbi.nlm.nih.gov/gap; dbGaP Study 541 

Accession: phs000424.v6.p1). The Mayo Clinic study data are available via dbGaP (Accession: 542 

phs000985.v1.p1). TCGA data are available via the National Cancer Institute's Genomic Data 543 

Commons Data Portal (https://gdc.cancer.gov/). The OncoArray genotype data and relevant 544 

covariate information (i.e. ethnicity, country, principal components, etc.) for prostate cancer 545 

study are deposited into dbGAP (Accession #: phs001391.v1.p1). In total 47 of the 52 546 

OncoArray studies, encompassing nearly 90% of the individual samples, are available. The 547 

previous meta-analysis summary results and genotype data currently are available in dbGaP 548 

(Accession #: phs001081.v1.p1).  549 
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Table 1. Nine novel gene expression-trait associations independent of prostate cancer risk variants identified in GWAS or fine-mapping studies 
 

Region Gene Model Type
a 

Z 

score P value
b R

2c 

 

Index SNP(s)
d
 

Distance to 

the index 

SNP (kb) 

P value after 

adjusting for 

index SNPs
e
 

No. of SNPs in 

prediction 

models 

1q22 KIAA0907 Prostate Protein 6.64 3.16 × 10-11 0.01 rs1218582 1,049 2.41 × 10-6 4 

1q32.1 LRRN2 Prostate Protein -5.08 3.86 × 10-7 0.06 rs4245739 67 2.16 × 10-6 8 

6p21.33 HCG21 Cross-Tissue lncRNA 6.61 3.76 × 10-11 0.21 rs130067 196 9.55 × 10-10 31 

8q24.3 RP11-429J17.8 Cross-Tissue lncRNA -5.27 1.37 × 10-7 0.06 rs7837688 16,332 1.24 × 10-7 10 

8q24.21 RP11-103H7.5 Prostate lncRNA 5.40 6.75 × 10-8 0.02 rs12543663 355 4.89 × 10-15 9 

10q11.22 AGAP10 Cross-Tissue Protein 4.79 1.66 × 10-6 0.01 rs76934034 1,109 1.73 × 10-6 41 

11q23.2 USP28 Cross-Tissue Protein -6.30 2.95 × 10-10 0.12 rs11214775 61 1.04 × 10-6 87 

19q13.2 EIF3K Cross-Tissue Protein -5.80 6.44 × 10-9 0.06 rs12610267 365 1.95 × 10-6 39 

20q11.22 UQCC1 Cross-Tissue Protein 5.02 5.28 × 10-7 0.28 rs11480453 2,543 3.77 × 10-7 42 

 
a Type: lncRNA: long non-coding RNAs; Protein: protein coding genes 
b P value: derived from association analyses; associations with p≤2.61×10-6 considered statistically significant based on Bonferroni correction of 19,169 tests (0.05/19,169) 
c R2: prediction performance (R2) derived using GTEx data 
d Risk SNPs identified in previous GWAS or fine-mapping studies. The risk SNP closest to the gene is presented. A full list of all risk SNPs, and their distances to the genes are presented in the 

Supplementary Table 3 
e using COJO method(40) 
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Table 2. Nineteen gene expression-trait associations that may be at least partially explained by prostate cancer risk variants identified in previous GWAS or fine-mapping studies 

for genes located at genomic loci at least 500kb away from any GWAS-identified prostate cancer risk variants 

 

Region Gene Model Type
a Z score P value

b R
2c 

 

Index SNP(s)
d 

Distance to the 

index SNP 

(kb) 

P value after 

adjusting for 

index SNPs
e 

No. of SNPs in 

prediction 

models 

1q21.2 RP11-353N4.4 Prostate lncRNA 4.74 2.19 × 10-6
 0.03 rs17599629 981 0.009 58 

1q21.3 RP11-98D18.3 Cross-Tissue lncRNA -4.81 1.48 × 10-6 0.01 rs17599629 1,078 2.87 × 10-6 12 

2p11.2 TMSB10 Prostate Protein -4.88 1.08 × 10-6 0.04 rs2028900 634 0.67 29 

2p15 MDH1 Cross-Tissue Protein 7.11 1.19 × 10-12 0.14 rs2430386 638 0.004 18 

3q21.3 EFCAB12 Cross-Tissue Protein 4.73 2.28 × 10-6 0.09 rs13062436 903 0.008 129 

3q25.2 DHX36 Prostate Protein -5.05 4.42 × 10-7 0.03 rs182314334 1,986 2.64 × 10-6 34 

4q24 

RP11-710F7.2 Prostate lncRNA 5.87 4.26 × 10-9 0.07 rs7679673 787 0.45 39 

NPNT Prostate Protein 5.08 3.75 × 10-7 0.06 rs7679673 754 0.23 45 

RP11-710F7.3 Prostate lncRNA 5.19 2.07 × 10-7 0.03 rs7679673 863 0.70 19 

5p15.33 CTD-2589H19.6 Prostate lncRNA -5.52 3.32 × 10-8 0.22 rs2242652 603 2.37 × 10-4 68 

6p24.2 GCNT6 Prostate Protein -5.32 1.06 × 10-7 0.03 rs4713266 572 7.16 × 10-4 2 

7p14.1 MPLKIP Prostate Protein -6.52 7.16 × 10-11 0.26 rs17621345 701 0.18 49 

10q11.22 RP11-38L15.3 Cross-Tissue lncRNA 4.74 2.10 × 10-6 0.01 rs76934034 868 3.36 × 10-6 36 

12q13.13 

RP1-288H2.2 Prostate transcript 11.55 7.67 × 10-31 0.01 rs902774 776 NA 4 

RP1-288H2.4 Prostate lncRNA 11.53 8.97 × 10-31 0.04 rs902774 788 0.34 6 

17q12 

PIP4K2B Cross-Tissue Protein 4.90 9.78 × 10-7 0.02 rs11263763 818 0.40 5 

CTC-268N12.2 Cross-Tissue lncRNA -4.78 1.75 × 10-6 0.04 rs8064454 692 0.12 28 

19q13.12 CTD-3064H18.4 Cross-Tissue lncRNA 4.72 2.34 × 10-6 0.17 rs8102476 696 4.05 × 10-5 105 

22q13.2 RBX1 Prostate Protein 5.12 3.08 × 10-7 0.03 rs11704314 549 0.36 18 

 
a Protein: protein coding genes; lncRNA: long non-coding RNAs; transcript: processed_transcript 
b P value: nominal p value from association analysis; the threshold after Bonferroni correction of 19,169 tests (0.05/19,169 =2.61×10-6) was used  
c R2: prediction performance (R2) derived using GTEx data; NA: not available 
d Risk SNPs identified in previous GWAS or fine-mapping studies. The risk SNP closest to the gene is presented. A full list of all risk SNPs, and their distances to the genes are presented in the 

Supplementary Table 3 
e using COJO method(40); all index SNPs in the corresponding region were adjusted for 
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Table 3. Twenty-seven gene expression-trait associations with 2.61×10-6 < p < 0.05 after conditioning on reported prostate cancer risk variants for genes located at genomic loci 

within 500kb of previous GWAS-identified prostate cancer risk variants 

 

Region Gene Model Type
a Z score P value

b R
2c 

 

Index SNP(s)
d 

Distance to the 

index SNP (kb) 

P value after 

adjusting for 

index SNPs
e 

No. of SNPs in 

prediction 

models 

1q21.3 

CDC42SE1 Prostate Protein -4.73 2.22 × 10-6 0.04 rs17599629 365 4.75 × 10-4 74 
DCST2 Cross-Tissue Protein -5.71 1.16 × 10-8 0.11 rs4845695 79 0.03 9 

RP11-307C12.11 Cross-Tissue lncRNA -6.02 1.77 × 10-9 0.18 rs4845695 106 0.003 40 

1q32.1 
PM20D1 Cross-Tissue Protein 5.45 5.06 × 10-8 0.69 rs1775148 39 0.005 73 

RP11-739N20.2 Cross-Tissue lncRNA -5.26 1.47 × 10-7 0.06 rs199774366 87 0.03 10 

6p21.32 
AGER Cross-Tissue Protein -5.53 3.16 × 10-8 0.12 rs3096702 40 0.03 32 

HLA-DPA1 Cross-Tissue Protein 5.14 2.75 × 10-7 0.60 rs9296068 44 0.007 129 

6p21.33 

PPP1R18 Cross-Tissue Protein 5.78 7.35 × 10-9 0.03 rs12665339 43 0.002 18 
HCP5 Cross-Tissue lncRNA 5.28 1.27 × 10-7 0.02 rs2596546 39 7.16 × 10-4 9 

HCG22 Cross-Tissue lncRNA 4.88 1.09 × 10-6 0.36 rs130067 91 0.02 140 
ATF6B Cross-Tissue Protein 4.79 1.63 × 10-6 0.17 rs3096702 96 0.002 34 
APOM Prostate Protein 5.49 3.93 × 10-8 0.02 rs2596546 291 0.008 40 

6p22.1 ZNRD1 Cross-Tissue Protein 5.37 7.85 × 10-8 0.42 rs7767188 41 2.06 × 10-5 215 
9p22.2 ADAMTSL1 Prostate Protein -5.00 5.81 × 10-7 0.04 rs1048169 145 5.28 × 10-6 74 

10q24.32 RP11-47A8.5 Cross-Tissue lncRNA -5.49 4.01 × 10-8 0.05 rs3850699 10 1.66 × 10-4 11 

11q13.3 

CCND1 
Prostate Protein -9.02 1.94 × 10-19 0.12 rs36225067 2 3.98 × 10-7 34 

Cross-Tissue Protein -6.06 1.37 × 10-9 0.04 rs36225067 2 0.002 76 

RP11-554A11.9 
Prostate lncRNA 9.35 8.48 × 10-21 0.36 rs11228565 51 0.001 47 

Cross-Tissue lncRNA 7.98 1.51 × 10-15 0.65 rs11228565 51 0.003 130 
RP11-554A11.5 Prostate lncRNA 4.85 1.22 × 10-6 0.14 rs11228565 206 0.04 38 

MYEOV Cross-Tissue Protein -12.55 4.09 × 10-36 0.04 rs376592364 50 0.01 29 
RP11-211G23.2 Cross-Tissue lncRNA -7.20 6.19 × 10-13 0.02 rs376592364 175 0.002 23 

12q13.11 PFKM Cross-Tissue Protein -5.63 1.77 × 10-8 0.05 rs80130819 79 0.008 76 
12q13.12 RP11-386G11.10 Cross-Tissue lncRNA -4.94 7.73 × 10-7 0.12 rs56222401 131 0.03 47 
18q21.2 STARD6 Cross-Tissue Protein 4.83 1.35 × 10-6 0.18 rs8093601 78 0.007 71 

18q21.33 KDSR Cross-Tissue Protein 4.86 1.16 × 10-6 0.16 rs11381388 34 9.74 × 10-4 2 
19p13.11 MYO9B Prostate Protein 5.51 3.50 × 10-8 0.07 rs11666569 inside the gene 0.02 28 
19q13.2 AC006129.1 Cross-Tissue lncRNA -8.39 4.74 × 10-17 0.03 rs11672691 52 0.04 4 

19q13.33 SYT3 Prostate Protein -6.02 1.77 × 10-9 0.08 rs2659124 183 0.04 36 

 
a Protein: protein coding genes; lncRNA: long non-coding RNAs; transcript: processed_transcript 
b P value: nominal p value from association analysis; the threshold after Bonferroni correction of 19,169 tests (0.05/19,169 =2.61×10-6) was used  
c R2: prediction performance (R2) derived using GTEx data; NA: not available 
d Risk SNPs identified in previous GWAS or fine-mapping studies. The risk SNP closest to the gene is presented. A full list of all risk SNPs, and their distances to the genes are presented in the Supplementary Table 3 
e using COJO method(40); all index SNPs in the corresponding region were adjusted for 
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Figure Legend 

Figure 1. Manhattan plot of association results from the prostate cancer transcriptome-wide association study. The red line represents P = 2.61 × 10
-6

 based on 19,169 tests. 

Each dot represents the genetically predicted expression of one specific gene by either prostate tissue or cross-tissue prediction models: the x axis represents the genomic position 

of the corresponding gene, and the y axis represents the negative logarithm of the association P-value. There are two associations with P < 1.00 × 10
-40

 not shown in this Figure. 

 

Figure 2. Effects on cell viability in prostate cancer cells by gene silencing.  

(A) DU-145, (B) PC-3 or (C) LNCaP cells were transfected with indicated siRNAs. On day 5, cell viability was determined using Alamar blue. Percent relative viability was 

calculated as: (siGOI value / mean NT siRNA control value) × 100. Error bars are from three independent experiments in quadruplicate, and represent standard deviation. P-values 

were determined by one-way ANOVA followed by Dunnett’s multiple comparisons test, which controlled for family-wise error-rate: *P-value < 0.05. NTC: non-target control. 

 

Figure 3. Effects on colony formation efficiency (CFE) in prostate cancer cells by gene silencing.  

(A) DU-145 or (B) PC-3 cells were transfected with indicated siRNAs, then reseeded after 16 hours for colony formation (CF) assay. At day 14, colonies were fixed with 

methanol, stained with crystal violet, scanned and batch analyzed by ImageJ. Relative CFE % = 100 +/- (relative CFE in indicated siRNA - CFE in NTC siRNA) / transfection 

efficiency (“+” if the GOI promotes CF and “-” if it inhibits CF). Error bars are from two independent experiments in triplicate, and represent standard deviation. P-values were 

determined by Welch’s ANOVA followed by Dunnett’s multiple comparisons test, which controlled for family-wise error-rate: *P-value < 0.05. NTC: non-target control. 
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